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Nucleation theory, the escaping processes, and nonlinear stability
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We study the solutions describing the critical ‘‘germs’’ in nucleation theory, escaping processes, and frac-
tures. We present systems with exact solutions inD51,2,3 dimensions. We show that when there exist
connections between the particles in more than one dimension, the stability is much more increased. In systems
where the potential well is a degenerate point, the critical germ solution has a power-law behavior. ForD
53 there can exist a continuum of stationary states where all the points of the order parameter take values that
are out of the stability zone~i.e., the potential well! leading to effective marginal stability. We discuss the
relevance of these results for different physical systems and its connections with recently intensively studied
phenomena like sand-pile dynamics, self-organized criticality, noise-induced synchronization in extended sys-
tems, and quantum tunneling in the framework of field theory.@S0163-1829~99!01906-2#
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I. INTRODUCTION

The problem of describing the stability of a system is o
of the basic question of the dynamics. In the study of ma
physical phenomena, such as fragmentation, phase trans
and chemical reaction, it becomes necessary to estimate
given instability will die or grow, driving the system to
new ‘‘phase.’’ The main portrait of those processes is tha
nucleation,1,3 where drops grow or disappear depending
their Gibbs energies.

Many of those physical phenomena2–27 can be described
by the equation

]2w

]t2
1g

]w

]t
5¹2w1F~w!1g~x,t !, ~1!

whereF(w)52]U(w)/]w, the potentialU(w) ~see Fig. 1!
possesses at least two~asymmetrical! wells ~minima!
at the pointsw1 andw3 separated by a barrier~a maximum!
at the pointw2 (w1,w2,w3). @We will assumeU(w3)
,U(w1)#. The functiong(x,t) is an external force that ca
be stochastic. Problems related to Eq.~1! appear in Physics
Chemistry, Engineering, Biology, etc. Let us just me
tion some scientific areas: phase-transition theory2,14,15,18,23

chemical reactions,19 escaping processes,19,24,26 stability
of engineering structures,24,26 fractures,27 quantum
tunneling,12,14,19field theory,12,17 etc.

For some problems it is sufficient to consider one w
and a barrier. This is obtained in the formulation of Eq.~1!
makingU(w3)52`. In other problems we can have a we
between two symmetric barriers.24,26

We are interested in the transition from the metasta
statew1 to statew3 . Equation~1! ~with space-independen
w!19,24,26,29,30is used as an approximate model for chemi
reactions, fractures, and the stability of engineering str
tures. Hence, a unique particle moving in the potentialU(w)
is considered. In this case, in the absence of the forceg(x,t),
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the pointw2 is the limit for the stability of the particle. How-
ever, both experiments,28 and simulations27,31show a consid-
erable extension of the elongationw before the instability
occurs. In the case of metals under stress, this phenom
was labeled delayed fracture.28 Recently, some space-tim
models have been investigated.27,29 It has been shown tha
the elongations can take considerably greater values.

In phase-transition theory,10,12 it is a common place to
consider the existence of a critical ‘‘germ’’ for the transitio
Field configurationw(x,t) with a radius greater than that o
the critical germ should develop the instability in order
produce the transition to the statew3 . Recently Gorokhov
and Blatter13 worked on some similar problem on stability

The present work will be dedicated to the study of t
solutions describing the critical germs. These solutions h
been studied in a large number of papers, e.g., Refs. 10
and 23. However, due to the great mathematical difficult
that are presented in Eq.~1! ~especially for dimensionsD
.1!, in most of the works the authors use approximatio
and/or numerical methods. Therefore, many interesting p
nomena have been overlooked. We will present systems
exact solutions. This will permit us to analyze with deep
understanding some surprising phenomena that can occu
D.1.

