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Low-temperature static and dynamic behavior of the two-dimensional
easy-axis Heisenberg model
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We apply the self-consistent harmonic approximation~SCHA! to study static and dynamic properties of the
two-dimensional classical Heisenberg model with easy-axis anisotropy. The static properties obtained are
magnetization and spin wave energy as functions of temperature, and the critical temperature as a function of
the easy-axis anisotropy. We also calculate the dynamic correlation functions using the SCHA renormalized
spin wave energy. Our analytical results, for both static properties and dynamic correlation functions, are
compared to numerical simulation data combining cluster–Monte Carlo algorithms and spin dynamics. The
comparison allows us to conclude that far below the transition temperature, where the SCHA is valid, spin
waves are responsible for all relevant features observed in the numerical simulation data; topological excita-
tions do not seem to contribute appreciably. For temperatures closer to the transition temperature, there are
differences between the dynamic correlation functions from SCHA theory and spin dynamics; these may be
due to the presence of domain walls and solitons.@S0163-1829~99!03809-6#
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I. INTRODUCTION

Low-dimensional magnets have been extensively inve
gated by many theorists and experimentalists in the last t
decades. More recently, the interest on the properties of t
dimensional~2D! Heisenberg magnets has been greatly
vived since the discovery of high-Tc superconductivity: it is
now well known1 that the undoped, insulating La2CuO4 has
a quasi-two-dimensional antiferromagnetic behavior. Ho
ever, most quasi-two-dimensional magnetic real mater
exhibit some kind of anisotropy: the anisotropic propert
often arise not so much from an anisotropy in the interact
mechanism~which can be wholly isotropic! but from other
sources, such as the presence of a crystal field that cou
the spins to a certain direction in the crystal. Then, at le
from a theoretical point of view, a large amount of magne
materials fits~under certain circumstances like temperatu
range! into one of the two groups: easy-plane or easy-a
models. Easy-plane 2D magnets have deserved a lot of a
tion due to their possibility of showing the topologic
Kosterlitz-Thouless phase transition.2 The interest devoted to
easy-axis magnetic systems has been considerably sm
specially concerning the study of its dynamical properties
is our aim to address this topic in this paper.

It must be emphasized that, although we shall be c
cerned only with magnetic systems in this paper, many of
magnetic Hamiltonians also allow for an interpretation oth
than a magnetic one. Most physical problems concern
mutually interacting elements that form a spatial array can
mapped into a magnetic Hamiltonian by describing it with
a pseudo spin formalism. The advantage of studying a g
eral physical problem in its magnetic form is clearly that
magnetism several experimental techniques are availab
study the fundamental properties of a system.3

The analysis of the general Ising-Heisenberg model is
interest because, from the experimental point of view,
PRB 590163-1829/99/59~9!/6229~10!/$15.00
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presence of some degree of anisotropy in the interaction
be expected in nearly all cases. In addition, recently there
been a growing interest in the study of topological exci
tions in the classical two-dimensional easy-axis mod4

Having finite excitation energy, the population of topologic
objects should be quite small at low temperatures. Theref
before taking into account the effect of topological exci
tions~solitons or similar objects! on the thermodynamics an
dynamics of a system, we should consider the contribution
anisotropic spin waves. So we might ask: can spin wa
explain experimental data or, in the absence of experime
computer simulation data at low temperatures? This is
spirit and aim of this paper.

Here we consider the classical Heisenberg ferromagne
two dimensions~2D! with easy-axis exchange anisotropy

H52J(
n,a

Sn•Sn1a2K(
n,a

Sn
zSn1a

z , ~1!

where the summations run over all distinct couples of s
sitesn and its nearest neighborsa. As the anisotropy param
eterK ranges from 0 tò , we go from the isotropic Heisen
berg model to an Isinglike model in which the spins tend to
be confined along the6z direction. However, the resem
blance to the Ising behavior can only hold forT!K: we find
that, for Hamiltonian~1!, Tc'K for largeK. This contrasts
with Tc'2.27K for the 2D single-component Ising model.

In addition to the usual domain walls we expect that th
can be localized solitonlike excitations that can connec
small circular domain of positiveSz to a surrounding region
with negative Sz. A spatial ‘‘width’’ of these objects
~bubbles or droplets! can be estimated as approximate
AJ/K. For intermediate values ofAJ/K, i.e., between a lat-
tice constant and the system size, these excitations ca
important on a finite discrete system. These objects can
have a topological charge or winding number of the s
field. There was some indication in earlier Monte Ca
6229 ©1999 The American Physical Society
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~MC! simulations5 that they may play a role in the phas
transition in this model; their density was found to increa
strongly passing through the transition temperature. Ho
ever, in a continuum static description they are found to
energetically unstable, according to the Derrick-Hob
theorem.6 Thus it makes sense to investigate whether it
necessary to be aware of their presence in static and dyn
properties of this model, or whether a description based
anisotropic spin waves is sufficient.

