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Phase diagrams as a function of anisotrBpgnd magnetic fieléH are obtained for discommensurations and
surface states for an antiferromagnet in whitlis parallel to the easy axis, by modeling it using the ground
states of a one-dimensional chain of classal spins. A surface spin-flop phase exists for @l but the
interval in H over which it is stable becomes extremely smalllagjoes to zero. First-order transitions,
separating different surface states and ending in critical points, exist inside the surface spin-flop region. They
accumulate at a fieltl’ (depending orD) significantly less than the valuége for a bulk spin-flop transition.

For H' <H<Hgr there is no surface spin-flop phase in the strict sense; instead, the surface restructures by, in
effect, producing a discommensuration infinitely far away in the bulk. The results are used to explain in detail
the phase transitions occurring in systems consisting of a finite, even number of layers.
[S0163-182€09)02309-7

I. INTRODUCTION experimentally depend upon whether the number of Fe lay-
ers is even or odd. The experimental work has motivated a
It has been known for a long time that if an antiferromag-number of theoretical and numerical studies of finite and
net with suitable anisotropy is placed in an external magnetisemi-infinite system&:° Most of these have found evidence
field H parallel to the easy axi@&he axis along which the for the existence of SSF states.
spins are aligned, in opposite directions on different sublat- |n the present paper we address the issue of the existence
tices, in zero magnetic fieldand the field strength is in- of SSF phases and some related topics by studying the prop-
creased, a first-order transition will ocim which the spins  erties of the ground states of chains of antiferromagnetically
are realigned in direction@pproximately perpendicular to  coupled classicaX Y spins, each spin variable represented by
the applied field, but with a component along the field direc-an angled between 0 and 2, subject to a uniaxial anisot-
tion. The transition to thispin-flopphase occurs wheH is  ropy D as well as to an external magnetic fiédd as a func-
equal to a spin-flop fieltHsg, whose value depends on the tion of D andH. One can think o as the direction of the
exchange energy and the anisotropy. Agontinues to in-  magnetization in an Fe layer in a superlattice, or of the av-
crease beyondtge, the spins on the two sublattices rotate erage magnetization in a layer of an antiferromagnet contain-
towards the field direction till eventually, if the field is suf- ing spins belonging to one type of sublattice. Minimizing the
ficiently large, they are parallel to each other in a ferromagenergy of a one-dimensional model then corresponds to
net structure. minimizing the free energy of a three-dimensional layered
In 1968 Mills” proposed that in an antiferromagnet with a system, provided fluctuations inside the layers do not have a
free surface, spins near the surface could rotate into a floppettastic effect. This means that the model we consider here is,
state at a fieldH g significantly less thaddse. Thissurface in its essentials, equivalent to those used in previous studies.
spin-flop (SSH problem was later studied by Keffer and It allows us to come to some fairly definite conclusions about
Chow? who found a transition atige, but to a state having SSF phases in semi-infinite systems, and about the behavior
a character rather different than that proposed by Mills. In-of systems containing a finite number of layers. Our princi-
terest in this problem was recently rekindled through experipal conclusions were published previously in a short retfort;
mental work on layered structures consisting of F&ZCE)  the present paper contains the complete argument, and sup-
superlattice4® If the thickness of the Cr layers is chosen plies a number of additional details.
appropriately, adjacent Fe blocks are coupled antiferromag- In order to understand the properties of finite and semi-
netically, and thus in zero magnetic field they exhibit aninfinite chains, it is helpful to begin with an infinite chain
antiferromagnetic structure in which the magnetization ofand a defect structure known as a “discommensuratitr”
each layer is opposite to that of the adjoining layers. Apply-“soliton” or “kink” ), which can occur in both the antifer-
ing an external magnetic field parallel to the layers can giveaomagnetic and the spin-flop phases. In Sec. Il we work out
rise to phase transitions in which the magnetization in certaithe properties of the discommensurations of minimum en-
layers rotates or reverses its direction, and the results founergy in the antiferromagnetic ground state of X¥ chain.
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3T 1 T L E S B B spins parallel to the field, from the antiferromagngid-)
L - one with the spins alternating between 0 andparallel and
antiparallel to the field. Along the AF:F boundary the ground
state is infinitely degenerate since it is possible to flip any
number of nonadjacent spins in the F chain with no change
L . in energy.

For D<2 and intermediate values #&f, the ground state
no longer corresponds to spins in the Ising positighequal
0 or 7, but is a spin-flop(SH phase in which the spins
. alternate betweenr- ¢ and — ¢, where

cos¢p=H/(4—D). (2

The spin-flop region extends between the boundakes
=D(4—D) andH=4-D which are first and second or-
der, respectively!

] We now consider the case when an infinite chain is con-
_ strained by suitable boundary conditions to include a dis-
commensuratiofffor detailed studies of discommensurations
in Frenkel-Kontorova models see, for example, Refs. 12—
15). The study of the discommensuration phase diagram is
important because it helps us to understand the minimal en-
Fergy configurations observed both in semi-infinite and finite
naystems. A discommensuration is a defect which can arise in
a periodic phase whose period is two or greater. In particular,
the AF ground state has period two and is degenerate: for

Using these results, we obtain, in Sec. Ill, a phase diagrarfin€ ground stat@; =0 for i even andw for i odd; for the
for surface phase transitions in a semi-infinite chain. BottPther, ;= for i even and O foi odd. A discommensura-

discommensurations and surface phase transitions are esséfn results if one requires that a single configuratiah}
tial for understanding the properties of finite chains. Thesépproaches one of these ground statestasds to—< and
are discussed in Sec. IV, where we provide a comprehensiVi@e other as tends to+; for instance,

and detailed explanation of the complicated series of transi-

FIG. 1. Phase diagram for an infinite chain. The AF, F, and S
regions are occupied by the antiferromagnetic, ferromagnetic, a
spin-flop phases respectively.

tions found in chains containing an even number of spins. 02n—0, Ozni1—masn—+o,
The numerical procedures we used to study the phase dia-
gram are described in Secs. Il and Ill, and a certain number Oon—m, bny1—0 asn——oo. )

of analytic results are derived in Sec. V. The concluding Sec.

