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Surface spin-flop and discommensuration transitions in antiferromagnets
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Phase diagrams as a function of anisotropyD and magnetic fieldH are obtained for discommensurations and
surface states for an antiferromagnet in whichH is parallel to the easy axis, by modeling it using the ground
states of a one-dimensional chain of classicalXY spins. A surface spin-flop phase exists for allD, but the
interval in H over which it is stable becomes extremely small asD goes to zero. First-order transitions,
separating different surface states and ending in critical points, exist inside the surface spin-flop region. They
accumulate at a fieldH8 ~depending onD) significantly less than the valueHSF for a bulk spin-flop transition.
For H8,H,HSF there is no surface spin-flop phase in the strict sense; instead, the surface restructures by, in
effect, producing a discommensuration infinitely far away in the bulk. The results are used to explain in detail
the phase transitions occurring in systems consisting of a finite, even number of layers.
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I. INTRODUCTION

It has been known for a long time that if an antiferroma
net with suitable anisotropy is placed in an external magn
field H parallel to the easy axis~the axis along which the
spins are aligned, in opposite directions on different sub
tices, in zero magnetic field! and the field strength is in
creased, a first-order transition will occur1 in which the spins
are realigned in directions~approximately! perpendicular to
the applied field, but with a component along the field dire
tion. The transition to thisspin-flopphase occurs whenH is
equal to a spin-flop fieldHSF, whose value depends on th
exchange energy and the anisotropy. AsH continues to in-
crease beyondHSF, the spins on the two sublattices rota
towards the field direction till eventually, if the field is su
ficiently large, they are parallel to each other in a ferrom
net structure.

In 1968 Mills2 proposed that in an antiferromagnet with
free surface, spins near the surface could rotate into a flop
state at a fieldHSF8 significantly less thanHSF. This surface
spin-flop ~SSF! problem was later studied by Keffer an
Chow,3 who found a transition atHSF8 , but to a state having
a character rather different than that proposed by Mills.
terest in this problem was recently rekindled through exp
mental work on layered structures consisting of Fe/Cr~211!
superlattices.4,5 If the thickness of the Cr layers is chose
appropriately, adjacent Fe blocks are coupled antiferrom
netically, and thus in zero magnetic field they exhibit
antiferromagnetic structure in which the magnetization
each layer is opposite to that of the adjoining layers. App
ing an external magnetic field parallel to the layers can g
rise to phase transitions in which the magnetization in cer
layers rotates or reverses its direction, and the results fo
PRB 590163-1829/99/59~9!/6239~11!/$15.00
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experimentally depend upon whether the number of Fe
ers is even or odd. The experimental work has motivate
number of theoretical and numerical studies of finite a
semi-infinite systems.4–9 Most of these have found evidenc
for the existence of SSF states.

In the present paper we address the issue of the exist
of SSF phases and some related topics by studying the p
erties of the ground states of chains of antiferromagnetic
coupled classicalXY spins, each spin variable represented
an angleu between 0 and 2p, subject to a uniaxial anisot
ropy D as well as to an external magnetic fieldH, as a func-
tion of D andH. One can think ofu as the direction of the
magnetization in an Fe layer in a superlattice, or of the
erage magnetization in a layer of an antiferromagnet cont
ing spins belonging to one type of sublattice. Minimizing t
energy of a one-dimensional model then corresponds
minimizing the free energy of a three-dimensional layer
system, provided fluctuations inside the layers do not hav
drastic effect. This means that the model we consider her
in its essentials, equivalent to those used in previous stud
It allows us to come to some fairly definite conclusions ab
SSF phases in semi-infinite systems, and about the beha
of systems containing a finite number of layers. Our prin
pal conclusions were published previously in a short repor10

the present paper contains the complete argument, and
plies a number of additional details.

In order to understand the properties of finite and se
infinite chains, it is helpful to begin with an infinite chai
and a defect structure known as a ‘‘discommensuration’’~or
‘‘soliton’’ or ‘‘kink’’ !, which can occur in both the antifer
romagnetic and the spin-flop phases. In Sec. II we work
the properties of the discommensurations of minimum
ergy in the antiferromagnetic ground state of theXY chain.
6239 ©1999 The American Physical Society
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6240 PRB 59C. MICHELETTI, R. B. GRIFFITHS, AND J. M. YEOMANS
Using these results, we obtain, in Sec. III, a phase diag
for surface phase transitions in a semi-infinite chain. B
discommensurations and surface phase transitions are e
tial for understanding the properties of finite chains. The
are discussed in Sec. IV, where we provide a comprehen
and detailed explanation of the complicated series of tra
tions found in chains containing an even number of spin

The numerical procedures we used to study the phase
gram are described in Secs. II and III, and a certain num
of analytic results are derived in Sec. V. The concluding S
VI provides a summary, and notes some topics which s
need to be studied.

II. INFINITE CHAIN

We consider an infinite chain of classicalXY spins de-
scribed by the Hamiltonian

H5 (
i 52`

` H cos~u i2u i 11!2H cosu i1
D

4
@12 cos~2u i !#J ,

~1!

where the antiferromagnetic exchange coefficient has b
taken as the unit of energy,u i is the angle between the d
rection of thei th spin and the external magnetic fieldH, and
D is a twofold spin anisotropy. Our aim is to identify th
zero-temperature phases of this system, that is, those w
minimize the energy. Minimizing the energy of a on
dimensional system corresponds to minimizing the free
ergy of a layered three-dimensional system when the fluc
tions within each individual layer are not playing a
important role, as is the case for the Fe/Cr superlattices m
tioned in Sec. I.