II. STATIONARY CRITICAL SOLUTIONS

There exists an unstable stationary critical solution tha
a limit for the escaping process and plays the role of a crit
germ10,14,15,18,23for the development of the instability in th
system. Let us concentrate on solutions with radial symm
try. The stationary solutions of Eq.~1! @g(x,t)50# satisfy
the equation

d2ws

dr2
1

D21

r

dws

dr
1F~ws!50, ~2!
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FIG. 1. The potential as a function of the order parameterw. ~a! is the physical potentialU(w). ~b! is the potential for the fictitious
particleV(w)52U(w).
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whereD is the space dimension. It is possible to prove t
whenU(w) possesses a minimum inw150, a maximum in
w2 and it can take negative values forw.wm @U(0)
5U(wm)50#, there exists a solution with a maximum inr
50 and asymptotically it tends to zero forr→`. This solu-
tion corresponds to the critical equilibrium state mention
above. In Fig. 2 we show the phase trajectories for Eq.~2!.
The curves in Figs. 2~a! and 2~b! belong to the caseD51. In
this case, the homoclinic orbit Fig. 2~b! corresponds to the
critical solution.27 The trajectories Figs. 2~c! and 2~d! corre-
spond to the critical solutions in the casesD52 andD53,
respectively. Another way to ‘‘see’’ these solutions is t
following.12 Equation ~2! can be analyzed as a Newton
equation for a unitary-mass particle moving in the poten
V(w)52U(w). Here w plays the role of ‘‘coordinate’’ of
the ‘‘particle’’ and r plays the role of ‘‘time.’’ Additionally,
we have a ‘‘dissipative force’’ (D21)/r (dw/dr). Our criti-
cal solution corresponds to a motion of the fictitious parti
from an initial point w(0)>wm with (dw/dr)(0)50, that
terminates in the maximumw50 of V(w). For the caseD
51 the maximum ofw situated inr 50, coincides withwm .
~The dissipative force is zero and the ‘‘mechanical energ
is conserved!. However, for D.1 the mechanical energ
decreases with the motion of the particle. Let us define
mechanical energy of the particle:

E5
1

2 S dw

dr D 2

1V~w!. ~3!

Hence,

dE

dr
52

~D21!

r S dw

dr D 2

<0. ~4!

For D.1, the critical solution is produced whenw(0)
[wM.wm . If we increaseD, the dissipative force will be
increased too, andw (0) for the particle should be bigger i
order to reach the maximum ofV(w) in w50.
t

d

l

’’

e

The critical solution is unstable.11,12,15,18,27Perturbations
of the critical solution can lead to a growth of the elongatio
initiating the escaping process from the well. For the e
tended system this solution plays the same role of pointw2
for a single particle moving in the potentialU(w). The
asymptotic behavior of the critical solutions depends on
behavior of the functionU(w) in the neighborhood of the
point w50. Suppose thatU(w) behaves like

U~w!;wn ~5!

for w'0. If n52, for r→`ws (r ) decays exponentially
However, forn.2 the solution has a power-law behavior f
r→`. There exist other potentialsU(w) which are continu-
ous but not analytical functions in the pointw50. Neverthe-
less some of these potentials have physical interest. Fo
stance, suppose thatU(w) possesses a minimum inw50
@henceF(0)50# but

lim
w→`

U]2w

]r 2U5`. ~6!

In this case, functionws(r ) decays faster than a simple e
ponential. Let us see an example:

U~w!;w2 ln w. ~7!

In this situation, the asymptotic behavior ofws(r ) is Gauss-
ian:

w~r !;exp~2g2!. ~8!

III. SYSTEMS WITH EXACT SOLUTIONS

After a complete investigation of equations of type~2!,
using the so-called qualitative theory of dynamic
systems31–33 ~including topological concepts!, and with the
additional information about the behavior of solutions in t
neighborhood of fixed points, it is possible to construct fun
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FIG. 2. Phase portraits of Eq.~2!, we plot the derivative ofw with respect tor, w r , as a function ofw. The orbits~a! and~b! corresponds
to the one-dimensional case. The homoclinic orbit~b! is the critical germ solution. The trajectories~c! and ~d! correspond to the casesD
52 andD53, respectively. They represent the germ solutions for these cases.
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tions with all the topological and asymptotic properties of t
exact solutions of the given equation. Then, solving an
verse problem, we are able to present systems of type~2!
with exact solutions. Later, it is possible to generalize
results for some classes of equations that are topologic
equivalent to those obtained for the exact solutions.

Let us see the following particular case:

F~w!5auwu22buwu3, ~9!

wherea,b,.0 are real. In this case, the exact solutions c
be obtained:

ws~r !5
Q

11Nr2
, ~10!

where

Q5
4

42D

a

b
, ~11!