VI provides a summary, and notes some topics which still The defect energy of a discommensuration is the differ-
need to be studied. ence between the energy of the configuration containing the

discommensuration and the energy of the corresponding

Il. INEINITE CHAIN ground state. Since both of these energies are infinite for an

infinite chain, a proper definition requires some care; see,

We consider an infinite chain of classicdlY spins de- e.g., Ref. 16. We are interested in discommensurations
scribed by the Hamiltonian which, for a givenD and H, minimize this energy; they

constitute what we call the discommensuration phase dia-
gram. It is convenient to start by considering the limiting

caseD =«, where the spins are constrained to lie along the
(1) Ising positions. For 8CH<2 the discommensuration of

h h i . h ffici has b minimum energy is a configuration in which two successive
where the antiferromagnetic exchange coefficient has beeg;q someplace in the middle of the chain are parallel to the

taken as the unit of energy); is the angle between the di- field H:

rection of theith spin and the external magnetic fiefg and

D is a twofold spin anisotropy. Our aim is to identify the ....07,0m,00m0m, ... . (4)

zero-temperature phases of this system, that is, those which

minimize the energy. Minimizing the energy of a one- In the following we will use the notation AFto label this

dimensional system corresponds to minimizing the free enphase. WhenH=2, due to the absence of further-than-

ergy of a layered three-dimensional system when the fluctuasearest-neighbor interactions, there is not a unique

tions within each individual layer are not playing an minimum-energy discommensuration associated with the AF

important role, as is the case for the Fe/Cr superlattices memphase. One can have any arbitrary even number of spins

tioned in Sec. I. aligned with the field, not just two, as in E@}), and other,
The phase diagram of the system consists of three sepaiore complicated defects are possible. The ferromagnetic

rate regions, as shown in Fig. 1. Fbr>2, the lineH=2 ground state foH=2 has period one and is nondegenerate,

separates the ferromagneti€E) configuration, with all the so there are no discommensurations.

[

D
H:_E COE{ai—aiJrl)—HCOS@i-FZ[l—COE{Z@i)],
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As the spin anisotropy) decreases from infinity, lower A IR |
energies may occur if in a discommensuration the spins are oL L P
not limited to the Ising values 0 anga. For these cases it is L |
difficult to find an explicit analytic form for the minimum 3 ) RN
energy discommensuration, and one has to use numerice - AF i
techniques to tackle the problem. The numerical procedure .
that we have adopted relies on the method of effective ! ! N
potentialst”*® which is very efficient for obtaining the
ground state of models with short-range interactions and dis-
cretized variables. The main advantage of this method is thag
it yields the true ground state, rather than some metastabli 1
one. The main disadvantage for our problem is that it re-
quires the spin variables to be discretized: they can take or
only a finite number of values. We generally used a discreti- I
zation grid in which eacl#; is an integer times 2/1400. To 0.5
overcome the effects of the discretization we first fixed the
anisotropy at some intermediate value, typically~0.6,
then used the Chou-Griffiths algorithifrto identify minimal
energy states of different phases for the system of discretize:
spins, and, finally, employed the equilibrium equations,

57‘5_ FIG. 2. Discommensuration phase diagram for an infinite chain.
,9_9i_0' (5) The dashed phase boundaries correspond to phase transitions in the
discommensuration-free chain, the solid lines in Fig. 1.
for continuous spins in order to refine the configurations ob-
tained using discretized spins. The phase boundaries locategin configuration resembles that in a bulk spin-flop phase,
by comparing the energies of neighboring phases, calculatddcated between “tails,” each of which rapidly reverts to the
using the refined configurations, were then followed as theonfiguration of the corresponding AF phase with increasing
value of D was changed in small steps, while the spin con-distance from the corésee Fig. 3 One can think of the
figurations were updated using E@). The location of the region where the core changes into the tail as an “interface”
phase boundaries was then checked against those obtaineetween the AF phase out in the tail and the SF phase in the
starting with finer discretization grids. We established thatcore. From this perspective, the discommensuration consists
using a discretization of /1400, the error in the location of of a pair of interfaces, AF-SF and SF-AF, bounding the SF
the boundaryAH, was in the range of I-10 ° through-  core. AsD decreases, these interfaces broaden, making the
out the range oD values we studied. The procedure justdistinction between the “tails” and the “core” less clear,
described was used to find minimum energy configurationdut we continue to use the same lab2in) for the discom-
of a ring of sping(periodic boundary condition®f lengthL ~ mensuration which evolves continuously from the one with a
with L odd, so as to produce a configuration containing eclearly-defined core of sizer2 at largerD.
discommensuration. Whadnis large(we usedL<31) com- An analytic calculation, see Sec. V, shows that the equa-
pared to the size of the discommensuration, this is practicallyion for the second-order transition between’Adnd(2) in
the same as studying the minimal energy discommensuratidrig. 2 is
in an infinite chain.
The numerical results are summarized in the discommen- (D+H-1)"'=5/3+D—H, (6)
suration phase diagram in Fig. 2. There are, of course, ng

: . . n good agreement with our numerical calculations, and
discommensurations in the F phase. As for the SF phase, o fose in Ref. 22 wheii=0. At low values ofH, the dis-

numerical results showed a smooth variation of spin anglecommensuratior(z) has the lowest ener but UDON aD-
with D andH, and consequently no phase transitions. How- 9y P P

ever, various phase transitions were identified for AF phasé)roi(:h'ngf thhe bUItkr '?‘]Fms':n ph:se6boundary,Ho?: rflnds a se-
discommensurations. In the AFegion, Fig. 2, the spins in quence of phase transitions ¢4) (6), ... as creases,
the minimum energy discommensuration stay locked in their

