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The crossover from thermal hopping to quantum tunneling is studied. We show that the dedaywigie
dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-
Kramers-Brillouin(WKB) exponent, we also calculate contribution of the fluctuation modes around the saddle
point and give an extended account of a previous study of crossover region. We deal with two dangerous
fluctuation modes whose contribution cannot be calculated by the steepest descent method and show that
higher-order couplings between the two dangerous modes need to be taken into consideration. At last the
crossover from thermal hopping to quantum tunneling in the molecular magnesAdris studied.
[S0163-182609)03409-9

[. INTRODUCTION =lihem{T), Whereas below the transitidn=I",,,, is inde-
pendent of temperature.

The decay of metastable states in macroscopic systems is It turns out that for common metastable or double-well
a fundamental problem in many areas of physics, such ggotentials, such as cubic or quartic parabola, below the cross-
macroscopic quantum tunneling in Josephson systéms, over temperatur@, the particles cross the barrier at the most
violation of baryon-lepton in Weinberg-Salam model, nucle-favorable energy levet(T) which goes down from the top
ation in first order phase transition thedryand, more re- of the barrier to the bottom dfi(x) with lowering tempera-
cently magnetic quantum resonant tunnefirfithe crossover ture. The second-order transition from the classical thermal
from thermal hopping to quantum tunneling has been studiedctivation to thermally assisted tunnelif§AT) is smooth
intensively. Using the functional integral approach, Affleck and the transition temperature is given by
first demonstrated the transition can be found between clas-
sical regime and quantum regirfid.arkin and Ovchimikov 2)_ @b
also suggested it and gave a formula determining the bound- To Ton 1.2
ary of first- and second-order transiti6R Grabert and Weiss
discussed the phase transition in the presence of dissipativéhere w,=+—U"(xp)/M is the barrier frequency, ang,
effects of the environment in some dethit! corresponds to the tofthe saddle pointof the barrier.

At high temperature, the decay of the metastable state is In Ref. 12, Chudnovsky stressed the analogy of this kind
determined by process of thermal activation, which is gov-of transition phenomena with ordinary phase transitions and
erned by the Arrhenius law,a(y/27)exp(—AU/T), where analyzed the general conditions for both types of quantum
wo=—U"(x0)/M is the well frequency and U is the bar- ~ classical transitions. For the second-order transition the pe-
rier height. While afT=0 the particle can escape from the fiod of oscillation=(E) in the inverted potential-U(x) in-
metastable state due to quantum tunneling, the rate of whictfeases monotonically with enerdy from the top of the
goes as exp.(B) whereB is the Wentzel-Kramers-Brillouin barrier. If ’T(E) is not monotonic, the first-order transition
(WKB) exponent. Ignoring the prefactor and equating theoccurs. The escape rate can be conveniently represented in

exponents, one obtains the estimate terms of the effective temperature defined by
AU r AU Shin/ft 1.3
~exg — —|=exd — Sy . .
TBO):F’ (1.1 X Tg)l) xf in/1i] (1.3

The actual dependence 8f;,(T) goes along the minimum
where the superscript a8 means that the ground-state tun- of these two actiongsphelaron and periodic instantgresd
neling is considered. FoT>T{"), one has practicall’ the first-order transition occurs @=T§". The first deriva-
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tive of Syn(T) is discontinuous af{", providing that the Il. DECAY RATE IN THE CROSSOVER REGION
crossover from the thermal to the quantum regime is the OF SECOND-ORDER TRANSITION
first-order transition. The partition function can be written as a functional inte-

The second-order transitions are common, whereas thgral over periodic paths where the path probability is
first-order ones are exotic and have to be specially lookegeighted according to the Euclidean action

for. Nevertheless, a number of systems and processes that
show first-order transitions are already known, e.g., a super- S= fﬁﬁdT EM&(2+ U(x)
conducting quantum interference device with two Josephson 0 2
junctions®® false vacuum decay in field theoriét*-*¢and

depinning of a massive string from a linear deféct? All " EfﬁthJBﬁdT, K(r—)X(Ix(7),  (2.0)
these systems have more degrees of freedom than just a par- 2)o 0 ’

