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Metallic nanosphere in a magnetic field: An exact solution

D. N. Aristov
Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350, Russia

~Received 5 August 1998; revised manuscript received 16 October 1998!

We consider an electron gas moving on the surface of a sphere in a uniform magnetic field. An exact
solution of the problem is found in terms of oblate spheroidal functions, depending on the parameterp
5F/F0 , the number of flux quanta piercing the sphere. The regimes of weak and strong fields are discussed,
and the Green’s functions are found for both limiting cases in closed form. In weak fields the magnetic
susceptibility reveals a set of jumps at half-integerp. The strong-field regime is characterized by the formation
of Landau levels and localization of the electron states near the poles of the sphere defined by a direction of the
field. The effects of coherence within the sphere are lost when its radius exceeds the mean free path.
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I. INTRODUCTION

The electronic properties of cylindrical and spherical c
bon macromolecules1 have attracted much theoretical inte
est recently. A large part of these studies is devoted to b
structure calculations2 and to the effects of topology for th
transport and mechanical properties of these nanostruct
The main interest in the topological aspects is connec
with the carbon nanotubes, where one can investigate
effective models, based on the band calculations and in
porating the particular geometry of the object.3

At the same time, the problem of the topology appears
be a general one and may be studied independently from
physics of carbon materials. Recent advances in technol4

let one think of a wider class of the spherical nanostructu
e.g., spheres coated by metal films,5 whose properties may
differ from those of planar objects.

In this paper we study a gas of electrons moving within
thin spherical layer in an applied magnetic field. We find t
exact solution of this problem in terms of oblate spheroi
functions. This physical application of the theory of spher
dal functions was not discussed previously.6–8 We show the
jumps in the susceptibility of the system in ‘‘weak’’ field
and the localization of the electronic states in ‘‘strong
fields. The last effect could be experimentally investiga
for the hemispherical tips of nanotubes.9 At intermediate
fields the sophisticated structure of the functions makes
analytical treatment impossible and numerical meth
should be used for an analysis of observable quantities.

II. SETTING UP THE PROBLEM

Let us consider electrons moving on a surface of a sph
of radiusr 0 . In the presence of a uniform magnetic fieldB
we choose the gauge of the vector potential as a vector p
uct A5 1

2 (B3r ). The Hamiltonian of the system is given b

H5
1

2me
~2 i¹1eA!21U~r !, ~1!

whereme is the ~effective! mass of an electron and2e its
charge; we have set\5c51 and omitted the trivial term
PRB 590163-1829/99/59~9!/6368~5!/$15.00
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connected with the spin of the particle. We assume that
total number of particles,N ~with one projection of spin!, is
fixed and defines the value of the chemical potentialm and
the areal densityn5N/(4pr 0

2). The confining potential
U(r )50 at r 0,r ,r 01dr andU(r )→` otherwise. We fo-
cus our attention on the limitdr !r 0 , when the variables of
the problem are separated. The radial componentR(r ) of the
wave function is a solution of the Shro¨dinger equation with
the quantum well potential. Henceforth we ignore the rad
component and putr 5r 0 in the remaining angular part of th
HamiltonianHV ; it can be done ifm lies below the first
excited level ofR(r ), which in turn meansdr &n21/2. We
choose the direction of the fieldB along theẑ axis and as a
north pole of the sphere (u50) and look for the eigenfunc
tions to the Schro¨dinger equationHVC5EC in the form
C(u,f)5S(u)eimf. Defining the dimensionless energy«
52mer 0

2E and settingh5cosu, we write

]

]h
~12h2!

]S

]h
1F«22mp2

m2

12h2
2p2~12h2!GS50.

~2!

We introduced here the important dimensionless parame

p5eBr0
2/25pBr0

2/F05r 0
2/~2l

*
2 !5mer 0

2vc/2, ~3!

with the magnetic flux quantum F052p/e52
310215 T m2, magnetic lengthl * 5(eB)21/2, and cyclotron
frequencyvc5eB/me . Note that for a sphere of radiusr 0
510 nm one hasp51 at the fieldB.6 T.

Equation~2! is known as the spheroidal differential equ
tion and was extensively studied previously.6–8 The solutions
to it are given by oblate~angular! spheroidal functions
Slm(p,h) with the corresponding eigenvalues« lm(p).

