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Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors
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Combining density-functional perturbation theory with the frozen-phonon approach, the anharmonic shift of
the Raman frequency of the covalent semiconductors diamond and silicon are deteamim@tio. The
temperature dependence of the Raman frequency and the contribution of zero-point motion are calculated as
well as the Raman linewidth. Corresponding results for germanium have been obtained with the assumption
that the quartic anharmonic force constants may be approximated by those of silicon.
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[. INTRODUCTION semiconductors, which have been studied extensively by Ra-
man scattering as functions of temperataté (for detailed
Due to a large number of available experimental data andiscussions of the experimental work see Refs. 13 and 14;
numerous models as well a initio calculations of phonon recent experimental data on the Raman frequency and line-
frequencies and eigenvectors, lattice-dynamical effects in theidth of diamond for various isotopic compositions can be
covalent elemental semiconductors diamond, silicon, anfbund in Refs. 15-18, data on the linewidth of germanium
germanium, which may be treated in the harmonic approxifor various isotopic compaositions in Ref. 1Since the vi-
mation, are nowadays quite well understood. However, therbrational amplitudes of the atoms due to thermal and zero-
are important phenomena that result from the anharmonicitpoint motion are small in these materials for temperatures at
of the lattice potential. These are much more difficult to de-and below room temperature, one may use perturbation
scribe in the framework of model calculations because of théheory involving low-order anharmonicity only. Since the
large number of parameters involved in anharmonic extenearly work of Cowley® and Klemeng! there has been a
sions of lattice-dynamical models. Herd initio techniques number of attempts to calculate phonon lifetimes and partly
based on density-functional theory, which have been veranharmonic frequency shifts of elemental semiconductors in
successful in applications to semiconductdisr a recent the framework of anharmonic lattice-dynamical modérg*
review see Ref. )] have led to a breakthrough for a quanti- To overcome the problem of insufficient experimental data
tative description of anharmonic properties free of fitting pa-to fit the parameters of an anharmonic lattice-dynamical
rameters. Such calculations are needed for various reasonsodel, Narasimhan and Vanderbilthave determined cer-
They help to achieve a more detailed understanding of artain cubic anharmonic coupling constantsdiyinitio frozen
harmonic processes in crystals and allow for predictions ophonon calculations and fitted to these a Keating m&til.
material properties. Furthermore, they serve to assess thkis way, they calculated both the Raman linewidth and an-
quality of lattice-dynamical calculations based on the harharmonic frequency shift for silicon, the latter, however,
monic approximation, as they quantify the difference be-without the contribution of quartic anharmonicity. A differ-
tween harmonic quantities and the corresponding physicant approach to determine theoretically the temperature de-
guantities measured in experiments, which contain anhapendence of the Raman frequency and linewidth had been
monic contributions. chosen by Wangt al?’ They performed molecular dynam-
The physical properties focused on in this paper are thé&s simulations on the basis of a semiempirical tight-binding
intrinsic linewidth and anharmonic frequency shift of the tri- ansatz for the crystal energy. This technique is well suited
ply degenerate zone-center optical mode of the covalerfbr high temperatures, since it accounts, in principle, for an-
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harmonicity of any order. However, treating the atomic mo-
tion classically, it cannot deal properly with the low-

temperature quantum regime. In a pioneering wrk,

Debernardit al. have performed the first trulgb initio cal- ‘Q
culations of Raman linewidths for semiconductor crystals. A

calculation of this quantity within perturbation theory of (@) (b) ©

lowest order requires Cu_bic anharmo_nicity only. T_he aUthf)rS FIG. 1. Diagrammatic representation of the leading anharmonic
of Ref. 28 have determined the cubic anharmonic couplinggntributions in perturbation theory to the Raman frequertay:

constants by extending density-functional perturbationagpole diagram(b) loop diagram, andc) bubble diagram.
theory (DFPT) using the (2+1) theoren?® For a calcula-

tion of the anharmonic shift of the Raman frequency in per- =
turbation theory, quartic anharmonicity enters at the same g (@q)) =Ag =il 2.9

