PHYSICAL REVIEW B VOLUME 59, NUMBER 9 1 MARCH 1999-I

Metallic nanosphere in a magnetic field: An exact solution

D. N. Aristov
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We consider an electron gas moving on the surface of a sphere in a uniform magnetic field. An exact
solution of the problem is found in terms of oblate spheroidal functions, depending on the parameter
=®/d, the number of flux quanta piercing the sphere. The regimes of weak and strong fields are discussed,
and the Green’s functions are found for both limiting cases in closed form. In weak fields the magnetic
susceptibility reveals a set of jumps at half-integeThe strong-field regime is characterized by the formation
of Landau levels and localization of the electron states near the poles of the sphere defined by a direction of the
field. The effects of coherence within the sphere are lost when its radius exceeds the mean free path.
[S0163-182699)12905-9

I. INTRODUCTION connected with the spin of the particle. We assume that the
total number of particled\ (with one projection of spin is
The electronic properties of cylindrical and spherical car-fixed and defines the value of the chemical potentisdand
bon macromoleculéshave attracted much theoretical inter- the areal densityr= N/(4rrr§). The confining potential
est recently. A large part of these studies is devoted to band (r)=0 atro<r<ry+ ér andU(r)—< otherwise. We fo-
structure calculatiofsand to the effects of topology for the cus our attention on the limifr <r,, when the variables of
transport and mechanical properties of these nanostructurege problem are separated. The radial compoRén} of the
The main interest in the topological aspects is connectediave function is a solution of the Shitimger equation with
with the carbon nanotubes, where one can investigate thge quantum well potential. Henceforth we ignore the radial
effective models, based on the band calculations and incogomponent and put=r in the remaining angular part of the
porating the particular geometry of the objéct. Hamiltonian H,, ; it can be done ifu lies below the first
At the same time, the problem of the topology appears texcited level ofR(r), which in turn meanssr<»~ 2 We
be a general one and may be studied independently from thg,,,qe the direction of the fieB along theZ axis and as a
physics o_f carbon r_naterials. Recent advqnces in techn‘blogy]orth pole of the sphered= 0) and look for the eigenfunc-
let one think of a wider class of t_he spherical nanqstructuresdons to the Schidinger equatior{,¥=EW in the form
e.g., spheres coated by metal fillh&hose properties may W (0,4)=S(6)eM. Defining the dimensionless energy

differ fr_om those of planar objects. _ . =2mer§E and settingy = cos6, we write
In this paper we study a gas of electrons moving within a

thin spherical layer in an applied magnetic field. We find the

2
exact solution of this problem in terms of oblate spheroidal — (1 — ,72)’9_S+ e—2mp— m 5 —p%(1-75?) |S=0.
functions. This physical application of the theory of spheroi- 97 an —

dal functions was not discussed previou%1§/We show the (2

jumps in the susceptibility of the system in “weak” fields
and the localization of the electronic states in ‘“strong”
fields. The last effect could be experimentally investigated _ 215 21 —r2/(9]2) — 2
for the hemispherical tips of nanotubtst intermediate p=eBry/2=mBro/Po=ro/(2l,)=mdrowd2, (3
fields the sophisticated structure of the functions makes awith the magnetic flux quantum ®y=2mn/e=2
analytical treatment impossible and numerical methods< 107> T m?, magnetic length, = (eB) ~*2, and cyclotron
should be used for an analysis of observable quantities.  frequencyw.=eB/m,. Note that for a sphere of radiug
=10 nm one hap=1 at the fieldB=6 T.
1. SETTING UP THE PROBLEM Equation(Z) is known as the Spheroidal differential equa-
tion and was extensively studied previouSi§ The solutions
Let us consider electrons moving on a surface of a spherg it are given by oblate(angulay spheroidal functions
of radiusry. In the presence of a uniform magnetic fi8d S (p,») with the corresponding eigenvalueg,(p).
we choose the gauge of the vector potential as a vector prod- |t is known that spheroidal functions belong to the sim-
uct A=3(Bxr). The Hamiltonian of the system is given by plest class of special functions which are not essentially hy-
pergeometric ones. For spheroidal functions there are no re-
1 ) 2 currence relations, generating function representations, etc.,
H= 2me(—|V+eA) +U(n), (1) which are characteristic for classical special functions. The
spectrume,(p) is found as the eigenvalues of infinite ma-
wherem, is the (effective mass of an electron ande its trices. For different sets of functions orthogonal on the inter-
charge; we have sdt=c=1 and omitted the trivial term val (—1,1), these matrices are reduced to tridiagonal form