To this end we study the low-temperature thermodyna
ics and dynamics of this model using a self-consistent h
monic approximation theory~SCHA! to treat spin waves. As
is well known, the SCHA is a reasonable approximation
calculate the transition temperature and low-temperatureT
,Tc) properties of a system but it is of limited value
estimating critical properties. Therefore, in our work, we d
not attempt to do any calculation for critical exponents a
related aspects of a phase transition. We compare the pr
tions of SCHA theory to numerical simulations on seve
L3L square lattices (L516,32,64,128) using Monte Carl
and spin-dynamics~SD! simulations, which include effect
due to all thermodynamically allowed excitations. W
present the thermodynamic results in Sec. II, and in Sec.
the calculation of the dynamical correlation function. T
simulation procedures are discussed in Secs. II B and II
and their comparison with the SCHA theoretical calculatio
is given in Sec. IV. Finally, our conclusions are given
Sec. V.

II. STATIC PROPERTIES

A. Self-consistent harmonic approximation

Since its original derivation by Bloch,7 the self-consisten
harmonic approximation has been found to account for
low temperature dependence of various properties of sev
magnetic insulators, which seem to be fairly well-describ
by the Heisenberg model.8–10 Its usefulness stems mainl
from the way it takes into account a substantial part of
interactions among spin waves, being characterized
simple temperature-dependent renormalization factors for
unperturbed spin wave energy.

We start by writing the spin components using the Dys
Maleev representation of spin operators

Sn
x5

A2S

2
~an1an

†!2
1

2A8S
~an

†anan1an
†an

†an!,

Sn
y5

A2S

2i
~an2an

†!2
1

2iA8S
~an

†anan2an
†an

†an!, ~2!

Sn
z5S2an

†an ,

wherean
† andan are the Bose spin operators on siten. The

harmonic spin wave Hamiltonian obtained from Eq.~1! is
given by

H05(
q

vqaq
†aq , ~3!

whereaq
† and aq are the Fourier transforms ofan

† and an ,
respectively, and
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vq54JS@12g~q!#14KS, ~4!

with g(q)5 1
2 @cosqx1cosqy#. The spin wave approximation

will be reasonable when̂an
†an&!S, so it ought to be fairly

good for anisotropies satisfying the relationT!4KS2.
Now we simplify the general model by reducing Ham

tonian~1! to an effective harmonic problem with the effect
anharmonicity embodied in temperature-dependent re
malized parameters. This means that the couplings of
model are replaced by quadratic interactions whose stre
is then optimized. Details of this method may be found in t
literature7,9 and we give here only an outline of those ste
pertinent to our present calculation.

We assume as effective Hamiltonian the appropriate fo
for a noninteracting gas of Bose excitations

H̃05(
q

Eqaq
†aq . ~5!

The spin wave energy is obtained by a variational proced
based on the inequality for the free energyF

F<F̃01^H2H̃0&0 , ~6!

where the brackets indicate the thermal average. Tra
should be taken only over the physical states, that is, st
with no more than 2S spin deviations on a single site. Th
minimization of Eq.~5! with respect toEq determines the
spin wave energies. We obtain, in the classical limit, follo
ing Rastelliet al.,9

Eq~T!54JS„12g~q!…@12b̃~T!1h̃~T!#

14KS@12b̃~T!2g~q!h̃~T!#, ~7!

where

b̃~T!5
T

NS (
q

1

Eq
, ~8!

h̃~T!5
T

NS (
q

g~q!

Eq
, ~9!

whereN is the number of sites. Equations~7!, ~8!, and~9! are
coupled equations which we solved self-consistently by
iterative method. These coupled equations have a dou
valued solution belowTc and no real solution aboveTc : this
is the typical behavior for self-consistent harmonic appro
mations and allows for easy determination ofTc . The lower
branch ~for T,Tc) has an unphysical temperature depe
dence and may be discarded as a spurious mathematica
lution that is physically unstable. In Fig. 1 the spin wa
energy for K/J50.05 is given for two temperatures we
below Tc'0.75J: T50.3J, and T50.6J. The circles and
stars shown in Fig. 1 were taken from our numerical sim
lation data~to be described in Sec. III B!. As can be seen, the
comparison between the SCHA and numerical results is
markably good: the SCHA describes well the decrease
energy with increasing temperature~and, also, the energy
dependence with the wave vector!.

