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Crossover from thermal hopping to quantum tunneling in Mn12Ac
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The crossover from thermal hopping to quantum tunneling is studied. We show that the decay rateG with
dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-
Kramers-Brillouin~WKB! exponent, we also calculate contribution of the fluctuation modes around the saddle
point and give an extended account of a previous study of crossover region. We deal with two dangerous
fluctuation modes whose contribution cannot be calculated by the steepest descent method and show that
higher-order couplings between the two dangerous modes need to be taken into consideration. At last the
crossover from thermal hopping to quantum tunneling in the molecular magnet Mn12Ac is studied.
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I. INTRODUCTION

The decay of metastable states in macroscopic system
a fundamental problem in many areas of physics, such
macroscopic quantum tunneling in Josephson system1,2

violation of baryon-lepton in Weinberg-Salam model, nuc
ation in first order phase transition theory,3,4 and, more re-
cently magnetic quantum resonant tunneling.5 The crossover
from thermal hopping to quantum tunneling has been stud
intensively. Using the functional integral approach, Affle
first demonstrated the transition can be found between c
sical regime and quantum regime.6 Larkin and Ovchimikov
also suggested it and gave a formula determining the bou
ary of first- and second-order transition.7,8 Grabert and Weiss
discussed the phase transition in the presence of dissip
effects of the environment in some detail.9–11

At high temperature, the decay of the metastable stat
determined by process of thermal activation, which is g
erned by the Arrhenius law, (v0/2p)exp(2DU/T), where
v05A2U9(x0)/M is the well frequency andDU is the bar-
rier height. While atT50 the particle can escape from th
metastable state due to quantum tunneling, the rate of w
goes as exp(2B) whereB is the Wentzel-Kramers-Brillouin
~WKB! exponent. Ignoring the prefactor and equating
exponents, one obtains the estimate

T0
~0!5

DU

B
, ~1.1!

where the superscript atT0 means that the ground-state tu
neling is considered. ForT.T0

(0) , one has practicallyG
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>Gtherm(T), whereas below the transitionG>Gquan is inde-
pendent of temperature.

It turns out that for common metastable or double-w
potentials, such as cubic or quartic parabola, below the cr
over temperatureT0 the particles cross the barrier at the mo
favorable energy levelE(T) which goes down from the top
of the barrier to the bottom ofU(x) with lowering tempera-
ture. The second-order transition from the classical ther
activation to thermally assisted tunneling~TAT! is smooth
and the transition temperature is given by

T0
~2!5

vb

2p
, ~1.2!

where vb5A2U9(xb)/M is the barrier frequency, andxb
corresponds to the top~the saddle point! of the barrier.

In Ref. 12, Chudnovsky stressed the analogy of this k
of transition phenomena with ordinary phase transitions
analyzed the general conditions for both types of quant
classical transitions. For the second-order transition the
riod of oscillationt(E) in the inverted potential2U(x) in-
creases monotonically with energyE from the top of the
barrier. If t(E) is not monotonic, the first-order transitio
occurs. The escape rate can be conveniently represente
terms of the effective temperature defined by

G;expF2
DU

T0
~1!G5exp@2Smin /\#. ~1.3!

The actual dependence ofSmin(T) goes along the minimum
of these two actions~sphelaron and periodic instantons! and
the first-order transition occurs atT5T0

(1) . The first deriva-
6309 ©1999 The American Physical Society
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6310 PRB 59KOU, LIANG, ZHANG, WANG, AND PU
tive of Smin(T) is discontinuous atT0
(1) , providing that the

crossover from the thermal to the quantum regime is
first-order transition.

