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We apply the self-consistent harmonic approximati8@HA) to study static and dynamic properties of the
two-dimensional classical Heisenberg model with easy-axis anisotropy. The static properties obtained are
magnetization and spin wave energy as functions of temperature, and the critical temperature as a function of
the easy-axis anisotropy. We also calculate the dynamic correlation functions using the SCHA renormalized
spin wave energy. Our analytical results, for both static properties and dynamic correlation functions, are
compared to numerical simulation data combining cluster—Monte Carlo algorithms and spin dynamics. The
comparison allows us to conclude that far below the transition temperature, where the SCHA is valid, spin
waves are responsible for all relevant features observed in the numerical simulation data; topological excita-
tions do not seem to contribute appreciably. For temperatures closer to the transition temperature, there are
differences between the dynamic correlation functions from SCHA theory and spin dynamics; these may be
due to the presence of domain walls and solit¢6€163-182@99)03809-9

I. INTRODUCTION presence of some degree of anisotropy in the interaction is to
be expected in nearly all cases. In addition, recently there has
Low-dimensional magnets have been extensively investibeen a growing interest in the study of topological excita-
gated by many theorists and experimentalists in the last threéons in the classical two-dimensional easy-axis mddel.
decades. More recently, the interest on the properties of twd-aving finite excitation energy, the population of topological
dimensional(2D) Heisenberg magnets has been greatly reobjects should be quite small at low temperatures. Therefore,
vived since the discovery of high; superconductivity: it is Pefore taking into account the effect of topological excita-
now well knowrt that the undoped, insulating 4@u0, has t|ons(s_olltons or similar objecjson the thermodynam|_cs a_md
a quasi-two-dimensional antiferromagnetic behavior. HOW_dynamlcs of a system, we should consider the contribution of

ever, most quasi-two-dimensional magnetic real material@MSOUOPIC Spin waves. So we might ask: can spin waves

exhibit some kind of anisotropy: the anisotropic propertieseXpIaIn experimental data or, in the absence of experiments,

. X ; . .—computer simulation data at low temperatures? This is the
often arise not so much from an anisotropy in the interaction _. . ) :
mechanismwhich can be wholly isotropjcbut from other Spirit and aim Of.thls baper. ; .
' Here we consider the classical Heisenberg ferromagnet in

sources, such as thg presence 'of a crystal field that coupl?\ﬁo dimensiong2D) with easy-axis exchange anisotropy
the spins to a certain direction in the crystal. Then, at least
from a theoretical point of view, a large amount of magnetic
materials fits(under certain circumstances like temperature H==J2 Sy Sia= KX SiShia, (1)
range into one of the two groups: easy-plane or easy-axis e e
models. Easy-plane 2D magnets have deserved a lot of attewhere the summations run over all distinct couples of spin
tion due to their possibility of showing the topological sitesn and its nearest neighboas As the anisotropy param-
Kosterlitz-Thouless phase transiti®iThe interest devoted to  eterK ranges from 0 tee, we go from the isotropic Heisen-
easy-axis magnetic systems has been considerably smallé@erg model to an Isingke model in which the spins tend to
specially concerning the study of its dynamical properties. I1foe confined along the-z direction. However, the resem-
is our aim to address this topic in this paper. blance to the Ising behavior can only hold o K: we find

It must be emphasized that, although we shall be conthat, for Hamiltonian(1), T.~K for large K. This contrasts
cerned only with magnetic systems in this paper, many of thavith T.~2.27%K for the 2D single-component Ising model.
magnetic Hamiltonians also allow for an interpretation other In addition to the usual domain walls we expect that there
than a magnetic one. Most physical problems concerningan be localized solitonlike excitations that can connect a
mutually interacting elements that form a spatial array can bemall circular domain of positivé’ to a surrounding region
mapped into a magnetic Hamiltonian by describing it withinwith negative S>. A spatial “width” of these objects
a pseudo spin formalism. The advantage of studying a gertbubbles or droplejscan be estimated as approximately
eral physical problem in its magnetic form is clearly that in yJ/K. For intermediate values ofd/K, i.e., between a lat-
magnetism several experimental techniques are available t@we constant and the system size, these excitations can be
study the fundamental properties of a sysfem. important on a finite discrete system. These objects can also