The phase diagram of the system consists of three s
rate regions, as shown in Fig. 1. ForD.2, the lineH52
separates the ferromagnetic~F! configuration, with all the

FIG. 1. Phase diagram for an infinite chain. The AF, F, and
regions are occupied by the antiferromagnetic, ferromagnetic,
spin-flop phases respectively.
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spins parallel to the field, from the antiferromagnetic~AF!
one with the spins alternating between 0 andp, parallel and
antiparallel to the field. Along the AF:F boundary the grou
state is infinitely degenerate since it is possible to flip a
number of nonadjacent spins in the F chain with no cha
in energy.

For D,2 and intermediate values ofH, the ground state
no longer corresponds to spins in the Ising positions,u i equal
0 or p, but is a spin-flop~SF! phase in which the spins
alternate between1f and2f, where

cosf5H/~42D !. ~2!

The spin-flop region extends between the boundariesH
5AD(42D) and H542D which are first and second or
der, respectively.11

We now consider the case when an infinite chain is c
strained by suitable boundary conditions to include a d
commensuration~for detailed studies of discommensuratio
in Frenkel-Kontorova models see, for example, Refs. 1
15!. The study of the discommensuration phase diagram
important because it helps us to understand the minimal
ergy configurations observed both in semi-infinite and fin
systems. A discommensuration is a defect which can aris
a periodic phase whose period is two or greater. In particu
the AF ground state has period two and is degenerate:
one ground stateu i50 for i even andp for i odd; for the
other,u i5p for i even and 0 fori odd. A discommensura
tion results if one requires that a single configuration$u i%
approaches one of these ground states asi tends to2` and
the other asi tends to1`; for instance,

u2n→0, u2n11→p asn→1`,

u2n→p, u2n11→0 asn→2`. ~3!

The defect energy of a discommensuration is the diff
ence between the energy of the configuration containing
discommensuration and the energy of the correspond
ground state. Since both of these energies are infinite fo
infinite chain, a proper definition requires some care; s
e.g., Ref. 16. We are interested in discommensurati
which, for a givenD and H, minimize this energy; they
constitute what we call the discommensuration phase
gram. It is convenient to start by considering the limitin
caseD5`, where the spins are constrained to lie along
Ising positions. For 0,H,2 the discommensuration o
minimum energy is a configuration in which two success
spins someplace in the middle of the chain are parallel to
field H:

. . . ,0,p,0,p,0,0,p,0,p, . . . . ~4!

In the following we will use the notation AF8 to label this
phase. WhenH52, due to the absence of further-tha
nearest-neighbor interactions, there is not a uniq
minimum-energy discommensuration associated with the
phase. One can have any arbitrary even number of s
aligned with the field, not just two, as in Eq.~4!, and other,
more complicated defects are possible. The ferromagn
ground state forH>2 has period one and is nondegenera
so there are no discommensurations.
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As the spin anisotropyD decreases from infinity, lowe
energies may occur if in a discommensuration the spins
not limited to the Ising values 0 andp. For these cases it i
difficult to find an explicit analytic form for the minimum
energy discommensuration, and one has to use nume
techniques to tackle the problem. The numerical proced
that we have adopted relies on the method of effec
potentials,17,18 which is very efficient for obtaining the
ground state of models with short-range interactions and
cretized variables. The main advantage of this method is
it yields the true ground state, rather than some metast
one. The main disadvantage for our problem is that it
quires the spin variables to be discretized: they can take
only a finite number of values. We generally used a discr
zation grid in which eachu i is an integer times 2p/1400. To
overcome the effects of the discretization we first fixed
anisotropy at some intermediate value, typicallyD'0.6,
then used the Chou-Griffiths algorithm17 to identify minimal
energy states of different phases for the system of discret
spins, and, finally, employed the equilibrium equations,

]H
] u i

50, ~5!

for continuous spins in order to refine the configurations
tained using discretized spins. The phase boundaries loc
by comparing the energies of neighboring phases, calcul
using the refined configurations, were then followed as
value ofD was changed in small steps, while the spin co
figurations were updated using Eq.~5!. The location of the
phase boundaries was then checked against those obt
starting with finer discretization grids. We established th
using a discretization of 2p/1400, the error in the location o
the boundary,DH, was in the range of 1028–1029 through-
out the range ofD values we studied. The procedure ju
described was used to find minimum energy configurati
of a ring of spins~periodic boundary conditions! of lengthL
with L odd, so as to produce a configuration containing
discommensuration. WhenL is large~we usedL<31) com-
pared to the size of the discommensuration, this is practic
the same as studying the minimal energy discommensura
in an infinite chain.

The numerical results are summarized in the discomm
suration phase diagram in Fig. 2. There are, of course
discommensurations in the F phase. As for the SF phase
numerical results showed a smooth variation of spin ang
with D andH, and consequently no phase transitions. Ho
ever, various phase transitions were identified for AF ph
discommensurations. In the AF8 region, Fig. 2, the spins in
the minimum energy discommensuration stay locked in th
D5` positions. The persistence of this Ising spin locki
for finite values of the anisotropy is a rather common feat
in models with twofold spin anisotropy.19–21 Here it has the
consequence that the multiphase degeneracy encounter
the point (H52, D5`) persists throughout the locus (D
>2, H52).

For values ofD lying below the lower boundary of AF8,
but still inside the AF region in Fig. 2, ‘‘flopped’’ discom
mensurations of different length have lower energies than
Ising discommensuration~4!. A flopped discommensuratio
of type ^2m& consists of a ‘‘core’’ of 2m spins in which the
re
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spin configuration resembles that in a bulk spin-flop pha
located between ‘‘tails,’’ each of which rapidly reverts to th
configuration of the corresponding AF phase with increas
distance from the core~see Fig. 3!. One can think of the
region where the core changes into the tail as an ‘‘interfac
between the AF phase out in the tail and the SF phase in
core. From this perspective, the discommensuration con
of a pair of interfaces, AF-SF and SF-AF, bounding the
core. AsD decreases, these interfaces broaden, making
distinction between the ‘‘tails’’ and the ‘‘core’’ less clea
but we continue to use the same label^2m& for the discom-
mensuration which evolves continuously from the one wit
clearly-defined core of size 2m at largerD.