ticle, thus the search for a physical system equivalent to dhere k()= (1M BH)S
particle in a potential(x) leading to the first-order transi- and &(v

tion of the escape rate seems quite actual. Qualitatively it i%iamping coefficienty(v,). U(x) is a metastable potential
clear whatU(x) looks like: the potential should change \yith a local minimum atx=0 and a local maximum at
slowly near the top and the bottom, but is rather steep in the__xb. We usewg to denote the solution of the following
middle. In this case, as for the rectangular barrier, tunneling‘]aqu‘,:mOn wi+ wry(wR)=w? where w,=y—U"(xp)/M
just below the top of the barrier ianfavorable the TAT  characterizes the width of the parabolic top of the well. In

mechanism is suppressed, and the thermal activation conyassical limit, 1% —, the steepest descents method is
petes with the ground state tunneling directly, leading to theyyailaple:

first-order transition.

Quantum tunneling of the magnetizati®TM) has be- o9[x(7)]=0, X(0)=x(Bh). 2.2
come a focus of interest in physics and chemistry because the fluctuation modes about the saddle point are expanded
can provide a signature of quantum-mechanical behavior in gsing ¥, x=x.(7)+=,Y,¥,, whereY, are fluctuation

macroscopic system.At low enough temperature, it has amplitudes and?,, are modes of the spectrum:
been demonstrated that the vector of the magnetization

ﬁ:,wf(vn)eXpQVnT), Vo= 21/ Bfi,
n)=7v(v,)|v,| is related to the frequency dependent

formed by a large number of spins in magnetic system can —ﬁfn+ U[xc(r)]‘lfnzwﬁ‘lfn, (2.3
coherently tunnel between the degenerate minima of mag-
netic energy. Theoretical suggestions have led to a number W(ph)="¥(0).

of experiments which seem to support the idea of magnetic According to the metastable decay theory, quantum tun-
tunneling. Since the MpAc complex magnetic molecule pgling rate has the forri = — (2/h)ImF. Above the cross-
provides a more suitable model for the magnetic quantumgyer temperatur@., the decay process comes from the ther-
tunneling, extensive works have been performed to demonmg)| activationl’ = (2/4)(8/ 8.) ImF where8.= 27/ wg.® In
strate the QTM in large spin molecul€s?” On the other an ordinary case, the one-loop correction which results in a
hand, the Mp,Ac molecule is one of the very few examples prefactor of the WKB leading-order exponential does not
which could exhibit the first-order transition. enhance the tunneling significantly and the transition rate is
We derived a compact formula for decay rate which isdominated by the WKB leading-order exponential. Near
valid for the entire range of parameters of interest in theransition point the imaginary part of the free energy has a
problem of MQT. The quantum classical transitions of thecommon form:
escape rates in the dissipation systems are investigated by the (0)2
periodic instanton method. Applying the periodic instanton | F=— i(ﬂ)wl_f [ wo, kx;{ ~Se
method, we showed that the first-order transitions occur be- " 2B\ wp) A TSTOTP h

low the critical external magnetic field,=7 for Mnj A \where S, is just the WKB leading-order exponen(?
molecule which is in good agreement with earlier wotké’ = 0212 upy(vy), P2 = —w? + V24 voy(v), LA

The results of the application of a previous method is devele,mes from the two quasizero modes which need to be cal-
oped for dealing with the quasizero modes and calculating ofyjated carefully, and
decay rate in the crossover region which is beyond the steep-

, (2.9

est descent methdd™ In the crossover region of second- * [o@)
order transitionh,> %, we take fourth-order terms into ac- fc[wO!wb]:n[Iz )
count to include nonlinear couplings between the modes and oL ®n
obtain the universal law in this region. The pdint= 7 is the T A
: . ) b b
boundary of first order and second order. At this point the rHz2- - r{2- -
1 1

fourth-order couplings between modes disappear and sixth- - 1 if y=const
order terms must be considered. FQK ; before the eigen- Ao Ao '
values of the two quasizero modes reach zero, the first-order F( )F( )

transition occurs and there is no universal law in common.