The reduced spontaneous magnetization along thez axis
is given by
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Mz~T!

Mz~0!
512b̃~T!. ~10!

In Fig. 2, we present results obtained from Eq.~10! for
K/J50.05 and compare to our Monte Carlo~MC! data~ob-
tained as described in Sec. II B!. The slight overestimate o
Tc from SCHA clearly is due to the fact that it does n
include all possible modes of fluctuations, that are includ
in the MC calculations. The SCHA theory has no built-
requirement to make the magnetization null at the criti
temperatureTc , and consequently, we find, as Fig. 2 show
a nonzero value forMz(Tc). This is typical of SCHA ap-
proaches: the theory applies only belowTc , and for tempera-
turesT>Tc the magnetization is taken as zero, implying
discontinuous jump atTc . In fact, the scaling of the MC dat
for Mz(T) with system sizeL strongly suggests the presen
of a discontinuous jump.

B. Monte Carlo

In order to evaluate the accuracy of the above theory,
calculatedTc and the magnetization and other thermod

FIG. 1. The curves correspond to the spin wave energy@from
Eq. ~7!# for T50.3J ~continuous!, and T50.6J ~dashed! for K
50.05J. The circles and stars correspond to the values extra
from our numerical simulations; error bars are smaller than
symbols.

FIG. 2. Magnetization as a function of temperature forK
50.05J. Solid curve is the SCHA theory. Various symbols corr
spond to MC simulation for indicated system sizes; error bars
smaller than the symbols.
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namic quantities using a hybrid classical Monte Carlo a
proach on periodicL3L square lattices. We applied a com
bination of Metropolis single-spin moves and over-relaxat
moves that modify all three spin components, and in ad
tion, Wolff single-cluster operations11 that modify only the
Sz components. The over-relaxation and cluster moves
necessary to avoid critical slowing down nearTc , which is
tending to freeze theSz components. The single spin an
over-relaxation moves are standard; here we give only a
details about the cluster algorithm. In the Wolff singl
cluster algorithm, the cluster-flip operation we used only
verses the sign ofSz for all sites that have been included in
the cluster. This is reminiscent of the Swendsen-Wa
algorithm12 for Ising models, but we only build one cluster
a time as in the Wolff algorithm. The cluster moves cann
be used alone because they do not change themagnitudesof
Sz spin components.

A cluster is built up starting from a randomly chosen se
site n, immediately inverting itsSz component:Sn

z→2Sn
z ,

and then including neighboring sitesn1a with a probability,

pbond5max@0,12e2bDEn,n1a#. ~11!

Here DEn,n1a is the energy change involved if siten1a is
not flipped:

DEn,n1a522~J1K !Sn
zSn1a

z . ~12!

Note that in this formula siten was already included into the
cluster andSn

z was already inverted. Equation~11! represents
the cluster growth as essentially a sequence of Metrop
decisions, according to whetherDEn,n1a is less than or
greater than zero. Newly included sites then have their ne
bors tested for inclusion until the cluster is done growing,
which point all included sites have already been modified

We define one cluster sweep as building enough sin
clusters until the number of sites included into clusters is o
quarter of the total number of sites in the system. Then
defined one hybrid Monte Carlo step as one over-relaxa
sweep followed by one Metropolis single spin sweep f
lowed by one Wolff cluster sweep. Equilibrium data show
here are averages over 105 to 43105 Monte Carlo steps. The
critical temperature was determined from the change in
distribution ofz-component of total magnetization, which
easily characterized by Binder’s fourth cumulant ratio,13

UL512
^Mz

4&

3^Mz
2&2 . ~13!

The crossing point of curves ofUL(T) for different system
sizes gives a good estimate ofTc . All calculations were
made for square lattices of sizeL3L, using unit spinsS
51 and fixingJ51 while allowingK to be varied.

C. Static results

The critical temperature from the SCHA as a function
anisotropy parameterK/J is shown in Fig. 3 and compare
with numerical MC estimates for a set of specific values
K/J ranging from 0.05 to 10.0. Generally, the SCHA ove
estimatesTc when compared to the MC results, because
does not fully take into account all possible fluctuations t
are taking part in the transition. Notice that, asK increases,
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the dependence ofTc on K/J becomes linear. ForK/J@1,
we recover a continuous spin Ising Hamiltonian: Eq.~1! can

be approximated asH'J(11K/J)Sn
zSn1a

z 5K̃Sn
zSn1a

z . Fig-
ure 3 shows that, forK/J.1.0, the results follow a straigh
line with slope'1.0. We remark again that, strictly spea
ing, the analogy between Hamiltonian~1! and the continuous
spin Ising model can only be expected to hold forT!K. For
moderate and high temperatures, model~1! still exhibits the
full entropy effects of a three-component spin model, res
ing in a much lower transition temperature than a o
component Ising model. For this reason we cannot expec
compare our results to the ones obtained for the usual
Ising model.