We introduced here the important dimensionless parameter
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and could be further analyzed within the chain fraction for- 4 T T r
malism or by explicit(numerical diagonalizatior?=® Per-
haps, the most known guantum-mechanical application of sl
the spheroidal functions is the problem of an electron in a
two-center Coulomb potential 4 moleculg. S
o o 2 i
Il. WEAK FIELD, SUSCEPTIBILITY g:
Let us first concentrate on the case of the weak field. In < [
the absence of the field, the spectrum is that of a free rotato <
model and the solutions t®) are the associated Legendre ok
polynomiald*
= —+ -1 L 1 L 1 N 1
eim(0)=1(1+1), . : . . y

. /2|+1(|—|m|)!Pm . p
Sm(0,7)= 4arr2 (1+[m)! (). “ FIG. 1. The dependence of the static susceptibijitpn the

numberp of magnetic flux quanta piercing the sphere.
According to Egs.(4) the wave functions are the spherical
harmonics%m(a,(ﬁ):r51Y|m(6,¢) and are normalized on with the Bohr magnetornug=e/2m,, the Fermi function
the surface of the sphere3[|W|?sinédddg=1. This nor-  ng(e), andng(e) its derivative. The first term here gives the
malization facilitates the comparison of our results with thediamagnetic contributiony®= —2/3u2m.raN and the sec-
case of planar geometry. ond term is the paramagnetic one. At low temperatusgs
For p#0 one develops perturbation theory around the<T<y we let Nt(Eim)=—8(em—u) and changeZ,,

o : 2 6-8 ; i . :
initial wave func;tlons_(4) as long agp s_4|. The energies  ~ ! dm. Performing the integration we get
and wave functions in this case are given by a serigs’in

2

s|m(p)=l(l+1)+2pm+%

m2

x=N2(u3/2u) —2/3+p’3§|: (1-L-1/22], ()
L+ |+0

2
oo

where the summation is restricted dy-L—1/2/<p. From
m m Eq. (7) we see thaly exhibits jumps ap=1/2,3/2,52 ...,
Sim(P,7)%P{"(7) + P{l. o(m) O p*/1]. ®  while x—0 in the formal limit p—c. This behavior is
shown in the Fig. 1, together with the quanti/B. At the
other fillings, i.e., at the other values pf, the jumps ofy
ke place at other values @f and the qualitative picture
remains true. The amplitude of the jumpsNstimes larger
than the Pauli spin susceptibilityN,u%/,u; this coherent
3 29202 [ effect vanishes if the coherence on the sphere is lost due to
Bro~[fic/e’]’e?\v 1372(””" the finite quasiparticle lifetimg¢see below.
Hence the field cannot be treated as a perturbation if the
energy of the magnetic field in the volume of the sphere is IV. WEAK FIELD, GREEN'S FUNCTION

10* times larger than the characteristic plasma frequency. ) )
For densitiess~10" cm~2 andr,=10 nm it corresponds Let us discuss the properties of the electron Green’s func-

to fields greater than 40 T. tion. For the two points on the sphere+~ (6,0), and

For the weak-field regime it is interesting to observe the! < (0", ¢), we define
following property of the spectruni5). For simplicity we

To clarify the criterionp?/I<1 we consider the case
when the field ceases to be small for electrons near the Fer
level, | =ryy4mv, mostly contributing to the physical prop-
erties. This case corresponds to the relation