An analytic calculation, see Sec. V, shows that the eq
tion for the second-order transition between AF8 and ^2& in
Fig. 2 is

~D1H21!2155/31D2H, ~6!

in good agreement with our numerical calculations, a
those in Ref. 22 whenH50. At low values ofH, the dis-
commensuration̂ 2& has the lowest energy, but upon a
proaching the bulk AF:SF phase boundary, one finds a
quence of phase transitions to^4&,^6&, . . . asH increases,

FIG. 2. Discommensuration phase diagram for an infinite cha
The dashed phase boundaries correspond to phase transitions
discommensuration-free chain, the solid lines in Fig. 1.

FIG. 3. Schematic representation of phase^4& for moderate val-
ues of the spin anisotropy. The phase can be regarded as res
from merging a portion of the spin-flop phase~SF! with two semi-
infinite antiferromagnetic chains~AF!. The spins nearest the AF-S
and SF-AF interfaces are expected to relax from their ideal AF
SF angles.
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6242 PRB 59C. MICHELETTI, R. B. GRIFFITHS, AND J. M. YEOMANS
as shown in Fig. 2. Our numerical procedures found val
of 2m up to 14, and we were able to trace the first-order lin
separating the different̂2m& phases down to a value ofD
between 0.1 and 0.4. For smaller values ofD, the difference
D of the energy derivatives]E/]H in two neighboring
phases was no longer sufficient to allow us to distinguish
phases numerically and locate the phase boundary. Se
example in Fig. 4. However, we found no evidence that th
lines terminate in critical points. The smooth decrease oD
shown in the inset of Fig. 4 contrasts with what one mig
expect at a critical point~as in Fig. 8!. Therefore, it seems
plausible to assume that the^2m&:^2m12& boundaries per-
sist all the way down toD50.

The sequence of transitions associated with a broade
of the discommensuration can be understood in the follow
way. The defect energy of a discommensuration can
thought of as the sum of the energy required to produc
pair of AF-SF and SF-AF interfaces infinitely far apart,
interaction energy between the interfaces which we ass
is positive and rises rapidly as they approach each other,
a ‘‘bulk’’ contribution proportional to the size of the core
arising from the fact that in the AF part of the phase diagra
the SF phase is metastable. In terms of which discomme
ration has the lowest energy, the interface repulsion ob
ously favors a large core, and the metastable ‘‘penalty
small core. The actual size will represent some comprom
between the two. Upon approaching the AF:SF bound
the metastable penalty goes to zero, so the discommen
tion of minimum energy should become larger and larg
Hence, one expects thê2m&:^2m12& boundary to ap-
proach the AF:SF transition line asm→`. This is consistent
with our numerical calculations, and in agreement with
predictions of Papanicolaou.22 ~Note, however, that thes
transitions reflect the discrete nature of the spin chain
therefore are absent in the continuum approximation e

FIG. 4. Plot of the derivative of the energy with respect to fie
in the two neighboring phases,^2&,^4& along their common bound
ary, for a ring of 17 spins. The inset shows the differenceD of the
two derivatives.
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ployed in Ref. 22 for small spin anisotropy.! The triple
points at which the phases AF8,^2m& and ^2m12& meet
tend to an accumulation point,Q, located atH'1.58, D
'0.78. This should be the point at which the energy to cre
a pair of AF-SF and SF-AF interfaces infinitely far apart
equal to the energy of an Ising discommensuration.

III. SEMI-INFINITE CHAINS

We now consider the surface states of a semi-infin
chain. The Hamiltonian for the system is the same as Eq.~1!
but with the sum extending only over non-negative values
i ( i 50 denotes the surface site!:

H5(
i 50

` H cos~u i2u i 11!2H cosu i1
D

4
@12 cos~2u i !#J .

~7!

It is useful to think of semiinfinite chains as obtained
cutting an infinite chain in two. Removing a bond in th
infinite chain without allowing the spins to move will giv
two semi-infinite chains that we shall term unreconstruct
If the spins of the unreconstructed chains are then allowe
relax, a rearrangement of the spins near the surface may
place, as illustrated in Fig. 5, which lowers the energy. N
tice that even though the total energy of the semi-infin
chain is infinite,changesin the energy when a configuratio
is modified near the surface~or in a way such that the modi
fications decrease sufficiently rapidly with increasing d
tance from the surface! are well defined. We want to con
sider surface states which minimize the energy in the se
that no local modifications of the configuration near the s
face can decrease the energy.

The task of finding the reconstructed surface of minimu
energy is, in general, not simple~except when all the spins in
the chain are subject to the Ising locking!. To identify the
minimal energy surface states we used numerical algorith
based on effective potential methods that, as mentioned
lier, require a discretization of the spin variables at each s
It is important to notice that, since theu i ’s are constrained to
take on only discrete values, after a finite distance, or ‘‘p
etration depth’’l from the surface the spins will beexactlyin
the discretized positions corresponding to a doubly infin
chain or an unreconstructed surface. Configurations for
infinite chain were obtained using the Floria-Griffith
algorithm23 which, within the limits of the discretization
yields the exact ground state. Next, the Chou-Griffit
algorithm17 with its successive iterations was used to gen
ate reconstructed surface configurations$u0 ,u1 , . . . ,u l%.

