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We study the solutions describing the critical “germs” in nucleation theory, escaping processes, and frac-
tures. We present systems with exact solution®Dir 1,2,3 dimensions. We show that when there exist
connections between the particles in more than one dimension, the stability is much more increased. In systems
where the potential well is a degenerate point, the critical germ solution has a power-law behavibr. For
=3 there can exist a continuum of stationary states where all the points of the order parameter take values that
are out of the stability zoné.e., the potential wellleading to effective marginal stability. We discuss the
relevance of these results for different physical systems and its connections with recently intensively studied
phenomena like sand-pile dynamics, self-organized criticality, noise-induced synchronization in extended sys-
tems, and quantum tunneling in the framework of field thep®0163-182899)01906-3

[. INTRODUCTION the pointg, is the limit for the stability of the particle. How-
ever, both experiment§,and simulation¥ 3! show a consid-
The problem of describing the stability of a system is oneerable extension of the elongatian before the instability
of the basic question of the dynamics. In the study of manyoccurs. In the case of metals under stress, this phenomenon
physical phenomena, such as fragmentation, phase transitionas labeled delayed fractuf® Recently, some space-time
and chemical reaction, it becomes necessary to estimate ifraodels have been investigatée? It has been shown that
given instability will die or grow, driving the system to a the elongations can take considerably greater values.
new “phase.” The main portrait of those processes is that of In phase-transition theory;? it is a common place to
nucleation® where drops grow or disappear depending onconsider the existence of a critical “germ” for the transition.

their Gibbs energies. Field configurationp(x,t) with a radius greater than that of
Many of those physical phenoménd’ can be described the critical germ should develop the instability in order to
by the equation produce the transition to the stae,. Recently Gorokhov

and Blattet® worked on some similar problem on stability.
P do 5 The present work will be dedicated to the study of the
FJF Yo = Vet Fle)+ax), (1) solutions describing the critical germs. These solutions have
been studied in a large number of papers, e.g., Refs. 10, 18,
whereF (¢)=—dU(¢)/de, the potentiall(¢) (see Fig. 1~ and 23. However, due to the great mathematical difficulties
possesses at least twtasymmetrical wells (minima)  that are presented in Eql) (especially for dimension®
at the pointsp, and ¢5 separated by a barriéa maximum >1), in most of the works the authors use approximations
at the pointe, (¢1<@,<@3). [We will assumeU(¢s3) and/or numerical methods. Therefore, many interesting phe-
<U(g;)]. The functiong(x,t) is an external force that can nomena have been overlooked. We will present systems with
be stochastic. Problems related to ER. appear in Physics, €xact solutions. This will permit us to analyze with deeper
Chemistry, Engineering, Biology, etc. Let us just men-understanding some surprising phenomena that can occur for
tion some scientific areas: phase-transition thetty>1823 D>1.
chemical reaction¥’ escaping processé$?*?® stability
of engineering structuré$;?®® fractures’’ quantum
tunneling??1*%field theory'?!’ etc.

For some problems it is sufficient to consider one well There exists an unstable stationary critical solution that is
and a barrier. This is obtained in the formulation of Ef).  a limit for the escaping process and plays the role of a critical
makingU(¢3)= —. In other problems we can have a well germt®141%182%gr the development of the instability in the
between two symmetric barriet$2® system. Let us concentrate on solutions with radial symme-

We are interested in the transition from the metastabléry. The stationary solutions of Eql) [g(x,t)=0] satisfy
state o, to statep;. Equation(l) (with space-independent the equation
¢)192426293G5 ysed as an approximate model for chemical
reactions, fractures, and the stability of engineering struc- 42 D-1d
tures. Hence, a unique particle moving in the potentiab) Ps Ps
is considered. In this case, in the absence of the fg(ge), dr? roodr

II. STATIONARY CRITICAL SOLUTIONS

TF(es)=0, @
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FIG. 1. The potential as a function of the order parametefa) is the physical potentidl(¢). (b) is the potential for the fictitious
particleV(¢)=—U(¢).