The second-order transitions are common, whereas
first-order ones are exotic and have to be specially loo
for. Nevertheless, a number of systems and processes
show first-order transitions are already known, e.g., a su
conducting quantum interference device with two Joseph
junctions,13 false vacuum decay in field theories,4,14–16 and
depinning of a massive string from a linear defect.17–22 All
these systems have more degrees of freedom than just a
ticle, thus the search for a physical system equivalent t
particle in a potentialU(x) leading to the first-order transi
tion of the escape rate seems quite actual. Qualitatively
clear what U(x) looks like: the potential should chang
slowly near the top and the bottom, but is rather steep in
middle. In this case, as for the rectangular barrier, tunne
just below the top of the barrier isunfavorable, the TAT
mechanism is suppressed, and the thermal activation c
petes with the ground state tunneling directly, leading to
first-order transition.

Quantum tunneling of the magnetization~QTM! has be-
come a focus of interest in physics and chemistry becau
can provide a signature of quantum-mechanical behavior
macroscopic system.5 At low enough temperature, it ha
been demonstrated that the vector of the magnetiza
formed by a large number of spins in magnetic system
coherently tunnel between the degenerate minima of m
netic energy. Theoretical suggestions have led to a num
of experiments which seem to support the idea of magn
tunneling. Since the Mn12Ac complex magnetic molecule
provides a more suitable model for the magnetic quan
tunneling, extensive works have been performed to dem
strate the QTM in large spin molecules.25–27 On the other
hand, the Mn12Ac molecule is one of the very few example
which could exhibit the first-order transition.

We derived a compact formula for decay rate which
valid for the entire range of parameters of interest in
problem of MQT. The quantum classical transitions of t
escape rates in the dissipation systems are investigated b
periodic instanton method. Applying the periodic instant
method, we showed that the first-order transitions occur
low the critical external magnetic fieldhx5 1

4 for Mn12Ac
molecule which is in good agreement with earlier works.28,29

The results of the application of a previous method is dev
oped for dealing with the quasizero modes and calculatin
decay rate in the crossover region which is beyond the st
est descent method.9–11 In the crossover region of second
order transitionhx. 1

4 , we take fourth-order terms into ac
count to include nonlinear couplings between the modes
obtain the universal law in this region. The pointhx5 1

4 is the
boundary of first order and second order. At this point
fourth-order couplings between modes disappear and s
order terms must be considered. Forhx, 1

4 before the eigen-
values of the two quasizero modes reach zero, the first-o
transition occurs and there is no universal law in comm
While T0

(1) is not far fromT0
(2) ~such asT0

(1)51.078T0
(2) for

hx50.1), the two dangerous modes also play important ro
on the tunneling rate and need to be calculated carefully
e
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II. DECAY RATE IN THE CROSSOVER REGION
OF SECOND-ORDER TRANSITION

The partition function can be written as a functional int
gral over periodic paths where the path probability
weighted according to the Euclidean action

S5E
0

b\

dtF1

2
Mẋ21U~x!G

1
1

2E0

b\

dtE
0

b\

dt8k~t2t8!x~t!x~t8!, ~2.1!

where k(t)5(1/Mb\)(n52`
` j(nn)exp(innt), nn52pn/b\,

andj(nn)5g(nn)unnu is related to the frequency depende
damping coefficientg(nn). U(x) is a metastable potentia
with a local minimum atx50 and a local maximum atx
5xb . We usevR to denote the solution of the following
equation vR

21vRg(vR)5vb
2 where vb5A2U9(xb)/M

characterizes the width of the parabolic top of the well.
classical limit, 1/\→`, the steepest descents method
available:

dS@x~t!#50, x~0!5x~b\!. ~2.2!

The fluctuation modes about the saddle point are expan
using Cn , x5xc(t)1(nYnCn , where Yn are fluctuation
amplitudes andCn are modes of the spectrum:

2C̈n1U@xc~t!#Cn5vn
2Cn , ~2.3!

C~b\!5C~0!.

