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Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors
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Combining density-functional perturbation theory with the frozen-phonon approach, the anharmonic shift of
the Raman frequency of the covalent semiconductors diamond and silicon are determinedab initio. The
temperature dependence of the Raman frequency and the contribution of zero-point motion are calculated as
well as the Raman linewidth. Corresponding results for germanium have been obtained with the assumption
that the quartic anharmonic force constants may be approximated by those of silicon.
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I. INTRODUCTION

Due to a large number of available experimental data
numerous models as well asab initio calculations of phonon
frequencies and eigenvectors, lattice-dynamical effects in
covalent elemental semiconductors diamond, silicon,
germanium, which may be treated in the harmonic appro
mation, are nowadays quite well understood. However, th
are important phenomena that result from the anharmon
of the lattice potential. These are much more difficult to d
scribe in the framework of model calculations because of
large number of parameters involved in anharmonic ext
sions of lattice-dynamical models. Here,ab initio techniques
based on density-functional theory, which have been v
successful in applications to semiconductors~for a recent
review see Ref. 1!, have led to a breakthrough for a quan
tative description of anharmonic properties free of fitting p
rameters. Such calculations are needed for various reas
They help to achieve a more detailed understanding of
harmonic processes in crystals and allow for predictions
material properties. Furthermore, they serve to assess
quality of lattice-dynamical calculations based on the h
monic approximation, as they quantify the difference b
tween harmonic quantities and the corresponding phys
quantities measured in experiments, which contain an
monic contributions.

The physical properties focused on in this paper are
intrinsic linewidth and anharmonic frequency shift of the t
ply degenerate zone-center optical mode of the cova
PRB 590163-1829/99/59~9!/6182~7!/$15.00
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semiconductors, which have been studied extensively by
man scattering as functions of temperature2–14 ~for detailed
discussions of the experimental work see Refs. 13 and
recent experimental data on the Raman frequency and
width of diamond for various isotopic compositions can
found in Refs. 15–18, data on the linewidth of germaniu
for various isotopic compositions in Ref. 19!. Since the vi-
brational amplitudes of the atoms due to thermal and ze
point motion are small in these materials for temperature
and below room temperature, one may use perturba
theory involving low-order anharmonicity only. Since th
early work of Cowley20 and Klemens,21 there has been a
number of attempts to calculate phonon lifetimes and pa
anharmonic frequency shifts of elemental semiconductor
the framework of anharmonic lattice-dynamical models.22–24

To overcome the problem of insufficient experimental d
to fit the parameters of an anharmonic lattice-dynami
model, Narasimhan and Vanderbilt25 have determined cer
tain cubic anharmonic coupling constants byab initio frozen
phonon calculations and fitted to these a Keating model.26 In
this way, they calculated both the Raman linewidth and
harmonic frequency shift for silicon, the latter, howeve
without the contribution of quartic anharmonicity. A differ
ent approach to determine theoretically the temperature
pendence of the Raman frequency and linewidth had b
chosen by Wanget al.27 They performed molecular dynam
ics simulations on the basis of a semiempirical tight-bind
ansatz for the crystal energy. This technique is well sui
for high temperatures, since it accounts, in principle, for a
6182 ©1999 The American Physical Society
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harmonicity of any order. However, treating the atomic m
tion classically, it cannot deal properly with the low
temperature quantum regime. In a pioneering work28

Debernardiet al. have performed the first trulyab initio cal-
culations of Raman linewidths for semiconductor crystals
calculation of this quantity within perturbation theory
lowest order requires cubic anharmonicity only. The auth
of Ref. 28 have determined the cubic anharmonic coup
constants by extending density-functional perturbat
theory ~DFPT! using the (2n11) theorem.29 For a calcula-
tion of the anharmonic shift of the Raman frequency in p
turbation theory, quartic anharmonicity enters at the sa
order of \ as the cubic one. A determination of the corr
sponding quartic anharmonic coupling constants via
(2n11) theorem is complicated by the fact that unlike t
case of cubic anharmonicity, the linear response of the Ko
Sham wave functions to phonon mode displacements is
longer sufficient. We therefore proceed in a different w
combining density-functional perturbation theory and t
frozen-phonon approach and making use of the high sym
try of the Raman modes. The cubic~quartic! anharmonic
coupling constants needed for the calculation of the li
width and anharmonic frequency shift are determined by
ferentiating once~twice! numerically with respect to the am
plitude of the Raman mode dynamical matrices that h
been calculated using DFPT. In this way, the anharmo
shift of the Raman frequency has been calculated for fullyab
initio. First results for diamond with yet limited accuracy h
been presented in Ref. 30. Here, we present and discus
sults for diamond and silicon. In the case of germanium,
have determined the cubic anharmonic coupling const
via the (2n11) theorem, while for the quartic anharmon
force constants the corresponding values of silicon have b
used. Since the contribution of quartic anharmonicity to
anharmonic frequency shift was found to be considera
smaller than that of the cubic one, this approximati
~termed the mass approximation in other contexts! should be
acceptable for an estimate of the anharmonic line shift.