The analysis of the general Ising-Heisenberg model is ohave a topological charge or winding number of the spin
interest because, from the experimental point of view, thdield. There was some indication in earlier Monte Carlo
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(MC)_ _simglatiqné that they.may play a role in the. phase wg=4391-y(q)]+4KS, 4
transition in this model; their density was found to increase L ) o
strongly passing through the transition temperature. HowWith ¥(Q) =3[ cosa,+cosq,]. The spin wave approximation
ever, in a continuum static description they are found to bavill be reasonable wheta/a,)<S, so it ought to be fairly
energetically unstable, according to the Derrick-Hobartgood for anisotropies satisfying the relatidre 4K S*.
theorent. Thus it makes sense to investigate whether it is Now we simplify the general model by reducing Hamil-
necessary to be aware of their presence in static and dynamiienian(1) to an effective harmonic problem with the effect of
properties of this model, or whether a description based ognharmonicity embodied in temperature-dependent renor-
anisotropic spin waves is sufficient. malized parameters. This means that the couplings of the

To this end we study the low-temperature thermodynammodel are replaced by quadratic interactions whose strength
ics and dynamics of this model using a self-consistent haris then optimized. Details of this method may be found in the
monic approximation theor¢gSCHA) to treat spin waves. As literature"® and we give here only an outline of those steps
is well known, the SCHA is a reasonable approximation topertinent to our present calculation.
calculate the transition temperature and low-temperatlire ( We assume as effective Hamiltonian the appropriate form
<T.) properties of a system but it is of limited value in for a noninteracting gas of Bose excitations
estimating critical properties. Therefore, in our work, we did
not attempt to do any calculation for critical exponents and oo t

n _ Ho=2> Eqalag. (5)

related aspects of a phase transition. We compare the predic- q
tions of SCHA theory to numerical simulations on several ) ) ) L
LxL square latticesl(=16,32,64,128) using Monte Carlo The spin wave energy is obtained by a variational procedure
and spin-dynamic¢SD) simulations, which include effects 2ased on the inequality for the free enefgy
due to all thermodynamically allowed excitations. We - ~
present the thermodynamic results in Sec. Il, and in Sec. lll, F<Fo+(H=Hoo, (6)

the calculation of the dynamical correlation function. The,\are the brackets indicate the thermal average. Traces

simulation procedures are discussed in Secs. Il B and Il Bgpo1q pe taken only over the physical states, that is, states
and their comparison with the SCHA theoretical calculationsith no more than $ spin deviations on a single site. The

is given in Sec. IV. Finally, our conclusions are given in minimization of Eq.(5) with respect toE, determines the

Sec. V. spin wave energies. We obtain, in the classical limit, follow-
ing Rastelliet al.°
II. STATIC PROPERTIES
A. Self-consistent harmonic approximation Eq(T)=4IS(1— y(a)[1-B(T)+7(T)]
Since its original derivation by Blochthe self-consistent +4KS1—-B(T)— y(a) ()], )

harmonic approximation has been found to account for the
low temperature dependence of various properties of seversihere
magnetic insulators, which seem to be fairly well-described

by the Heisenberg mod&f° Its usefulness stems mainly ,Z’(T)Zl z i )
from the way it takes into account a substantial part of the NS4 Eq'
interactions among spin waves, being characterized by
simple temperature-dependent renormalization factors for the - T )
unperturbed spin wave energy. nMN=\s< E (©)
We start by writing the spin components using the Dyson- q q
Maleev representation of spin operators whereN is the number of sites. Equatiofi®, (8), and(9) are
coupled equations which we solved self-consistently by an
szgs(a +ah)— 1 (ataa +a'ala,) iterative method. These coupled equations have a double-
"2 TN T o fgg T T valued solution below . and no real solution abovE, : this

is the typical behavior for self-consistent harmonic approxi-
NS 1 mations and allows for easy determinationTqf. The lower
S¥=T(an—ag)— ——(alaa,—alala,), (20 branch(for T<T.) has an unphysical temperature depen-
: 2i/8S dence and may be discarded as a spurious mathematical so-
- N lution that is physically unstable. In Fig. 1 the spin wave
Sh=S—anan, energy forK/J=0.05 is given for two temperatures well

wherea! anda, are the Bose spin operators on giteThe ~ Pelow T¢=0.75): T=0.3J, and T=0.6). The circles and

harmonic spin wave Hamiltonian obtained from Eg) is stars shown in Fig. 1_were_ taken from our numerical simu-
given by lation data(to be described in Sec. llI)BAs can be seen, the

comparison between the SCHA and numerical results is re-
markably good: the SCHA describes well the decrease of