order of# as the cubic one. A determination of the corre-\ynere wg May be taken as the harmonic frequency of the
sponding quartic anharmonic coupling constants via thghonon mode dj). Lowest-order perturbation theory yields
(2n+1) theorem is complicated by the fact that unlike theihe well-known three contributions to the self-energy which
case of cubic anharmonicity, the linear response of the Kohnyre symholized by the three diagrams of Fig. 1 and which, in
Sham wave functions to phonon mode displacements is Nge |imit of zero temperature, are the lowest-ordérst-
longer sufficient. We therefore proceed in a different way.qrgep terms in an expansion of the self-energy in powers of
combining density-functional perturbation theory and the; \yhen specialized to a Raman modg=0,j=R), the

frozen-phonon approach and making use of the high SYMM&sorresponding expressions are explicitly
try of the Raman modes. The cub{quartio anharmonic

coupling constants needed for the calculation of the line- Mor(w) =TT+ T+ TTE (o), 2.2)
width and anharmonic frequency shift are determined by dif-
ferentiating oncdtwice) numerically with respect to the am- where
plitude of the Raman mode dynamical matrices that have
been calculated using DFPT. In this way, the anharmonic
shift of the Raman frequency has been calculated for flly

initio. First results for diamond with yet limited accuracy had

been presented in Ref. 30. Here, we present and discuss re- 1
sults for diamond and silicon. In the case of germanium, we HBE)ZEE V4(O0R,0R,qj,—qj)(2ng+1), (2.3b
have determined the cubic anharmonic coupling constants a

via the (In+1) theorem, while for the quartic anharmonic

force constants the corresponding values of silicon have been ME(w)=— EZ IV4(0R,qj,—qj")|?

used. Since the contribution of quartic anharmonicity to the R 2 s

anharmonic frequency shift was found to be considerably

IR = EB V3,.5(0R,0R, =) 7.5, (2.39

aj.j’

smaller than that of the cubic one, this approximation v 2(wgj+ wgjr) lin. +
(termed the mass approximation in other contegteuld be (g + og )2—(w+i8)2( Ngj + Ngjr)
; P ; qj " @qj’
acceptable for an estimate of the anharmonic line shift.
In the following section, our approach is described in 2(wgj— wgjr)

some detail. Section 1l contains some technical details of
our numerical calculations based on density-functional
theory and the local density approximation. In Sec. IV, re- (2.30
sults are presented for the Raman linewidth of C, Si, and Ge. ) .

They are compared with experimental and other theoreticdli€re. Ng; is the Bose factofexpfiwg /KgT)—1] 7. The
data available from the literature. Section V is then con-cubic (V3) and quartic V/,) coupling coefficients occur in an
cerned with the anharmonic shift of the Raman frequency€XPansion of the lattice potential energyaround the clas-
Specifically, results on the temperature dependence of tnheical equilibrium positions of the atoms in powers of phonon
Raman frequency are presented and quantitative predictioi®rmal coordinated\(qj)=ag;+a’;, wherea’ anda are

are made for the deviation of the\¥l dependence of the Phonon creation and annihilation operators, and in powers of
Raman frequency on isotope mads The paper concludes the components of the Lagrangian strain tenspyy)

with a final discussion.

- (Ngi»—Ngi)
(wqj—wqj/)z—(w-l-ls)z @ @

_ . 1 "
Va(ddj 1,020 2, - )= % IA(01) 1) AT ) - U,
Il. GENERAL THEORY (2.43
In the framework of interacting phonon thedtythe in- 1 53

trinsic linewidthI"g; and the anharmonic frequency shift; Vaap(al,a'j"—)
of a phonon mode with wave vectar and belonging to

branchj of a weakly anharmonic crystal follows from the

frequency-dependent retarded self-eneidy;(w) of this  The derivatives in Eq(2.4) have to be taken at the classical
mode: equilibrium configuration of the crystal.