D= positions. The persistence of this Ising spin locking SF

for finite values of the anisotropy is a rather common feature [ j ‘\ / \ /‘ f T

in models with twofold spin anisotropy?*Here it has the l \‘ 1 l
consequence that the multiphase degeneracy encountered at

the point H=2, D=x) persists throughout the locu® ( AF — ——— AF

=2, H=2). FIG. 3. Schematic representation of phé&4g for moderate val-

For values ofD lying below the lower boundary of AF g5 of the spin anisotropy. The phase can be regarded as resulting
but still inside the AF region in Fig. 2, “flopped” discom- from merging a portion of the spin-flop phaéaF) with two semi-
mensurations of different length have lower energies than thgfinite antiferromagnetic chain@F). The spins nearest the AF-SF
Ising discommensuratiofd). A flopped discommensuration and SF-AF interfaces are expected to relax from their ideal AF or
of type(2m) consists of a “core” of 2Zn spins in which the  SF angles.
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ployed in Ref. 22 for small spin anisotropyThe triple
points at which the phases AF2m) and (2m+2) meet
tend to an accumulation poin@, located atH~1.58, D
~0.78. This should be the point at which the energy to create
a pair of AF-SF and SF-AF interfaces infinitely far apart is
equal to the energy of an Ising discommensuration.

-1.2-

-14 Ill. SEMI-INFINITE CHAINS

We now consider the surface states of a semi-infinite
chain. The Hamiltonian for the system is the same as(Hq.
but with the sum extending only over non-negative values of
i (i=0 denotes the surface site

8E / oH

_1_6_

- D
-181- H=, {cog6,—6,1)—H cosei+z[1— cog26,)].
- i=0
i ™
2 e It is useful to think of semiinfinite chains as obtained by
D cutting an infinite chain in two. Removing a bond in the

d infinite chain without allowing the spins to move will give
in the two neighboring phase&2),(4) along their common bound- two seml-mflmte chains that we shall term unreconstructed.
ary, for a ring of 17 spins. The inset shows the differencef the If the spins of the unreconstructe_d chains are then allowed to
two derivatives. relax, a rearrangement of the spins near the surface may take
place, as illustrated in Fig. 5, which lowers the energy. No-
o i tice that even though the total energy of the semi-infinite
as shown in Fig. 2. Our numerical procedures found valuegnain js infinite, changesn the energy when a configuration
of 2m up to 14, and we were able to trace the first-order liness modified near the surfader in a way such that the modi-
separating the differen2m) phases down to a value & fications decrease sufficiently rapidly with increasing dis-
between 0.1 and 0.4. For smaller Valuesmfthe difference tance from the Surfacare well defined. We want to con-
A of the energy derivative$/E/dH in two neighboring  sider surface states which minimize the energy in the sense
phases was no longer sufficient to allow us to distinguish thghat no local modifications of the configuration near the sur-
phases numerically and locate the phase boundary. See th&e can decrease the energy.
example in Fig. 4. However, we found no evidence that these The task of finding the reconstructed surface of minimum
lines terminate in critical points. The smooth decreasa of energy is, in general, not simplexcept when all the spins in
shown in the inset of Fig. 4 contrasts with what one mightihe chain are subject to the Ising lockingo identify the
expect at a critical pointas in Fig. 8. Therefore, it seems minimal energy surface states we used numerical algorithms
plausible to assume that th2m):(2m-+2) boundaries per- hased on effective potential methods that, as mentioned ear-
sist all the way down t® =0. lier, require a discretization of the spin variables at each site.
The sequence of transitions associated with a broadeningis important to notice that, since th's are constrained to
of the discommensuration can be understood in the fO”OWingake on 0n|y discrete Va|ueS, after a finite distance, or “pen_
way. The defect energy of a discommensuration can betration depth”l from the surface the spins will bexactlyin
thought of as the sum of the energy required to produce ghe discretized positions corresponding to a doubly infinite
pair of AF-SF and SF-AF interfaces infinitely far apart, anchain or an unreconstructed surface. Configurations for the
interaction energy between the interfaces which we assumgfinite chain were obtained using the Floria-Griffiths
is positive and rises rapidly as they approach each other, angigorithn?® which, within the limits of the discretization,
a “bulk” contribution proportional to the size of the core, yjelds the exact ground state. Next, the Chou-Griffiths
arising from the fact that in the AF part of the phase diagramalgorithni” with its successive iterations was used to gener-
the SF phase is metastable. In terms of which discommensite reconstructed surface configuratiof, 6, . ...}
ration has the lowest energy, the interface repulsion obvi-
ously favors a large core, and the metastable “penalty” a ;
small core. The actual size will represent some compromise A SN AN /\ INCIN S
between the two. Upon approaching the AF:SF boundary,
the metastable penalty goes to zero, so the discommensura- ® N IN NS VAN AN S
tion of minimum energy should become larger and larger. y o
Hence, one expects th€m):(2m+2) boundary to ap- o NSV o N
proach the AF:SF transition line as—o. This is consistent FIG. 5. Cutting an infinite chain in tw¢a) while keeping the
with our numerical calculations, and in agreement with thespins “frozen” results in two semi-infinite chains with unrecon-
predictions of Papanicoladd. (Note, however, that these structed surface). Allowing the spins to relax to positions which
transitions reflect the discrete nature of the spin chain anehinimize the energy typically results in reconstruction of the sur-
therefore are absent in the continuum approximation emface(c), a rearrangement of the spins nearest the surface.