FIG. 5. Cutting an infinite chain in two~a! while keeping the
spins ‘‘frozen’’ results in two semi-infinite chains with unrecon
structed surfaces~b!. Allowing the spins to relax to positions which
minimize the energy typically results in reconstruction of the s
face ~c!, a rearrangement of the spins nearest the surface.
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PRB 59 6243SURFACE SPIN-FLOP AND DISCOMMENSURATION . . .
This should give the exact configuration minimizing the s
face energy for the discrete spins. However, in practice
had to limit l to a maximum valuel max no larger than 50;
thus the method could not yield the correct configuration
a larger penetration depth. The phase boundaries were
identified as explained in the previous section.

The resulting phase diagram is shown in Fig. 6. Throu
out the F region the minimum energy surface states are
ply the unreconstructed surfaces; it is easy to see that ma
any changes will increase the energy. In the SF region, s
the ground state of the infinite chain has period two, there
two unreconstructed surfaces. Each of them undergoes
construction in which the spins nearest the surface tilt
wards the magnetic-field direction, as in Fig. 5~c!. However,
this change in spin direction occurs continuously as a fu
tion of H and D, and so no surface phase transitions
observed inside the SF region.

Next consider the AF part of the phase diagram. Ag
there exist two possible surface states,A andB, whose unre-
constructed versions,Au andBu , have surface spins paralle
(u050) or opposite (u05p) to the field direction:

Au5$0,p,0,p,0,p, . . . %, ~8!

Bu5$p,0,p,0,p,0, . . .%. ~9!

A surface will be said to be of typeA ~B! if the spin con-
figuration tends to that ofAu(Bu) far from the surface.

Throughout the AF region of the phase diagram, the m
mum energy surface of typeA is the unreconstructedAu .
However, theB-type surface shows a number of differe
structures in different parts of the AF region, as indicated
Figs. 6 and 7. In region AF1 the unreconstructed surfaceBu
has the lowest energy. In region AF2 , which meets AF1
along a lineH51 for D larger than the value atO, it is
energetically favorable to flip the surface spin so that
points along the field direction, and there is a set of deg
erate~equal minimum energy! reconstructed surfaces

@0&50,0,p,0,p,0,p . . . , @2&50,p,0,0,p,0,p . . . ,
~10!

FIG. 6. Phase diagram for a semi-infinite chain with aB-type
surface. More details of the AF3 region are visible in Fig. 7.
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and so forth, where@2n& consists of 2n spins 0,p, . . . in an
antiferromagnetic arrangement, followed by two spins pa
lel to the field, and then the bulk antiferromagnetic pha
One can think of this reconstructed surface as an Ising
commensuration, whose core consists of two adjacent s
with u i50, located a distance 2n from the surface. Becaus
the ‘‘tails’’ of this discommensuration have zero length,
does not interact with the surface, and its energy is indep
dent of its distance from the surface. While this degener
persists throughout the AF2 region, along the lineD>2,H
52 the degeneracy is even greater: the set of minimum
ergy surface states includes cases where the number of
secutive spins pointing along the field is not limited to 2 b
can attain any even number, e.g.,$0,0,0,0,p,0,p . . . % or
$0,p,0,p,0,0,0,0,0,0,p,0,p . . . %. Incidentally, we note that
these degeneracies are somewhat artificial in that they w
be lifted by introducing weak longer-range interactions in t
Hamiltonian~7!.

In the AF3 region of Fig. 6 theB-type surface again re
constructs, but the spin anisotropy is sufficiently low that t
spins unlock from the Ising angles. As in the AF2 region, one
can think of the surface state as consisting of a discomm
suration located a finite distance from the surface, but n
this discommensuration is of the flopped type with a core
length of 2, and tails extending out on either side of the co
We again employ the notation@2n& for the surface state with
2n spins to the left of the core, that is, in the tail extending
the surface. Because of this tail, the discommensuration
teracts with the surface, and the minimum surface ene
occurs for a specific value of 2n, depending uponD andH.
Thus, in AF3 , one finds genuine spin-flop surface states.
H increases, the discommensuration moves further from
surface. It does this, at least whenD is large, discontinuously
in steps of 2, via a series of first-order phase transitio
some of which are shown in Fig. 7, where they extend le
wards from the pointP. For smaller values ofD, the edges of
the core are not as well defined, and it is more difficult
associate the@2n&→@2n12& transitions with a discontinu-
ous jump of the discommensuration. Numerically we ha
seen states with 2n up to 14, and our results are consiste

FIG. 7. Detail of the phase diagram for a semi-infinite cha
with a B-type surface.
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6244 PRB 59C. MICHELETTI, R. B. GRIFFITHS, AND J. M. YEOMANS
with n tending to infinity at the right side of the AF3 region,
which our analytic calculations~Sec. V!, in agreement with
Ref. 6, show to be the line

D5A11H221. ~11!

The upper boundary of the AF3 region extending fromO to
P is a continuous~second-order! transition. One can think o
it as the limit of stability of the Ising surface phase@0& asD
decreases inside AF2 . An analytic calculation, Sec. V, show
that the implicit equation for the boundary is

~21D2H21/a!21521D1H2a,

aªH1D11/~12H2D !. ~12!

Thus the pointP, where all the phases@2n& come together,
lies at H54/3, D52/3, the intersection of Eqs.~11! and
~12!. Both Eqs.~11! and ~12! agree with our numerical re
sults.