While T is not far from T (such asT{V=1.078r$? for (2.9
h,=0.1), the two dangerous modes also play important rolewhere A, = — y/2+[ y%4+ wl], Ng=—y/2=[y*4— wl]

on the tunneling rate and need to be calculated carefully. and wy=+—U"(0)/M. Years ago Grabert and Weiss dis-
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cussed the transition rate in the presence of dissipative ef- Bh
fects of the environment in some detait! They found an S[Q]=j dr
unstable mode besides the zero mode near transition point 0
and calculated it carefullf:*! Near phase-transition point
the fluctuation modes about the saddle points include two
dangerous modes whose contribution can’t be calculated by
the steepest descent method and it is necessary to consider

1
higher-order couplings between the two dangerous =hBAU+ Ehlgm{ > wP?Y2|+AS,
modes’ 1! n=—fenzx1

1/. . \2
E( Xe(7)+ E Yn‘I’n>

V| X( T)+E Yn\Pn”

0

(2.1)

A. Beyond steepest descent fof >T{? where

Above T, the decay process is dominated by the saddle
point called sphelarorx=x,. Considering the fluctuation

modes around it, we have the periodic paths near the saddle

1 1
AS=,8ﬁ[§ wP?2Y2+ me<b>2Y2 W+ B4(Y§+Y2_1)2}
11

point- (2.12
o o B,= 2c4+(9c;3/2|v| o) —(9ci/AMw?) and wP?=412
X=Xpt+YotY_g ZSinTTJrle/E cos—7+ - — w%=3wh. After integrating the amplitude¥, and Y,,,
2.6 We deal with the quasizero modes to consider the fourth
term: B4(Y§+Y2;1)2. Introducing the polar coordination
2. 2.0 p cos¥=Y,, psind=Y_;, we get
+Y,n\/§sinTr+Yn\/§cosTr. 2.7
1 B
dY,dY_,exp—(BAS)
There is a mode with negative eigenvalug?=— w3 A2

=U"/M which is the key mode giving contribution to the

imaginary part of the free energy. From the steepest descent - 7Terfo(_ ke )exp k2e?), (2.13
method the result of the partition function of sphelaron solu- 2w§
tion Is written into where  k=(Mw2/2)J(B/Bs). Bs=3cs+(9c32M w?)
—Sx(7)] —(9c¥/4M w?)=0 has been defined as the boundary be-
sz D[x(r)]expl' —] tween the first-order transition and the second-order one in
X(0)=x(5h)=0 h Ref. 7. ForB,<0 the integration in Eq(2.12 is divergent

—9Y,] and this kind of divergence will be discussed in first-order
= NJ H dy, exp{ ] transition cases. It is obvious that the dissipation may change
n f the boundary between the first-order transition and the
second-order one. Then we have the transition rate from Eqgs.

1 1 N esh (2 (2.4) and Eq.(2.5):
2I \/ﬁﬁ|wb| \/,Bh w02 K\/—

= @n r=5— <°>22 erfo — ke )exp k2e?) f [ wg,wy]e” V/keT,
R

where N=JoD2{3, . 00?2 sinhBwy/2).?° The eigen- (2.14

values of the tWO lowest positive modes akg=o{”?  Away from the crossover region the result goes back to the
0®)?=12— w3. Second-order transition occurs when theclassical decay rateu/2m)e V/keT.

e|genvalue of the lowest modes is equal to zeke=0 as

temperature decreases, so it is defined That wg/27. Near

- . : L B. Beyond steepest descent fof <T?
the transition point, the eigenvalue of the lowest positive

modes is Below the crossover temperature, the saddle point is
named by periodic instanton or thermon. There are also two
A = —as, (2.9  dangerous modes about this saddle point rigar: one is
the quasizero mode which is associated with a phase fluctua-
wheres=(1-T/T,) anda= w3+ w3[ 1+ dy(wgr)/ dog]. tions of the periodic instantons with the eigenvalue and