_ T N .
HO‘% wq8q8q, ©) energy with increasing temperatutand, also, the energy
dependence with the wave vegtor
where ag anda, are the Fourier transforms Gﬂ anda,, The reduced spontaneous magnetization along thes

respectively, and is given by
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40 ‘ = namic quantities using a hybrid classical Monte Carlo ap-
K=0.05 proach on periodid¢. X L square lattices. We applied a com-
bination of Metropolis single-spin moves and over-relaxation
moves that modify all three spin components, and in addi-
tion, Wolff single-cluster operatiohsthat modify only the
S$* components. The over-relaxation and cluster moves are
necessary to avoid critical slowing down néfar, which is
tending to freeze thé&* components. The single spin and
over-relaxation moves are standard; here we give only a few
v details about the cluster algorithm. In the Wolff single-
{x cluster algorithm, the cluster-flip operation we used only re-
{ﬂ%’*" verses the sign d& for all sites that have been included into
99 - -
0o - n >3 55 the cluster. This is reminiscent of the Swendsen-Wang
g=(,0) algorithm' for Ising models, but we only build one cluster at
a time as in the Wolff algorithm. The cluster moves cannot
FIG. 1. The curves correspond to the spin wave eng¢fgm  be used alone because they do not changenignitudesof
Eq. (7)] for T=0.3 (continuou$, and T=0.6 (dashed for K S spin components.
=0.05). The cirgles apd stars correspond to the values extracted A cluster is built up starting from a randomly chosen seed
from our numerical simulations; error bars are smaller than thejie n, immediately inverting itsS* component:S— — SZ,

symbols. and then including neighboring sites-a with a probability,

3.0

E,T 20|

—m =1-B(T). (10 Poond=Max{ 0,1—e”#Enne]. 1)
z Here AE, ., is the energy change involved if siteta is
In Fig. 2, we present results obtained from E@0) for  not flipped:
K/J=0.05 and compare to our Monte CakidC) data(ob-
tained as described in Sec. I).BThe slight overestimate of AEpn+a=—2(3+K)SiSE, a- (12

.TC from SCHA _cIearIy Is due to the _fact that it dqes nOté\lote that in this formula site was already included into the
include all possible modes of fluctuations, that are include 2 . .
cluster ands;, was already inverted. Equatidhl) represents

in the MC calculations. The SCHA theory has no buiIt—inth luster arowth ntiall n t Metronoli
requirement to make the magnetization null at the critical € cluster gro as essentially a sequence ot VIetropolis

- : decisions, according to whetheXE, ., is less than or
;er:gr?zritrlérf/rglhgnfghc/lo?ie)qu'?ﬂiﬂsy’isw @Si@i’l écl; Igg.'_'isggi,v S’greater than zero. Newly included sites then have their neigh-
z c/*

turesT=T, the magnetization is taken as zero, implying a We %efine one cluster sweep as build%n enouah sin. le
discontinuous jump &k, . In fact, the scaling of the MC data P 9 9 9

for M(T) with system sizd_ strongly suggests the presence clusters until the number of sites included into clusters is one
z Ith Syste gly sugg P quarter of the total number of sites in the system. Then we
of a discontinuous jump.

defined one hybrid Monte Carlo step as one over-relaxation
sweep followed by one Metropolis single spin sweep fol-
lowed by one Wolff cluster sweep. Equilibrium data shown
In order to evaluate the accuracy of the above theory, weere are averages over’1i® 4x 10° Monte Carlo steps. The
calculatedT, and the magnetization and other thermody-critical temperature was determined from the change in the
distribution of z-component of total magnetization, which is
easily characterized by Binder's fourth cumulant rafio,

(M7)
UL:].—W—Z. (13)

B. Monte Carlo

1.0

08 |

o8 The crossing point of curves &, (T) for different system

sizes gives a good estimate ®f. All calculations were
] made for square lattices of sidex L, using unit spinsS
\_~ =1 and fixingJ=1 while allowingK to be varied.

04

o2} C. Static results

‘\.‘;,,;V‘I - The critical temperature from the SCHA as a function of
*%.0 0z oa o6 5 e anisotropy parametet/J is shown in Fig. 3 and compared
™ with numerical MC estimates for a set of specific values of
FIG. 2. Magnetization as a function of temperature for ~K/J ranging from 0.05 to 10.0. Generally, the SCHA over-
=0.05). Solid curve is the SCHA theory. Various symbols corre- €stimatesT. when compared to the MC results, because it
spond to MC simulation for indicated system sizes; error bars ar€loes not fully take into account all possible fluctuations that
smaller than the symbols. are taking part in the transition. Notice that, lasncreases,
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FIG. 3. Critical temperature as a function of the anisotropy pa- Iql
rameterK/J. The symbols correspond to the values obtained in our G | . qi i~
MC calculation(as described in Sec. IBerror bars are smaller FIG. 4. In-plane integrated intensity” versus wave vector,
than the symbols. from SCHA (curves compared with MC-SD(symbols for K