We find that the first-order lines extending downwar
and leftwards fromP in Fig. 7, separating phases@2n& from
@2n12&, end in critical points asD decreases. This is clearl
visible in the example in Fig. 8, which shows the typic
behavior of the energy derivatives of two neighboring pha
along their coexistence line. Near a critical pointD5Dc one
expectsD to vary asAD2Dc, in qualitative agreement with
what we observed. The larger the value ofn, the further the
first-order line extends towards the origin of theH,D plane,
but presumably for any finite value ofn the difference be-
tween the phases@2n& and@2n12& eventually disappears a
some finite value ofD. Because this value decreases w
increasingn, it is plausible that the corresponding critic
points accumulate at the origin.

As is evident in Fig. 6, the region AF3 becomes extremely
narrow asD decreases. The left boundary approaches a

FIG. 8. Plot of the derivative of the energy with respect to fie
in the two neighboring phases@0& and @2& along their common
boundary, using 50 spins in the surface layer. The inset shows
differenceD of the two derivatives.
l
s

a-

rabolaD50.5H2 to within numerical precision, which is as
ymptotically the same as Eq.~11!. We nonetheless believ
that the width of AF3 remains finite as long asD.0. Nu-
merical evidence for this is shown in Fig. 9 where the va
of the surface spin,u0 , at the left edge of the AF3 region
~that is forH just large enough to produce the surface sp
flop phase! is plotted as a function ofD. The results are for
l max534 spins in the surface layer~see the description of the
numerical approach given above!. BelowD50.05 the results
become unreliable becausel max is too small, as we can tel
by carrying out calculations for different values ofl max.
However, extrapolating from larger values ofD indicates
that asD goes to zero,u0 tends to a value nearp/3 or 60°,
showing that even for very smallD the discommensuration
at the threshold field is still a finite distance from the surfa
This situation is quite distinct from that in region AF1 ,
whereu05p, and in AF4 , discussed below, whereu050.

Between AF3 and the AF:SF bulk phase boundary lie
region AF4 , see Figs. 6 and 7, in which the flopped disco
mensuration is repelled by the surface, so that its minim
energy location is in the bulk infinitely far away from th
surface, as noted in Ref. 6. Thus there is no minimum-ene
reconstructedB surface, or, properly speaking, a ‘‘surfac
spin-flop phase’’ in region AF4 . It seems better to identify
AF4 , thought of as part of theB-type surface phase diagram
as a ‘‘discommensuration phase,’’ since the minimum e
ergy surface will always be of theA-type, with the surface
spin u050.

In Fig. 10 the discommensuration phase diagram for
infinite chain~Fig. 2!, represented by dashed lines, is sup
imposed on theB-type surface diagram for the semi-infinit
chain, represented by solid lines, in the vicinity of pointsP
andQ, which are common to both diagrams, as is the brok
line ~shown dashed! from P to Q. Note that theOP line of
the surface diagram, Fig. 7, lies above the lower boundar
the AF’ region of the discommensuration phase diagram
Fig. 2. Thus to the left ofP, for H,4/3, asD decreases the
reconstructedB-type surface phase changes from Ising to
flopped form before the corresponding change is energ
cally favorable for the bulk discommensuration.

In addition, Fig. 10 shows that the part of theH,D plane
corresponding tô2m& in the discommensuration phase di
gram, Fig. 2, for 2m>4 lies entirely inside the AF4 region of

he

FIG. 9. Surface spinu0 along the left edge of the AF3 region as
a function of anisotropyD. The surface layer consisted of 34 spin
and the behavior of the curve at lowD ~dashed! is affected by
finite-size effects in the numerical calculations.
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Fig. 6 ~and 7! for the surface phase diagram. This is cons
tent with our observation that as long as the discommen
ration is a finite distance from the surface, in the AF3 region,
it is always of the type 2m52. Thus asH increases, it is only
after the discommensuration has moved infinitely far fro
the surface, and thus has no influence on the surface p
diagram, that its core begins to broaden.

In retrospect it seems likely that the broadening of
SSF transition mentioned in the abstract of Ref. 3 actu
refers to broadening of the bulk discommensuration whi
as noted above, occurs asH approaches the AF:SF bounda
inside region AF4 . It appears that no work prior to ours ha
correctly identified the stable SSF phase at small values oD,
characterized when it first appears with increasingH by a
surface spin with a value very near 60°~Fig. 9!. The narrow-
ness of the AF3 region for smallD may be why it was over-
looked.

IV. FINITE CHAIN

We now move on to consider the case of a chain of fin
length L. Since a surface reconstruction can occur at b
ends of the chain, and it is also possible for a discommen
ration to be present in the interior of the chain, we write
total energy in the form

EL5Le1Es
L1Es

R1Ed , ~13!

wheree is the bulk energy, the ground-state energy per s
for an infinite chain,Es

L andEs
R are the energies of the le

and right surfaces, respectively, andEd is the energy of a
discommensuration in the chain~if present!. Minimizing the
total energy for fixedL is equivalent to finding the spin con
figuration that minimizesEs

L1Es
R1Ed .

In writing Eq. ~13!, L was assumed to be sufficiently larg
that the interaction between the two ends of the chain,
between each end and the discommensuration, if present
be neglected. For any givenL this condition can always be
satisfied by choosing a large enough value for the spin
isotropy. Outside the range ofD for which Eq. ~13! holds,

FIG. 10. Discommensuration phase diagram~Fig. 2!, using
dashed lines, superimposed on the phase diagram for a semi-in
chain with aB-type surface~Fig. 7!, using solid lines, in the vicinity
of the pointP. The broken line connectingP with Q is part of both
phase diagrams.
-
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the behavior of the system will depend strongly on the act
length of the chain. Since we are not interested
L-dependent features of the phase diagram, apart f
whetherL is even or odd, we shall assume thatL is suffi-
ciently large to justify the use of Eq.~13!.