According to the metastable decay theory, quantum t
neling rate has the formG52(2/h)ImF. Above the cross-
over temperatureTc , the decay process comes from the th
mal activationG5(2/\)(b/bc)ImF wherebc52p/vR .6 In
an ordinary case, the one-loop correction which results i
prefactor of the WKB leading-order exponential does n
enhance the tunneling significantly and the transition rat
dominated by the WKB leading-order exponential. Ne
transition point the imaginary part of the free energy ha
common form:

I mF52
1

2bS v0

vb
Dv1

~0!2

L
f c@v0,vb# expS 2Sc

\ D , ~2.4!

where Sc is just the WKB leading-order exponent,vn
(0)2

5v0
21nn

2 1nng(nn), vn
(b)2 5 2vb

2 1 nn
21nng(nn), 1/L

comes from the two quasizero modes which need to be
culated carefully, and

f c@v0 ,vb#5 )
n52

` Fvn
~0!

vn
~b!G 2

→
GS 22

lb
1

n1
DGS 22

lb
2

n1
D

GS 22
l0

1

n1
DGS 22

l0
2

n1
D if g[const,

~2.5!
where lb

652g/26@g2/41vb
2#, l0

652g/26@g2/42v0
2#

and v05A2U9(0)/M . Years ago Grabert and Weiss di
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PRB 59 6311CROSSOVER FROM THERMAL HOPPING TO QUANTUM . . .
cussed the transition rate in the presence of dissipative
fects of the environment in some detail.9–11 They found an
unstable mode besides the zero mode near transition p
and calculated it carefully.7–11 Near phase-transition poin
the fluctuation modes about the saddle points include
dangerous modes whose contribution can’t be calculated
the steepest descent method and it is necessary to con
higher-order couplings between the two dangero
modes.7–11

A. Beyond steepest descent forT>T0
„2…

AboveT0
(2) , the decay process is dominated by the sad

point called sphelaronx5xb . Considering the fluctuation
modes around it, we have the periodic paths near the sa
point9–11

x5xb1Y01Y21A2 sin
2p

L
t1Y1A2 cos

2p

L
t1•••

~2.6!

1Y2nA2 sin
2pn

L
t1YnA2 cos

2pn

L
t. ~2.7!

There is a mode with negative eigenvaluev0
(b)252vb

2

5U9/M which is the key mode giving contribution to th
imaginary part of the free energy. From the steepest des
method the result of the partition function of sphelaron so
tion is written into

Z5E
x~0!5x~b\!50

D@x~t!#expH 2S@x~t!#

\
J

5NE )
n

dYn expH 2S@Yn#

\
J

5
1

2i

1

Ab\uvb
2u

N

Ab\ (
nÞ0

vn
~b!2

e2Sc /\, ~2.8!

where N5Av0
(0)2A(nÞ0vn

(0)2/2 sinh(bv0/2).29 The eigen-
values of the two lowest positive modes arel15v1

(b)2

5v21
(b)25n1

22vR
2 . Second-order transition occurs when t

eigenvalue of the lowest modes is equal to zerol150 as
temperature decreases, so it is defined thatTc5vR/2p. Near
the transition point, the eigenvalue of the lowest posit
modes is

l152a«, ~2.9!

where«5(12T/Tc) anda5vb
21vR

2@11]g(vR)/]vR#.
To regularize the divergent integral we have to add ter

of fourth order in the amplitudesY61 . After expanding the
potential about the barrier top,

U~x!5DU2
Mvb

2x2

2
1(

i
cix

i , ~2.10!

whereci5U [ i ] (x5xb)/ i !, we obtain the action
f-

int

o
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s
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dle
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S@q#5E
0

b\

dtF1

2S ẋc~t!1(
n

YnĊnD 2

1VS xc~t!1(
n

YnCnD G
5\bDU1

1

2
\bmF (

n52`,nÞ61

`

vn
~b!2Yn

2G1DS,

~2.11!

where

DS5b\F1

2
mv1

~b!2Y1
21

1

2
mv21

~b!2Y21
2 1B4~Y1

21Y21
2 !2G .

~2.12!