=0.05],L=128.
the dependence dff. on K/J becomes linear. FoK/J>1, I1l. DYNAMIC CORRELATION FUNCTIONS
we recover a continuous spin Ising Hamiltonian: EQ.can A SCHA
be approximated all ~J(1+K/J)S3S%, ,=KSESE, .. Fig- '

ure 3 shows that, foK/J>1.0, the results follow a straight _ From Hamiltonian(1) and using Eqs(2), we obtain the
line with slope~1.0. We remark again that, strictly speak- time dependent correlation functions

ing, the analogy between Hamiltoniéh) and the continuous S

spin Ising model_ can only be expected to h_oIdTegK_. For (Sé(t)qu)=§([aq(t) +a(§(t)][a,q+a‘:q]>,
moderate and high temperatures, modglstill exhibits the

full entropy effects of a three-component spin model, result-

ing in a much lower transition temperature than a one-

S
y y o\ _ At At
component Ising model. For this reason we cannot expect to <Sq(t)s“1> 2([aq(t) 3(D][a—q a_q]>,
compare our results to the ones obtained for the usual 2D
Ising model. N (SHDS” )= Fqo{ S—(a]@))?+(8SH(1) 857 ), (14)
Some of the drawbacks of the SCHA are well knowin:

it does not take into account strong coupling effects whichwhere
are important at high temperatures and at short wavelengths;
(ii) it also neglects the kinematical interaction and gives a 1

_ i-1(At t
first-order phase transition to the paramagnetic plabere SS(t) = N2 E| evl@f(Ha(t)—(a/(Ha(t))). (15)
the true phase transition should be of second ¢rdeot-

withstanding this, we see that the theory gives results whiclThe averages are readily evaluated, and givextheandyy-
compare quite well with the MC data we obtained. dynamical correlation functions:

This good agreement cannot be used to conclude that soli-
tons do not have an important contribution to the properties Vi oy S Et e
of our model. As is well known, in the one dimensional {(Sq(1)S-q)=(S()Sg)=5[ne"e +(ng+ 1)~ "],
easy-axis ferromagnet, the soliton connects two distinct (16)
ground states and has, therefore,glwbal effect in the

system:* As a consequence, a pure spin wave calculatiotvhereng is the Bose occupation number aBg is the self-
does not predict correctly all thermodynamic quantities. Foiconsistent spin wave frequency of Equati@®). Equation

instance, spin waves give a linear behavior with temperatur&L® _Ieaﬂs to pure spin wave peaks for the spectral
T (for T—0) for the correlation length, while the soliton function:

model predicts correctly an exponential behavior. In two di-

mensions, however, the soliton has onlipeal effect and its X S _
contribution to thermodynamic quantities should be small. SHq.w)= 2(277)2[nq5(w Eq) T (Ng+1)8(0+Ey)].
The reasonable agreement of the SCHA calculation with the (17)
Monte Carlo data is not, per se, an indication that we should

rule out topological effects. The signature of topological soli-The comparison between these SCHA results $6f and
tons is best analyzed in the dynamics where it should manithose obtained by spin dynamics simulati@ec. 1l B) are

fest as a central peak. This topic will be discussed in theshown in Figs. 1 and 4. These are discussed in more detail in
following sections. Sec. IV B below.
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Thezz correlation contains, in addition to the Bragg scat-out to wpy,=27/dt~30J. We saved a total oN,=2
tering atq=0, a term describing correlations in the fluctua- samples in time, integrating out to final tintg,,,= N.dt
tions of the spin’s component. Evaluating the averages, we~4300, giving a frequency resolution 0Bw= 27/t

obtain ~0.015). The space and time Fourier-transformed spin-spin
correlations were averaged over the 200 initial states to get
<5Sé(t)5sz_q>=% 2 [eiQt(1+nq/2_k)nq/2+k S(g,w), for both in-plane and out-of-plane spin components.
K
—j IV. DYNAMIC CORRELATIONS: RESULTS
+e M1+ Ny )Nk ], (18

A. Small lattices (L <64)
where

At low temperature3 <T,, we especially expect that the
Q=Ego+k—Eg2-k- (199 SCHA should give good agreement with the spin-dynamics
simulation. We had noticed, however, that spin dynamics for

scattering terms. It is interesting to notice that, to this orderSmall lattices gives an interesting set of unevenly spaced

only differenceprocesses contribute to the dynamics. ThePeaks inS*(q, ), in contrast to one sharp peak at the spin

. : . frequency inS**(q,w), and also in contrast to the
time Fourier transform of Eq18), together with the thermo- wave X \
dynamic limitL —, gives us the response functién smooth behavior predicted f&*%q,w) by Eg. (20). Also,
' an intensitymaximumin S*(q,w) for ®—0 is present for