It is known that spheroidal functions belong to the sim
plest class of special functions which are not essentially
pergeometric ones. For spheroidal functions there are no
currence relations, generating function representations,
which are characteristic for classical special functions. T
spectrum« lm(p) is found as the eigenvalues of infinite m
trices. For different sets of functions orthogonal on the int
val (21,1), these matrices are reduced to tridiagonal fo
6368 ©1999 The American Physical Society
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and could be further analyzed within the chain fraction f
malism or by explicit ~numerical! diagonalization.6–8 Per-
haps, the most known quantum-mechanical application
the spheroidal functions is the problem of an electron i
two-center Coulomb potential (H2

1 molecule!.

III. WEAK FIELD, SUSCEPTIBILITY

Let us first concentrate on the case of the weak field
the absence of the field, the spectrum is that of a free rot
model and the solutions to~2! are the associated Legend
polynomials14

« lm~0!5 l ~ l 11!,

Slm~0,h!5A2l 11

4pr 0
2

~ l 2umu!!
~ l 1umu!!

Pl
m~h!. ~4!

According to Eqs.~4! the wave functions are the spheric
harmonicsC lm(u,f)5r 0

21Ylm(u,f) and are normalized on
the surface of the sphere,r 0

2* uCu2 sinududf51. This nor-
malization facilitates the comparison of our results with t
case of planar geometry.

For pÞ0 one develops perturbation theory around
initial wave functions~4! as long asp2<4l .6–8 The energies
and wave functions in this case are given by a series inp2:

« lm~p!5 l ~ l 11!12pm1
p2

2 F11
m2

l 2 G1OFp2

l G , ~5!

Slm~p,h!}Pl
m~h!1Pl 62

m ~h!O@p2/ l # . ~6!

To clarify the criterion p2/ l &1 we consider the cas
when the field ceases to be small for electrons near the F
level, l .r 0A4pn, mostly contributing to the physical prop
erties. This case corresponds to the relation

Br0
3;@\c/e2#2e2An;1372vpl .

Hence the field cannot be treated as a perturbation if
energy of the magnetic field in the volume of the sphere
104 times larger than the characteristic plasma frequen
For densitiesn;1014 cm22 and r 0510 nm it corresponds
to fields greater than 40 T.

For the weak-field regime it is interesting to observe
following property of the spectrum~5!. For simplicity we
consider the situation when theLth unperturbed level is com
pletely filled and the (L11)th level is empty. Linearizing
the spectrum we have« lm.2L( l 2L21/21pm/L). It is
clear that atp.1/2 the state (l 5L11,m52L21) is ener-
getically more favorable than the state (l 5L,m5L), with
the resulting change in the occupation of the levels.

This phenomenon is accompanied by jumps in the st
susceptibility. Consider the free energy F5
2T( lm ln(e(m2Elm)/T11). Then, apart from the Pauli spi
contribution, the magnetic~differential! susceptibility x
5]M /]B52]2F/]B2 is given by

x52
mB

2mer 0
2

2 (
lm

F ]2« lm

]p2
nF~« lm!1S ]« lm

]p D 2

nF8 ~« lm!G ,
-
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with the Bohr magnetonmB5e/2me , the Fermi function
nF(«), andnF8 («) its derivative. The first term here gives th
diamagnetic contributionxd.22/3mB

2mer 0
2N and the sec-

ond term is the paramagnetic one. At low temperaturesvc

&T!m we let nF8 (Elm).2d(« lm2m) and change(m

.*2 l
l dm. Performing the integration we get

x5N2~mB
2/2m!F22/31p23(

l
~ l 2L21/2!2G , ~7!

where the summation is restricted byu l 2L21/2u,p. From
Eq. ~7! we see thatx exhibits jumps atp51/2,3/2,5/2 . . . ,
while x→0 in the formal limit p→`. This behavior is
shown in the Fig. 1, together with the quantityM /B. At the
other fillings, i.e., at the other values ofm, the jumps ofx
take place at other values ofp and the qualitative picture
remains true. The amplitude of the jumps isN times larger
than the Pauli spin susceptibility;NmB

2/m; this coherent
effect vanishes if the coherence on the sphere is lost du
the finite quasiparticle lifetime~see below!.

IV. WEAK FIELD, GREEN’S FUNCTION

Let us discuss the properties of the electron Green’s fu
tion. For the two points on the sphere,r↔(u,0), and
r 8↔(u8,f), we define

G~r ,r 8,v!5(
lm

C lm* ~u8,f!C lm~u,0!

v1m2Elm
, ~8!

with Elm5(2mer 0
2)21« lm .