whereD is the space dimension. It is possible to prove that The critical solution is unstabfg:*2151827perturbations
whenU (¢) possesses a minimum gy =0, a maximum in  of the critical solution can lead to a growth of the elongations
¢, and it can take negative values far> ¢, [U(0) initiating the escaping process from the well. For the ex-
=U(¢m) =0], there exists a solution with a maximumiin tended system this solution plays the same role of peint
=0 and asymptotically it tends to zero fors. This solu- for a single particle moving in the potenti&d(¢). The
tion corresponds to the critical equilibrium state mentionedasymptotic behavior of the critical solutions depends on the
above. In Fig. 2 we show the phase trajectories for . behavior of the functiord(¢) in the neighborhood of the
The curves in Figs.(@) and 2b) belong to the casB=1.In  point ¢=0. Suppose that (¢) behaves like

this case, the homoclinic orbit Fig(l® corresponds to the

critical solution?” The trajectories Figs.(2) and 2d) corre- U(e)~¢" 6)
spond to the critical solutions in the cades-2 andD =3,
respepnv?Izy. Anot'her way to “see” these solutions is tbeHowever, forn>2 the solution has a power-law behavior for
foIIow_mg. Equa‘glon (2) can be_analyze_d as a Newton_s r—oo. There exist other potentiald(¢) which are continu-
equation for a unitary-mass particle mow‘r?g n t_he p(,),tem'alous but not analytical functions in the poipt= 0. Neverthe-
V(¢)=—U(¢). Here ¢ plays the role of “coordinate” of

. . . less some of these potentials have physical interest. For in-
the “particle” andr plays the role of “time.” Additionally, b Phy

we have a “dissipative force” D —1)/r(d¢/dr). Our criti- [srtgzzeei:?g)pg%s]ebltjrtm(w) possesses a minimum ip=0

cal solution corresponds to a motion of the fictitious particle

from an initial point ¢(0)= ¢, with (de/dr)(0)=0, that

terminates in the maximunp=0 of V(¢). For the cas® lim
=1 the maximum ofp situated inr =0, coincides withe,, . o
(The dissipative force is zero and the “mechanical energy”
is conservell However, forD>1 the mechanical energy

decreases with the motion of the particle. Let us define th

for ¢=~0. If n=2, for r—o¢4 (r) decays exponentially.

02<p

ar? - ©

In this case, functiornpg(r) decays faster than a simple ex-
gonential. Let us see an example:

mechanical energy of the particle: U(e)~¢?Ine 7
_ %(‘;_f 2+V((p). 3) iI:mt:hiS situation, the asymptotic behavior @f(r) is Gauss-
Hence, o(r)~exp — ¥%). (8)
_ 2
?}I_Ez — (D—1) ((:j_(P) <0. (4) Ill. SYSTEMS WITH EXACT SOLUTIONS
r r r

After a complete investigation of equations of ty(®,
For D>1, the critical solution is produced whep(0) using the so-called qualitative theory of dynamical
=ou>¢m. If we increaseD, the dissipative force will be system3'~23 (including topological conceptsand with the
increased too, ang g for the particle should be bigger in additional information about the behavior of solutions in the
order to reach the maximum &f(¢) in ¢=0. neighborhood of fixed points, it is possible to construct func-
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FIG. 2. Phase portraits of E(R), we plot the derivative of with respect ta, ¢, , as a function ofp. The orbits(a) and(b) corresponds
to the one-dimensional case. The homoclinic ofbjtis the critical germ solution. The trajectoriéy and(d) correspond to the cas&s
=2 andD =3, respectively. They represent the germ solutions for these cases.

tions with all the topological and asymptotic properties of theThis is not a particular result, many others functidfgp)
exact solutions of the given equation. Then, solving an infor which analytical results can be obtained show the same
verse problem, we are able to present systems of (2pe kind of behavior.
with exact solutions. Later, it is possible to generalize the
results for some classes of equations that are topologically
equivalent to those obtained for the exact solutions.