Some of the drawbacks of the SCHA are well known:~i!
it does not take into account strong coupling effects wh
are important at high temperatures and at short waveleng
~ii ! it also neglects the kinematical interaction and give
first-order phase transition to the paramagnetic phase~where
the true phase transition should be of second order!. Not-
withstanding this, we see that the theory gives results wh
compare quite well with the MC data we obtained.

This good agreement cannot be used to conclude that
tons do not have an important contribution to the proper
of our model. As is well known, in the one dimension
easy-axis ferromagnet, the soliton connects two dist
ground states and has, therefore, aglobal effect in the
system.14 As a consequence, a pure spin wave calculat
does not predict correctly all thermodynamic quantities. F
instance, spin waves give a linear behavior with tempera
T ~for T→0) for the correlation length, while the solito
model predicts correctly an exponential behavior. In two
mensions, however, the soliton has only alocal effect and its
contribution to thermodynamic quantities should be sm
The reasonable agreement of the SCHA calculation with
Monte Carlo data is not, per se, an indication that we sho
rule out topological effects. The signature of topological so
tons is best analyzed in the dynamics where it should m
fest as a central peak. This topic will be discussed in
following sections.

FIG. 3. Critical temperature as a function of the anisotropy
rameterK/J. The symbols correspond to the values obtained in
MC calculation~as described in Sec. II B!; error bars are smalle
than the symbols.
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III. DYNAMIC CORRELATION FUNCTIONS

A. SCHA

From Hamiltonian~1! and using Eqs.~2!, we obtain the
time dependent correlation functions

^Sq
x(t)S2q

x &5
S

2
^[aq(t)1aq

†(t)][ a2q1a2q
† ] &,

^Sq
y(t)S2q

y &5
S

2
^[aq(t)2aq

†(t)][ a2q2a2q
† ] &,

^Sq
z~ t !S2q

z &5dq,0̂ S2~al
†al !&

21^dSq
z~ t !dS2q

z &, ~14!

where

dSq
z~ t !5

1

N1/2 (
l

eiq• l
„al

†~ t !al~ t !2^al
†~ t !al~ t !&…. ~15!

The averages are readily evaluated, and give thexx- andyy-
dynamical correlation functions:

^Sq
x~ t !S2q

x &5^Sq
y~ t !S2q

y &5
S

2
@nqe

iEqt1~nq11!e2 iEqt#,

~16!

wherenq is the Bose occupation number andEq is the self-
consistent spin wave frequency of Equation~5!. Equation
~16! leads to pure spin wave peaks for the spec
function:15

Sxx~q,v!5
S

2~2p!2
@nqd~v2Eq!1~nq11!d~v1Eq!#.

~17!

The comparison between these SCHA results forSxx and
those obtained by spin dynamics simulation~Sec. III B! are
shown in Figs. 1 and 4. These are discussed in more deta
Sec. IV B below.

-
r

FIG. 4. In-plane integrated intensityI xx versus wave vector,
from SCHA ~curves! compared with MC-SD~symbols! for K
50.05J,L5128.
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Thezz correlation contains, in addition to the Bragg sc
tering atq50, a term describing correlations in the fluctu
tions of the spin’sz component. Evaluating the averages,
obtain

^dSq
z~ t !dS2q

z &5
1

2N (
k

@eiVt~11nq/22k!nq/21k

1e2 iVt~11nq/21k!nq/22k#, ~18!

where

V5Eq/21k2Eq/22k . ~19!

Equation ~18! corresponds to the various two-spin-wa
scattering terms. It is interesting to notice that, to this ord
only differenceprocesses contribute to the dynamics. T
time Fourier transform of Eq.~18!, together with the thermo
dynamic limit L→`, gives us the response function15

Szz~q,v!5
1

2~2p!4E dk@nq/21k~11nq/22k!d~v2V!

1nq/22k~11nq/21k!d~v1V!#. ~20!

Using the delta functions we obtain integrals on the conto
C6 defined byv56V: the first integral is

1

2~2p!4EC 1
dlknq/21k~11nq/22k!u¹kVu21, ~21!

wheredlk is the contour element andu¹kVu designates the
Jacobian of the involved transformation. There is a singu
ity in these integrands for every minimum or maximum ofV
and the spectrum is in general quite complicated. We emp
size that, here, we have also used the self-consistent r
obtained in Sec. II for the spin wave energies. Results for
spectral functions obtained from Eq.~20! will be compared
with those from MC-SD simulations below in Sec. IV.