In the absence of a magnetic fieldC lm(u,f)
5r 0

21Ylm(u,f) and one can find~see below! an exact rep-
resentation ofG through the Legendre function

G~v!B50[G0~v!52
me

2 cospa
P21/21a~2cosV!, ~9!

where we introduceda5A2mer 0
2(m1v)11/4 and the dis-

tanceV on the sphere:

cosV5cosu cosu81sinu sinu8cosf .

FIG. 1. The dependence of the static susceptibilityx on the
numberp of magnetic flux quanta piercing the sphere.
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6370 PRB 59D. N. ARISTOV
We immediately see from Eq.~9! the logarithmic singularity
in the one-point correlator (V50) as it should be. It is in-
structive to find out how the usual expressions for the pla
geometry are recovered for the large radius of the sph
r 0→`; in this casea}r 0 , while V→ur2r 8u/r 0[r /r 0 . In
the limit a@1 and fora sinV*1 one has, in the main orde
of a21,10

G0~v!.2
me

A2pa sinV

cos~ap2aV2p/4!

cospa
. ~10!

The existence of two oscillating exponents exp6i(ap2aV
2p/4) corresponds to quantum coherence of two waves.
propagates along the shortest path between two points
another wave goes along the longest path, turning around
sphere. In the theory of metals one considersuvu!m
5kF

2/(2me), while the finite quasiparticle lifetime can b
modeled by ascribing the imaginary part tov. We write in
this senseA2mev5kF1 i / l m f p with the mean free pathl m f p .
When r 0* l m f p , we see that the coherence breaks and
only surviving exponent in Eq.~10! has the form

Gdamped
0 ~v!.2

me

A2pkFr
expF ikFr 1 i

p

4
2

r

l m f p
G , ~11!

which expression coincides with the usual findings.11

It is possible to obtain the closed form of the Green
function in the weak-field regime. We sketch the correspo
ing derivation below.

First we neglect the p2/ l terms in the wave
function ~6! and write Ylm* (u8,f)Ylm(u,0)5(4p)21(2l
11)e2 imfPl

m(cosu)Pl
2m(cosu8). Using Eq. ~5! and drop-

ping the terms containingp2/a;p2/ l , we have

2l 11

v2« lm
.Fa1

pm

a
2 l 2

1

2G21

2Fa1
pm

a
1 l 1

1

2G21

.

Now we represent the appearing fraction as the Taylor se

~a1pm/a2z!215expS pm

a

]

]aD ~a2z!21

and substitutem by i ]/]f in the last exponent. After that w
can sum overm in Eq. ~8! ~Ref. 10! and represent the re
maining sum overl as the contour integral, to obtain

G~v!5expF i
p

a

]2

]a]fG R dn

2p i

me

2 sinpn

Pn~2cosV!

a2n21/2

5expF i
p

a

]2

]a]fGG0~v!, ~12!

with G0(v) given by Eq.~9!. When a@1 the expression
~12! could be simplified at the above conditiona sinV*1. In
this case we use Eq.~10! and observe that, upon different
ating overf, the main contribution of order ofa stems from
the numerator exp(6iaV) of Eq. ~10!. Then one uses the
identity

expF z

a

]

]a
aG5

1

a
expFz

]

]aGa
r
e,

ne
nd
he

e

-

es

and finds

G~v!.2
me

2

exp@ ipb~p2V!#

A2pa sinV
F eia~p2V!2 ip/4

cosp~a1pb!

1
e2 ia~p2V!1 ip/4

cosp~a2pb! G , ~13!

with b5sinu sinu8 sinf/sinV. As before, in the presence o
dampingr 0. l m f p , the coherence on the sphere breaks a
the only surviving term in Eq.~13! has the form

Gdamped~v!.exp~ i ẑ~r 83r !/2l
*
2 !Gdamped

0 ~v!, ~14!

in accordance with previous results~see, e.g., Ref. 12!.