In the following section, our approach is described
some detail. Section III contains some technical details
our numerical calculations based on density-functio
theory and the local density approximation. In Sec. IV,
sults are presented for the Raman linewidth of C, Si, and
They are compared with experimental and other theoret
data available from the literature. Section V is then co
cerned with the anharmonic shift of the Raman frequen
Specifically, results on the temperature dependence of
Raman frequency are presented and quantitative predic
are made for the deviation of the 1/AM dependence of the
Raman frequency on isotope massM . The paper conclude
with a final discussion.

II. GENERAL THEORY

In the framework of interacting phonon theory,31 the in-

trinsic linewidthḠqj and the anharmonic frequency shiftDqj
of a phonon mode with wave vectorq and belonging to
branch j of a weakly anharmonic crystal follows from th
frequency-dependent retarded self-energyPqj (v) of this
mode:
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Pqj~vqj !5Dqj2 i Ḡqj , ~2.1!

wherevqj may be taken as the harmonic frequency of t
phonon mode (qj ). Lowest-order perturbation theory yield
the well-known three contributions to the self-energy whi
are symbolized by the three diagrams of Fig. 1 and which
the limit of zero temperature, are the lowest-order~first-
order! terms in an expansion of the self-energy in powers
\. When specialized to a Raman mode (q50, j 5R), the
corresponding expressions are explicitly

P0R~v!5P0R
~T!1P0R

~L !1P0R
~B!~v!, ~2.2!

where

P0R
~T!5(

a,b
V3,ab~0R,0R,2 !hab , ~2.3a!

P0R
~L !5

1

2(qj
V4~0R,0R,qj ,2qj !~2nqj11!, ~2.3b!

P0R
~B!~v!52

1

2 (
qj , j 8

uV3~0R,qj ,2qj 8!u2

3H 2~vqj1vqj 8!

~vqj1vqj 8!
22~v1 i«!2

~11nqj1nqj 8!

1
2~vqj2vqj 8!

~vqj2vqj 8!
22~v1 i«!2

~nqj 82nqj !J .

~2.3c!

Here, nqj is the Bose factor@exp(\vqj /KBT)21#21. The
cubic (V3) and quartic (V4) coupling coefficients occur in an
expansion of the lattice potential energyU around the clas-
sical equilibrium positions of the atoms in powers of phon
normal coordinatesA(qj )5aqj1a2qj

† , wherea† and a are
phonon creation and annihilation operators, and in power
the components of the Lagrangian strain tensor (hab)

Vn~q1j 1 ,q2j 2 , . . . !5
1

\

]n

]A~q1j 1!]A~q2j 2!¯
U,

~2.4a!

V3,ab~qj ,q8j 8,2 !5
1

\

]3

]A~qj !]A~q8j 8!]hab

U.

~2.4b!

The derivatives in Eq.~2.4! have to be taken at the classic
equilibrium configuration of the crystal.

FIG. 1. Diagrammatic representation of the leading anharmo
contributions in perturbation theory to the Raman frequency:~a!
tadpole diagram,~b! loop diagram, and~c! bubble diagram.
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For cubic crystals, the first~tadpole! contribution to the
self-energy may be expressed in the simple form

P0R
~T!523v0Rg~0R!