To regularize the divergent integral we have to add termeigenstates of$)?=2as and ¥,= 2 sin(w,7), the other
of fourth order in the amplitude¥. ;. After expanding the represents amplitudes fluctuation and gives large contribu-

potential about the barrier top, tion to partition function with 0{?=0 and W,
" =./2 cosy7). The quasizero mode just takes the place of
i the “soft mode” which restores symmetry and the zero
U(x)=AU- 2 +Z ciX', (2.10 mode of Goldstone mode which ?eflectsythe freedom of

phase. This is just the character of Glohi|1l) symmetry

wherec;=Ull(x=x,)/i!, we obtain the action broken.
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Near T2, this kind of classical periodic trajectory of

thermon may be written as a Fourier series

©

X(7)= HZO [X, cogv,7)+X_,sin(v,7)]. (2.19

The periodic paths near the saddle point are similar to that of

EQ. (2.6: x=X(7) +Z, YoV, =2 (Ya+ X)) V,,. We define
the amplitudes into another foriy,=Y,+ X,, and the action
is

Sql=#BAU+ %hﬁm[ >

n=—o,n#=*1

wﬁY,']z} +AS,
(2.16

where
AS—Z,Bﬁmwl (Yl)2+ ﬂhmw<b>2(YLl)2

+Ba[(YD?+ (Y. )?2 (2.17

In terms of Y'., we obtain the tunneling rate beloW?:

N —AU/KgT
_ﬁw_bec[woywb]e 8, (2.18
where 1A= (k\m2w3)erfc(— ke)expe?) and «

=(M w,%/Z)\/(,BlBLl). In terms ofk the size of the crossover

region is defined(T{?)—T)/T{?)|<1/x in which the cross-
over occurs.
—TOVTE (T -T/TP) in the crossover regiof( T
—T)IT?)| < 1k.

Away from the crossover regiof(T)—T)/T{?)|> 1/,
the tunneling rate reduces to the standard form

VS ol
1 n#0

Zy=— ———e

A b)2
S o
n#0,1

~Sc/h

(2.19
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It is obvious that there is symmetry (
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y=Texp(AU/KkgT), (2.21)

which is a function ofe but independent of the temperature
T. According to the formula Eq2.4) and Eq.(2.5), we have
the universal law in the scaling region

ylyo=F (&l &), (2.22

where F (&) =erfc(é)exp@), é=T-TY, &=TPIx and y,
= (wol2m)[(wi+ wp) 2]\ (Bmi6C,f f wo, wp].

Ill. DECAY RATE IN THE CROSSOVER REGION
AT THE BOUNDARY OF SECOND-ORDER
AND FIRST-ORDER TRANSITION

=0 is the boundary of the second-order transition and
the first-order one and the potential looks different from that
of B,#0: The potentials change slowly near the top and the
bottom, but are rather steep in the middle. Because there is
divergence ok— oo at the point oB,= 0, the formula2.12)
is not available.

Above T{?), the decay process arises from sphelaxon
=X, t00. So we have the same periodic path near the saddle
point as formula2.6). But the interactions in terms of modes
differ from Eq.(2.12. We consider the sixth-order terms of
the two dangerous modes

(b)2

+Ba(Y24Y2 )2+ Bg(Y24Y2 )3

(3.9

where Bg=3c— (2c2/Mw{?). Near the two-phase point

not only the second terfiBAM 2 _ . ;0P?Y2 tends to zero
(remember heraﬁl—> 0, when temperature turns 1q) but
also B, is a small quantity. We consider the sixth-order
terms of the two dangerous modB@(YerY2 )3 At the
point B,=0, there is no fourth term and the formula is re-
duced to

1 oo
- g[IBBs]fllsfo dtexgd — (t3—3«’et)], (3.2

where 1A= \(SJ/27%)(B%) which is known by Faddeev- where «'=(B8Mw{/3)[ 8Bs] **. Below T., we transform
Popov technigue. We can reach it only through normalizingY, to Y,+ X, and have the same form ofAl/

the eigenfunction of zero mode while ndwmay be differ-

ent from the upper result for all modes being normalized:<T./«’

The universal law in the crossover regiod—T,|
is also defined as//y,=F(&/&;), where F(¢§)

N=(Vo?/= n¢0w(°52/25inh(3w0/2)). The concrete pa- =/gdtexd—(t+3&)], é&=T-T., &=T./x" and

rameter =00 P2 40107
whenT—T{?),2330-32

C. Universal law in crossover region

can be calculated only

Yo= 12w — —(w5+ w})[BBs] ™ 1/3r( ) flwo,wp]. (3.3

I'(x) is Gamma function.