B45 3
2 c41(9c3

2/2Mvb
2)2(9c3

2/4Mv2
(b)2) and v2

(b)254n2

2vR
2.3vR

2 . After integrating the amplitudesY0 and Yn ,
we deal with the quasizero modes to consider the fou
term: B4(Y1

21Y21
2 )2. Introducing the polar coordination

r cosu5Y1, r sinu5Y21, we get

1

L
5

b

2pE dY1 dY21 exp2~bDS!

5
kAp

2vR
2

erfc~2k«!exp~k2«2!, ~2.13!

where k5(MvR
2/2)A(b/B4). B45 3

2 c41(9c3
2/2Mvb

2)
2(9c3

2/4Mv2
(b)2)50 has been defined as the boundary b

tween the first-order transition and the second-order on
Ref. 7. ForB4,0 the integration in Eq.~2.12! is divergent
and this kind of divergence will be discussed in first-ord
transition cases. It is obvious that the dissipation may cha
the boundary between the first-order transition and
second-order one. Then we have the transition rate from E
~2.4! and Eq.~2.5!:

G5
v0

2p
v1

~0!2 kAp

2vR
2

erfc~2k«!exp~k2«2! f c@v0 ,vb#e2U/kBT.

~2.14!

Away from the crossover region the result goes back to
classical decay rate (v0/2p)e2U/kBT.

B. Beyond steepest descent forT<T0
„2…

Below the crossover temperature, the saddle point
named by periodic instanton or thermon. There are also
dangerous modes about this saddle point nearT0

(2) : one is
the quasizero mode which is associated with a phase fluc
tions of the periodic instantons with the eigenvalue a
eigenstates ofv2

(b)252a« and C25A2 sin(vbt), the other
represents amplitudes fluctuation and gives large contr
tion to partition function with v3

(b)250 and C3

5A2 cos(vbt). The quasizero mode just takes the place
the ‘‘soft mode’’ which restores symmetry and the ze
mode of Goldstone mode which reflects the freedom
phase. This is just the character of GlobalU(1) symmetry
broken.
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Near T0
(2) , this kind of classical periodic trajectory o

thermon may be written as a Fourier series

xc~t!5 (
n50

`

@Xn cos~nnt!1X2n sin~nnt!#. ~2.15!

The periodic paths near the saddle point are similar to tha
Eq. ~2.6!: x5xc(t)1(nYnCn5(n(Yn1Xn)Cn . We define
the amplitudes into another formYn85Yn1Xn and the action
is

S@q#5\bDU1
1

2
\bmF (

n52`,nÞ61

`

vn
2Yn8

2G1DS,

~2.16!

where

DS5
1

2
b\mv1

~b!2~Y18!21
1

2
b\mv21

~b!2~Y218 !2

1B4@~Y18!21~Y218 !2#2. ~2.17!

In terms ofY618 we obtain the tunneling rate belowT0
(2) :

G5
1

\b

v0

vb

v1
~0!2

L
f c@v0 ,vb#e2DU/kBT, ~2.18!

where 1/L5(kAp/2vR
2)erfc(2k«)exp(k2«2) and k

5(MvR
2/2)A(b/B4). In terms ofk the size of the crossove

region is definedu(T0
(2)2T)/T0

(2)u,1/k in which the cross-
over occurs. It is obvious that there is symmetryT
2T0

(2))/T0
(2)→(T0

(2)2T/T0
(2)) in the crossover regionu(T0

(2)

2T)/T0
(2)u,1/k.

Away from the crossover regionu(T0
(2)2T)/T0

(2)u.1/k,
the tunneling rate reduces to the standard form

Zb5
1

D

A(
nÞ0

vn
~0!2

A (
nÞ0,1

vn
~b!2

e2Sc /\, ~2.19!

where 1/D5A(Sc/2p\)(b\) which is known by Faddeev
Popov technique. We can reach it only through normaliz
the eigenfunction of zero mode while nowN may be differ-
ent from the upper result for all modes being normaliz
N5„Av0