Da

a
, ~2.5!

whereg(0R) is the Grüneisen constant of the Raman mo
andDa/a is the relative change of the lattice constant due
zero-point and thermal motion of the atoms. First-order p
turbation theory yields the well-known expression

Da

a
5

\

6B0V(
qj

vqjg~qj !~2nqj11!, ~2.6!

whereB0 is the bulk modulus andV the crystal volume.Ab
initio calculations of the mode Gru¨neisen constantsg(qj )
had been carried out earlier for diamond, silicon, and ger
nium by differentiating numerically the phonon frequenc
with respect to the lattice constanta at its equilibrium
value.32,33We note thatP0R

(T) can be determined from exper
mental data alone. The Gru¨neisen constants of the Rama
mode have been determined by Raman scattering
diamond,34 silicon,35 and germanium.36 The relative change
in lattice constant may be calculated from

Da~T!

a
5

Da~0!

a
1E

0

T

a~T8!dT8, ~2.7!

wherea(T) is the linear thermal expansion coefficient. T
relative shift Da(0)/a of the lattice constant due to zero
point motion can be determined by a linear extrapolat
down toT50 from the regime, whereDa(T)/a is linear in
T. This may be very inaccurate as the linear regime may
unrecognizably small. Another way involves the isotope
fect on the lattice constant. Ifa1 is the lattice constant atT
50 for a crystal made of one isotope with massM1 anda2
is the lattice constant of a crystal with isotope massM2 , Eq.
~2.6! implies that

Da1~0!

a1
5

a1~0!2a2~0!

a1~12AM1 /M2!
. ~2.8!

By determiningP0R
(T) in this way, one obtains already a

order of magnitude estimate of the effect of anharmonic
on the Raman frequency.

In order to evaluate the bubble and the loop diagrams
Fig. 1, the anharmonic coupling constantsV3(0R,qj ,2qj 8)
and V4(0R,0R,qj ,2qj ) have to be known for a grid o
wave vectorsq in the first Brillouin zone. To determine
them, we calculate dynamical matrices for the crystal latt
in its classical equilibrium configuration as well as for
crystal structure with a displacement pattern of the form

ua~ lk!5« ~a/2! ~21!k ~2.9!

frozen in, wherel labels the unit cells andk51,2 the two
sublattices in the diamond structure. We denote these
namical matrices byD(«) and adopt the definition

Dab
~«!~kk8uq!5

1

M(
l

Fab
~«!~0k,lk8!eiq–R~ l !. ~2.10!
o
r-

a-

or

n

e
-

y

f

e

y-

HereR( l ) is the position vector of the unit celll , while a,b
are Cartesian indices, andFab

(«)( lk,l 8k8) are the harmonic
force constants of the crystal in a static nonequilibrium co
figuration with the optic displacement pattern of amplitude«
frozen in. The desired cubic and quartic anharmonic c
pling constants are then obtained as derivatives of the
namical matrices with respect to«, namely,

V3~0R,qj ,2qj 8!5A \

12a2MNvqjvqj 8v0R

3 (
k,k8

(
a,b

ea~kuqj !eb* ~k8uqj 8!

3F ]

]«
Dab

~«!~kk8uq!G
«50

~2.11!

and likewise

V4~0R,0R,qj ,2qj 8!5A \2

36a4M2N2vqjvqj 8v0R
2

3 (
k,k8

(
a,b

ea~kuqj !eb* ~k8uqj 8!

3F ]2

]«2 Dab
~«!~kk8uq!G

«50

, ~2.12!

whereN is the number of unit cells andM the atomic mass.
The quantityea(kuqj ) is a component of the eigenvector o
the dynamical matrixD(0)(q) associated with branchj .

III. TECHNICAL ASPECTS

In practice, the dynamical matricesD(q) are determined
on a uniform grid of eightq points in the irreducible part o
the Brillouin zone, as described in Ref. 37. An interpolati
scheme has then been used that first transforms the dyn
cal matrices into real space, producing force constants
tween up to ninth nearest neighbors. The numerical der
tives with respect to« have then been carried out in re
space rather than in Fourier space. From these derivative
force constants, the quantities]nD(q)/]«n have then been
calculated via a Fourier transform onq grids of desired form
and density. To obtain numerical derivatives with sufficie
accuracy, dynamical matrices have been computed for
different values of« ranging from20.02 to10.02. From the
dynamical matrices at«50, the frequencies and eigenvecto
of the phonon modes in the equilibrium configuration of t
crystal have been determined.