From the discussion presented in the previous sect
one can predict that a finite chain will not undergo any ph
transition for values ofD andH inside the SF and F regions
On the other hand, it can also be anticipated that the beha
of the chain in the AF region will be rather complicated. A
noted in Refs. 4,5,7, the behavior of the chain for values oD
and H in the AF region changes dramatically according
whether the length of the chain is even or odd.

If L is odd, both ends of the chain have to be of the sa
type,A or B, unless a discommensuration is present. Hav
two A-type surfaces gives a lower energy than twoB-type
surfaces, because the former results in a net magnetizatio
the direction of the field, and the latter a net magnetizat
opposite to the field. Similar considerations show th
throughout the AF region it is energetically unfavorable
insert a dislocation, thus producing oneA-type and one
B-type surface. Hence for oddL, the minimum energy cor-
responds to two~unreconstructed! A-type surfaces at eithe
end of the chain, and no discommensurations.

On the other hand, whenL is even, the two surfaces hav
to be of different types, unless a discommensuration
present. The analysis of Sec. II has shown that discomm
surations are not favored energetically outside region A4 .
Thus, forD andH falling in region AF1 or AF3 , one expects
one surface of typeA and the other of typeB. Moreover,
from the results of Sec. III, we expect that in region AF1 the
B surface remains unreconstructed, whereas surface spin
states should be observed in AF3 owing to the reconstruction
of the B-type end of the chain. TheA-type end of the chain
remains, of course, in its unreconstructed state. Next, in
gion AF4 the energy is minimized using twoA-type surfaces
and a discommensuration, which lies at the center of
finite chain because it is repelled by both surfaces. Finally
AF2 , because of the degeneracy due to the Ising spin lo
ing, one has either a reconstructedB-type surface or a dis-
commensuration, depending upon what one wants to ca
and anA-type surface at the other end of the chain.

Consequently, ifD is smaller than the value correspon
ing to pointP in Fig. 7, we expect a finite system with eve
L to undergo the following set of transitions with increasi
H. At H50, Fig. 11~a!, there are unreconstructed surfaces
typesA andB at opposite ends of the chain. WhenH reaches
the threshold for the formation of an SSF phase, theB-type
surface restructures discontinuously,~b! to form a type^2&
discommensuration which then, asH increases, moves to
wards the center of the chain in a series of discontinu
steps,~c! and ~d!, some of which may be continuous ifD is
smaller than the value for the corresponding critical poi
see Sec. III.

The discommensuration will reach the center of the cha
Fig. 11~d!, whenH is close to the threshold for the AF4 or
discommensuration region in Fig. 6. Further increases oH
will lead to a broadening of the discommensuration, w
^2m& going through the sequence^2&,^4&,^6&, . . . of Fig.
2; see Figs. 11~d! to 11~g!. While these transitions are likely
to be discontinuous for larger values ofD, it may be hard to

ite
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see the discontinuities whenD is small. The center of the
^2m& discommensuration in Fig. 11 does not fall at the p
cise center of the chain whenm is even; the offset is neede
so that the surface spins can both be~approximately! paral-
lel, rather than antiparallel, to the field direction.~For L
512 the offset occurs whenm is odd.!

The AF-SF and SF-AF interfaces on either side of
core move outwards as the discommensuration expands
eventually they reach the surfaces of the chain, Fig. 11~g!, at
a field very close to that required to produce the bulk sp
flop transition. At still higher fields the entire chain can
thought of as being in the bulk spin-flop phase, with app
priate ~reconstructed! surface configurations correspondin
to this phase. Sufficiently large values ofH will eventually
force all of the spins into the ferromagnetic configurati
u i50.

The scenario just described is basically consistent w
previous numerical studies, including two that have appea
quite recently,8,9 and our own numerical work. Thus Fig. 1
shows the magnetic susceptibilityx5]M /]H,M the magne-
tization, for a chain ofL522 spins whenD50.5. The spikes
appearing in Fig. 12 should be Dirac delta functions. H
they appear to have a finite height because of the finite
cremental stepdH chosen for the numerical calculation. Th
first spike in Fig. 12~for H'0.9) signals the transition from

FIG. 11. Schematic representation of the series of differ
phases encountered in a chain of 10 spins for increasing value
H.

FIG. 12. Plot of the susceptibility~in arbitrary units! for a chain
of 22 spins forD50.5.
-

e
nd

-

-

h
d

e
-

the AF1 region into the surface spin-flop AF2 , phase@0&.
The first series of spikes, forH between 0.9 and 1.13, i
associated with first-order spin-flop transitions, in agreem
with Refs. 7,9. ForH between 1.13 and 1.32, one observe
second series of transitions associated with the broadenin
the discommensuration. Figure 13 shows the susceptib
for the same length of chain (L522) with a smaller anisot-
ropy,D50.3. The spikes are smaller than in Fig. 12 due t
decrease in anisotropy, and some of the surface spin-
peaks have disappeared, which is what one would expec
view of the critical points along the@2n&:@2n12& phase
boundaries noted in Sec. III.

A recent study by Papanicolaou8 of the dynamics of a
model similar to Eq.~1!, but with three-dimensional~classi-
cal! spins, shows evidence for metastability and hysteresi
the magnetic fieldH is varied, as one would expect for
first-order SSF transition. Additional hysteresis is seen as
field is increased beyond the SSF transition, consistent w
additional first-order transitions of the sort discussed abo
Small differences in detail between these results and ours
probably be explained in terms of hysteresis effects, or p
sibly as due to the fact that the models are not identical
numerical study of Eq.~1! by Trallori,9 using an area-
preserving map, is also in very good agreement with all
our results, except that certain transitions which we wo
expect to be first order as the discommensuration move
the center of the chain and broadens are found to be con
ous whenD is very small. But this difference is probably no
important, since the discontinuities will in any case be ve
small whenD is small, and could be absent becauseL is
finite.