(0)2A(nÞ0vn
(0)2/2 sinh(bv0/2)…. The concrete pa-

rameterA(nÞ0vn
(0)2/A(nÞ0,1vn

(b)2 can be calculated only
whenT→T0

(2) .23,30–32

C. Universal law in crossover region

Beyond the steepest descent method, we have the form
Eq. ~2.4! and Eq.~2.5!, which is only needed in the crossov
region

uT2T0
~2!u<T0

~2!/k, ~2.20!

wherek5(MvR
2/2)A(b/B4)@1. It has been pointed out tha

there is a universal law in the crossover region of the seco
order transition.9,10 We use the following quantity to show
the universal law:
of

g

:

ula

d-

y5Gexp~DU/kBT!, ~2.21!

which is a function of« but independent of the temperatu
T. According to the formula Eq.~2.4! and Eq.~2.5!, we have
the universal law in the scaling region

y/y05F~j/j0!, ~2.22!

where F(j)5erfc(j)exp(j2), j5T2T0
(2), j05T0

(2)/k and y0

5(v0/2p)@(v0
21vb

2)/2#A(bp/6c4f c@v0 ,vb#.

III. DECAY RATE IN THE CROSSOVER REGION
AT THE BOUNDARY OF SECOND-ORDER

AND FIRST-ORDER TRANSITION

B450 is the boundary of the second-order transition a
the first-order one and the potential looks different from th
of B4Þ0: The potentials change slowly near the top and
bottom, but are rather steep in the middle. Because ther
divergence ofk→` at the point ofB450, the formula~2.12!
is not available.

Above T0
(2) , the decay process arises from sphelaronx

5xb , too. So we have the same periodic path near the sa
point as formula~2.6!. But the interactions in terms of mode
differ from Eq. ~2.12!. We consider the sixth-order terms o
the two dangerous modes

DS5b\F Mv1
~b!2

2
~Y1

21Y21
2 !

1B4~Y1
21Y21

2 !21B6~Y1
21Y21

2 !3
G , ~3.1!

where B65 5
2 c62(2c4

2/Mv3
(b)2). Near the two-phase poin

not only the second term12 b\M(n561vn
(b)2Yn

2 tends to zero
~remember herev61

2 →0, when temperature turns toTc) but
also B4 is a small quantity. We consider the sixth-ord
terms of the two dangerous modesB6(Y1

21Y21
2 )3. At the

point B450, there is no fourth term and the formula is r
duced to

1

L
5

b

2
@bB6#21/3E

0

`

dt exp@2~ t323k8«t !#, ~3.2!

where k85(bMvb
2/3)@bB6#21/3. Below Tc , we transform

Yn to Yn1Xn and have the same form of 1/L.
The universal law in the crossover regionuT2Tcu

<Tc /k8 is also defined asy/y05F(j/j0), where F(j)
5*0

`dt exp@2(t313jt)#, j5T2Tc , j05Tc /k8 and

y05
v0

12vb
~v0

21vb
2!@bB6#21/3GS 1

3D f c@v0 ,vb#. ~3.3!

G(x) is Gamma function.

IV. THE EFFECT OF MODES OF THE FIRST-ORDER
TRANSITION B4<0

The actual transition occurs at the temperature when
two saddle points have the same action. ForB4.0 the par-
ticles tunnel through the barrier at the mostfavorableenergy
level E(T) which goes down continuously from the top o
the barrier to the bottom of the potential with lowering tem
perature. This corresponds to the second-order trans
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from thermal activation to thermally assisted tunneli
~TAT! with no discontinuity ofdG/dt at T0 . The transition
temperature is given byT0

(2) . For the cases ofB4,0, just
below the top of the barrier isunfavorable for tunneling, the
TAT mechanism is partially suppressed, and the first-or
transition occurs. Because the top of the barrier is wider
B4,0, the particle does not have more advantage to tun
through the barrier from the higher excited states than
lower ones.