V. STRONG-FIELD REGIME

Let us now turn to the case of strong fields,p→`. We
define the integer numbern>0 as follows: 2n5 l 2umu for
even l 2umu and 2n115 l 2umu for odd l 2umu. The value
of n has a simple meaning; it corresponds to the numbe
zeros of the wave functionSlm(p,cosu) within the interval
uP(0,p/2), by analogy with the known property o
Pl

m(cosu). The spectrum of Eq.~2! is then given by a
series6–8

« lm~p!54p@n1~m1umu11!/2#2~s22m211!/2

1O@s3/p#, ~15!

with s52n1umu11; one hass5 l 11 (s5 l ) for even
~odd! values ofl 2m. The eigenfunctions are given by

Slm
6 ~p,h!5S̃lm~p,h!6S̃lm~p,2h!, ~16!

where the plus~minus! sign corresponds to even~odd! values
of l 2m.8 The functionsS̃lm(p,h) are found as a series in th
Laguerre polynomialsLn

m(x); in the main order ofp21 they
can be written as

S̃lm~p,h!.c~12h! umu/2e2p~12h!Ln
umu
„2p~12h!…,

c5F 2umupumu11n!

2pr 0
2~n1umu!! G

1/2

. ~17!

We see that in the main order ofp the Landau quantization
takes place; i.e., the spectrum~15! is that of a quantum os
cillator with the cyclotron frequency being the energ
quantum.13 The convergence and hence the applicability
the series~15! is given by the conditionp*s; l . In its turn,
it means10 that all n zeros of the approximate eigenfunctio
Ln

umu
„2p(12h)… in Eq. ~17! lie in the northern hemisphere

h.0, as they should.
We notice the following important property of the spe

trum ~15!. For given nonpositivem the values of« lm corre-
sponding tol 52n1umu and l 52n1umu11 coincide. This
property and the form of the wave function~16! can be un-
derstood as follows. Atp→` the field-induced potentia
p2 sin2u in ~2! localizes the particles near the poles of t
sphere. This form of two-well potential leads to the d
cussed degeneracy of energy levels, while the total w
function is given by a symmetrization~16! of the wave func-
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tions ~17! related to each of the wells. The possibility
quantum tunneling between the wells lifts the degener
and produces an exponentially small energy splitt
(;e22p) between the statesSlm

1 (p,h) and Slm
2 (p,h), Eq.

~16!.8

It would be tempting to obtain the Green’s function atp
→` in a closed form. It can be done with the followin
simplifications. First, we neglect the exponentially sm
splitting and notice thatS1(h)S1(h8)1S2(h)S2(h8)
52@S̃(h)S̃(h8)1S̃(2h)S̃(2h8)#; i.e., the correlations
within one hemisphere only survive. Now we leave only t
leading terms~17! of the wave functions andO(p) terms in
energies~15!. The necessity to restrict the summation in E
~8! by terms withs&p could be modeled by inclusion of th
cutoff factor e2sd with d;p21 into Eq. ~8!. We putm50
for simplicity of writing and raise the denominator into th
exponent, (v2Elm)215 i *0

`dt eit (Elm2v). Next we perform
the summation overn with the use of bilinear generatin
function for the Laguerre polynomials:10

(
n50

`
n!

~n1umu!!
Ln

umu~x!Ln
umu~y!zn

5
~xyz!2umu/2

12z
expS 2z

x1y

12zD I umuS 2
Axyz

12z D ,

with the modified Bessel functionI m(w); in our casex
52p(12h),y52p(12h8), and z5eitvc. Making use of
the propertyI umu( iw)5 i mJm(w) and rescalingtvc/2→t we
arrive at an intermediate formula forh,h8.0:

G~v!.2
me

4pE0

` dt

sin~ t1 id!
e22i tv/vc2 i ~x1y!cot~ t1 id!/2

3 (
m52`

`

ei ~ t2f1p/2!mJmS Axy

sin~ t1 id!
D .

The summation overm is now easily done@(meimfJm(w)
5eiwsinf# and we obtain the Green’s function as a sum
two terms, referring to two hemispheres. The ‘‘norther
term, corresponding to the above expression, is given by

Gn~v!.2
me

4p
eivE

id

id1` dt

sint
e22i ~ t2 id!v/vc2 ircott/2

52
mee

iv22dv/vc

8p cosp
v

vc

3E
2p/21 id

p/21 id
dt

expF2
2iv

vc
t1

ir tant

2 G
cost

, ~18!

with the analog of the distance on the sphere,r52p@22h
2h822A(12h)(12h8)cos(f1id)#, and that of the vector
product,v52pA(12h)(12h8)sin(f1id). The form of the
‘‘southern’’ term is obtained by changingh→2h and h8
→2h8 in these expressions. The last integral is reduced
vanishingd to the hypergeometric functionC(a,b;z) and
we obtain the ‘‘northern’’ term in the form
y
g

l

.

f

r

Gn~v!.2
me

4p
eiv2r/22dv/vcGF1

2
2

v

vc
GCF1

2
2

v

vc
,1;rG ,

5
me

4p
eiv2r/22dv/vc(

n50

`
Ln~r!

v/vc2n21/2
. ~19!