N5
2

~42D !2

a2

b
. ~12!

From Eq.~9! we have

w25
a

b
. ~13!

The ratioQ/w2 increases with the dimension

Q

w2
5

4

42D
. ~14!

We should remark that the solution in the form of Eq.~10! is
valid only for D51,2,3. From this result we see that th
stability of the system increases with the dimension. T
generalizes our previous result27 for one-dimensional chains
-

e
lly

n

s

This is not a particular result, many others functionsF(w)
for which analytical results can be obtained show the sa
kind of behavior.

IV. MARGINAL STABILITY: MULTIPLICITY
OF STATIONARY STATES

Before we start to look for the multiplicity of stationar
states, we wish to show an equation whose exact solut
will be useful later. Let

d2w

dr2
1

D21

r

dw

dr
1awm111b2m1150. ~15!

It is straightforward to prove~by direct substitution! that the
function

w5Q~11Nr2!21/m ~16!

is an exact solution of Eq.~15! when

QD5
2~m11!

@Dm22~m11!#

a

b
, ~17!

and

N5
m2~m11!

@Dm22~m11!#2

a2

b
. ~18!

Note that solution~10! is a particular case of Eq.~16!.
Using Eqs.~16!–~18! it follows that if

m5
2

D22
, ~19!

then it is possible to obtain a family of solutions for th
equation



PRB 59 6103NUCLEATION THEORY, THE ESCAPING PROCESSES, . . .
FIG. 3. Marginal stability solutionsw(r ) with different amplitudes. Note that the solutions decay faster for great amplitudes.
is

ns
f

ior

nt
n

its

in

t-

e-

ed
y

d2w

dr2
1

D21

r

dw

dr
1bw2m1150. ~20!

These solutions will be expressed by the function

w5
Q

~11Nr2!1/m
[

Q

~11Nr2!D/221
, ~21!

whereQ andN must fulfill the relation

N5
m2b

4~m11!
Q2m. ~22!

As a particular case of Eq.~20! we have

d2w

dr2
1

2

r

dw

dr
1bw550, ~23!

for which we get the family of solutions

w5
Q

@11~b/3!Q4r 2#1/2
. ~24!

Let us return to the auxiliary mechanical system cons
ing of a fictitious particle moving in the potential

V~w!52U~w!.

A particle that starts its movement in the pointw(0)5wm
should pass the pointw5w2 in order to reach the pointw
50. We can expect that in a vicinity of pointw2 the particle
makes oscillations. This is true forD51.15 In order to facili-
tate our analysis, we will momentarily make the affine tra
formation c5w2w2 in such a way that the maximum o
potentialU(w) @local minimumV(w)# will be in c50. It is
also supposed that in the neighborhood ofc50, the potential
U(w) behaves as

U~c!;c2n, ~25!
t-

-

For n51, D51, the pointc50 is a focus: the particle will
make damped oscillations in the vicinity ofc50. Neverthe-
less, forn.1 when we increaseD, a very interesting bifur-
cation can occur, if

D.
~2n21!

n21
. ~26!

This condition is obtained when we investigated the behav
of the solution in a neighborhood of a pointc50. Only for
D.(2n21)/(n21) we have solutions tending to the poi
c50 when r tends to infinity. For instance, the solutio
~16!–~18! is possible only forDm22(m11).0. But in this
case 2n5m11. So, this solution exists forD.(2n21)/(n
21). The focus becomes a node. If the particle starts
movement in a vicinity of the pointc50 @with c(0).0#,
then it will make an overdamped movement that will end
the point c50 ~for r→`!. The particle will not visit the
negative values ofc. This means that Eq.~1! will have sta-
tionary solutions for which all the points are on the righ
hand side of the maximumw5w2 of potential U(w). An
initial state with this configuration not necessarily and imm
diately will fall down to the right of the maximumw5w2 of
potentialU(w).