FIG. 4. Plot of the derivative of the energy with respect to fiel
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) o o FIG. 7. Detail of the phase diagram for a semi-infinite chain
FIG. 6. Phase diagram for a semi-infinite chain witlBdype  \ith a B-type surface.

surface. More details of the ARregion are visible in Fig. 7.

This should give the exact configuration minimizing the sur-and so forth, wherg2n) consists of & spins O, ... inan
face energy for the discrete spins. However, in practice wéntiferromagnetic arrangement, followed by two spins paral-
had to limit| to a maximum valud ., no larger than 50; lel to the field, and then the bulk antiferromagnetic phase.
thus the method could not yield the correct configuration forOne can think of this reconstructed surface as an Ising dis-
a larger penetration depth. The phase boundaries were thé@mmensuration, whose core consists of two adjacent spins
identified as explained in the previous section. with 6,=0, located a distancer2from the surface. Because
The resulting phase diagram is shown in Fig. 6. Throughthe “tails” of this discommensuration have zero length, it
out the F region the minimum energy surface states are sindoes not interact with the surface, and its energy is indepen-
ply the unreconstructed surfaces; it is easy to see that makingent of its distance from the surface. While this degeneracy
any changes will increase the energy. In the SF region, sincgersists throughout the AFregion, along the lindd=2H
the grOUnd state of the infinite chain has periOd two, there are-2 the degeneracy is even greater: the set of minimum en-
two unreconstructed surfaces. Each of them undergoes a rgrgy surface states includes cases where the number of con-
construction in which the spins nearest the surface tilt togecytive spins pointing along the field is not limited to 2 but
Wgrds the mggne_tlc-ﬂ_eld ghrectlon, asin I_:|gc)5 However,  .on attain any even number, €.§0,0,0,07,0,m...} or
this change in spin direction occurs continuously as a funC{O,17,0,77,0,0,0,0,0,0;7,0,77 ...}, Incidentally, we note that

tion of H and D, and so no surface phase transitions Ahese degeneracies are somewhat artificial in that they would

observed inside the SF region. . ) . y . . .
Next consider the AF part of the phase diagram. Agairazmﬁgn?gr:?%()dumng weak longer-range interactions in the

D e M ._In the AT regon of Fig. 6 heype urface agan e
- o U u ) S o constructs, but the spin anisotropy is sufficiently low that the
(60=0) or opposite ¢o= ) to the field direction: spins unlock from the Ising angles. As in the Afégion, one
A,={0,7,0,m,0,m, ...} ®) can think of the surf_ag:e state as consisting of a discommen-
o ' suration located a finite distance from the surface, but now

this discommensuration is of the flopped type with a core of

By={m,0,m0,m0,.. }. © length of 2, and tails extending out on either side of the core.
A surface will be said to be of typA (B) if the spin con- We again employ the notatigr2n) for the surface state with
figuration tends to that of,(B,) far from the surface. 2n spins to the left of the core, that is, in the tail extending to
Throughout the AF region of the phase diagram, the minithe surface. Because of this tail, the discommensuration in-
mum energy surface of typA is the unreconstructed, . teracts with the surface, and the minimum surface energy

However, theB-type surface shows a number of different occurs for a specific value ofr2 depending upo andH.
structures in different parts of the AF region, as indicated inThus, in AR, one finds genuine spin-flop surface states. As
Figs. 6 and 7. In region AFthe unreconstructed surfaBg  H increases, the discommensuration moves further from the
has the lowest energy. In region AFwhich meets A surface. It does this, at least whBris large, discontinuously
along a lineH=1 for D larger than the value &b, it is in steps of 2, via a series of first-order phase transitions,
energetically favorable to flip the surface spin so that itsome of which are shown in Fig. 7, where they extend left-
points along the field direction, and there is a set of degenwards from the poinP. For smaller values dd, the edges of

erate(equal minimum energyreconstructed surfaces the core are not as well defined, and it is more difficult to
associate th¢2n)—[2n+2) transitions with a discontinu-
[0)=0,07,0,m,0,7 ..., [2)=0,m,0,0a,0 ..., ous jump of the discommensuration. Numerically we have

(10 seen states withr2up to 14, and our results are consistent



6244 C. MICHELETTI, R. B. GRIFFITHS, AND J. M. YEOMANS PRB 59

T T T I T T T T I T T T T I T T C I I ]
03 T T T L k
r 7 60 e —
02 1 h i
-1.61- C 1 1 H .
A N 4 [
r — h i
- 0.1 [ =1 D40 .
r G _
r N | (N | - 3 1
0 0.4 0.5 0.6 ® E
- D - 20 -
i _
~N-18F = ]
= 4
© oL v
r [0} 1 0 0.2 04 0.6 0.8
FIG. 9. Surface spi, along the left edge of the Afregion as
- 1 a function of anisotropyd. The surface layer consisted of 34 spins,
2l ] and the behavior of the curve at lold (dashed is affected by
[2) finite-size effects in the numerical calculations.
N T T B rabolaD =0.5H? to within numerical precision, which is as-
04 0.5 0.6

D : ymptotically the same as Eqll). We nonetheless believe
that the width of Ak remains finite as long aB>0. Nu-
FIG. 8. Plot of the derivative of the energy with respect to field merical evidence for this is shown in Fig. 9 where the value
in the two neighboring phasd®) and[2) along their common  of the surface sping,, at the left edge of the AfFregion
bpundary, using 50 spins i_n the surface layer. The inset shows thﬁhat is forH just large enough to produce the surface spin-
differenceA of the two derivatives. flop phasgis plotted as a function db. The results are for
I max=34 spins in the surface layésee the description of the
numerical approach given abgv8elow D = 0.05 the results
become unreliable becaukg,, is too small, as we can tell
by carrying out calculations for different values bf,..
3 However, extrapolating from larger values Df indicates
D=yl+H"—1. 11 that asD goes to zerog, tends to a value near/3 or 60°,
The upper boundary of the Afregion extending fronD to ~ Showing that even for very smdD the discommensuration
P is a continuougsecond-ordertransition. One can think of &t the threshold field is still a finite distance from the surface.
it as the limit of stability of the Ising surface phaige) asD ~ This situation is quite distinct from that in region AF
decreases inside AF An analytic calculation, Sec. V, shows Whereéfdo=m, and in AR, discussed below, wher=0.