1 wave vectors of the formy=(27/L)(2m,0), wherem s an
Szz(q,w)=—4f dK[Ng2+ k(14 Ngr— i) 8w — Q) integer. On the other hand, for wave vectays-(2w/
2(2m) L)(2m+1,0), there is an intensitginimumin S?%q, ) at
(20) w—0. In order to see if the SCHA theory could explain this
interesting result we restarted our calculation from @),
Using the delta functions we obtain integrals on the contoursestricting the sums to the discrete wave vectdes
C* defined byw=*: the first integral is =(2#/L)(m,n) of each lattice. Also, the time integration for
S(g,w) was performed for dinite time intervalt .y,

Equation (18) corresponds to the various two-spin-wave

FNgro—k(1+Ngoy ) (0 +Q)].

ey IR TSICSL VL TR EY
wheredl, is the contour element an® (| designates the _ o
Jacobian of the involved transformation. There is a singularWheretma, was taken to be the same as the integration time
ity in these integrands for every minimum or maximum(bf  (43040) used in our simulations. Equatidi8) is modified
and the spectrum is in general quite complicated. We emphafor a finite time interval, and a complete analysis leads to
size that, here, we have also used the self-consistent result
obtained in Sec. Il for the spin wave energies. Results for the _,  Umax D
spectral functions obtained from E€0) will be compared Z(q'“’)_ZN(ZW)3 4 N2+ k(14 Ngj2—)
with those from MC-SD simulations below in Sec. IV.

sin (0 — Q) tyad2]

1 (tnal? .
SZZ(q,w):Zﬁt | SHave a4

2
+Ngro—k(1+Ng1 k)

B. Spin dynamics simulations (0—Q)t a2
The spin dynamics simulation is standafd® Here we Sinf (w+ Q)t,./2] |2
summarize the method and describe the particular numerical (0t Q)2 } ] (25
ma;

parameters used. For a given temperature, a set of 200 initial
states was taken from the Monte Carlo simulation to serve ashe expression can be thought to represof, ) as a sum
initial conditions for the spin-dynamics time integration. The over a set of narrow peaks of width approximately,2/,
nonlinear equations of motion associated with Hamiltoniarcentered at frequencie®, determined by choosing such
(1) are that bothg/2+ k andg/2—k in Eq. (19) are allowed discrete
wave vectors. Besides restricting the sum in Ex§) to the
d_sn =5,x (22) discrete set of lattice wave vectors, the finite time integration
dt ’ tmax iMplies discrete frequency incremengiw =2/t
- ~0.015], the same as in our spin dynamics simulation.
whereJ is the diagonal matrix of exchange couplings, Examination of Eqs(19) and (25) allows us to conclude
that a nonzero intensity i8°4(q,w—0) can exist forall

32a Shsa

30 0 wave vectors and not only for those of the form
J=10 J o |. (23 =(2#/L)(2m,0). However, a little consideration shows that
0 0 J+K if g/2 does not fall on a reciprocal lattice vector, then it is

impossible to choose a value &fin Eqg. (19) to give )
These were integrated forward in time using a standard=0. Therefore, for wave vectorg=(2x/L)(2m+ 1,0),
fourth order Runge-Kutta scheme with time stdp none of the multiple peaks in E@25) will be centered at
=0.0350 (for small K/J). By saving data for time Fourier zero frequency, an&*3qg,o—0) is a local minimum. Al-
transforms at intervaldt=6h, allows for measuriné(q, ) though no peak is centered at zero, the tails can contribute
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°'°°°o.o\ 1.0 0.000 i
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FIG. 5. ${q,w) obtained from numerical simulation fd FIG. 7. $4q,w) from (continuous ling continuum limit (20)
=0.05), T=0.3J, and L=16,32,64, and wave vectomq and from (circles and triangles numerical simulation forK
=(0.393,0). =0.058], T=0.3), andT=0.6J, and wave vectog=(0.393,0).