= f_l« H 1y U
dA(Q))IA(Q']")dnap
(2.4b
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For cubic crystals, the firdtadpole contribution to the HereR(l) is the position vector of the unit cdl|] while «,8
self-energy may be expressed in the simple form are Cartesian indices, ari/)(1«,1" ") are the harmonic
force constants of the crystal in a static nonequilibrium con-
2.5 figuration with the optic displacement pattern of amplitude
' frozen in. The desired cubic and quartic anharmonic cou-

. .. pling constants are then obtained as derivatives of the dy-
where y(0R) is the Gruneisen constant of the Raman mode 5 mical matrices with respect tg namely,

andAa/a is the relative change of the lattice constant due to
zero-point and thermal motion of the atoms. First-order per- 5
V3(0quj T q.l ,) =

(T) Aa
Iy = —3werY(0R) =

turbation theory yields the well-known expression

12a°MNwgjwgj wor

S8 LS g 2ng+ D), (26

—_—= = i Ngi , . : o

a  6Bvg “aY )iy x> Sb e.(xla)es(x’|aj")
whereB,, is the bulk modulus an¥ the crystal volumeAb |
- - : . 17
initio calculations of the mode Gneisen constanty(qj) % —D(;é(KK,l(T])} (2.1
had been carried out earlier for diamond, silicon, and germa- de =0

nium by differentiating numerically the phonon frequencies
with respect to the lattice constamt at its equilibrium
value323*We note thafI{}) can be determined from experi-

mental data alone. The Graisen constants of the Raman  V,(0R,0R,qgj,—qj’)= \/
mode have been determined by Raman scattering for

diamond®* silicon® and germaniumi® The relative change

in lattice constant may be calculated from x> NCEEACHET

k' B

and likewise

hZ

Ann 2N 2 2
36a M<“N (l)qj(x)qu(x)OR

Aa(T)_Aa(O)
a a

&2
FD%(KK'M)

T
+f a(THdT’, (2.7
0

X

(212

e=0

where«(T) is the linear thermal expansion coefficient. The
relative shiftAa(0)/a of the lattice constant due to zero-
point motion can be determined by a linear extrapolatio
down to T=0 from the regime, wherda(T)/a is linear in
T. This may be very inaccurate as the linear regime may be

unrecognizably small. Another way involves the isotope ef- IIl. TECHNICAL ASPECTS

fect on the lattice constant. Efl_ is the Iatﬁce constant &t In practice, the dynamical matric&q) are determined
=0 for a crystal made of one isotope with mads anda; o a uniform grid of eighty points in the irreducible part of
is the lattice constant of a crystal with isotope mks, EQ.  the Brillouin zone, as described in Ref. 37. An interpolation
(2.6) implies that scheme has then been used that first transforms the dynami-
cal matrices into real space, producing force constants be-
Aa;(0)  ay(0)—ay(0) tween up to ninth nearest neighbors. The numerical deriva-
a, a,(1— M, /M) tives with respect tee have then been carried out in real
space rather than in Fourier space. From these derivatives of
By determiningII{Y in this way, one obtains already an force constants, the quantitie8D(q)/de" have then been
order of magnitude estimate of the effect of anharmonicitycalculated via a Fourier transform ongrids of desired form
on the Raman frequency. and density. To obtain numerical derivatives with sufficient
In order to evaluate the bubble and the loop diagrams oficcuracy, dynamical matrices have been computed for 11
Fig. 1, the anharmonic coupling constahmtg(OR,qj,—qj’)  different values ok ranging from—0.02 to+0.02. From the
and V,4(OR,0R,qj,—qj) have to be known for a grid of dynamical matrices at=0, the frequencies and eigenvectors
wave vectorsq in the first Brillouin zone. To determine of the phonon modes in the equilibrium configuration of the
them, we calculate dynamical matrices for the crystal latticecrystal have been determined.
in its classical equilibrium configuration as well as for a The dynamical matrices have been calculated within
crystal structure with a displacement pattern of the form  density-functional perturbation theory on the basis of the lo-
cal density approximation. For the correlation potential, the
u,(lk)=¢(al2) (—1)“ (2.9 parametrization of Perdew and Zuntfeof the Monte Carlo
] ] data of Ceperley and Ald&has been used. The Kohn-Sham
frozen in, wherd labels the unit cells and=1,2 the tWo  \yaye functions are expanded in plane-wave basis sets with
sublattices in the diamond structure. We denote these dyhe kinetic energy cutoff chosen as 60 Ry for diamond and
namical matrices bf(*) and adopt the definition 18 Ry for silicon. Soft norm-conserving pseudopotentials
1 have been constru?gd for C and Si using the method of
() ot o) — (e) N aig-R() Troullier and Martins™” The variation of the cubic and quar-
Ds(x’lQ) M2| Pap(Olr)e - (210 tic anharmonic coupling coefficientdNV5(0R,qj, —qj) and

whereN is the number of unit cells anéll the atomic mass.
The quantitye,(«|qj) is a component of the eigenvector of
"the dynamical matriD(®(q) associated with branch