The last equation is similar to previous findings.12

Let us discuss the applicability of Eq.~19!. Our derivation
was straightforward until Eq.~18!, while the last step de-
manded d;1/p→0. The incomplete restructuring of th
spectrum into the Landau level scheme is absent in the u
planar geometry, wherein one would putd50 and the ex-
pression~19! would be exact. In the spherical case we can
treat the higher levels withl *p in an analytical way; it is
mimicked in Eq.~19! by the appearance of the exponent
cutoff at v*pvc .

A subtler issue in justifying Eq.~19! is the shift of the last
integration in Eq.~18! to the interval (2p/2,p/2). The inte-
gration over the remaining segments (6p/2,6p/21 id)
yields the factor cos(pv/vc); thus the contribution of these
segments to the Green’s function has no poles inv. This
contribution could be combined with the smooth~real! part
of G(v) stemming from the consideration of the highe
energy levels.

As a result, one may conclude that the expression~19!
correctly reproduces the basic properties of the Green’s fu
tion for v,pvc .

The finite value of the cutoff parameterd in Eq. ~19!
becomes important for the one-point correlation functio
i.e., ath5h8 and f50. The residues of the Green’s func
tion define the local density of states~LDOS! by the re-
lation N(r )5*dv nF(v)@G(r ,r ,v2 i0)2G(r ,r ,v1 i0)#/
(2p i ). If we assume thatn lowest Landau levels are filled b

FIG. 2. The dependence of the energy levels« lm on the number
p of magnetic flux quanta piercing the sphere. For convenienc
presentation, we plotted the evolution of« lm(p) with m<0 on the
right-hand side of the plot, atp.0. The evolution of« lm(p) with
m>0 is depicted on the left-hand side of this plot for the forma
negativep; see the text for additional explanations.
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the electrons, then it follows from Eq.~19! that the LDOS is
given by N(r )5npeiv2r/2/(2pr 0

2). In this case finited
;1/p provides a smooth variation of the LDOS of the for

N~r !}exp@2O~sin2 u!#,

which variation is absent in the usual planar geometry. T
result, however, may depend on the approximations m
and requires further numerical investigation.

It should be stressed that at intermediate fields, atp.1
andp& l &p2, the spectrum and wave functions are not pr
cipally reduced to closed expressions of hypergeome
type. Numerical methods are indispensable here. We ca
lated the evolution withp of the energy levels withl
50, . . . ,5 bydiagonalizing the 2003200 tridiagonal matri-
ces in the basis ofPl

m(h). The results are shown in the Fig
2 where we made the following convention. From the ge
eral property of Eq.~2! it follows that « l ,2m(p)5« l ,m(2p)
with formally negativep.14 For better readability of the
graph, it is possible then to show all the data, plotting o
half of them with one sign ofm but in the formally extended
region ofp. One can see in Fig. 2 that the degeneracy ap
50 is eventually changed by the Landau levels formation
p510. In the intermediate regionp;3 the absence of an
structure in the levels’ scheme is noted. The mesh of line
,

v.

,

d

l

is
e

-
ic
u-

-

y

t

at

the intermediate fields mimicks the chaotic behavior,
though there is no chaos here. Both in the quantum prob
considered here and in its classical counterpart one has
variables (u,f) and two integrals of motion, the energy an
the projection of the angular momentum onto the field dir
tion. To obtain chaos, it suffices to break the rotation sy
metry, f→f1df. The latter problem is, however, beyon
the scope of this study.

In conclusion, we demonstrated the exact solution of
electron gas on the sphere in the magnetic field. In the lim
of weak and strong fields this solution is reduced to the
pergeometric functions and the observable quantities
found in closed form. In the case of intermediate fields,
solution is not essentially a hypergeometric function and
observables require further numerical analysis.
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