The dynamical matrices have been calculated wit
density-functional perturbation theory on the basis of the
cal density approximation. For the correlation potential,
parametrization of Perdew and Zunger38 of the Monte Carlo
data of Ceperley and Alder39 has been used. The Kohn-Sha
wave functions are expanded in plane-wave basis sets
the kinetic energy cutoff chosen as 60 Ry for diamond a
18 Ry for silicon. Soft norm-conserving pseudopotenti
have been constructed for C and Si using the method
Troullier and Martins.40 The variation of the cubic and quar
tic anharmonic coupling coefficientsANV3(0R,qj ,2qj ) and
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NV4(0R,0R,qj ,2qj ) as a function ofq along the~1,1,0!
direction is shown in Fig. 2. An interesting feature is t
strong variation of some cubic and quartic coupling coe
cients of diamond in the neighborhood of theK point which
is associated with an avoided crossing of two branches in
frequency dispersion relation. In Table I, values for cu
anharmonic force constants of silicon as defined in Ref.
are compared with the results of two otherab initio ap-
proaches. One of them uses DFPT and the (2n11) theorem,
while the second one is a frozen-phonon calculation. T
agreement is quite satisfactory in view of the technical d
ferences in the calculations concerning, e.g., the kinetic
ergy cutoffs and the sums over the electronic eigenstate
the Brillouin zone. Also shown in Table I are values f
cubic anharmonic force constants resulting from a nonlin
lattice-dynamical model that combines the shell model w
the bond charge model.23,42 Apart from various optical and

FIG. 2. Phonon dispersion curves~a! and cubic~b! and quartic
~c! anharmonic coupling constants as functions of wave ve
along theS direction ~1,1,0! for diamond~left! and silicon~right!.
The eigenvector of the Raman mode is along the~1,1,1! direction
@ea(2u0R)51/A6#.

TABLE I. Cubic anharmonic force constants for Si and Ge
defined in Ref. 41 in units of eV/Å3.

Bxyz I zaa I zbb I zcc I xac I ybc

DMa 2289.75 233.85 236.10 53.35 452.25 263.64
DFPTb 2285.96 226.90 237.65 49.41 441.80 263.16
FPc 2290.4 315.20 249.12 46.48
SBCMd 2306.0 232.0 7.0 50.0 452.0 2100.0
DFPTe 2233.71 194.94 234.95 44.43 365.49 258.61

aSi, numerical derivatives of dynamical matrices~this work!.
bSi, density-functional perturbation theory~Ref. 43!
cSi, frozen-phonon calculations~Ref. 41!
dSi, nonlinear shell-bond-charge model~Refs. 23,42!.
eGe, density-functional perturbation theory~this work!.
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harmonic lattice-dynamical quantities, the model parame
had been fitted to elements of mode Gru¨neisen tensors, i.e.
to quantities characterizing the interaction of acoustic zo
center modes with other phonon modes. The force const
in Table I describe the anharmonic coupling between
optical zone-center modes and phonon modes of theX point
at the Brillouin zone boundary. While the model results f
four of the six force constants are in very good agreem
with the ab initio data, the quantitiesI zbb and I ybc deviate
noticeably.

In the case of germanium, the cubic anharmonic fo
constants have been calculated using DFPT and then
11) theorem in the same way as in Ref. 28. The pseudo
tential for germanium has been constructed following
scheme suggested by von Barth and Car,44 and the kinetic
energy cutoff was 24 Ry. For the quartic anharmonic fo
constants in the calculation of theV4 coefficients for germa-
nium, we have used the corresponding values for silicon
termined in the way described above. This ‘‘mass appro
mation’’ should be justified here in view of the fact that th
loop diagram yields the smallest contribution to the se
energy. To assess to some extent the quality of this appr
mation, we compare in Table I cubic anharmonic force co
stants of germanium determined by DFPT with those
silicon. It is found that the mass approximation yields valu
having a modulus consistently too large. However, the d
crepancies are less than 24% in the worst cases. We
expect a similar situation with theV4 coefficients.

For the evaluation of the bubble diagram, we have fi
calculated the damping functionG0R(v)52Im P0R(v),
which has the explicit form

G0R~v!5
p

2 (
q, j , j 8

uV3~0R,qj ,2qj 8!u2$@11nqj1nqj 8#

3d~vqj1vqj 82v!12@nqj 82nqj #

3d~vqj2vqj 82v!%. ~3.1!