(2.9
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20 [ harmonic lattice-dynamical quantities, the model parameters
S had been fitted to elements of mode Ge&isen tensors, i.e.,
A to quantities characterizing the interaction of acoustic zone-
10 center modes with other phonon modes. The force constants
P O in Table | describe the anharmonic coupling between the
optical zone-center modes and phonon modes oKXtpeint

at the Brillouin zone boundary. While the model results for
4 Fy e four of the six force constants are in very good agreement
with the ab initio data, the quantities,sp and lype deviate
noticeably.

In the case of germanium, the cubic anharmonic force
constants have been calculated using DFPT and the (2
+1) theorem in the same way as in Ref. 28. The pseudopo-
tential for germanium has been constructed following a
scheme suggested by von Barth and ®aand the kinetic
energy cutoff was 24 Ry. For the quartic anharmonic force
constants in the calculation of thg, coefficients for germa-
nium, we have used the corresponding values for silicon de-
termined in the way described above. This “mass approxi-
mation” should be justified here in view of the fact that the
r K X loop diagram yields the smallest contribution to the self-
) _ ) _ energy. To assess to some extent the quality of this approxi-

FIG. 2. Phonon dispersion curvés and cubic(b) and quartic  mation, we compare in Table | cubic anharmonic force con-
(© anharmopic (;oupling constgnts as functionslpf wave Vectoliants of germanium determined by DFPT with those of
?f:geitheefvg;iftffntﬁé1&%;?;:'rirggg?gzﬁznan&:"ﬁogi(r”g?t)' silicon. It is found that the mass approximation yields values

g g(ha, ection having a modulus consistently too large. However, the dis-

0.0 fezi,

15877 —0.8

[ea(2]0R) =1/V8]. crepancies are less than 24% in the worst cases. We may
. _ . expect a similar situation with thé, coefficients.
NV,4(0R,0R,qj,—qj) as a function ofq along the(1,1,0 For the evaluation of the bubble diagram, we have first

direction is shown in Fig. 2. An interesting feature is thecalculated the damping functiol gr(w)=—Im I x(w),
strong variation of some cubic and quartic coupling coeffi-which has the explicit form

cients of diamond in the neighborhood of tepoint which

is associated with an avoided crossing of two branches in the -

frequency dispersion relation. In Table |, values for cubic FOR(“’):EE IV3(OR,qj, —qj ") H{[1+Nng; +ng; ]
anharmonic force constants of silicon as defined in Ref. 41 i’

are compared with the results of two othal initio ap-
proaches. One of them uses DFPT and the«2) theorem,
while the second one is a frozen-phonon calculation. The X 8(wqj— wgj — )} (3.0
agreement is quite satisfactory in view of the technical dif-

ferences in the calculations concerning, e.g., th_e kinetic ©Mrhis function has been determined by a sampling procedure
ergy cutoffs and the sums over the electronic eigenstates iyt givides the frequency range between zero and twice the
the Brillouin zone. Also shown in Table | are values for yayimal phonon frequency into 400 channels of equal size.
cubic anharmonic force constants resulting from a nonlineappqnqn frequencies and, coefficients have been provided

lattice-dynamical model that combines the shell model withOn a coarse grid of 916 vectors in an irreducible segment of

42 ; ;
the bond charge modét** Apart from various optical and the Brillouin zone. By quadratic interpolation of the phonon

) _ ) frequencies, a finer grid of up te>% 916 wave vectors was
TABLE I. Cubic anharmonic force constants for Si and Ge asgenerated. The results have been tested against variations of

X 5(wqj+wqu—w)+2[nqu—nqj]

defined in Ref. 41 in units of eV/A the grid size and are shown in Fig. 3 for temperatiire

=0K.
Bryz | 2 w6 e e lyee Since the static optic displacement vect@r9) is not in-

DM2 —289.75 233.85 —36.10 53.35 452.25 —63.64 Vvariant under all point group operations of the diamond

DFEPT® —285.96 226.90 —37.65 49.41 441.80 —63.16 Structure, the summations over wave vectgriave to be

[ —2904 315.20 —49.12 46.48 extended over four nonequivalent irreducible segments of the

SBCM —306.0 2320 7.0 500 4520 1000  Brillouin zone.