V. ANALYTICAL RESULTS

In this last section we give a detailed derivation of t
analytical results presented earlier in the paper. As alre
noted, analytical solutions to the problem of minimizing t
energy are, in general, only available when the spins ar
Ising position,u50 or p. However, when deviations from
these values are small, systematic approximations are
sible. Throughout this section we shall useu i

0 to indicate
Ising or ‘‘locked’’ spin values,u i for the actual canted val

t
of

FIG. 13. Plot of the susceptibility~in arbitrary units! for a chain
of 22 spins forD50.3.



e

de
sp

ra
n

o
m

du-
s
on

ary

rder

. 15,
q.

i-

ng

the

ds

of
in

dent

that
rgy

ns
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ues, andũ i[u i2u i
0 for the deviations of the latter from th

locked values.
To obtain an analytic expression for a second-or

boundary separating locked and canted versions of a
configuration, we start by expanding Eq.~5! to first order in
the spin deviations, assuming that they are small,

cos~u i
02u i 21

0 !~ ũ i2 ũ i 21!1 cos~u i 11
0 2u i

0!~ ũ i2 ũ i 11!

5@H cos~u i
0!1D#ũ i , ~14!

and then solving these equations self-consistently.
We first apply this strategy to find the boundary sepa

ing phases AF8 and ^2&, Fig. 2, using the labels for sites i
the flopped discommensuration^2& given in Fig. 14. Equa-
tions ~14! can be written as recursion relations, in terms
ratiosxi5 ũ i / ũ i 21 of successive spin deviations, in the for

x2 j
211x2 j 11521D1H for j <21,

x2 j 11
21 1x2 j 12521D2H for j <21,

x0
212x15D1H,

2x1
211x25D1H,

x2 j
211x2 j 11521D2H for j >1,

x2 j 11
21 1x2 j 12521D1H for j >1, ~15!

with a solution

x2 j5s2 for j >1,

x2 j 115s1 for j >1,

x0
212x15D1H,

2x1
211x25D1H,

x2 j 125s2
21 for j <21,

x2 j 115s1
21 for j <21, ~16!

obtained using techniques of continued fractions. Heres1
ands2 are given by

s152@21D2H#@~21D1H !~21D2H !1t#21,

s25~1/2!@21D1H1t/~21D2H !#,

tªA~21D1H !2~21D2H !224~21D1H !~21D2H !.
~17!

FIG. 14. Schematic representation of the canted discomme
ration phasê2&.
r
in

t-

f

The only set of values (H,D) for which Eqs.~16! can be
simultaneously satisfied under the constraint that the mo
lus of s1 ands2 cannot exceed 1~so that the spin deviation
decay to zero infinitely far from the discommensurati
core! has to satisfy the relation

~D1H21!2155/31D2H, ~18!

which is the same as Eq.~6!. Equation~18! identifies the
locus of points where the spin deviations for phase^2& be-
come vanishingly small, which is the second-order bound
AF8:^2&.

The same method can be used to find the second-o
boundaryOP between AF2 and AF3 in Fig. 6 or 7. In the@0&
phase close to the border, with the spins labeled as in Fig
deviations from the corresponding Ising configuration, E
~10!, will be small, and the solution to Eq.~14! takes the
form

x2 j5s2 for j >1,

x2 j 115s1 for j >1,

x1512H2D,

2x1
211s25H1D, ~19!

using the same notation introduced previously, withs1 and
s2 again defined by Eq.~17!. These equations yield an add
tional relation fors2 ,

s25H1D1@12H2D#21, ~20!

which can be satisfied together with Eq.~17! only on the
locus of pointsG defined by Eq.~12!.

A similar analysis assuming small deviations from Isi
values for the state@2& shows that the pointP on G, Fig. 7,
occurs at the intersection of the curve

11D1H5~11D2H !21, ~21!

with the boundary~18!, so thatP falls atH54/3, D52/3, in
good agreement with our numerical resultsH51.333, D
50.6666. Likewise, one can show that the other@2n& states
for n.1 meet the AF2 region atP, which is a sort of mul-
ticritical point for the surface phase diagram.

A somewhat different approach yields an equation for
boundary between the AF3 and AF4 regions, that is, the left
edge of the AF4 region in Figs. 6 and 7. As this correspon
to an accumulation of surface spin-flop states@2n& as n
→`, the distance from the surface of the chain to the core
the dislocation will become arbitrarily large, so that the sp
angles in the discommensuration are essentially indepen
of distance from the surface,19,24 as confirmed by our nu-
merical calculations. Hence, by a route analogous to
described in Refs. 19,24, it is possible to evaluate the ene

u- FIG. 15. Schematic representation of the surface phase@0&.
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difference between two neighboring phases,DEn5E[2n&
2E[2n12& , by iterating the equilibrium equations~5! on ei-
ther side of the discommensuration.

Using the fact that the spin deviations at the surface
becoming vanishingly small, one obtains, to leading orde
largen,

DEn'
1

2
~ ũ12 ũ0!21

1

2
~ ũ22 ũ1!2

1
1

2
D~ ũ1

21 ũ0
2!2

1

2
H~ ũ1

22 ũ0
2!, ~22!

where theũ i ’s are the spin deviations of phase@2n12&. The
expression forDEn can be simplified by using Eq.~14! to
expressũ1 andũ2 in terms ofũ0 , noting that wheni 50, the
term cos(u i

02u i21
0 )(ũi2ũi21) must be omitted from Eq.~14!,

becausei 50 represents the left edge of the finite chain, E
~7!. Substituting

ũ1'~11D1H !ũ0 ,

ũ2'@21D2H2~11D1H !21#ũ1 , ~23!

into Eq. ~22! gives

DEn5
1

2
Wũ0

21O~ ũ0
3!,

Wª2D17D215D31D41~2D1D2!H

2~115D12D2!H22H31H4. ~24!