there. On the other hand, for wave vectors suchgas longer time integration,,,,, the widths of the peaks will be
=(2wx/L)(2m,0), andg=(2=/L)(m,m), we see thag/2  narrower, and therefore they will become more distinct. As
falls on a highly symmetric point in the reciprocal lattice, far as we are aware, this strong finite-size effect in low-
and it is always possible to chookao get()=0 in Eq.(19).  temperature spin-dynamics simulations is a feature that has
Then for these cases, there is a peak at zero frequency, abden previously ignored. It is very likely, however, that it
S*4(q,w—0) is a local maximum. appears in any related models. For example, finite-size ef-
The overall behavior 08?4 q, w) with the lattice size ob- fects most likely explain similar low-temperature multiple-
tained either by numerical simulatidfig. 5 or by the cal- peak features that have appeare&(q, w) calculated for the
culation of Eq.(25) (Fig. 6) agree very well. In order to 2D Heisenberg model with easy-plane anisotr&p}
make this comparison, because the spin-dynamics simula-
tions are purely classical, it is necessary to replace all factors .
of (1+ng) in the SCHA expressions hy,. Also, these oc- B. Large lattices (L=>128)
cupation numbers were evaluated by their classical limit, The SCHA calculatiofEq. (17)] and the MC-SD simu-
ng=T/Eq, consistently with the static calculations in Sec. II. |ations both give single narrow spin wave peakSt{(q, w),
Figures 5 and 6 were obtained f&/J=0.05 (where T, regardless of lattice size. The MC-SD peak positionsLfor
~0.73)), q=(0.393,0), andT=0.3) for lattice sizesL ~ =128 have been compared with the SCHA results in Fig. 1,
=16, 32, and 64. and agree very well for the temperatures studied. The SCHA
Comparing the several peaks shown in Figs. 5 and 6, for gheory gives peaks of zero width, thus it makes sense to
specific value ofL, we see that they are positioned aroundcompare the integrated intensities for the positive frequency
the same fre_qu_enC|es. The important feature is that as theeak, 1=~ dw S%(q,w). These are shown in Fig. 4,
system size is increased, the spacing between the multiplgnere the MC-SD results are compared to those obtained
peaks inS*(q,w) becomes smaller asLl/In addition, fora  fom Eq. (17), "*=Sn,/(87?). For the lower temperature,
T=0.3], there is very good agreement. The good [Bw-
0.020 ‘ ‘ : - agreement, with no adjusted parameters, shows that the ap-
proximations made in the SCHA theory are reasonable

Tilw SKZEQSJ where we expect this simple theory to work. Fbr 0.6,
0015 } st 4=(03930) | however, the MC-SD result is suppressed compared to the
T=0.3] SCHA prediction. Currently we cannot say whether this sup-

pression should be better described by spin wave interaction
terms or possibly by nonlinear excitations such as solitons or
domain walls. Clearly, both effects could become more im-
portant as the critical temperature is approached.

For $*4q,w), the widths of the multiple peaks are deter-
mined both by the intrinsic width due to temperature, and the
width 27/t ,,,, inherent in the spin-dynamics simulation. For
larger lattices, or higher temperatures, the spacing of the
multiple peaks inS?4q,w) becomes smaller than their mea-
sured widths, the peaks merge and the curve is much

FIG. 6. S4(q,w) obtained from discrete summati¢®s) for K smoother. Thus in our simulations the finite-size effects are
=0.08), T=0.3J, and L=16,32,64, and wave vectorg quite well smoothed out for latticds> 128 and/or for high
=(0.393,0). temperatures. In Figs. 7-10, f&r=0.05], severalg values,

o010 |

$%(q,0)

.
|
0.005 |
i
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FIG. 8. $*(q,w) from (continuous ling continuum limit (20) FIG. 9. %, ) obtained from(continuous ling continuum

a_nd from_(circles an_ trianglesd numerical siTuIation forK limit (20) and from(circles and trianglesnumerical simulation for
=0.05J,7=0.3), andT=0.6), and wave vectog=(1.473,0). K=0.05], T=0.3], andT=0.6], and wave vectoq=(2.503,0).

and L=128 we see that the simulation data for the higher . ) _
temperatureT =0.6) are smooth while the data fdr=0.3) lation performed to obtai§**(q, ). This can be observed in
still show sharp peaks. Figs. 5, 6, and 7, which correspond to the three different

Using the “discrete” equation (25 for obtaining Wways we have used to obtain the spectral function for
S$?4q,w) for lattice sizeL=128 we do not get rid of the different lattice sizes but for the same wave vectpr
multiple peak structure even far=0.6J. This can be seenin =(0.393,0).

Fig. 11 where the three types of calculations — numerical In Fig. 12 we show the comparison of the cutoff fre-
simulation, discrete summatiof25) and continuum limit —quencyAw of the obtained spectral functions in the whole
(200 — we used to obtainS?{q,») are shown fork  |d| range for wave vectors likg=(q,0): the data were ob-
=0.05, T=0.6], and q=(1.03,0). Typically, the discrete tained for K=0.08) and T=0.3). The comparison is re-
SCHA summation results in aB%4q,») curve with very ~markably good(a similar agreement is obtained for
strong multiple peak structure. In order to smooth out the=0.6J). We see that, for smalf|, the frequency limitA
structure obtained from Ed25) it is necessary to consider increases linearly with the wave vector. A trivial analysis of
much larger latticesl(>500). It is natural to expect that itis Ed. (20) leads us to the conclusion thAtw must be related
more difficult to smooth out the spectra obtained by &%)  to the maximum valu€) can have for each. From Eq.(19)