B. Spin dynamics simulations

The spin dynamics simulation is standard.16–18 Here we
summarize the method and describe the particular nume
parameters used. For a given temperature, a set of 200 in
states was taken from the Monte Carlo simulation to serv
initial conditions for the spin-dynamics time integration. T
nonlinear equations of motion associated with Hamilton
~1! are

dSn

dt
5Sn3F J̃(

a
Sn1aG , ~22!

whereJ̃ is the diagonal matrix of exchange couplings,

J̃5S J 0 0

0 J 0

0 0 J1K
D . ~23!

These were integrated forward in time using a stand
fourth order Runge-Kutta scheme with time steph
50.035/J ~for small K/J). By saving data for time Fourie
transforms at intervalsdt56h, allows for measuringS(q,v)
-

r,
e

rs

r-

a-
ult
e

al
ial
as

n

d

out to vmax52p/dt'30J. We saved a total ofNt5211

samples in time, integrating out to final timetmax5Ntdt
'430/J, giving a frequency resolution ofdv52p/tmax
'0.015J. The space and time Fourier-transformed spin-s
correlations were averaged over the 200 initial states to
S(q,v), for both in-plane and out-of-plane spin componen

IV. DYNAMIC CORRELATIONS: RESULTS

A. Small lattices „L<64…

At low temperaturesT!Tc , we especially expect that th
SCHA should give good agreement with the spin-dynam
simulation. We had noticed, however, that spin dynamics
small lattices gives an interesting set of unevenly spa
peaks inSzz(q,v), in contrast to one sharp peak at the sp
wave frequency inSxx(q,v), and also in contrast to the
smooth behavior predicted forSzz(q,v) by Eq. ~20!. Also,
an intensitymaximumin Szz(q,v) for v→0 is present for
wave vectors of the formq5(2p/L)(2m,0), wherem is an
integer. On the other hand, for wave vectorsq5(2p/
L)(2m11,0), there is an intensityminimumin Szz(q,v) at
v→0. In order to see if the SCHA theory could explain th
interesting result we restarted our calculation from Eq.~18!,
restricting the sums to the discrete wave vectorsk
5(2p/L)(m,n) of each lattice. Also, the time integration fo
S(q,v) was performed for afinite time intervaltmax,

Szz~q,v!5
1

2pE2tmax/2

tmax/2

Szz~q,t !e2 ivt dt, ~24!

wheretmax was taken to be the same as the integration ti
(430/J) used in our simulations. Equation~18! is modified
for a finite time interval, and a complete analysis leads to

Szz~q,v!5
tmax

2N~2p!3(k
H nq/21k~11nq/22k!

3Fsin@~v2V!tmax/2#

~v2V!tmax/2
G2

1nq/22k~11nq/21k!

3Fsin@~v1V!tmax/2#

~v1V!tmax/2
G2J . ~25!

The expression can be thought to representS(q,v) as a sum
over a set of narrow peaks of width approximately 2/tmax,
centered at frequenciesV, determined by choosingk such
that bothq/21k andq/22k in Eq. ~19! are allowed discrete
wave vectors. Besides restricting the sum in Eq.~25! to the
discrete set of lattice wave vectors, the finite time integrat
tmax implies discrete frequency incrementsdv52p/tmax
'0.015J, the same as in our spin dynamics simulation.

Examination of Eqs.~19! and ~25! allows us to conclude
that a nonzero intensity inSzz(q,v→0) can exist forall
wave vectors and not only for those of the formq
5(2p/L)(2m,0). However, a little consideration shows th
if q/2 does not fall on a reciprocal lattice vector, then it
impossible to choose a value ofk in Eq. ~19! to give V
50. Therefore, for wave vectorsq5(2p/L)(2m11,0),
none of the multiple peaks in Eq.~25! will be centered at
zero frequency, andSzz(q,v→0) is a local minimum. Al-
though no peak is centered at zero, the tails can contrib
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there. On the other hand, for wave vectors such aq
5(2p/L)(2m,0), andq5(2p/L)(m,m), we see thatq/2
falls on a highly symmetric point in the reciprocal lattic
and it is always possible to choosek to getV50 in Eq.~19!.
Then for these cases, there is a peak at zero frequency
Szz(q,v→0) is a local maximum.