Note that this expression holds for all values ofD as long as
ũ0 is small, that is, the discommensuration is very far fro
the surface. But this means that an accumulation of st
@2n& asn tends to infinity must lie on a locus whereW in Eq.
~24! vanishes, because in region AF3 the discommensuration
is attracted by the surface (W.0), while it is repelled in
AF4(W,0). The relevant root of this equation takes t
simple form

D5A11H221, ~25!

in agreement with Ref. 6, and with our numerical calcu
tions.

VI. CONCLUSIONS

Our work shows that the structure of surface spin-fl
~SSF! states and their relationship to the behavior of fin
systems is significantly more complex than anticipated
previous work. In particular, the genuine SSF phase fo
semi-infinite system, which we identify with region AF3 in
our surface phase diagram, Figs. 6 and 7, has previo
been confused with what we call the ‘‘discommensuratio
phase, region AF4 , in which theB-type surface has, strictly
speaking, completely disappeared through a restructurin
which a discommensuration has moved infinitely far aw
from the surface into the bulk. The fact that both the SSF
the discommensuration phase occur at a magnetic fielH
significantly below that required to produce a bulk spin-fl
transition, together with the extremely small interval ofH
re
t

.

es

-

n
a

ly
’

in
y
d

over which the SSF phase is stable when the anisotropyD is
small, are no doubt the reasons the two have not been
tinguished in previous studies. Nonetheless, they are q
different phenomena, and distinguishing them is essentia
a proper understanding of phase transitions associated
surfaces, both in semi-infinite and finite systems.

Our results for the discommensuration and surface ph
diagrams lead to very definite and detailed predictions, d
cussed in Sec. IV, for the complicated sequence of ph
transitions occurring in a system with an even number
layers ~spins! as H increases at fixedD. They are in good
agreement with various numerical studies, including o
own, if allowance is made for the uncertainties inherent
numerical work of this sort, and this gives us additional co
fidence in the validity of our analysis. To the extent that th
model antiferromagnet correctly describes Fe/Cr super
tices, we can also claim to have achieved a basic underst
ing of the processes giving rise to the phase transitions
served experimentally in the latter.

That does not, of course, mean that our model is adeq
for understanding SSF phases and other surface phase
sitions in more traditional antiferromagnets, such as MnF2.
However, as noted in Sec. I, minimizing the energy of
one-dimensional model is the analog of minimizing the fr
energy of a three-dimensional layered system, whene
each layer can be described, using mean-field theory or
purely phenomenological way, by means of a total magn
zation serving as a sort of order parameter. To be sure,
parameters which enter the Hamiltonian for the on
dimensional chain may not be those appropriate for thr
dimensional system. But one can still expect qualitative si
larities in the phase diagrams, even if certain quantitat
aspects are different.

In that connection, it is appropriate to ask whether cert
features of the discommensuration and surface phase
grams of the one-dimensional model depend in a sens
way upon the particular form of the Hamiltonian~1!. For
example, it contains no spin coupling beyond nearest ne
bors, whereas it would be physically more realistic to a
sume, at the very least, some sort of exchange couplin
further neighbors, decreasing rapidly with distance. Wo
introducing such interactions lead to significant changes
the phase diagram? Could they, for example, make the
phase disappear entirely at low values of the anisotropy?

This is one of many questions which cannot be answe
definitively in advance of appropriate calculations. It
worth pointing out that our physical picture of the SSF pha
as due to a discommensuration finding its minimum ene
at a finite distance from the surface does not seem to dep
on the absence of further-neighbor exchange~or possibly
other types of! interaction, so we can well imagine that th
phenomenon persists with a more realistic Hamiltoni
Nonetheless, this is one respect in which our work rema
incomplete. While our numerical results, especially the
parent existence of a nonzero limit foru0 asD goes to zero,
Fig. 9, support our description in terms of a discommen
ration, an appropriate analytic calculation in the limit
small D, of the sort which might~among other things! give
the value of this limiting angle, has not been carried o
Such a study would probably provide insight into wheth
weak further-neighbor interactions simply change the qu
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titative values of various parameters, or lead to a qual
tively different result, such as the absence of the AF3 region
whenD is sufficiently small.

It seems unlikely that weak further-neighbor interactio
would remove the first-order transitions between the surf
phases@2n& and@2n12&, or change the fact that these tra
sitions terminate in critical points asD decreases. On th
other hand, such a modification of the Hamiltonian wou
surely remove the degeneracy of the surface states in the2
region of Figs. 6 and 7. Thus, one would not be surprised
find significant modifications in the phase diagram near
multicritical point P. Indeed,P which might well disappear
to be replaced by some other, more complicated, struc
allowing the different@2n& phases to disappear asH in-
creases. Also, sufficiently strong further-neighbor inter
D.

.

.

-

s
e

F
to
e

re

-

tions of the proper kind might result in the infinite-cha
discommensurations undergoing their broadening transit
at significantly smaller values of the magnetic fieldH. This
could lead to a complicated surface phase diagram in wh
the minimum energy discommensurations broaden w
they are still a finite distance from the surface. How th
might effect the@2n& to @2n12& transitions and their critica
points is hard to guess in advance of actually doing a ca
lation.

Hence, there is much which remains to be understo
about surface spin-flop transitions in antiferromagne
Nonetheless, we believe that the calculations, numerical
analytical, presented in this paper have served to sort
some important physical effects, and in this sense our res
provide a solid foundation for future work.
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