This function has been determined by a sampling proced
that divides the frequency range between zero and twice
maximal phonon frequency into 400 channels of equal s
Phonon frequencies andV3 coefficients have been provide
on a coarse grid of 916q vectors in an irreducible segment o
the Brillouin zone. By quadratic interpolation of the phono
frequencies, a finer grid of up to 933916 wave vectors was
generated. The results have been tested against variatio
the grid size and are shown in Fig. 3 for temperatureT
50 K.

Since the static optic displacement vector~2.9! is not in-
variant under all point group operations of the diamo
structure, the summations over wave vectorsq have to be
extended over four nonequivalent irreducible segments of
Brillouin zone.

The real part of the self-energy at frequencyv0R has been
obtained from the damping functionG0R(v) via Kramers-
Kronig transformation.

For the evaluations of the loop diagram and the tadp
diagram, grids of special points45 have been used that corre
spond to 182q vectors in an irreducible segment of the Br
louin zone.

r

s
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FIG. 3. Damping functionsG0R(v) for C ~a!, Si ~b!, and Ge~c!.
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IV. INTRINSIC LINE WIDTH

In a perfect weakly anharmonic crystal, the shape of
Raman lines is a Lorentzian to a good approximation w
the full width at half maximum~FWHM! being equal to

2Ḡ0R . Ab initio calculations of this quantity had been pe
formed earlier by Debernardiet al.,28 and our data are in
good agreement with their earlier calculations. The wid
due to spontaneous decay at zero temperature have
found to be 0.97 cm21 for C, 1.44 cm21 for Si, and
0.69 cm21 for Ge, while the corresponding values of Re
28 are 1.01 cm21, 1.48 cm21, and 0.67 cm21, respec-
tively.

In Fig. 4, our results for the temperature dependence
the Raman linewidth of diamond, silicon, and germanium
compared with experimental data. Except for diamo
where the experimental data show a large scatter and
consistently larger than the theoretical ones, the agreem
between theory and experiment is quite satisfactory.

V. ANHARMONIC LINE SHIFT

The real part of the self-energyP0R gives rise to a shift of
the Raman frequency to which all three diagrams of Fig
contribute. Unlike the situation of the anharmonic corre
tions to the bulk moduli of C and Si,47 where strong com-
pensations occur between the three different terms impo
high requirements on the numerical accuracy of these te
all three contributions to the Raman frequency are nega
for the three materials~Fig. 5!. While the contributions of the

FIG. 4. Raman linewidths.~a! diamond. Experimental data from
Ref. 14~rectangular symbols!, Ref. 6~diamonds!, Ref. 5~triangles!.
~b! Si and~c! Ge. Experimental data from Ref. 13~diamonds!.
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tadpole diagram and the bubble diagram are approxima
of the same order of magnitude at low temperatures, the l
diagram is found to yield a contribution much smaller th
the other two. Only at high temperatures in the case of s
con does the loop diagram reach the same magnitude a
tadpole diagram, but is much smaller than the contribution
the bubble diagram. In the case of germanium, the loop
gram has been evaluated with the quartic anharmonic c
pling constants of silicon. Assuming that the relative error
the quartic anharmonic constants due to this mass appr
mation is not larger than that for the cubic ones~Table I!,
and considering the smallness of the contribution of the lo
diagram to the anharmonic frequency shift, we estimate
the error of the latter quantity due to the mass approxima
should be less than 1.5% atT50 K and less than 7% at room
temperature.

To obtain the physical frequency as measured from
position of the Raman line, one has to add the contributi
of the three self-energy diagrams of Fig. 1 to the bare~har-
monic! Raman frequency. However, the latter is only know
with an accuracy that is smaller than the size of the anh
monic contributions, as may be seen from Table II. Here,
harmonic Raman frequenciesnharmonic are compared with
earlier DFPT calculations32,37 and experimental value
nexperimental. The anharmonic shiftsDn at zero temperature
are also displayed. Obviously, the harmonic frequencies
consistently too low for the equationnexperimental
5nharmonic1Dn to be satisfied. This may be a deficiency
the local density approximation. To compare our results
the temperature dependence of the Raman frequency
experimental data, we have therefore shifted our data to
experimental value atT50 in Fig. 5. In the case of diamon
at temperatures below 500 K, the temperature depende
agrees well with the experimental data of Anastassa
et al.,6 whereas at elevated temperatures, the slope appea
agree slightly better with those of Herchen and Capelli.14 In
the case of silicon, very good agreement is found with
experimental data of Mene´ndez and Cardona13 as well as
with the data by Tsu and Hernandez,11 the latter measured a
and above room temperature. For Ge, the agreement is n
good as for silicon. The discrepancy may be partly due to
error in the calculations introduced by the mass approxim
tion for the quartic anharmonic coupling constants.