The overall behavior ofSzz(q,v) with the lattice size ob-
tained either by numerical simulation~Fig. 5! or by the cal-
culation of Eq. ~25! ~Fig. 6! agree very well. In order to
make this comparison, because the spin-dynamics sim
tions are purely classical, it is necessary to replace all fac
of (11nq) in the SCHA expressions bynq . Also, these oc-
cupation numbers were evaluated by their classical lim
nq5T/Eq , consistently with the static calculations in Sec.
Figures 5 and 6 were obtained forK/J50.05 ~where Tc
'0.75J), q5(0.393,0), andT50.3J for lattice sizesL
516, 32, and 64.

Comparing the several peaks shown in Figs. 5 and 6, f
specific value ofL, we see that they are positioned arou
the same frequencies. The important feature is that as
system size is increased, the spacing between the mul
peaks inSzz(q,v) becomes smaller as 1/L. In addition, for a

FIG. 5. Szz(q,v) obtained from numerical simulation forK
50.05J, T50.3J, and L516,32,64, and wave vectorq
5(0.393,0).

FIG. 6. Szz(q,v) obtained from discrete summation~25! for K
50.05J, T50.3J, and L516,32,64, and wave vectorq
5(0.393,0).
nd

la-
rs

t,

a

he
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longer time integrationtmax, the widths of the peaks will be
narrower, and therefore they will become more distinct.
far as we are aware, this strong finite-size effect in lo
temperature spin-dynamics simulations is a feature that
been previously ignored. It is very likely, however, that
appears in any related models. For example, finite-size
fects most likely explain similar low-temperature multipl
peak features that have appeared inS(q,v) calculated for the
2D Heisenberg model with easy-plane anisotropy.18,19

B. Large lattices „L>128…

The SCHA calculation@Eq. ~17!# and the MC-SD simu-
lations both give single narrow spin wave peaks inSxx(q,v),
regardless of lattice size. The MC-SD peak positions foL
5128 have been compared with the SCHA results in Fig
and agree very well for the temperatures studied. The SC
theory gives peaks of zero width, thus it makes sense
compare the integrated intensities for the positive freque
peak, I xx5*0

1` dw Sxx(q,v). These are shown in Fig. 4
where the MC-SD results are compared to those obtai
from Eq. ~17!, I xx5Snq /(8p2). For the lower temperature
T50.3J, there is very good agreement. The good lowT
agreement, with no adjusted parameters, shows that the
proximations made in the SCHA theory are reasona
where we expect this simple theory to work. ForT50.6J,
however, the MC-SD result is suppressed compared to
SCHA prediction. Currently we cannot say whether this su
pression should be better described by spin wave interac
terms or possibly by nonlinear excitations such as soliton
domain walls. Clearly, both effects could become more i
portant as the critical temperature is approached.

For Szz(q,v), the widths of the multiple peaks are dete
mined both by the intrinsic width due to temperature, and
width 2p/tmax inherent in the spin-dynamics simulation. F
larger lattices, or higher temperatures, the spacing of
multiple peaks inSzz(q,v) becomes smaller than their me
sured widths, the peaks merge and the curve is m
smoother. Thus in our simulations the finite-size effects
quite well smoothed out for latticesL.128 and/or for high
temperatures. In Figs. 7–10, forK50.05J, severalq values,

FIG. 7. Szz(q,v) from ~continuous line! continuum limit ~20!
and from ~circles and triangles! numerical simulation forK
50.05J, T50.3J, andT50.6J, and wave vectorq5(0.393,0).
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and L5128 we see that the simulation data for the high
temperatureT50.6J are smooth while the data forT50.3J
still show sharp peaks.

Using the ‘‘discrete’’ equation ~25! for obtaining
Szz(q,v) for lattice sizeL5128 we do not get rid of the
multiple peak structure even forT50.6J. This can be seen in
Fig. 11 where the three types of calculations — numeri
simulation, discrete summation~25! and continuum limit
~20! — we used to obtainSzz(q,v) are shown forK
50.05, T50.6J, and q5(1.03,0). Typically, the discrete
SCHA summation results in anSzz(q,v) curve with very
strong multiple peak structure. In order to smooth out
structure obtained from Eq.~25! it is necessary to conside
much larger lattices (L.500). It is natural to expect that it i
more difficult to smooth out the spectra obtained by Eq.~25!
than the one obtained via spin dynamic simulation. Clea
the MC-SD calculation contains more fluctuations and the
fore greater peak widths, especially asT approachesTc ,
whereas in expression~25! all spin wave peaks have ver
narrow widths determined only by the integration time. I
stead of trying to smooth the SCHA spectra by consider
larger and larger lattices for the calculation of Eq.~25!—
which requires extra computational effort — we can go
the continuum approximation limit built in Eq.~20!. In fact,
most real systems contain a large numberN of spins (N
→`) and effects due to the discreteness of the lattice are
important. These macroscopic systems will be better re
sented by the continuous approximation built in Eq.~20!.
Figures 7–10 show the spectral functions obtained by
merically evaluating Eq.~20! for K50.05, T50.3J, andT
50.6J, for the following wave vectors:q5(0.393,0),
(1.473,0), (2.50,0) and (1.03,1.03). These are compa
with the corresponding MC-SD calculations for 1283128
lattices.