DEPT® —233.71 194.94 —34.95 4443 36549 —58.61 The real part of the self-energy at frequengy, has been
obtained from the damping functioigr(w) via Kramers-

aSi, numerical derivatives of dynamical matridgsis work). Kronig transformation.

bSj, density-functional perturbation theofiRef. 43 For the evaluations of the loop diagram and the tadpole

¢si, frozen-phonon calculatior(®ef. 41) diagram, grids of special poifffshave been used that corre-

9si, nonlinear shell-bond-charge mod®&efs. 23,42 spond to 1823 vectors in an irreducible segment of the Bril-

€Ge, density-functional perturbation thed(this work). louin zone.
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FIG. 3. Damping function$’oz(w) for C (a), Si (b), and Ge(c).

IV. INTRINSIC LINE WIDTH tadpole diagram and the bubble diagram are approximately

In a perfect weakly anharmonic crystal, the shape of theof the same order of magnitude at low temperatures, the loop

Raman lines is a Lorentzian to a good approximation Withdiagram is found to yie'?' a contribution much smaller tha,“_]
the full width at half maximum(FWHM) being equal to the other two. Only at high temperatures in the case of sili-
p A . . . con does the loop diagram reach the same magnitude as the
fZFOR 'dAb |r|1.|t|o galgjlztlons 3:,[ thllsésquaguty hzd tbeen per- tadpole diagram, but is much smaller than the contribution of
ormed eariier by bebernarat al, ™ and our data ar€ N nq p ppe diagram. In the case of germanium, the loop dia-

good agreement with their earlier calculations. The W'dthsgram has been evaluated with the guartic anharmonic cou-

due to spontaneous decay at zero temperature have be n tants of sil A ing that the relati X
found to be 0.97 cm! for C, 1.44 cm?! for Si, and piing constants ot silicon. Assuming that the refative errorin
0.69 cm! for Ge, while the corresponding values of Ref. the .qua.rtlc anharmonic constants due to .thls Mass approxi-
28 are 1.01 cml, 1.48 cm'l, and 0.67 cm?, respec- mation is not. larger than that for the cublp or(é'sible D,
tively. apd considering the smaII'ness of the COI’I.trIbUtIOI’I qf the loop
In Fig. 4, our results for the temperature dependence ofiagram to the anharmonic frequency shift, we estimate that
the Raman linewidth of diamond, silicon, and germanium ardhe error of the latter quantity due to the mass approximation
compared with experimental data. Except for diamondshould be less than 1.5% &t 0 K and less than 7% at room
where the experimental data show a large scatter and afgémperature.
consistently larger than the theoretical ones, the agreement To obtain the physical frequency as measured from the
between theory and experiment is quite satisfactory. position of the Raman line, one has to add the contributions
of the three self-energy diagrams of Fig. 1 to the Wiaa-
monic) Raman frequency. However, the latter is only known
with an accuracy that is smaller than the size of the anhar-
The real part of the self-enerd¥,g gives rise to a shift of monic contributions, as may be seen from Table II. Here, our
the Raman frequency to which all three diagrams of Fig. 1harmonic Raman frequencies,, menic are compared with
contribute. Unlike the situation of the anharmonic correc-earlier DFPT calculatiod$*” and experimental values
tions to the bulk moduli of C and $7,where strong com-  Vexperimentat The anharmonic shiftd» at zero temperature
pensations occur between the three different terms imposingre also displayed. Obviously, the harmonic frequencies are
high requirements on the numerical accuracy of these termsonsistently too low for the equationveyperimental
all three contributions to the Raman frequency are negatives vharmonict A v to be satisfied. This may be a deficiency of
for the three material@ig. 5. While the contributions of the the local density approximation. To compare our results on
the temperature dependence of the Raman frequency with
3 T experimental data, we have therefore shifted our data to the
©@ experimental value &=0 in Fig. 5. In the case of diamond
4 at temperatures below 500 K, the temperature dependence
2 agrees well with the experimental data of Anastassakis
et al,® whereas at elevated temperatures, the slope appears to
agree slightly better with those of Herchen and Capéllih
1 % the case of silicon, very good agreement is found with the
experimental data of Méneez and Cardofid as well as
with the data by Tsu and Hernand€zhe latter measured at
; : 0 : and above room temperature. For Ge, the agreement is not as
0 1000 2000 © T4?|g] 800 0 150 300 good as for silicon. The discrepancy may be partly due to the
error in the calculations introduced by the mass approxima-
FIG. 4. Raman linewidthga) diamond. Experimental data from tion for the quartic anharmonic coupling constants.
Ref. 14(rectangular symbo)sRef. 6(diamond$, Ref. 5(triangles. The theoretical data in Table {the harmonic frequency
(b) Si and(c) Ge. Experimental data from Ref. 18iamonds. Vharmonic @nd the anharmonic frequency shift) refer to the

