Empirical cluster expansion models of cation order-disorder in $A (B'_{1/3}, B''_{2/3}) O_3$ **perovskites**

B. P. Burton

Materials Science and Engineering Laboratory, Ceramics Division, National Institute of Standards and Technology,

Gaithersburg, Maryland 20899

(Received 11 August 1998; revised manuscript received 19 October 1998)

Minimal cluster expansion models of *B*-site cation ordering in $A(B_{1/3}^T, B_{2/3}^T)O_3$ perovskites are evaluated. It is demonstrated that the linear triplet interaction is both necessary and sufficient to stabilize the *P*3*m*1 1:2 structure ground state that is observed in such compounds as $Ba(Zn_{1/3},Nb_{2/3})O_3$ and $Ba(Zn_{1/3},Ta_{2/3})O_3$. The linear triplet model exhibits a $\overline{P3m1} \rightarrow Pm\overline{3}m$ transition at $kT_C/[-J_{\bullet}-\bullet-\bullet]=4.5184$. The addition of a nearest-neighbor pair interaction permits the transition sequence $\overrightarrow{P3m1} \rightarrow \overrightarrow{Fm3m1}$:1 structure $\rightarrow \overrightarrow{Pm3m}$, which is observed in Ca(Ca_{1/3},Nb_{2/3})O₃, but not in a region of parameter space in which the lowest-energy ground state of the $AB'_xO_3 - AB''_{1-x}O_3$ pseudobinary occurs at the $A(B'_{1/3}, B''_{2/3})O_3$ composition. This latter condition can be satisfied by including a second many-body interaction, specifically, a cube minus the triangle of three second-neighbor pairs. Monte Carlo simulations with such a model generate microstructures of the type that are observed in Pb($\text{Zn}_{1/3}$, Nb_{2/3})O₃ and Pb($\text{Mg}_{1/3}$, Nb_{2/3})O₃. [S0163-1829(99)02509-6]

I. INTRODUCTION

Several $A(B'_{1/3}, B''_{2/3})O_3$ perovskites, particularly those with Ba as the *A* cation (Table I), have the $P3m1$ 1:2 structure¹ as their apparent ground state $(g.s.).$ This structure is characterized by a 1:2 stacking modulation of B' $= B'(2^+)$ and $B'' = B''(5^+)$ layers perpendicular to the $[111]_{cubic}$ vector of the $Pm\overline{3}m$ disordered (DIS) perovskite. Electrostatic calculations by Bellaiche and Vanderbilt² predict that the 1:2 structure is the natural g.s. for an idealized ionic model of an $A(B'_{1/3}, B''_{2/3})O_3$ perovskite; i.e., for a 1:2 mixture of $(2-)$ and $(1+)$ point charges on a simple cubic $12 \times 12 \times 12$ supercell of *B* sites. They also considered alloying with neutral particles, and demonstrated that 10–50% neutral sites stabilize 1:1 ordering at low temperature. $A(B_{1/3}', B_{2/3}'')O_3$ perovskites with Pb as the *A* cation, e.g., $Pb(Mg_{1/3},Nb_{2/3})O_3$ (PMN) (Refs. 3–6) and $Pb(Zn_{1/3},Nb_{2/3})O_3$ (PZN),⁷ are typically described as having 1:1 ordered microregions, $2-5$ nm, 8 in a disordered matrix. *Ideally*, the 1:1 structure is an $Fm\overline{3}m$ NaCl type (a_{1+1}) \sim 2*a*₀) in which one *B* site is occupied by Nb (Ta) while the other contains a disordered mixture of $2/3$ Mg(Zn) + $1/3$ Nb ~Ta!. This structure has significant configurational entropy, which precludes it as a g.s. Therefore, the logical inference is that PZN and PMN fail to transform to their respective g.s.'s because of unfavorable kinetics. It should also be noted that

TABLE I. Data on order-disorder transitions in $A(B', B'')O_3$ perovskites.

System	Structure, $x -$, T range	Ref.
$Ca(Ca_{1/3},Nb_{2/3})O_3$	$1:2 \rightleftharpoons 1:1$ 1300< T_c <1425 °C	10,11
$Ba(Ni_{1/3},Nb_{2/3})O_3$	$1:2 \rightleftharpoons$ disordered 1350< T_c <1400 °C	12
$Ba(Zn_{1/3},Nb_{2/3})O_3$	$1:2 \rightleftharpoons$ disordered 1350 $<1400 °C$	13
$Ba(Co_{1/3},Nb_{2/3})O_3$	$1:2 \rightleftharpoons$ disordered $T_c \approx 1500$ °C	13
$Ba(Mg_{1/3}, Ta_{2/3})O_3$	$1:2 \rightleftharpoons$ disordered $T_c \approx 1655$ °C	14,15
$(1-x)Ba(Zn_{1/3}, Ta_{2/3})O_3-(x)BaZrO_3$	1:2, $0 \le x \le 0.02$, $T = 1425$ °C 1:1, $0.04 \leq x \leq 0.25$ DIS, $0.25 < x$	16
$(1-x)Ba(Mg_{1/3},Nb_{2/3})O_3-(x)BaZrO_3$	1:2, $0 \le x \le 0.02$, $T = 1350$ °C 1:1, $0.05 \leq x \leq 0.15$ DIS, $0.15 < x$	17
Ba_{1-x} , $La_x(Zn_{(1+x)/3}, Ta_{(2-x)/3})O_3$	1:2, $0 \le x \le 0.02$, $T = 1500$ °C 1:1, $0.02 \leq x \leq 0.20$	18
Ba_{1-x} , $K_x(Zn_{(1-x)/3}, Ta_{(2+x)/3})O_3$	1:2, $0 \le x \le 0.10$, $T = 1500$ °C	18