Obviously, considering the dynamical simulation, it is n
possible to go to theN→` limit: the computational cost in
simulations increases tremendously withN. Nevertheless, we
can remark on interesting features concerning the results
tained from the SCHA calculation and from numerical sim
lation procedures. First, the ‘‘cutoff frequency’’ or upper fr
quency limit below whichSzz(q,v) has appreciable intensit
does not depend on the lattice size and on the kind of ca

FIG. 8. Szz(q,v) from ~continuous line! continuum limit ~20!
and from ~circles and triangles! numerical simulation forK
50.05J,T50.3J, andT50.6J, and wave vectorq5(1.473,0).
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lation performed to obtainSzz(q,v). This can be observed in
Figs. 5, 6, and 7, which correspond to the three differ
ways we have used to obtain the spectral function
different lattice sizes but for the same wave vectorq
5(0.393,0).

In Fig. 12 we show the comparison of the cutoff fr
quencyDv of the obtained spectral functions in the who
uqu range for wave vectors likeq5(q,0): the data were ob-
tained for K50.05J and T50.3J. The comparison is re-
markably good ~a similar agreement is obtained forT
50.6J). We see that, for smalluqu, the frequency limitDv
increases linearly with the wave vector. A trivial analysis
Eq. ~20! leads us to the conclusion thatDv must be related
to the maximum valueV can have for eachq. From Eq.~19!
we easily obtain thatVmax5B(T)sinuqu/2 where B(T)
5eJS@12b(T)1h(T)(11K)# and e51 for q5(q,0)
wave vectors ande52 for q5(qx ,qx). For comparison, we
show in Fig. 12 a curve~dashed line! corresponding to
Vmax.

Second, the SCHA curves corresponding to wave vec
of the formq5(q,0) or (0,q) ~Figs. 7–9! show a sharp peak

FIG. 9. Szz(q,v) obtained from~continuous line! continuum
limit ~20! and from~circles and triangles! numerical simulation for
K50.05J, T50.3J, andT50.6J, and wave vectorq5(2.503,0).

FIG. 10. Szz(q,v) obtained from~continuous line! continuum
limit ~20! and from~circles and triangles! numerical simulation for
K50.05J, T50.3J, and T50.6J, and wave vector q
5(1.03,1.03).
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at higher frequencies, just before the spectral function v
ishes. For wave vectors likeq5(q,q), this sharp peak is
only observed near the point (p,p), and not for smalleruqu,
as can be seen in Fig. 10. The appearance or not of t
peaks in the SCHA calculation depends on the behavio
the density of statesu¹Vu21 in Eq. ~21!. Figures 13 and 14
show contours ofV(q,k) in the k-plane, forq5(0,0.393)
and q5(1.03,1.03), respectively, forT50.3J. For q in the
~10! or ~01! directions, the contours are straight lines~Fig.
13!. They become very widely spaced nearkx5p/2, or near
kx5p/2, whereV approachesVmax, and u¹Vu21 becomes
very large along the whole straight contour. The integrat
along the contour in Eq.~21! then leads to the sharp peaks
v→Vmax seen inSzz(q,v). For q along the~11! direction,
the contours are curves~Fig. 14!. For moderate values ofuqu,
the higher contours~nearVmax) approximate small circles
having limited total length and thus creating no sharp pea
Szz(q,v). Only for q very close to the point (p,p) is the
effect due to the divergence ofu¹Vu21 more important than
the contour length, and there a sharp peak atv→Vmax does
occur.

It is interesting to notice that this peak is also presen
the data obtained from the discrete spin wave calcula

FIG. 11. Szz(q,v) obtained from numerical simulation~filled
circles!, discrete summation~empty circles! and from continuum
limit ~line! for K50.05J, T50.6J, L5128, and wave vectorq
5(1.03,0).