Beyond the steepest descent method, we have the formula

Eq. (2.4 and Eq.(2.5), which is only needed in the crossover

region

IT-TP|<TP@/«, (2.20

IV. THE EFFECT OF MODES OF THE FIRST-ORDER
TRANSITION B,4<0

The actual transition occurs at the temperature when the
two saddle points have the same action. Bgr-0 the par-

wherex= (M w3/2)\(8/B,)>1. It has been pointed out that ticles tunnel through the barrier at the méstorableenergy
there is a universal law in the crossover region of the secondevel E(T) which goes down continuously from the top of
order transitior?'° We use the following quantity to show the barrier to the bottom of the potential with lowering tem-
the universal law: perature. This corresponds to the second-order transition
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from thermal activation to thermally assisted tunneling
(TAT) with no discontinuity ofdI'/dt at T,. The transition
temperature is given bygz). For the cases oB,<0, just
below the top of the barrier isnfavorable for tunnelingthe
TAT mechanism is partially suppressed, and the first-order
transition occurs. Because the top of the barrier is wider for
B,<0, the particle does not have more advantage to tunnel
through the barrier from the higher excited states than the
lower ones.

Let us discuss the dangerous modes near the first-order
transition point: Before the eigenvalues of the two quasizero
modes reach zero, the crossover occurs and the tunneling
process is dominated by periodic instantons just below the
top of the bamer'_ In ',[h's case, there is really no Em'versal FIG. 1. The remaining scaling region of a weak first-order phase
law. Above T, which is nearwg/27, the sphelaron’s two .. sition isTH<T<TO + T/ .
dangerous modes may also play an important role on the
tunneling rate at the transition point. Above the crossover
temperature, the quasizero modes of sphelaron have the same ylyo=F(&/é0),
(j./igenfunction as other caseB,0): /2 sin(2r/L)7 and

2 cos(27/L)r. While there are many distinguished differ- ' 2
ences of the interaction of modes between the casB,of VNI F(§)=erfi()expE)  and yo=(w(ol/)27-r()2[)(wo
>0 and that ofB,<0, the interaction between modes is T @b)/21N(B/6Cs)f[wo,wp]. For the cased /Ty >1
attractive of the lower order terms. —1/k, the first-order transition is rather sharp; there is no

After integrating the amplitude¥, andY,,, we deal with ~ Crossover region at all.
the quasizero modes to consider the fourth term

@_ @ 2 @ re@
0 T, 2T, % LA UL A AN T

4.3

V. SCALING LAW OF QUANTUM CLASSICAL
TRANSITION OF THE ESCAPE RATE IN Mn ,Ac

_P . . .
N =2, ) dYadY_iexp A rather simple and experimentally important system
which may exhibit the first-order transition is the uniaxial
1 1 spin model in a field parallel t& axis H, described by the
b b
—,B[Emw(l )ZYE‘F Emw(_izYz_ﬁ— B4(Y§_+ Y2_1)2 Hamiltonian X

_ 2
= \/Ez%erfi( — ke )exp( k%e?), (4.7 H=-DS;—H,S 6.
w

R which is generic for problems of spin tunneling. This model
is believed to be a good approximation for the molecular
where k= (M w3/2)\(B/B,) and e=[1—(T/T{))] . The magnet M,Ac with D the anisotropy constant. Using the

quasizero modes give a divergent contribution to the partimethod of mapping the spin problem onto a particle
tion function which can be distorted into complex-plane:problem?*?*we have the equivalent particle Hamiltonian as