The theoretical data in Table II~the harmonic frequency
nharmonic and the anharmonic frequency shiftDn! refer to the
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FIG. 5. Upper panel: contributions of the three diagrams of Fig. 1 to the anharmonic shiftDn of the Raman frequency of C~a!, Si ~b!,
and Ge~c!. Solid line, tadpole diagram; dashed line, bubble diagram; dash-dotted line, loop diagram. Lower panel: temperature de
of the Raman frequency of C~a!, Si ~b!, and Ge~c!. The theoretical data~solid curves! have been shifted to the experimental value of t
Raman frequency atT50 K. Experimental data in~a! from Ref. 6~triangles! and from Ref. 14~squares!. Experimental data in~b! from Ref.
13 ~triangles! and from Ref. 11~squares!. Experimental data in~c! from Ref. 13~triangles! and from Ref. 46~squares!.
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natural isotopic composition of the three materials; i.e.,
the spirit of the virtual crystal approximation, they have be
calculated with a massM that is an average over the isotop
masses weighted with their relative natural abundances
determine the Raman frequency atT50 K of a crystal con-
sisting of an isotope with massM0 , one may use the formula

n~M0!5nharmonic~M !AM

M0
1Dn~M !

M

M0
, ~5.1!

which is correct up to first order in\. Using this formula, we
find for the difference between the Raman frequencies of12C
and 13C a value of 49.9 cm21, where the second term on th

TABLE II. Raman frequencies of C, Si, and Ge: harmonic v
ues, experimental values atT50, and anharmonic shiftDn at T
50. Unit: cm21.

C Si Ge

Harmonica 1322 508 304
Harmonic 1324b 517c 306c

Experimental 1333.5d 524e 305e

Dna 231.6 27.1 22.5

aThis work.
bReference 32.
cReference 37.
dReference 6.
eReference 13.
n
n

o

right-hand side of Eq.~5.1! contributes22.4 cm21. The
Raman scattering results of Vogelgesanget al.18 suggest a
value of 51.8 cm21 for the frequency difference.

VI. CONCLUSIONS

In summary, the contributions of anharmonicity of th
lattice potential to the Raman frequencies of the eleme
semiconductors C, Si, and Ge have been calculatedab initio
using an approach that combines DFPT with the froz
phonon method in a way analogous to earlier calculations
the contribution of zero-point and thermal motion to the bu
modulus of diamond.47 Specifically, we have determined th
temperature dependence of the Raman frequency and m
predictions concerning 1/M corrections to the isotope effec
of the Raman frequency. These corrections should be res
able by modern high-resolution light-scattering techniqu
The approach we have chosen relies on the high symmetr
the phonon eigenvector of the Raman mode. Introducing
percells, a calculation of the anharmonic correction of zo
boundary modes should still be feasible. Knowledge of
harmonic corrections to optic phonon frequencies
diamond has become particularly desirable in connec
with the problem of overbending of the LO branch in th
material.48,49Specifically, there does not seem to exist a de
nite answer to the question of whether the zone-center o
frequency in diamond constitutes a local minimum or rath
a saddle point. The anharmonic shift of the Raman freque
is of the same order of magnitude as the overbending fo
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experimentally.48,49 If this shift varies as a function of wav
vector, it will influence the shape of the LO dispersio
curves.

A comparison between our results for the temperature
pendence of the Raman frequencies and corresponding
perimental data can be made only for temperatures s
ciently low that higher-order phonon processes are
negligible. As found experimentally and reasoned theor
cally by Balkanskiet al.,12 the Raman frequencies of C an
Si show aT2 dependence at elevated temperatures, wh
can be described by higher-order self-energy diagrams.
ab initio determination of the corresponding vertices occ
ring in these diagrams seems to be out of reach at the
A

m-

r,

. F

ch

a

e

e-
x-

fi-
ll
i-

h
n
-
o-

ment. At temperatures sufficiently high such that quant
corrections become unimportant,ab initio molecular dynam-
ics methods50 could be applied to determine the linewid
and frequency of the Raman mode.
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