Let us see the following particular case:

IV. MARGINAL STABILITY: MULTIPLICITY
OF STATIONARY STATES

Before we start to look for the multiplicity of stationary
F(e)=ale|*—b|el?, ) states, we wish to show an equation whose exact solutions

. . will be useful later. Let
wherea,b,>0 are real. In this case, the exact solutions can

be obtained: 2 D—1d
— T T LAt i p2tio,  (15)
dr? rodr
(Ps(r):—1+N > (10)
r It is straightforward to provéby direct substitutionthat the
where function
4 a e=Q(1+Nr?)~tm (16)
Q=1 7Dp (11)
is an exact solution of Eq15) when
2
NI 12 o___Am+h) 2 &
(4-D)2 b [Dm—2(m+1)] b’
From Eq.(9) we have and
(PZ:E- (13 N= m2(m+ 1) a’ 18
b “Dm-2m+1]Z b (18
The ratioQ/ ¢, increases with the dimension ] ] ]
Note that solution(10) is a particular case of Eq16).
Q 4 Using Eqgs.(16)—(18) it follows that if
—=— (14)
(2] 4—D 2
We should remark that the solution in the form of EtQ) is m=p5—5" (19)

valid only for D=1,2,3. From this result we see that the
stability of the system increases with the dimension. Thighen it is possible to obtain a family of solutions for the
generalizes our previous resilfor one-dimensional chains. equation
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FIG. 3. Marginal stability solutiong(r) with different amplitudes. Note that the solutions decay faster for great amplitudes.

d’¢ D-1de
2m+1_
dr2 r W‘Fb@ m =0. (20)

These solutions will be expressed by the function

Q Q
o= = —, (21
(1+Nr2)1/m (1+Nr2)D/2 1
whereQ andN must fulfill the relation
N= 0 o 22
“amin (22
As a particular case of E¢20) we have
d’¢ 2de 5
F‘Fra"’b@ :O, (23)
for which we get the family of solutions
° (24)

P 1+ (b3)Q A

Let us return to the auxiliary mechanical system consist

ing of a fictitious particle moving in the potential

V(p)=—U(e).

A patrticle that starts its movement in the poip(0)= ¢,
should pass the poinp= ¢, in order to reach the poinp

=0. We can expect that in a vicinity of poigt, the particle
makes oscillations. This is true f&r=1.1° In order to facili-

Forn=1, D=1, the pointyy=0 is a focus: the particle will
make damped oscillations in the vicinity ¢f=0. Neverthe-
less, forn>1 when we increasB, a very interesting bifur-
cation can occur, if

(2n—1)
= n—1

(26)

This condition is obtained when we investigated the behavior
of the solution in a neighborhood of a poigt=0. Only for
D>(2n—-1)/(n—1) we have solutions tending to the point
¥=0 whenr tends to infinity. For instance, the solution
(16)—(18) is possible only foDm—2(m+1)>0. But in this
case =m+ 1. So, this solution exists fdd>(2n—1)/(n
—1). The focus becomes a node. If the particle starts its
movement in a vicinity of the pointy=0 [with (0)>0],
then it will make an overdamped movement that will end in
the point =0 (for r—o0). The particle will not visit the
negative values ofs. This means that Eq1) will have sta-
tionary solutions for which all the points are on the right-
hand side of the maximunp= ¢, of potentialU(¢). An
initial state with this configuration not necessarily and imme-
diately will fall down to the right of the maximunp= ¢, of
potentialU ().