\I’ikm( ‘9, -QS)\I’Im( 010)

consider the situation when tlheh unperturbed level is com- G(r.r' w)= 2 @)

pletely filled and the I+ 1)th level is empty. Linearizing v im o+ u—Epn

the spectrum we have,,=2L(I—L—1/2+pm/L). It is ) 21

clear that ap>1/2 the statel(=L+1,m=—L—1) is ener- With Ein=(2Merg) “eim. o

getically more favorable than the state=(L,m=L), with '[‘1 the absence of a magnetic fieldV,(6,¢)

the resulting change in the occupation of the levels. =TIy Yim(6,¢) and one can findsee below an exact rep-
This phenomenon is accompanied by jumps in the stati¢esentation ofs through the Legendre function

susceptibility.  Consider the free energyF=

— T3, In(e* Em'T+1). Then, apart from the Pauli spin G(©)g_o=C%w)= Me P_ 1 a(—COSQY), (9)

contribution, the magnetiddifferentia) susceptibility y ~ 2coswa
=9M/oB= — 3°F/9B? is given by

where we introduce@= \2mgrj(u+ )+ 1/4 and the dis-

&) 2 tance() on the sphere:
) nl’:(«"b‘lm) '

p

2 2
MMelg
X=——% 2

Im

528|m
2 nF(SIm) +
p

cos()=cosf cosf’ +sinéfsin o' cosg .
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We immediately see from E@9) the logarithmic singularity and finds
in the one-point correlator(}=0) as it should be. It is in- _ _
structive to find out how the usual expressions for the planar _me ex;{ipﬂ(w—ﬂ)][ gla(m—Q)—iml4

i G(w)=
geometry are recovered for the large radius of the sphere, 2 PrasinQ | cosm(a+pp)
ro—o°; in this caseaxrg, while Q—|r—r’|/ro=r/ry. In 4 :

the limit a>1 and fora sin{)=1 one has, in the main order g-la(m—Q)+iml4
of a=1,%0 * cosm@=pB)| (13)
L X R i
2masinQ cosma ' 0~ Imfp. phere breaks an

the only surviving term in Eq(13) has the form
The existence of two oscillating exponents exfam—al) _ A 2.0
—/4) corresponds to quantum coherence of two waves. One Gaamped @) =expiz(r’ X1)/2l5)Ggamped @), (14)

propagates along the shortest path between two points and accordance with previous resulisee, e.g., Ref. 12
another wave goes along the longest path, turning around the

sphere. In the theory of metals one considéas<u V. STRONG-FIELD REGIME

=k§/(2me), while the finite quasiparticle lifetime can be )

modeled by ascribing the imaginary partdo We write in Let us now turn to the case of strong fielgs:>. We

this sense/2m8w=k,:+illmfpwith the mean free pathy - define the integer number=0 as follows: Z1=1—|m| for
Whenr o=y, We see that the coherence breaks and theven!—|m| and n+1=I—|m| for odd|—|m|. The value
only surviving exponent in E¢10) has the form of n has a simple meaning; it corresponds to the number of

zeros of the wave functiof,,(p,cosé) within the interval
#e(0,7/2), by analogy with the known property of

mg ) T r ) X
GY w)=— exp{lk r+|———}, 11 P"(cosd). The spectrum of Eq(2) is then given by a
dampe(i ) \/Tk':r F 4 Imfp ( ) Sér(ieg—B) p q( ) g y

which expression coincides with the usual findifys.

It is possible to obtain the closed form of the Green’s
function in the weak-field regime. We sketch the correspond- +0[s%p], (15
ing derivation below.

First we neglect the p?l terms in the wave
function (6) and write Y},(60',#)Ym(6,0)=(47) (2l
+1)e "M?PM(cosh)P, M(cos#’). Using Eq.(5) and drop-
ping the terms containing?/a~ p?/l, we have

gim(p) =4p[n+(m+|m|+1)/2] — (s>~ m?+1)/2

with s=2n+|m|+1; one hass=I1+1 (s=I) for even
(odd) values ofl —m. The eigenfunctions are given by

Sim(P: 1) =Sm(P, 7)) = Sim(p, — ), (16)
where the plugminus sign corresponds to evéadd values
ofl-m.8 The functionsélm(p, n) are found as a series in the

Laguerre polynomial&['(x); in the main order op~?! they

. . . can be written as
Now we represent the appearing fraction as the Taylor series