An example of those solutions are the functions Eq.~25!.
More explicitly: the equation

]2c

]t2
1g

]c

]t
5¹2c1bc5, ~27!

whose potentialU(c) possesses only one maximum situat
in the pointc50, will have a continuous set of stationar
solutions@see formula~24! and Fig. 3# for which the values
of c(r ) ~for all r, 0<r ,`!, will be ‘‘out’’ of the equilib-
rium positionc50. One will expect that an initial condition
c(x,y,z,0) with the structure of Eq.~24! would develop the
instability of the maximumc50, and will lead to a dynam-
ics such that

c~0,t !→`. ~28!
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This is not the case in our example. Any equation of type
~1! with a maximum in the pointw5w2 which holds the
conditions Eqs.~25! and ~26! will have a continuous set o
solutions with the properties discussed above. We sho
stress the difference between these stationary solutions
the critical solutions in one dimension. The critical solutio
have unique amplitude and shape. The smallest perturba
will cause the instability, which will lead to any of the stab
minima of U(w).

Nonetheless, when the conditions Eqs.~25! and ~26! are
fulfilled we have a continuum of stationary solutions. The
solutions are not asymptotically stable. After a small pert
bation, the system does not return to the same state. In
eral, if the perturbation is small enough, the system will
main balanced in another stationary solution~taken from
these solutions that belong to the continuous set!. This is a
situation similar to that when we move a particle on a fl
surface@U(w)5const#, which is an ‘‘indifferent’’ equilib-
rium state. Just note that here the true potentialU(w) is not
a constant and what is moving is not a single particle bu
space-dependent structure, and finally, we are in the pres
of a spatiotemporal system. So, we are presented with a
of infinite indifferent equilibrium states with marginal stab
ity. This is something that resembles in some way the s
pile. The sand pile possesses infinite metastable statio
states. In both systems~the sand pile and ours! we observe
self-organized criticality and power-law behaviors. T
physical meaning of marginal stability in our models is t
existence of an infinity of metastable stationary states
perturbation can produce different outcomes betwee
single shift and an avalanche, depending on where the
turbation is applied and how strong it is. As a result of m
ginal stability and self-organized criticality, the system w
produce critical structures of states which are bar
stable.21,22

When the potentialU(w) has two finite minima such tha
U(w3),U(w1), we still will have a continuous set of sta
tionary solutions but the maximal amplitude is limited. Sy
tems with nonparabolic extrema have been used as mode
reaction-rate theory.19,20 However, the real systems do n
need to be degenerate in order to present the phenomena
discussed. For sufficiently flat extrema we will observe sim
lar effects. For instance, since the real systems are finite
power laws can be observable even if they do not exten
infinity.

V. CONCLUSIONS

Previously, we have seen27 that the functionw can take
considerably greater values without the development of
instability in a chain of linked particles, rather than for th
system of a single particle. Moreover, when there exist c
nections between the particles in more than one dimens
the stability is much more increased.

For some systems, more specifically for fractures, a
crete model has important characteristics.29,30 A very impor-
tant point as well is the existence of fractal surfaces
fringes formation in diffusion limited aggregation.37,38 How-
ever, even in those cases a simple radial-symmetric appr
may give us a good idea of the instability evolution.

In systems where the well~minimum of the potential! is a
degenerate point, the critical limit state has a power-law
.
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havior. Thus, Gaussian distributions of perturbations h
more difficulties in creating the conditions for the escap
That is, these systems are more stable than Morse syst
Perturbations with long-range correlations would be m
effective in generating the instability than, e.g., a wh
noise.

A surprising phenomenon is that forD53 there can exist
stationary states where in all the space points the functioc
takes values that are out of the potential well. A single p
ticle placed out of the maximum ofU(w) with w(t50)
.w2 will move irreversibly to the right. Extended systems
one and two space dimensions with a distribution of elon
tions, such that all the points have values ofw greater than
w2 , will evolve as well to a state far away from the left we
However, as has been shown, in three-dimensional syst
there can exist continuous sets of stationary solutions
‘‘indifferent’’ equilibrium with marginal stability. In one-
dimensional systems when we consider a ki
solution9,15,18,34–39 the stationary solution contains value
that coincide with the unstable equilibrium position of th
potential, and besides it contains points that, considered
lated, would not be equilibrium points. Notwithstandin
these ‘‘isolated’’ particles are ‘‘sustained’’ by the majority o
the particles that are inside the wells. In fact, the kink is
very robust solution.