An example of those solutions are the functions &%).
More explicitly: the equation

Py Y
— 4y = 2 + 5

PR Vayt+by, (27)
whose potential (¢/) possesses only one maximum situated
in the pointy=0, will have a continuous set of stationary
solutions[see formula24) and Fig. 3 for which the values

tate our analysis, we will momentarily make the affine trans-¢ #(r) (for all r, 0O<r <), will be “out” of the equilib-
formation ¢=¢— ¢, in such a way that the maximum of \jym positiony=0. One will expect that an initial condition

potentialU (¢) [local minimumV(¢)] will be in =0. It is
also supposed that in the neighborhood/ef0, the potential

U(¢) behaves as

U ()~ (29

¥(X,Y,2,0) with the structure of Eq24) would develop the
instability of the maximumy=0, and will lead to a dynam-
ics such that

$(0)— 0. (29)
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This is not the case in our example. Any equation of type EQpayior, Thus, Gaussian distributions of perturbations have

(1) with a maximum in the poinip= ¢, which holds the e gifficulties in creating the conditions for the escape.

cond]t|ons Eqs(25) and (26.) will .have a continuous set of That is, these systems are more stable than Morse systems.
solutions with the properties discussed above. We shoulg,

. . : rturbations with long-range correlations would be more

stress the difference between these stationary solutions ange T . . I .
" . i . : e .~ _“effective in generating the instability than, e.g., a white

the critical solutions in one dimension. The critical solutions i

have unique amplitude and shape. The smallest perturbaticf}lo S€.

will cause the instability, which will lead to any of the stable A SUrPrising phenomenon is that for=3 there can exist
minima of U(¢). stationary states where in all the space points the fungtion

Nonetheless, when the conditions E¢@S) and (26) are takes values that are out of the potential well. A single par-

fulfilled we have a continuum of stationary solutions. Thesélcle placed out of the maximum ofi(¢) with ¢(t=0)

solutions are not asymptotically stable. After a small pertur-— ¢2 Will move irreversibly to the right. Extended systems in

bation, the system does not return to the same state. In geRP€ @nd two space dimensions with a distribution of elonga-

eral, if the perturbation is small enough, the system will re-lonS, such that all the points have valuesgogreater than

main balanced in another stationary solutitiaken from  ¥2: will evolve as well to astate_far away from the left well.
these solutions that belong to the continuous. Skhis is a ~ However, as has been shown, in three-dimensional systems
situation similar to that when we move a particle on a flatth€re can exist continuous sets of stationary solutions in
surface[ U (¢) = consi, which is an “indifferent” equilib- “|_nd|fferent” equilibrium with marginal stab|I_|ty. In one-
rium state. Just note that here the true potentigh) is not ~ dimensional _ systems ~when ~we consider a kink
a constant and what is moving is not a single particle but golutior? 2%~ the stationary solution contains values
space-dependent structure, and finally, we are in the presenfgft coincide with the unstable equilibrium position of the
of a spatiotemporal system. So, we are presented with a sBptential, and besides it contains points that, considered iso-
of infinite indifferent equilibrium states with marginal stabil- 'ated, would not be equilibrium points. Notwithstanding,
ity. This is something that resembles in some way the san{1€S€ “isolated” particles are “sustained” by the majority of
pile. The sand pile possesses infinite metastable stationaf)€ Particles that are inside the wells. In fact, the kink is a
states. In both systemhe sand pile and oursve observe Very robust solution. , o .
self-organized criticality and power-law behaviors. The . In one and two dlmens'lonsz one can have initial C‘?”d"
physical meaning of marginal stability in our models is the!ionS where part of the points is out of the wéthe rest is
existence of an infinity of metastable stationary states. AnSide the well, which do not escape. However, most of
perturbation can produce different outcomes between €€ initial configurations are not stationary solutions. A

single shift and an avalanche, depending on where the peptationary solution can be only ortene critical equilibrium
turbation is applied and how strong it is. As a result of mar-Soution, which is openly unstable. The continuum set of

ginal stability and self-organized criticality, the system will marginally stable stationary solutions is possible due to the

produce critical structures of states which are barehfXistence of a qualitatively stronger cooperation between
stable21:22 constituent particles in the three-dimensional case. Bor