-1 -1

21+1

W& m

pm
at+t—+Il+=
a 2

at+——-Il—=
a 2

Sim(p, m)=c(1— 7)IM2e=PL=nLIM(2p(1— 7)),

m o
(a+pm/a—z)1=eXL{p——)(a—Z)1 12

a Jda 2|m|p\m|+ln!
and substituten by i 9/ d¢ in the last exponent. After that we B 2wr§(n+|m|)! (7
can sum ovem in Eg. (8) (Ref. 10 and represent the re- ) ) o
maining sum ovet as the contour integraL to obtain We see that in the main order pfthe Landau quantlzatlon
takes place; i.e., the spectruihb) is that of a quantum os-
p dv m, P,(—cosQ) cillator with the cyclotron frequency being the energy
G(w)=exr{| 2 m 3€ omi 2sinmy a—v—1/2 quantum:® The convergence and hence the applicability of

the serieg15) is given by the conditiop=s~I. In its turn,
p 0 it means® that all n zeros of the approximate eigenfunction
I EPYFPE P G(w), 12 | Im(2p(1—5)) in Eq. (17) lie in the northern hemisphere,
7n>0, as they should.
with G%(w) given by Eq.(9). Whena>1 the expression We notice the following important property of the spec-
(12) could be Slmpllfled at the above conditiarsin()=1. In trum (15) For given nonpositiven the values Otglm corre-
this case we use E10) and observe that, upon differenti- sponding tol =2n+|m| and|=2n+|m|+1 coincide. This
ating overg, the main contribution of order @ stems from  property and the form of the wave functi¢h6) can be un-
the numerator expfia()) of Eq. (10). Then one uses the derstood as follows. Ap—o the field-induced potential
identity p?sirfg in (2) localizes the particles near the poles of the
sphere. This form of two-well potential leads to the dis-
exr{z 7. =Eex;{zi cussed degeneracy of energy levels, while the total wave
a da a Jda function is given by a symmetrizatidi6) of the wave func-

a
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tions (17) related to each of the wells. The possibility of

guantum tunneling between the wells lifts the degeneracy

and produces an exponentially small energy splitting
(~e;2F’) between the stateS,(p,7) and S,(p,7), Eq.
(16).

It would be tempting to obtain the Green'’s functionpat
—oo in a closed form. It can be done with the following
simplifications. First, we neglect the exponentially small
splitting and notice thatS*(#%)S™(%')+S (S (")
=2[S(7)S(5')+S(— n)S(—7')]; ie. the correlations
within one hemisphere only survive. Now we leave only the
leading termg17) of the wave functions an®(p) terms in
energieq15). The necessity to restrict the summation in Eq.
(8) by terms withs<p could be modeled by inclusion of the
cutoff factore % with 5~p~?! into Eq. (8). We putu=0
for simplicity of writing and raise the denominator into the
exponent, p—E,,) “1=if5dt €' Em~ ) Next we perform
the summation oven with the use of bilinear generating
function for the Laguerre polynomiaf$:

©

nzo WLLm‘(X)LLml(y)Z”
(xyp Iz xty| [z
T T 1z SR T ml e )

with the modified Bessel functiom,(w); in our casex
=2p(1—17),y=2p(1—7'), and z=€'"*“c. Making use of
the propertyl |, (iw) =i™J,(w) and rescalingw /2—t we
arrive at an intermediate formula fay, »' >0:

G(w)2 _ EJm dt —2itw/w—i(x+y)cott+is)/2
4 )o SiN(t+i6)
X i(t—¢+7/2)m _ i ]
m:z_w € Im sin(t+i )

The summation ovem is now easily dond=,,e™m?J, (W)

=e'"s"%] and we obtain the Green’s function as a sum of

two terms, referring to two hemispheres. The “northern”
term, corresponding to the above expression, is given by
10+ dt —2i(t—id)w/ws—ipcot/2

sint

€ Liv

|

Gn(w)z— E

8

m eiv—Z&u/wC
e
w
8 cosm—
We

2iw  iptant
aovis  EXH T we
x j dt 19
—ml2+i8 cost

with the analog of the distance on the sphere,2p[2— »

— 7' —=2J(1-7)(1— n")cos@+id)], and that of the vector
product,v =2p+(1— 7)(1— 7')sin(¢+id). The form of the

“southern” term is obtained by changing— — » and »’
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100

glm(p)

10
p

FIG. 2. The dependence of the energy lewgls on the number
p of magnetic flux quanta piercing the sphere. For convenience of
presentation, we plotted the evolution gf,(p) with m=<0 on the
right-hand side of the plot, gi>0. The evolution ofg|,(p) with
m=0 is depicted on the left-hand side of this plot for the formally
negativep; see the text for additional explanations.

me . 1 o 1 o
n ~_ iv—pl2— dwlw, o 1
G"(w) pp ol o v 5 wc,l,p},
M Ln(p)

iv—pl2— dwlw
yp e c (19

n=o wlw,—n—1/2°
The last equation is similar to previous findings.