Let us discuss the dangerous modes near the first-o
transition point: Before the eigenvalues of the two quasiz
modes reach zero, the crossover occurs and the tunn
process is dominated by periodic instantons just below
top of the barrier. In this case, there is really no univer
law. Above Tc which is nearvR/2p, the sphelaron’s two
dangerous modes may also play an important role on
tunneling rate at the transition point. Above the crosso
temperature, the quasizero modes of sphelaron have the
eigenfunction as other cases (B4>0): A2 sin(2p/L)t and
A2 cos(2p/L)t. While there are many distinguished diffe
ences of the interaction of modes between the case oB4
.0 and that ofB4,0, the interaction between modes
attractive of the lower order terms.

After integrating the amplitudesY0 andYn , we deal with
the quasizero modes to consider the fourth term

1

L
5

b

2pE dY1 dY21 exp

2bF1

2
mv1

~b!2Y1
21

1

2
mv21

~b!2Y21
2 1B4~Y1

21Y21
2 !2G

5Ap
k

2vR
2
erfi~2k«!exp~k2«2!, ~4.1!

where k5(MvR
2/2)A(b/B4) and «5@12(T/T0

(2))# . The
quasizero modes give a divergent contribution to the pa
tion function which can be distorted into complex-plan
*c

` exp(x2)dx5*0
` exp(x2)dx2*0

c exp(x2)dx5(iAp/2)
2erfi(c). Here erfi(c)5*0

c exp(x2)dx. Because the real par
of the function erfi(2k«) goes to zero as«→0, a dramatic
phenomenon arises—the first-order transition may supp
quantum tunneling rate~without considering higher-orde
terms!!

Because the periodic trajectories of periodic instan
cannot be written as a Fourier series if they are far below
top of the barrier, the formula~4.1! is useful only above the
crossover temperatureT0

(1) .
Now we consider aweak first-order phase transition

which is under the conditionT0
(1)/T0

(2)<121/k. For a weak
first-order phase transition, the crossover temperatureT0

(1) is
in the region (T2T0

(2))<T0
(2)/k which is shown in Fig. 1.

We may definea remaining crossover regionabove the
crossover temperature:

T0
~1!<T<T0

~2!1T0
~2!/k. ~4.2!

We also use the quantityy5Gexp(DU/kBT) to show the uni-
versal law as
r
r
el
e

er
o
ing
e
l

e
r
me

i-
:

ss

n
e

y/y05F~j/j0!, ~4.3!

where F(j)5erfi(j)exp(j2) and y05(v0/2p)@(v0
2

1vb
2)/2#A(bp/6c4) f c@v0 ,vb#. For the casesT0

(1)/T0
(2).1

21/k, the first-order transition is rather sharp; there is
crossover region at all.

V. SCALING LAW OF QUANTUM CLASSICAL
TRANSITION OF THE ESCAPE RATE IN Mn 12Ac

A rather simple and experimentally important syste
which may exhibit the first-order transition is the uniaxi
spin model in a field parallel tox axis Hx described by the
Hamiltonian

H52DSz
22HxSx ~5.1!

which is generic for problems of spin tunneling. This mod
is believed to be a good approximation for the molecu
magnet Mn12Ac with D the anisotropy constant. Using th
method of mapping the spin problem onto a partic
problem,23,24 we have the equivalent particle Hamiltonian
H5(p2/2m)1U(x), where

U~x!5S2D~hxcoshx21!2 ~5.2!

and m51/2D, hx5Hx/2SD, and S@1. The minimum of
the effective potential,x05cosh21(1/hx), has been moved to
zero. Integrating the equation of motion with imaginary tim
variable one obtains

xp~t!52 tanh21F tanhx1 snS t2t0

jP
,kD G ~5.3!

tanh2 x1,25
12hx7AE8

11hx7AE8
, ~5.4!

where sn(t,k) is the Jacobi elliptic function with modulusk
and the complementary modulusk85A12k2, E8
5E/S2D. jP is the characteristic length of the period
instanton determined by the following equation:

FIG. 1. The remaining scaling region of a weak first-order ph
transition isT0

(1)<T<T0
(2)1T0

(2)/k.
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jP
2 5

1

S2D2S 12hx
2

3S ~11k2!hx
22k82~12hx

2!1hxA4hx
2k21k84

~11k2!hx
21hxA4hx

2k21k84 D 2D 21

. ~5.5!
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This description corresponds to the movement of
pseudoparticle in the inverted potential2U(x) with energy
2E. The periodicity of the solution ~5.3! is t(E)
54\b, \b5K(k)jP , where K(k) is the complete elliptic
integral of the first kind. The Euclidean action of the period
instanton configuration in the whole period is

Sp52E
2b

b

@mẋp
2#dt5W, ~5.6!

where

W5
4

DjPa2
$~a42k2!P~a2,k!1k2K~k!

1a2@K~k!2E~k!#%, ~5.7!

where a25tanh2 x1,k2 and E(k), P (a2,k) are the com-
plete elliptic integral of second and third kind, respective

The period of oscillationt(E) in the inverted potentia
2U(x), i.e., the periodicity of the periodic instanton sol
tion ~5.3!, t(E)54K(k)jP , can be equivalently calculate
by

t~E!52
dW~E!

dE
5A2mE

2x1

x1 dx

AU~x!2E
. ~5.8!

Near the top of the barrier,k→0,K→p/2, Eq. ~5.8! yields
the previously known resultt52p/vb . Near the bottom,
one hask→1, andt logarithmically diverges. Forhx, 1

4 , the
dependencet(E) is nonmonotonic, and the transition is fir
order.

Since bothS0 andSp are assumed to be large compared
\, the smaller of the two determines the actual escape
The calculation of the temperature dependence ofSmin is
depicted in Fig. 2 forhx50.1. The solid line corresponds t
the periodic instanton actionSp while the dashed one corre
sponds to the thermodynamic actionS0 . The actual depen
dence ofSmin(T) goes along the minimum of these two a
tions and the first-order transition occurs atT5T0

(1)

satisfying T2,T0
(1),T1 , where kBT15\/t(E1), kBT2

5\/t(DU). The first derivative ofSmin(T) is discontinuous
at T0

(1) , providing that the crossover from the thermal to t
quantum regime is the first-order transition on temperatu
Quite recently an effective free energyF5af21bf4

1cf6 for the transitions of a spin system was introduce28

as in the Landau model of second-order phase transit
Here a changes sign at the phase-transition temperaturT
5T0

(2)5(SD/pkB)Ahx(12hx) andb50 corresponds to the
boundary between first- and second-order transitions. Th
indeed exists a phase boundary between the first-
second-order transitions, i.e.,hx5 1

4 , at which the factor in
front of f2 changes the sign. Athx50.3 the minimum ofF
a

.

te.

e.

n.

re
nd

remainsDU for all T.T0
(2) . Below T0

(2) it continuously
shifts from the top to the bottom of the potential as tempe
ture is lowered. This corresponds to the second-order tra
tion from thermal activation to TAT. Athx50.1, however,
there can be one or two minima ofF, depending on the
temperature. The crossover between classical and quan
regimes occurs when the two minima have the same
energy, which forhx50.1 takes place atT0

(1)51.078T0
(2) .

Near the top of the barrier the potential has the form

U~x!5S2D~hx coshx21!252S2Dhx2S2Dhx~hx21!x2

1c4x41c6x6 . . . , ~5.9!

where c45@S2Dhx(hx2 1
4 )/3# and c652S2Dhx(hx

2 1
24 )/45. The potentials changes slowly near the top and

bottom, but are rather steep in the middle for the casesc4
,0.

hx5 1
4 is the boundary of the second-order transition a

the first-order one. Whenhx. 1
4 , we have the formula Eq

@and Eq.~2.21!#, which is only needed in the crossover r
gion

uT2T0
~2!u<T0

~2!/k, ~5.10!

where

k5@hx~12hx!#
3/4A 2pS

hxS hx2
1

4D}S1/2@1. ~5.11!