than the one obtained via spin dynamic simulation. Clearlyve easily obtain thatQ .= B(T)sin|q//2 where B(T)

the MC-SD calculation contains more fluctuations and there=€JS1—8(T)+ 7(T)(1+K)] and e=1 for g=(q,0)

fore greater peak widths, especially &sapproachesT,,  wave vectors ané=2 for q=(dy,dy). For comparison, we
whereas in expressiof25) all spin wave peaks have very show in Fig. 12 a curve(dashed ling corresponding to
narrow widths determined only by the integration time. In-max-

stead of trying to smooth the SCHA spectra by considering Second, the SCHA curves corresponding to wave vectors
larger and larger lattices for the calculation of Eg5)—  of the formg=(q,0) or (0g) (Figs. 7-9 show a sharp peak
which requires extra computational effort — we can go to

the continuum approximation limit built in E¢20). In fact, ‘ - ;
most real systems contain a large numbgeiof spins (N 00008 . MC-SD
— ) and effects due to the discreteness of the lattice are not L=128
important. These macroscopic systems will be better repre- K=0.05
sented by the continuous approximation built in EZ0). q=(1.03,1.03)
Figures 7—10 show the spectral functions obtained by nu-
merically evaluating Eq(20) for K=0.05,T=0.3], andT
=0.6J, for the following wave vectors:q=(0.393,0),
(1.473,0), (2.50,0) and (1.03,1.03). These are compared
with the corresponding MC-SD calculations for 22828
lattices.

Obviously, considering the dynamical simulation, it is not
possible to go to th&l—oe limit: the computational cost in .
simulations increases tremendously withNevertheless, we O o5 10 15 20 25 30 35 40
can remark on interesting features concerning the results ob-
tained from the SCHA calculation and from numerical simu-  F|G. 10. S*4q, ) obtained from(continuous ling continuum
lation procedures. First, the “cutoff frequency” or upper fre- |imit (20) and from(circles and trianglésnumerical simulation for
quency limit below whict5?% g, w) has appreciable intensity K=0.08J, T=0.3J, and T=0.6J, and wave vector q
does not depend on the lattice size and on the kind of calcu=(1.03,1.03).

0.0006 kb on

0.0004 -

8¥(qw)

0.0002 }
?
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FIG. 11. S*{q,w) obtained from numerical simulatioffilled 0.0 0.10
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limit (line) for K=0.08J, T=0.6], L=128, and wave vectog 00 05 10 15 20 25 3.0
=(1.03,0). Kk

X

at higher frequencies, just before the spectral function van- FIG. 13. Contours of difference frequencf(q,k) for T
ishes. For wave vectors likg=(q,q), this sharp peak is =0.3) andq=(0,0.393) as functions .

only observed near the pointr(7r), and not for smallefq|,

as can be seen in Fig. 10. The appearance or not of theggig. 11) although the density of states does not appear ex-
peaks in the SCHA Ca|CUl|5‘_t'0” depends on the behavior Ojjicitly in Eq. (25). Nevertheless, the two spin wave calcu-
the density of statelV Q| ™% in Eq. (21). Figures 13 and 14 |3ions must, in fact, give similar results because E2@). or
show contours of)(q,k) in the k-plane, forg=(0,0.393) (21) correspond to thé =, andN—o limits of Egs.

andq=(1.03,1.03), respectively, foF=0.3). Forq in the 55 £qr small wave vectors, this sharp high frequency peak
(10) or (02) directions, the contours are straight lif€8g. 5 ot seen in the simulation data suggesting that inclusion of
13). They become very widely spaced négr- 7]{2, ornear  higher order terms in the spin wave theory would probably
ky= /2, where() approaches)ys, and|VQ|™* becomes |5 to the attenuation of this peak in the SCHA results. As

very large along the whole straight contour. The integrationye \yave vectotq| increases, a lateral shoulder develops in
along the contour in Eq21) then leads to the sharp peaks atyhe gpectra obtained from both numerical simulation and