In one and two dimensions, one can have initial con
tions where part of the points is out of the well~the rest is
inside the well!, which do not escape. However, most
these initial configurations are not stationary solutions.
stationary solution can be only one~the critical equilibrium
solution!, which is openly unstable. The continuum set
marginally stable stationary solutions is possible due to
existence of a qualitatively stronger cooperation betwe
constituent particles in the three-dimensional case. FoD
53 there occurs a kind of ‘‘bifurcation’’ that conducts to a
extraordinary effective damping for the particles in their m
tion on the potential. Suppose now that we have a bista
potential U(w) @U(w1)5U(w3)# and the system is per
turbed by oscillating forcesg(x,t) ~deterministic and/or sto-
chastic, including noise!. In this case, the complexity of th
systems we are studying will manifest itself in a very spe
tacular fashion. The capacity of the three-dimensional s
tem to support structures, unthinkable in lower dimensio
would be enhanced. We can foresee the existence of fra
dynamics.30,40,41

Consider aD-dimensional network of coupled nonlinea
oscillators~the mechanical system is by itself an importa
physical system, however, with this model we can descr
many other physical systems, e.g., aD-dimensional array of
Josephson junctions!. Our results show that the dynamics
dramatically different inD53 in comparison with the dy-
namics of small dimensions. We will observe the formati
of a scale-invariant structure of minimal stable states. Rec
studies42,43,22 indicate the possibility of enhancing the re
sponse of a nonlinear oscillator driven by the noise an
periodic signal by coupling it into a one-dimensional cha
of identical oscillators. The authors have noted the possi
ity of using this effect in neural networks, signal processin
and device applications including bioengineering recept
and remote sensing arrays. The output signal-to-noise r
may be maximized by treating the coupling and no
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strength as design parameters. The cooperation betwee
oscillators is qualitatively stronger than in small dimensio
So, the dimension of the array could be a different des
parameter.

The enhancement of synchronization is produced by
collective spatial and temporal motion of the array. We c
show that the dynamics of the oscillators can approach m
stable states with marginal stability, which inD,3 would be
completely unstable. The coupling~in three dimensions! in
cooperation with the noise and the nonlinear potential w
organize the network in space and time in a way unthinka
in D,3.

Finally, we would like to address the problem of quantu
barrier penetration in field theory.12,14,19In this context, our
critical equilibrium state~now defined with the radial vari

able r 5Ax21y21z21t2!, where t5 i t in dimension D
11,12,14 is equivalent to the so-called ‘‘bounce’’ solution~it
is called the instanton solution, too!.

If we consider (311)-dimensional systems with
. B

l.

ev

tt.
the
.
n

e
n
a-

ll
le

quasirectangular-well potentials as those discussed in
IV, we will see that the action of the instantonic solution
effectively infinite.

The probabilityG of barrier penetration in field theory
was calculated by Coleman:15

G;e2b/h, ~29!

whereb is the action corresponding to the instantonic so
tion. Therefore, we can predict that, in the framework of fie
theory (D53), with an inhomogeneous potentialU(w) with
rectangular wells and barriers, the phenomenon of local
tion necessary will be present.

It is very important to notice that we have studied he
only the critical solutions, and there is still this question:how
long will it take for a system to go from the metastable eq
librium positionw1 to a stable positionw3? Indeed, we have
solved this problem44 only for D51. It remains an open and
hard problem forD.1. We hope this work could shed som
light on this question.
ists

os.

ev.

o,

d

d

1P. Hänggi, F. Marchesoni, and P. Sodano, Phys. Rev. Lett.60,
2563 ~1988!.

2J. S. Aubry, J. Chem. Phys.62, 3217~1975!.
3F. Marchesoni, C. Cattuto, and G. Constantini, Phys. Rev. B57,

7930 ~1998!.
4J. A. Krumhansl and J. R. Schriefer, Phys. Rev.311, 3535~1975!.
5M. A. Collins, A. Blumen, J. F. Currie, and J. Ross, Phys. Rev

19, 3630~1979!.
6R. Landauer, J. Appl. Phys.51, 5594 ~1980!; Phys. Rev. A15,

2117 ~1977!.
7M. Büttiker and H. Thomas, Phys. Lett.77A, 372 ~1980!.
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