2 exp@®)dx= [ exp(?)dx— [ expe?)dx=(i\/7/2) H=(p?/2m)+U(x), where
—erfi(c). Here erfig) =[5 exp&?)dx. Because the real part
of the function erfi- k&) goes to zero as—0, a dramatic U(x)=S?D(h,coshx— 1) (5.2

phenomenon arises—the first-order transition may suppress

quantum tunneling ratéwithout considering higher-order and m=1/2D, h,=H,/2SD, and S>1. The minimum of

terms! the effective potentialk,=cosh (1/h,), has been moved to
Because the periodic trajectories of periodic instantoryero. Integrating the equation of motion with imaginary time

cannot be written as a Fourier series if they are far below thgariable one obtains

top of the barrier, the formul&t.2) is useful only above the

crossover temperatur'a()l). r—r
Now we consider aweak first-order phase transition xp(r)=2tanh*1 tanhx, sr(—o,k” (5.3
which is under the conditio{"/T{?<1—1/x. For a weak &
first-order phase transition, the crossover temperakreis
in the region T—T{?)<T®/«k which is shown in Fig. 1. 1-h T E’
We may definea remaining crossover regiomabove the tank?x1,2=l+hXI E’ (5.4

crossover temperature:

where sng,k) is the Jacobi elliptic function with modulus
and the complementary modulusk’=\1-k? E’
We also use the quantity=Texp@AU/ksT) to show the uni- =E/S?’D. ¢&p is the characteristic length of the periodic
versal law as instanton determined by the following equation:

TY<T<TP +TP/ k. 4.2
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1-h? -t

1 2
f.%:szDz v (1+KkHh—k'2(1=h3) +h,4hik?+ k' . 5.9

(1+k?)h2+ h4h2k?+ k4

This description corresponds to the movement of aemainsAU for all T>T?. Below T{?) it continuously
pseudoparticle in the inverted potentialJ (x) with energy  shifts from the top to the bottom of the potential as tempera-
—E. The periodicity of the solution(5.3 is 7(E) ture is lowered. This corresponds to the second-order transi-
=448, hB=K(K)¢p, where KK) is the complete elliptic tion from thermal activation to TAT. Ah,=0.1, however,
integral of the first kind. The Euclidean action of the periodicthere can be one or two minima &, depending on the

instanton configuration in the whole period is temperature. The crossover between classical and quantum
regimes occurs when the two minima have the same free
S =2fﬁ [m'xf)]dr=w, (5.6  energy, which foth,=0.1 takes place aV=1.07ar.
P -8 Near the top of the barrier the potential has the form
where
U(x)=S?D(h, coshx—1)?=2S’Dh,— S’Dh,(h,— 1)x?
W= {(a*—K?)II(a?,k)+k>K(k) +ext+ceex® ..., (5.9
Dépa?
+a[K(K)—E(k) ]}, (5.7 Where c;= [S’Dhy(hy—3)/3] and cg=2S?Dhy(h,

— 22)145. The potentials changes slowly near the top and the
where a®=tanlf x;<k* and Ek), Il (a?k) are the com- pottom, but are rather steep in the middle for the cases
plete elliptic integral of second and third kind, respectively. .

The period of oscillationr(E) in the inverted potential  h =1 is the boundary of the second-order transition and
—U(x), i.e., the periodicity of the periodic instanton solu- the first-order one. Wheh,>%, we have the formula Eq.
Eon (5.3, 7(E)=4K(k)ép, can be equivalently calculated [and Eq.(2.21)], which is only needed in the crossover re-

y gion

dW(E) X1 dx
7(E)=— =2m —_—
® dE -xJU(X)—E
Near the top of the barriek—0,K— 7/2, Eq. (5.8) yields  where
the previously known result=2w/w,. Near the bottom,
one hask— 1, andr logarithmically diverges. Fdn,< %, the

(5.9 IT-TP|<TP/«, (5.10

dependence(E) is nonmonotonic, and the transition is first k=[hy(1—hy)]3* 27751 «SY2>1. (5.11)
order.
Since bothS, andS; are assumed to be large compared to hx( M= 4

i, the smaller of the two determines the actual escape rate.
The calculation of the temperature dependenceSgf, is
depicted in Fig. 2 foh,=0.1. The solid line corresponds to
the periodic instanton actio, while the dashed one corre-
sponds to the thermodynamic acti®. The actual depen-
dence ofS;,i,(T) goes along the minimum of these two ac-
tions and the first-order transiton occurs at=Tg"
satisfying T,<T{"<T;, where kgT=#/7(E;), kgT,
=#/7(AU). The first derivative ofS;,(T) is discontinuous
at T, providing that the crossover from the thermal to the
guantum regime is the first-order transition on temperature. S
Quite recently an effective free energf=ad’+bop*
+c¢® for the transitions of a spin system was introdif€ed : R
as in the Landau model of second-order phase transition S
Here a changes sign at the phase-transition temperafure : : D
=T =(SD/7kg) Vh(1—h,) andb=0 corresponds to the

boundary between first- and second-order transitions. Thert T2 7' T T

. . . 0 0 0

indeed exists a phase boundary between the first- ana

second-order transitions, i.eh,= %, at which the factor in FIG. 2. First-order transition from the thermal to the quantum

front of ¢? changes the sign. At,=0.3 the minimum ofF region for Mn, molecule:h,=0.1.
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r(1/3)/3