Let us discuss the applicability of E(L9). Our derivation
was straightforward until Eq(18), while the last step de-
manded 6§~ 1/p—0. The incomplete restructuring of the
spectrum into the Landau level scheme is absent in the usual
planar geometry, wherein one would pft=0 and the ex-
pression19) would be exact. In the spherical case we cannot
treat the higher levels with=p in an analytical way; it is
mimicked in Eq.(19) by the appearance of the exponential
cutoff at w=pow.

A subtler issue in justifying Eq19) is the shift of the last
integration in Eq(18) to the interval & 7/2,7/2). The inte-
gration over the remaining segments: £/2,* w/2+i6)
yields the factor costw/wc); thus the contribution of these
segments to the Green’s function has no polesinThis
contribution could be combined with the smodtieal) part
of G(w) stemming from the consideration of the highest-
energy levels.

As a result, one may conclude that the expressis)
correctly reproduces the basic properties of the Green’s func-
tion for w<pow,.

The finite value of the cutoff parametet in Eq. (19)
becomes important for the one-point correlation function,
i.e., atp=7' and ¢=0. The residues of the Green’s func-

— — 7' in these expressions. The last integral is reduced fotion define the local density of statékDOS) by the re-

vanishing é to the hypergeometric functioW(a,b;z) and
we obtain the “northern” term in the form

lation N(r)=fdw ng(w)[G(r,r,0—i0)—G(r,r,0+i0)]/
(27ri). If we assume that lowest Landau levels are filled by
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the electrons, then it follows from EqL9) that the LDOS is the intermediate fields mimicks the chaotic behavior, al-
given by N(r)=npé? ??/(27r2). In this case finites  though there is no chaos here. Both in the quantum problem
~1/p provides a smooth variation of the LDOS of the form considered here and in its classical counterpart one has two

variables @, ¢) and two integrals of motion, the energy and

N(r)=exd — O(sir? 6)], the projection of the angular momentum onto the field direc-

which variation is absent in the usual planar geometry. Thidion- To obtain chaos, it suffices to break the rotation sym-
result, however, may depend on the approximations mad®€lry, #— ¢+ 5¢. The latter problem is, however, beyond

and requires further numerical investigation. the scope of this study. _
It should be stressed that at intermediate fieldgatl In conclusion, we demonstrated the exact solution of the

andp=I=p?, the spectrum and wave functions are not prin_electron gas on the sphere in the magnetic field. In the limits

cipally reduced to closed expressions of hypergeometri@f weak and strong fields this solution is reduced to the hy-

type. Numerical methods are indispensable here. We calcip€9e0metric functions and the observable quantities are
lated the evolution withp of the energy levels withl ound in closed form. In the case of intermediate fields, the

-0 5 bydiagonalizing the 208 200 tridiagonal matri- solution is not essentially a hypergeometric function and the

ces in the basis dP["(#). The results are shown in the Fig. observables require further numerical analysis.
2 where we made the following convention. From the gen-
eral property of Eq(2) it follows thate| _(p)=¢&| m(—P)
with formally negativep.'* For better readability of the
graph, it is possible then to show all the data, plotting only The author thanks S.V. Maleyev, M.L. Titov, S.L.
half of them with one sign ofn but in the formally extended Ginzburg, V.E. Bunakov, and V.l. Savichev for helpful dis-
region ofp. One can see in Fig. 2 that the degeneracp at cussions. This work was supported in part by the RFBR
=0 is eventually changed by the Landau levels formation aGrant No. 96-02-18037-a, the Russian State Program for Sta-
p=10. In the intermediate regiop~3 the absence of any tistical Physics(Grant No. VIII-2), and Grant No. INTAS
structure in the levels’ scheme is noted. The mesh of lines 67-1342.
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