with n tending to infinity at the right side of the AFegion,
which our analytic calculationéSec. V), in agreement with
Ref. 6, show to be the line

that the implicit equation for the boundary is Between AR and the AF:SF bulk phase boundary lies
region AR, see Figs. 6 and 7, in which the flopped discom-

(2+D-H-1/a) '=2+D+H-a, mensuration is repelled by the surface, so that its minimum
energy location is in the bulk infinitely far away from the

a:=H+D+1/(1-H-D). (12) surface, as noted in Ref. 6. Thus there is no minimum-energy

reconstructedB surface, or, properly speaking, a “surface
Thus the pointP, where all the phasg2n) come together, spin-flop phase” in region AF. It seems better to identify
lies at H=4/3, D=2/3, the intersection of Eqg1l) and  AF,, thought of as part of thB-type surface phase diagram,
(12). Both Egs.(11) and (12) agree with our numerical re- as a “discommensuration phase,” since the minimum en-

sults. ergy surface will always be of tha-type, with the surface
We find that the first-order lines extending downwardsspin §,=0.
and leftwards fronP in Fig. 7, separating phasg&n) from In Fig. 10 the discommensuration phase diagram for the

[2n+2), end in critical points ab decreases. This is clearly infinite chain(Fig. 2), represented by dashed lines, is super-
visible in the example in Fig. 8, which shows the typical imposed on théB-type surface diagram for the semi-infinite
behavior of the energy derivatives of two neighboring phaseshain, represented by solid lines, in the vicinity of poiRts
along their coexistence line. Near a critical pddw=D. one  andQ, which are common to both diagrams, as is the broken
expectsA to vary asyD — D, in qualitative agreement with line (shown dashedfrom P to Q. Note that theOP line of
what we observed. The larger the valuenpthe further the the surface diagram, Fig. 7, lies above the lower boundary of
first-order line extends towards the origin of tHeD plane, the AF region of the discommensuration phase diagram in
but presumably for any finite value @f the difference be- Fig. 2. Thus to the left oP, for H<4/3, asD decreases the
tween the phasd®2n) and[2n+2) eventually disappears at reconstructed-type surface phase changes from Ising to a
some finite value oD. Because this value decreases withflopped form before the corresponding change is energeti-
increasingn, it is plausible that the corresponding critical cally favorable for the bulk discommensuration.
points accumulate at the origin. In addition, Fig. 10 shows that the part of theD plane

As is evident in Fig. 6, the region Afbecomes extremely corresponding td2m) in the discommensuration phase dia-
narrow asD decreases. The left boundary approaches a pagram, Fig. 2, for 2n=4 lies entirely inside the AFregion of
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0.9 T L the behavior of the system will depend strongly on the actual
length of the chain. Since we are not interested in
L-dependent features of the phase diagram, apart from
whetherL is even or odd, we shall assume thats suffi-
ciently large to justify the use of Eq13).

From the discussion presented in the previous sections
one can predict that a finite chain will not undergo any phase
transition for values ob andH inside the SF and F regions.
On the other hand, it can also be anticipated that the behavior
of the chain in the AF region will be rather complicated. As
noted in Refs. 4,5,7, the behavior of the chain for value of
and H in the AF region changes dramatically according to
whether the length of the chain is even or odd.

If L is odd, both ends of the chain have to be of the same
type, A or B, unless a discommensuration is present. Having
two A-type surfaces gives a lower energy than t@«ype

dashed lines, superimposed on the phase diagram for a semi-infini?éjrfa(,;es' 'because thg former results in a net magneti;atiqn in
chain with aB-type surfacdFig. 7), using solid lines, in the vicinity the direction of the field, and the latter a net magnetization

of the pointP. The broken line connecting with Q is part of both ~ OPPosite to the field. Similar considerations show that
phase diagrams. throughout the AF region it is energetically unfavorable to
insert a dislocation, thus producing omfetype and one

Fig. 6 (and 7 for the surface phase diagram. This is consis-B-type surface. Hence for odd, the minimum energy cor-
tent with our observation that as long as the discommensu€sponds to twdunreconstructedA-type surfaces at either
ration is a finite distance from the surface, in the;A€gion, ~ end of the chain, and no discommensurations.
it is always of the type th=2. Thus ad increases, it is only On the other hand, whelnis even, the two surfaces have
after the discommensuration has moved infinitely far fromto be of different types, unless a discommensuration is
the surface, and thus has no influence on the surface phaBEesent. The analysis of Sec. Il has shown that discommen-
diagram, that its core begins to broaden. surations are not favored energetica”y outside regiOQ.AF

In retrospect it seems likely that the broadening of theThus, forD andH falling in region AR or AF;, one expects
SSF transition mentioned in the abstract of Ref. 3 actuallyene surface of typé\ and the other of typd3. Moreover,
refers to broadening of the bulk discommensuration whichfrom the results of Sec. I, we expect that in region,ARe
as noted above, occurs Hisapproaches the AF:SF boundary B surface remains unreconstructed, whereas surface spin-flop
inside region Af. It appears that no work prior to ours has states should be observed in Aéwing to the reconstruction
correctly identified the stable SSF phase at small valugs of Of the B-type end of the chain. Tha-type end of the chain
characterized when it first appears with increasihdgy a  remains, of course, in its unreconstructed state. Next, in re-
surface spin with a value very near 60Fig. 9). The narrow-  gion AF, the energy is minimized using twirtype surfaces

ness of the A region for smallD may be why it was over- and a discommensuration, which lies at the center of the
looked. finite chain because it is repelled by both surfaces. Finally, in