FIG. 2. First-order transition from the thermal to the quantu
region for Mn12 molecule:hx50.1.
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It has been pointed out that there is a universal law in
crossover region of second-order transition.10,11According to
the formula Eqs.~2.20! and~2.21!, we have the universal law
in the scaling region

y/y05F~j/j0!, ~5.12!

where F(j)5erfc(j)exp(j2), j5T2T0
(2), j05T0

(2)/k and y0

5(v0/2p)@(v0
21vb

2)/2#A(bp/6c4# f c@v0 ,vb#.
For the casehx5 1

4 , we have the crossover regionuT
2T0

(2)u<T0
(2)/k8, where

k856Fphx~12hx!S

9 G2/3FhxS hx2
1

24D G
21/3

}S2/3@1.

~5.13!

From the formula~3.3!, we have the universal lawy/y0
5F(j/j0) in the crossover region, whereF(j)
5*0

` dt exp@2(t313jt)#, j5T2T0
(2), j05T0

(2)/k8 and

y05
v0b~v0

21vb
2!

24p F5

2
bc6G21/3

GS 1

3D f c@v0 ,vb#.

~5.14!

G(x) is the Gamma function which is shown in Fig. 3.
Now we consider a weak first-order phase transit

which is under the condition T0
(1)/T0

(2)<1

2A@hx(hx2 1
4 )/2pS#@hx(12hx)#3/4. For a weak first-order

phase transition, the crossover temperatureT0
(1) is in the re-

gion (T2T0
(2))<T0

(2)/k which is shown in Fig. 1. We may
define a remaining crossover region above the crossover
perature

T0
~1!<T<T0

~2!1T0
~2!/k. ~5.15!

FIG. 3. Scale factorF(j) at different sides of phase transitio
point of hx5

1
4 .
er
e

n

m-

We also use the quantity y5Gexp(DU/kBT) to
show the universal law asy/y05F(j/j0), where
F(j)5erfi(j)exp(j2) and y05(v0/2p)@(v0

2

1vb
2)/2#A(bp/6c4) f c@v0 ,vb#. For the casesT0

(1)/T0
(2).1

2A@hx(hx2 1
4 )/2pS#@hx(12hx)#3/4, the first-order transi-

tion is rather sharp, there is no crossover region at all.

VI. CONCLUSION

In this paper we have shown that the decay rateG can
accurately be determined near the crossover temperatu
dissipative systems. Besides considering the WKB expon
tial, we have calculated contribution of the fluctuation mod
around the saddle point and have given an extended acc
of the previous study of crossover region.9–11 Near the
phase-transition point the fluctuation modes about the sa
points include two dangerous modes whose contribut
cannot be calculated by the steepest descent method an
higher-order couplings are considered between the two d
gerous modes; near the point of

B45
3

2
c41

9c3
2

2Mvb
2

2
9c3

2

4Mv2
~b!2

50 ~6.1!

sixth order needs to be considered. The results can be e
used in Mn12Ac of which the equation B45@S(S
11)Dhx(hx2 1

4 )/2#50 gives the phase boundary pointhx
5 1

4 in good agreement with earlier works.
Another example is biaxial anisotropic ferromagne

model H5K1Sz
21K2Sy

2 which describesXOY easy plane
anisotropy and an easy axis along thex direction with the
anisotropy constantsK1.K2.0. Mapped onto a particle
problem, the equivalent particle Hamiltonian is

H5
1

4K1
ẋ22K2S~S11!sn2~x,l!, ~6.2!

where sn(t,l) is the Jacobi elliptic function with modulu
l5K2 /K1 . From the equationB45@K2S(S11)(12l)(1
22l)/2#50, we obtain the phase boundary pointl5 1

2

which confirms the results in Ref. 20.
The results of the application of a previous method7–11 is

developed for dealing with the quasizero modes and calc
tion of decay rate in the crossover region which is beyo
the steepest descent method. The decay rate is valid fo
entire interesting range of parameters in the problem of m
roscopic quantum tunneling.
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