When the potentiall (¢) has two finite minima such that =3 there occurs a kind of “bifurcation” that conducts to an
U(p3)<U(g,), we still will have a continuous set of sta- extraordinary effective damping for the particles in their mo-

tionary solutions but the maximal amplitude is limited. Sys-1lon on the potential. Suppose now that we have a bistable
tems with nonparabolic extrema have been used as models fotential U(e) [U(e1)=U(e3)] and the system is per-
reaction-rate theory®2° However, the real systems do not turbeq b_y osc[llatmg_forceg(xzt) (deterministic aanor sto-
need to be degenerate in order to present the phenomena h&R&SHC, including noise  In this case, the complexity of the
discussed. For sufficiently flat extrema we will observe simi-SyStéms we are studying will manifest itself in a very spec-
lar effects. For instance, since the real systems are finite, tfacular fashion. The capacity of the three-dimensional sys-

power laws can be observable even if they do not extend tlgm to support structures, unthinkable in Iovyer dimensions,
infinity. would be enhanced. We can foresee the existence of fractal

dynamics3%4041
Consider aD-dimensional network of coupled nonlinear
oscillators(the mechanical system is by itself an important
Previously, we have se&hthat the functionp can take physical system, however, with this model we can describe
considerably greater values without the development of thenany other physical systems, e.gDalimensional array of
instability in a chain of linked particles, rather than for the Josephson junctionsOur results show that the dynamics is
system of a single particle. Moreover, when there exist condramatically different inD=3 in comparison with the dy-
nections between the particles in more than one dimensiomamics of small dimensions. We will observe the formation
the stability is much more increased. of a scale-invariant structure of minimal stable states. Recent
For some systems, more specifically for fractures, a disstudie$?*3?? indicate the possibility of enhancing the re-
crete model has important characteristit’ A very impor-  sponse of a nonlinear oscillator driven by the noise and a
tant point as well is the existence of fractal surfaces omperiodic signal by coupling it into a one-dimensional chain
fringes formation in diffusion limited aggregatidA®®How-  of identical oscillators. The authors have noted the possibil-
ever, even in those cases a simple radial-symmetric approady of using this effect in neural networks, signal processing,
may give us a good idea of the instability evolution. and device applications including bioengineering receptors
In systems where the wdlminimum of the potentialisa  and remote sensing arrays. The output signal-to-noise ratio
degenerate point, the critical limit state has a power-law bemay be maximized by treating the coupling and noise

V. CONCLUSIONS
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strength as design parameters. The cooperation between thaeasirectangular-well potentials as those discussed in Sec.

oscillators is qualitatively stronger than in small dimensionsV, we will see that the action of the instantonic solution is

So, the dimension of the array could be a different desigreffectively infinite.

parameter. The probability" of barrier penetration in field theory
The enhancement of synchronization is produced by thevas calculated by Colemdn:

collective spatial and temporal motion of the array. We can —Bih

show that the dynamics of the oscillators can approach meta- I~e ' (29)

stable states with marginal stability, whichin<3 would be  \hereg is the action corresponding to the instantonic solu-
completely unstable. The couplir@ three dimensionsin  tjon. Therefore, we can predict that, in the framework of field
cooperation with the noise and the nonlinear potential Wi”theory O =3), with an inhomogeneous potentla( ¢) with
organize the network in space and time in a way unthinkabl@ectangular wells and barriers, the phenomenon of localiza-
in D<3. tion necessary will be present.

Finally, we would like to address the problem of quantum |t is very important to notice that we have studied here
barrier penetration in field theofy:***°In this context, our  only the critical solutions, and there is still this questibow
critical equi”brium StatanW defined with the radial vari- |0ng will it take for a System to go from the metastable equi_
able r=\Jx?+y?+ 7%+ %), where r=it in dimensionD librium position¢, to a stable positionp;? Indeed, we have
+1,*js equivalent to the so-called “bounce” solutigit  solved this probleff only for D=1. It remains an open and
is called the instanton solution, tpo hard problem foD>1. We hope this work could shed some

If we consider (3+1)-dimensional systems with light on this question.
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