AF,, because of the degeneracy due to the Ising spin lock-

ing, one has either a reconstructBdype surface or a dis-

commensuration, depending upon what one wants to call it,
We now move on to consider the case of a chain of finiteand anA-type surface at the other end of the chain.

length L. Since a surface reconstruction can occur at both Consequently, iD is smaller than the value correspond-

ends of the chain, and it is also possible for a discommensung to pointP in Fig. 7, we expect a finite system with even

ration to be present in the interior of the chain, we write itsL to undergo the following set of transitions with increasing

—_
2]

FIG. 10. Discommensuration phase diagrdRig. 2), using

IV. FINITE CHAIN

total energy in the form H. At H=0, Fig. 1Xa), there are unreconstructed surfaces of
typesA andB at opposite ends of the chain. Whidireaches
E =Le+E.+ER+Ey, (13)  the threshold for the formation of an SSF phase, BHgpe

surface restructures discontinuous(lg) to form a type(2)

wheree is the bulk energy, the ground-state energy per spirdiscommensuration which then, &k increases, moves to-
for an infinite chainE5 andEY are the energies of the left wards the center of the chain in a series of discontinuous
and right surfaces, respectively, afg is the energy of a steps,(c) and(d), some of which may be continuousD¥ is
discommensuration in the chafif presen}. Minimizing the  smaller than the value for the corresponding critical point,
total energy for fixed. is equivalent to finding the spin con- see Sec. lll.
figuration that minimize€+ES+Eq. The discommensuration will reach the center of the chain,

In writing Eq. (13), L was assumed to be sufficiently large Fig. 11(d), whenH is close to the threshold for the Afor
that the interaction between the two ends of the chain, andiscommensuration region in Fig. 6. Further increaseB! of
between each end and the discommensuration, if present, caiill lead to a broadening of the discommensuration, with
be neglected. For any givanthis condition can always be (2m) going through the sequend@),(4),(6), ... of Fig.
satisfied by choosing a large enough value for the spin an2; see Figs. 1) to 11(g). While these transitions are likely
isotropy. Outside the range & for which Eq.(13) holds, to be discontinuous for larger values Bf it may be hard to



6246 C. MICHELETTI, R. B. GRIFFITHS, AND J. M. YEOMANS PRB 59

moar U EE T e M T 0.026

b o [ L=22; D=0.£;

0.02f
C) [2>t \f f T T D)[4>z<2>T T ‘f T T I

s)

o

)

2

o
|

x(arb. unit

0.01F

G) <8>\Hf1lef m<os=set fH LIV 0.0055_ AJ
FIG. 11. Schematic representation of the series of different :

phases encountered in a chain of 10 spins for increasing values of O——"——Fpg —— " -
H.

. N . FIG. 13. Plot of the susceptibilitin arbitrary unit$ for a chain
see the discontinuities whel is small. The center of the .5, spins forD=0.3.

(2m) discommensuration in Fig. 11 does not fall at the pre-
cise center of the chain whenis even; the offset is needed

so that the surface spins can both (approximately paral- the AR, region into the surface spin-flop AF phase[0).

; : N The first series of spikes, fdad between 0.9 and 1.13, is
lel, rather than antiparallel, to the field directioffor L associated with first-order spin-flop transitions, in agreement

- 1.&?12{?? gr?guésF\-,thg"innltsér?gggs on either side of thewith Refs. 7,9. FoH between 1.13 and 1.32, one observes a
. . second series of transitions associated with the broadening of
core move outwards as the discommensuration expands, al

evetualy ey reach the sufaces of e i, FUBILAL - (02T STSEUET, FOE 13 ks e suscepily
a field very close to that required to produce the bulk Spm'ropy D=0.3. The spikes are smaller than in Fig. 12 due to a
flop transition. At still higher fields the entire chain can bedecréase i.n.anisotropy and some of the surface spin-flop
thought of as being in the bulk spin-flop phase, with alOpro'peaks have disappearea which is what one would expect in
priate (reconstructed surface configurations corresponding view of the critical oint,s along thé2n):[2n+2) phase

to this phase. Sufficiently large values lafwill eventually P 9 ' P

force all of the spins into the ferromagnetic configurationboundaries noted in Sec. I”‘. .
0.-0 A recent study by Papanicoldbof the dynamics of a
|_ .

The scenario just described is basically consistent WithmOdeI similar to Eq(1), but with three-dimensiondtlassi-
revious numericJaI studies. including two thyat have appeare al) spins, shows evidence for metastability and hysteresis as
P ' 9 bp e magnetic fieldH is varied, as one would expect for a

. '9 . .
gﬁg\?vsretﬁinrtrg naer][;jc Zﬂ;gzvr:igilﬁmecha/l 0\"\/_'0:\5'(' tﬁguri;:'%é_lz first-order SSF transition. Additional hysteresis is seen as the
g pubility= ! 9 field is increased beyond the SSF transition, consistent with

tization, for a chain of. =22 spins wherb =0.5. The spikes additional first-order transitions of the sort discussed above.

appearing in Fig. 12 shpqld be_ Dirac delta functlons_. .He.reSmaII differences in detail between these results and ours can
they appear to have a finite height because of the finite in-

cremental ste@H chosen for the numerical calculation. The probably be explained in terms of hysteresis effects, or pos-

. oo . e sibly as due to the fact that the models are not identical. A
first spike in Fig. 12for H~0.9) signals the transition from numerical study of Eq(1) by Trallori® using an area-

preserving map, is also in very good agreement with all of
i our results, except that certain transitions which we would
L=22; D=05 | expect to be first order as the discommensuration moves to
L - the center of the chain and broadens are found to be continu-
0.0 - ous wherD is very small. But this difference is probably not

- ] important, since the discontinuities will in any case be very
small whenD is small, and could be absent becalsés
finite.