V. ANHARMONIC LINE SHIFT
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FIG. 5. Upper panel: contributions of the three diagrams of Fig. 1 to the anharmonid shoftthe Raman frequency of @), Si (b),
and Ge(c). Solid line, tadpole diagram; dashed line, bubble diagram; dash-dotted line, loop diagram. Lower panel: temperature dependence
of the Raman frequency of @), Si (b), and Ge(c). The theoretical datésolid curve$ have been shifted to the experimental value of the
Raman frequency at=0 K. Experimental data ife) from Ref. 6(triangles and from Ref. 14squares Experimental data ifb) from Ref.
13 (triangles and from Ref. 11(squarels Experimental data ifc) from Ref. 13(triangles and from Ref. 4G squares

natural isotopic composition of the three materials; i.e., inright-hand side of Eq(5.1) contributes—2.4 cm !, The
the spirit of the virtual crystal approximation, they have beenRaman scattering results of Vogelges&ltgil.lg suggest a
calculated with a mash that is an average over the isotope value of 51.8 cm? for the frequency difference.

masses weighted with their relative natural abundances. To

determine the Raman frequencyTat 0 K of a crystal con-

sisting of an isotope with madd,, one may use the formula VI. CONCLUSIONS

7 M I.n summary, the contributions of an_harmonicity of the
2(Mg) = Vharmonid M) 3 /M_JFAV(M)M_, (5.1 lattice potential to the Raman frequencies of the elemental
0 0 semiconductors C, Si, and Ge have been calculaleihitio

using an approach that combines DFPT with the frozen-
phonon method in a way analogous to earlier calculations of
the contribution of zero-point and thermal motion to the bulk
modulus of diamond’ Specifically, we have determined the

. . . temperature dependence of the Raman frequency and made

TABLE Il. Raman frequencies of C, Si, and Ge: harmonic val- hredictions concerning M corrections to the isotope effect

ues, experimental values =0, and anharmonic shif\v at T of the Raman frequency. These corrections should be resolv-
=0. Unit: e able by modern high-resolution light-scattering techniques.
The approach we have chosen relies on the high symmetry of

which is correct up to first order ifa. Using this formula, we
find for the difference between the Raman frequencie$of
and 1°C a value of 49.9 cm!, where the second term on the

< S Ge the phonon eigenvector of the Raman mode. Introducing su-
Harmoni@ 1322 508 304 percells, a calculation of the anharmonic correction of zone-
Harmonic 1324 517 306° boundary modes should still be feasible. Knowledge of an-
Experimental 1333% 5o 305 harmonic corrections to optic phonon frequencies in
AR ~316 -71 25 diamond has become particularly desirable in connection
with the problem of overbending of the LO branch in this
2This work. material?®4° Specifically, there does not seem to exist a defi-
bReference 32. nite answer to the question of whether the zone-center optic
‘Reference 37. frequency in diamond constitutes a local minimum or rather
YReference 6. a saddle point. The anharmonic shift of the Raman frequency

‘Reference 13. is of the same order of magnitude as the overbending found
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experimentally’®4° If this shift varies as a function of wave ment. At temperatures sufficiently high such that quantum

vector, it will influence the shape of the LO dispersion corrections become unimportaat) initio molecular dynam-

curves. ics method¥® could be applied to determine the linewidth
A comparison between our results for the temperature deand frequency of the Raman mode.

pendence of the Raman frequencies and corresponding ex-
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