0 €

FIG. 3. Scale factoF(¢) at different sides of phase transition

point of h,= 3.
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We also use the quantity y=I'exp@QU/kgT) to

show the universal law asyly,=F(&/&;), where
F(&)=erfi(é)exp&) and Yo=(@o/2m)[ (g
+ wd)12](B7l6C) f [ wg,wp]. For the caseT§H/TP)>1
—[hy(h,—3)/27S][h(1—h,)]¥4 the first-order transi-
tion is rather sharp, there is no crossover region at all.

VI. CONCLUSION

In this paper we have shown that the decay Hatean
accurately be determined near the crossover temperature in
dissipative systems. Besides considering the WKB exponen-
tial, we have calculated contribution of the fluctuation modes
around the saddle point and have given an extended account
of the previous study of crossover regioit! Near the
phase-transition point the fluctuation modes about the saddle
points include two dangerous modes whose contribution

It has been pointed out that there is a universal law in theannot be calculated by the steepest descent method and the

crossover region of second-order transittdht According to

higher-order couplings are considered between the two dan-

the formula EQS(ZZQ and(2.21), we have the universal law gerous modes; near the point of

in the scaling region

ylyo=F(&l/€o), (5.12

where F (&) =erfc(é)exp@), é=T-TY, &=T%Ik andy,
= (wo/2m)[(w§+ wp)I2]V(Bm/6C,]f [ wg,wp].

For the caseh,=%, we have the crossover regidit
~T@O|<T@Ik’, where

he(1—h,)S|? 1\]7%3
K/:G{M} 3[hx(hx_ ﬁ)} OCSZI3>1_

9
(5.13

From the formula(3.3), we have the universal law/y,
=F(&/&) In the crossover region, whereF(¢§)
=[5 dtexg — (+3&)], &=T-TY, &£=TPIk' and

2, 2
_ woB(wpt wp)

5
Yo 244 2

—13
2,306} F(g)fc[a’oawb]-
(5.19

I'(x) is the Gamma function which is shown in Fig. 3.

Now we consider a weak first-order phase transitiony

which is under the condition T{/TP<1

5 3 oc3 9c3
Y27 IMeR  AM w2

sixth order needs to be considered. The results can be easily
used in Mn,Ac of which the equation B,=[S(S
+1)Dh,(h,—$)/2]=0 gives the phase boundary poim

=7 in good agreement with earlier works.

Another example is biaxial anisotropic ferromagnetic
model H=K183+ KZS§ which describesXQY easy plane
anisotropy and an easy axis along thairection with the
anisotropy constant&;>K,>0. Mapped onto a particle
problem, the equivalent particle Hamiltonian is

0 (6.9

= e Kkos(st st
H= k<K (S+1)srf(x,\),
where sng,\) is the Jacobi elliptic function with modulus
A=K,/K;. From the equatiorB,=[K,S(S+1)(1—\)(1
—2\)/2]=0, we obtain the phase boundary point 3
which confirms the results in Ref. 20.
The results of the application of a previous methddis
eveloped for dealing with the quasizero modes and calcula-
tion of decay rate in the crossover region which is beyond

(6.2

—J[h(h,—3)/27S][h(1—h,)]¥ For a weak first-order the steepest descent method. The decay rate is valid for the

phase transition, the crossover temperafiif@ is in the re-

entire interesting range of parameters in the problem of mac-

gion (T—T@)<T®/« which is shown in Fig. 1. We may r0SCOPIC quantum tunneling.

define a remaining crossover region above the crossover tem-

perature

TH<T<T@+TP/«. (5.19
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