0.08 ————— T

0.04 - _

x(arb. units)

1 V. ANALYTICAL RESULTS

0.02 - In this last section we give a detailed derivation of the
L . analytical results presented earlier in the paper. As already
L . noted, analytical solutions to the problem of minimizing the
7 T ] energy are, in general, only available when the spins are in
1.2 1.4 1.6 Ising position,6=0 or 7. However, when deviations from
H these values are small, systematic approximations are pos-
FIG. 12. Plot of the susceptibilit{in arbitrary units for a chain ~ sible. Throughout this section we shall ug to indicate
of 22 spins forD=0.5. Ising or “locked” spin values,f; for the actual canted val-

PR |
0 0.8

—_
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'Tl&l\\\ffifli"' \/ﬂlflT

9, 9, 0,

FIG. 14. Schematic representation of the canted discommensu- FIG. 15. Schematic representation of the surface phajse
ration phase 2).

The only set of valuesH,D) for which Egs.(16) can be
ues, andg;= 6, — 6° for the deviations of the latter from the Simultaneously satisfied under the constraint that the modu-
locked values. lus of s; ands, cannot exceed {so that the spin deviations

To obtain an analytic expression for a second-ordefl€cay to zero infinitely far from the discommensuration
boundary separating locked and canted versions of a spi#Pre has to satisfy the relation
configuration, we start by expanding E§) to first order in

-1_
the spin deviations, assuming that they are small, (D+H=1)""=5/3+D—H, (18)
which is the same as Ed@6). Equation(18) identifies the
cog 60— 6°_ ) (6,—6,_1)+ cog 6°, ,— 6°)(6;— 6;, 1) locus of points where the spin deviations for phagg be-
come vanishingly small, which is the second-order boundary

=[H cog 6) +DJ6;, 14 AF':(2).

The same method can be used to find the second-order
boundaryOP between Ak and AR in Fig. 6 or 7. In thg 0)
phase close to the border, with the spins labeled as in Fig. 15,
deviations from the corresponding Ising configuration, Eq.
(10), will be small, and the solution to Eq14) takes the
form

and then solving these equations self-consistently.

We first apply this strategy to find the boundary separat
ing phases AFand(2), Fig. 2, using the labels for sites in
the flopped discommensuratid®) given in Fig. 14. Equa-
tions (14) can be written as recursion relations, in terms of
ratiosx; = 6, /6,_, of successive spin deviations, in the form
4 ) Xpj =8, for j=1,
Xpj +Xgj+1=2+D+H forj<—1,

. _ Xgj+1=81 forj=1,
Xoj11tXoj+2=2+D—Hforjs=—1,
x;=1-H-D,
Xo'—x;=D+H,
—X;*+s,=H+D, (19

_y1 —
X T Hxe=D+H, using the same notation introduced previously, vathand

s, again defined by Eq17). These equations yield an addi-

1l — = : :
Xoj tXpj41=2+D—Hforj=1, tional relation fors,,

Xaih 1t Xy 42=2+D+Hforj=1, (15 s,=H+D+[1-H-D] 1 (20)
with a solution which can be satisfied together with E@.7) only on the
) locus of points” defined by Eq(12).
Xp=8; for j=1, A similar analysis assuming small deviations from Ising

s fori= values for the state2) shows that the poirf® on I, Fig. 7,
Xgj+1=Sy forj=1, occurs at the intersection of the curve

Xgt—x;=D+H, 1+D+H=(1+D-H) 1, (21

—x1’1+x2= D+H, with the boundary18), so thatP falls atH=4/3, D=2/3, in
good agreement with our numerical resulis=1.333, D
=0.6666. Likewise, one can show that the othzn) states
for n>1 meet the AFE region atP, which is a sort of mul-
ticritical point for the surface phase diagram.
A somewhat different approach yields an equation for the
obtained using techniques of continued fractions. Hgre boundary between the Afand AF, regions, that is, the left

Xgj+2=S; forj<—1,

Xpj4+1=S1 "forj<-—1, (16)

ands, are given by edge of the AR region in Figs. 6 and 7. As this corresponds
to an accumulation of surface spin-flop staf@n) as n
$,=2[2+D—H][(2+D+H)(2+D—H)+t] %, —o0, the distance from the surface of the chain to the core of
the dislocation will become arbitrarily large, so that the spin
s,=(1/2)[2+D+H+t/(2+D—H)], angles in the discommensuration are essentially independent
of distance from the surfadé?* as confirmed by our nu-
t:=\(2+D+H)?(2+D—H)>—4(2+D+H)(2+D—H). merical calculations. Hence, by a route analogous to that

a7 described in Refs. 19,24, it is possible to evaluate the energy
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difference between two neighboring phasés:,=E,, over which the SSF phase is stable when the anisotibjsy
—E[2n+2), by iterating the equilibrium equatior(§) on ei-  small, are no doubt the reasons the two have not been dis-
ther side of the discommensuration. tinguished in previous studies. Nonetheless, they are quite
Using the fact that the spin deviations at the surface areifferent phenomena, and distinguishing them is essential for
becoming vanishingly small, one obtains, to leading order ag proper understanding of phase transitions associated with
largen, surfaces, both in semi-infinite and finite systems.
Our results for the discommensuration and surface phase
1. - 1. - . . . o .
AE~ = (6,—60)%+ = (6,— ;)2 diagrams lead to very definite and detailed predictions, dis-
2 2 cussed in Sec. IV, for the complicated sequence of phase
1 . 1 . transitions occurring in a system with an even number of
+ ED(0§+ 62)— EH(G%— 62, (22)  layers(sping asH increases at fixed. They are in good
agreement with various numerical studies, including our
where thé@;’s are the spin deviations of pha@n+2). The ~ OWN, if allowance is' made for the unpertainties jr_1herent in
expression forAE, can be simplified by using Eq14) to numerical work of this sort, and this gives us additional con-