®— Qg SEEN INS*Hq, ). For q along the(11) direction,  gcya calculations: it is already well defined for0.50.
the contours are curvebig. 14. For moderate values of|,  Fop very large wave vectors, as in Fig. 9, the lateral shoulder
the higher contour¢near(),,) approximate small circles, for the MC-SD data occurs in the frequency region affected

having limited total length and thus creating no sharp peakirby the increase ofVQ| L. This shoulder seems to be a
S*4q,w). Only for q very close to the point#,) is the

effect due to the divergence ¥ (2|~ more important than

the contour length, and there a sharp peak-atQ),,, does 3.0F
occur.
It is interesting to notice that this peak is also present in
the data obtained from the discrete spin wave calculation 2.5
4.0 9/%‘-9 5 0 F
O MC-MD data ¢ r
® spin wave 7 > i
30 T O el 1 ~ 1.5}
/9//
. 1.0
g 20 o T=0.3J
o« 4=00) :
o 0.5
h o’ | NN
b 0.0 AN T
¢
00 K2 . 4 ‘ 0.0 05 1.0 15 20 25 3.0
00 1.0 20 3.0 4.0
q k,
FIG. 12. Cutoff frequency o5°4q,w) as a function ofg for FIG. 14. Contours of difference frequend(q,k) for T

K=0.05] andT=0.3J. =0.3J andq=(1.03,1.03) as functions d.
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characteristic of two-spin-wave processes because it hdke spin interactions, would reproduce exactly the simulation
been observed in other systeffis. data. However, the agreement for the lowest temperaiure,
As the temperature increases, the width of the spectra+0.3J, is very good. It is also surprisingly good for
function $°4q,w) decreases but its height increases. The=0.6J, a relatively high temperature, and large wave vectors
spin wave calculation seems to agree well with the MC-SDwhere a lateral peak is seen to developTAt0.6], for small
data for large wave vectors, even for=0.6J. For small wave vectors and small frequencies, the SCHA function for
wave vectors and higher temperature, howe#f{q,w) S*% shows a central peak with heigbmaller than the one
from the SCHA calculation is smaller than the MC-SD dataobtained from MC-SD simulation. On the other hand, the
(Fig. 7), suggesting that at high temperatures other processesCHA prediction for the integrated intensit§* for the in-
could be contributing to the dynamical properties of this sysplane correlations liesabovethe MC-SD data foiT =0.6J.
tem. For systems with easy-axis anisotropy one can expedthese features may suggest that other excitations, like local-
the formation of domains, as in the two-dimensional Isingized solitons and domain walls, may contribute to the dy-
model, and, also, localized solitofisIn particular, it is usu- namical correlation function as the temperature approaches
ally expecte that localized solitons would contribute to the the critical temperature. It was showthat the density of
dynamical correlation function in the—0 (central peak these localized solitons increases exponentially Withs T

region and, mostly, for small wave vectors. —T. and, then, one should expect that their contribution to
the dynamics of the system becomes more important for tem-
V. CONCLUSIONS peraturesT~T.. To stress this conclusion, we remark that

. _ _ . S(q,») obtained by MC-SD simulation fo>T_ (not
We have applied a self-consistent harmonic approximagq\n here because SCHA cannot be compared in this tem-

tion to the Ieasy—aX|s model,d %bta|n|ng the Slpln w?ve EN€lherature regimedoes show a central peako(-0) that in-
gies, critical temperature and dynamic correlation fUnctionSe g 5565 withr. Its properties will be analyzed in a future

We also demonstrated how it is possible to apply the Wolff,, -

cluster Monte Carlo scheme to this easy-axis model, by hav- We conclude by saying that the two-spin wave calculation

ing it act on only theS* spin components. For the critical 5, eyplain the main features obtained from Monte Carlo
temperature, the SCHA and MC results agree favorably OVeLnin_qvnamics simulation at very low temperatures. As

a wide range of easy-axis anisotropy, both givingncreas- 1 “ihe comparison between SCHA spin-wave calculation
ing linearly withK for K>J. The spin-dynamics calculation 54 'the numerical simulation data suggests that other excita-

of dynamic correlation functions shows interesting multiple-jong may contribute to the dynamic properties of the model.
peak features i$*%(q,w), that are most easily seen in small |y, vever, a better understanding concerning the contribu-

lattices. These finite-size dynamical features are correctly dg;yns these excitations might give to the dynamic spectral

scribed by the SCHA, especially farfar belowT.. Similar ¢ nctions requires some theory which takes into account the
features should appear in models with other symmetrieSayistence of such objects. To our knowledge, such a theory
there are strong evidences that these effects were also ofy; easy-axis anisotropy two-dimensional systems is not
served in other simulations of two dimensional easy-plang,aijable in the literature.
models'®

All the dynamical calculations discussed in this work
were performed for anisotropy parametér=0.05, which
corresponds to a transition temperatdig=0.75]. For this
anisotropy, two temperatures were analyz€e:0.31<T,, The authors gratefully acknowledge the support of NSF
andT=0.6]. We could not expect that the spin wave calcu-DMR-9412300, NSF INT-9502781, NSF CDA-9724289,
lation performed here, which neglects higher order terms iFAPEMIG, CAPES-DAAD, and CNPgq.
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