FIG. 12. Cutoff frequency ofSzz(q,v) as a function ofq for
K50.05J andT50.3J.
n-

se
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in
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n

~Fig. 11! although the density of states does not appear
plicitly in Eq. ~25!. Nevertheless, the two spin wave calc
lations must, in fact, give similar results because Eqs.~20! or
~21! correspond to thetmax→`, and N→` limits of Eqs.
~25!. For small wave vectors, this sharp high frequency pe
is not seen in the simulation data suggesting that inclusio
higher order terms in the spin wave theory would proba
lead to the attenuation of this peak in the SCHA results.
the wave vectoruqu increases, a lateral shoulder develops
the spectra obtained from both numerical simulation a
SCHA calculations; it is already well defined forq;0.50.
For very large wave vectors, as in Fig. 9, the lateral shoul
for the MC-SD data occurs in the frequency region affec
by the increase ofu¹Vu21. This shoulder seems to be

FIG. 13. Contours of difference frequencyV(q,k) for T
50.3J andq5(0,0.393) as functions ofk.

FIG. 14. Contours of difference frequencyV(q,k) for T
50.3J andq5(1.03,1.03) as functions ofk.
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characteristic of two-spin-wave processes because it
been observed in other systems.20

As the temperature increases, the width of the spec
function Szz(q,v) decreases but its height increases. T
spin wave calculation seems to agree well with the MC-
data for large wave vectors, even forT50.6J. For small
wave vectors and higher temperature, however,Szz(q,v)
from the SCHA calculation is smaller than the MC-SD da
~Fig. 7!, suggesting that at high temperatures other proce
could be contributing to the dynamical properties of this s
tem. For systems with easy-axis anisotropy one can ex
the formation of domains, as in the two-dimensional Isi
model, and, also, localized solitons.21 In particular, it is usu-
ally expected22 that localized solitons would contribute to th
dynamical correlation function in thev→0 ~central peak!
region and, mostly, for small wave vectors.

V. CONCLUSIONS

We have applied a self-consistent harmonic approxim
tion to the easy-axis model, obtaining the spin wave en
gies, critical temperature and dynamic correlation functio
We also demonstrated how it is possible to apply the W
cluster Monte Carlo scheme to this easy-axis model, by h
ing it act on only theSz spin components. For the critica
temperature, the SCHA and MC results agree favorably o
a wide range of easy-axis anisotropy, both givingTc increas-
ing linearly withK for K@J. The spin-dynamics calculatio
of dynamic correlation functions shows interesting multip
peak features inSzz(q,v), that are most easily seen in sma
lattices. These finite-size dynamical features are correctly
scribed by the SCHA, especially forT far belowTc . Similar
features should appear in models with other symmetr
there are strong evidences that these effects were also
served in other simulations of two dimensional easy-pla
models.18

All the dynamical calculations discussed in this wo
were performed for anisotropy parameterK50.05, which
corresponds to a transition temperatureTc50.75J. For this
anisotropy, two temperatures were analyzed:T50.3J!Tc ,
andT50.6J. We could not expect that the spin wave calc
lation performed here, which neglects higher order terms
iv
s

s

as

al
e

es
-
ct

-
r-
.
f
v-

er

-

e-

s:
ob-
e

-
in

the spin interactions, would reproduce exactly the simulat
data. However, the agreement for the lowest temperaturT
50.3J, is very good. It is also surprisingly good forT
50.6J, a relatively high temperature, and large wave vect
where a lateral peak is seen to develop. AtT50.6J, for small
wave vectors and small frequencies, the SCHA function
Szz shows a central peak with heightsmaller than the one
obtained from MC-SD simulation. On the other hand, t
SCHA prediction for the integrated intensityI xx for the in-
plane correlations liesabovethe MC-SD data forT50.6J.
These features may suggest that other excitations, like lo
ized solitons and domain walls, may contribute to the d
namical correlation function as the temperature approac
the critical temperature. It was shown5 that the density of
these localized solitons increases exponentially withT as T
→Tc and, then, one should expect that their contribution
the dynamics of the system becomes more important for t
peraturesT;Tc . To stress this conclusion, we remark th
Sxx(q,v) obtained by MC-SD simulation forT.Tc ~not
shown here because SCHA cannot be compared in this
perature regime! does show a central peak (v;0) that in-
creases withT. Its properties will be analyzed in a futur
work.

We conclude by saying that the two-spin wave calculat
can explain the main features obtained from Monte Ca
spin-dynamics simulation at very low temperatures. AsT
→Tc , the comparison between SCHA spin-wave calculat
and the numerical simulation data suggests that other ex
tions may contribute to the dynamic properties of the mod
However, a better understanding concerning the contri
tions these excitations might give to the dynamic spec
functions requires some theory which takes into account
existence of such objects. To our knowledge, such a the
for easy-axis anisotropy two-dimensional systems is
available in the literature.
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