~ ~ ~ . . fidence in the validity of our analysis. To the extent that this
expressf; and o, in terms offly, noting that when=0, the model antiferromagnet correctly describes Fe/Cr superlat-

0 0 7 :
term cos@;—6;_,)(6— 6,) must be omitted from Eq14),  tices, we can also claim to have achieved a basic understand-
because =0 represents the left edge of the finite chain, Ed.ing of the processes giving rise to the phase transitions ob-

(7). Substituting served experimentally in the latter.
~ ~ That does not, of course, mean that our model is adequate
01~(1+D+H)6bo, for understanding SSF phases and other surface phase tran-
- - sitions in more traditional antiferromagnets, such as MnF
0,~[2+D—H—(1+D+H) 16y, (23)  However, as noted in Sec. I, minimizing the energy of a
into Eq. (22) gives one-dimensional moo!el is t_he analog of minimizing the free
energy of a three-dimensional layered system, whenever
1 -, ~s each layer can be described, using mean-field theory or in a
AE,=5 W6+ O(6), purely phenomenological way, by means of a total magneti-
zation serving as a sort of order parameter. To be sure, the
W:=2D +7D2+5D3+ D*+ (2D + D?)H parameters which enter the Hamiltonian for the one-
dimensional chain may not be those appropriate for three-
—(1+5D+2D?)H?~H3+H" (24  dimensional system. But one can still expect qualitative simi-

Note that this expression holds for all valuesiogs long as larities in the_phase diagrams, even if certain quantitative
~ . _ . o aspects are different.
6o is small, that is, the discommensuration is very far from | that connection, it is appropriate to ask whether certain
the surface. But this means that an accumulation of stat§gayres of the discommensuration and surface phase dia-
[2n) asn tends to infinity must lie on a locus whe¥éin Eq.  5rams of the one-dimensional model depend in a sensitive
(24) vanishes, because in region j\lﬁe.dls.co.mmensuratl'on way upon the particular form of the Hamiltoniga). For
is attracted by the surfaceM>0), while it is repelled in  axample, it contains no spin coupling beyond nearest neigh-
AF4(W<0). The relevant root of this equation takes thepors, whereas it would be physically more realistic to as-
simple form sume, at the very least, some sort of exchange coupling of
further neighbors, decreasing rapidly with distance. Would
D=V1+H*-1, (29 introducing such interactions lead to significant changes in
in agreement with Ref. 6, and with our numerical calcula-the phase diagram? Could they, for example, make the SSF
tions. phase disappear entirely at low values of the anisotropy?
This is one of many questions which cannot be answered
VI. CONCLUSIONS definitivelly.in advance of approprigte calculations. 1t is
worth pointing out that our physical picture of the SSF phase
Our work shows that the structure of surface spin-flopas due to a discommensuration finding its minimum energy
(SSPH states and their relationship to the behavior of finiteat a finite distance from the surface does not seem to depend
systems is significantly more complex than anticipated inon the absence of further-neighbor excharige possibly
previous work. In particular, the genuine SSF phase for ather types of interaction, so we can well imagine that the
semi-infinite system, which we identify with region Al phenomenon persists with a more realistic Hamiltonian.
our surface phase diagram, Figs. 6 and 7, has previousMonetheless, this is one respect in which our work remains
been confused with what we call the “discommensuration” incomplete. While our numerical results, especially the ap-
phase, region AF, in which theB-type surface has, strictly parent existence of a nonzero limit f65 asD goes to zero,
speaking, completely disappeared through a restructuring iRig. 9, support our description in terms of a discommensu-
which a discommensuration has moved infinitely far awayration, an appropriate analytic calculation in the limit of
from the surface into the bulk. The fact that both the SSF andmall D, of the sort which mightamong other thingsgive
the discommensuration phase occur at a magnetic Feld the value of this limiting angle, has not been carried out.
significantly below that required to produce a bulk spin-flopSuch a study would probably provide insight into whether
transition, together with the extremely small interval ldf  weak further-neighbor interactions simply change the quan-
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titative values of various parameters, or lead to a qualitations of the proper kind might result in the infinite-chain
tively different result, such as the absence of the A#gion  discommensurations undergoing their broadening transitions
whenD is sufficiently small. at significantly smaller values of the magnetic fiéld This

It seems unlikely that weak further-neighbor interactionscould lead to a complicated surface phase diagram in which
would remove the first-order transitions between the surfacthe minimum energy discommensurations broaden while
phaseg2n) and[2n+2), or change the fact that these tran- they are still a finite distance from the surface. How this
sitions terminate in critical points a® decreases. On the might effect thg 2n) to[2n+ 2) transitions and their critical
other hand, such a modification of the Hamiltonian wouldpoints is hard to guess in advance of actually doing a calcu-
surely remove the degeneracy of the surface states in the ARation.
region of Figs. 6 and 7. Thus, one would not be surprised to Hence, there is much which remains to be understood
find significant modifications in the phase diagram near thebout surface spin-flop transitions in antiferromagnets.
multicritical point P. Indeed,P which might well disappear, Nonetheless, we believe that the calculations, numerical and
to be replaced by some other, more complicated, structuranalytical, presented in this paper have served to sort out
allowing the different[2n) phases to disappear &b in-  some important physical effects, and in this sense our results
creases. Also, sufficiently strong further-neighbor interacprovide a solid foundation for future work.
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