FIG. 1. The unit cube and the nn octahedron clusters.

pseudopotential calculations by Wensell and Krakauer⁹ predict that the g.s. of $Pb(Zn_{1/3},Nb_{2/3})O_3$ is not 1:2, but rather the ''six-triangle'' structure, an *Imm*2 30-atom cell in which there is a stacking sequence of $(111)_{cubic}$ planes of the form β', β'' where β' is $[Zn_{2/3},Nb_{1/3}]$ and β'' is [Nb]. Although the six-triangle structure may be the true g.s. of PZN, this has not been demonstrated experimentally, whereas the full 1:2 g.s.*→*1:1*→*DIS transition sequence is actually observed in $Ca(Ca_{1/3},Nb_{2/3})O_3$ (CCN). Therefore, the working hypothesis adopted here is that CCN is the prototype system, and 1:2 is the presumed g.s. As indicated in Table I, 1:2 perovskites may transform to 1:1 structure phases in response to *either* an increase in temperature, *or* alloying with a very small amount (\sim 2%) of a (4+) ion such as $Zr^{(4+)}$.

The experimental data compiled in Table I indicate a close competition between 1:2 and 1:1 phases in $A(B_{1/3}', B_{2/3}'')O_3$ perovskites, and suggest the following three constraints for a *sufficient* model for order-disorder phenomena in these materials: (1) yield, or at least permit, the correct g.s. (presumably 1:2), (2) permit the transition sequences 1:2 g.s. \rightarrow 1:1 \rightarrow DIS and 1:2 g.s. \rightarrow DIS, and (3) have its lowest g.s. at the $x=1/3$ composition in the AB'_xO_3 $-AB''_{1-x}O_3$ pseudobinary.

Constraint (3) obtains because $x=1/3$ is the only composition at which all ions may have their normal valences $(A^{2+}, B^{\prime(2+)}, B^{\prime\prime(5+)}, O^{2-})$ and the only composition at which compounds form experimentally. Also, this *appropriate g.s. hierarchy* $(\Delta E_{(1:1)}) > \Delta E_{(1:2)}$ =minimum) for the $AB'_xO_3 - AB''_{1-x}O_3$ pseudobinary is supported by firstprinciples calculations.19 None of the previous statistical models of order-disorder phenomena in PMN (Refs. 20 and 21) satisfy all three conditions. The purpose of this paper is to identify a minimal Ising-type model that is sufficient to treat order-disorder phenomena in these systems and to demonstrate that such a model produces microstructures of the type observed in $Pb(Mg_{1/3},Nb_{2/3})O_3$.⁸

FIG. 2. Phase diagram for the linear triplet model at $x=1/3$.

FIG. 3. Phase diagram for the ${nn pair + linear triplet}$ model at $x=1/3$. Triangles bracket phase boundaries: solid triangles are 1:2 phase, open triangles are 1:1 or disordered phase. Solid circles indicate two-phase coexistence associated with the strongly firstorder $1:2 \rightleftharpoons DIS$ and $1:2 \rightleftharpoons 1:1$ transitions. Right of the dashed line at $r = 1/2\Delta E(1:2)_{x=1/3} < \Delta E(1:1)_{x=1/2}$, which is the appropriate g.s. hierarchy for $A(B_{1/3}', B_{2/3}'')O_3$ perovskites.

II. SIMPLE ISING MODELS

The cluster expansion Hamiltonian is of the form

$$
E = \sum_{\alpha} m_{\alpha} \xi_{\alpha} J_{\alpha},
$$

where E is total enetgy, α indexes all clusters in the expansion, m_{α} are the multiplicities of clusters α in a simple cubic lattice, ξ_{α} are site and multisite correlation functions, and J_{α} are effective cluster interactions [ECI's (Ref. 22)].

In a previous discussion²³ of the simple cubic g.s. problem²³⁻²⁷ it was reported that a sufficient Ising Hamiltonian could be obtained by including the ECI's contained within the unit cube plus the linear triplet. It was noted, however, that some *undetermined* subset of the 22 ECI's in the cube plus linear triplet set might be sufficient. Groundstate analyses for each of the 33 ECI's in the unit cube plus the centered-octahedron \lceil nn \lceil nearest-neighbor \rceil octahedron, Fig. 1 demonstrate that further simplification is possible. Specifically, the linear triplet alone is sufficient to stabilize the $1:2$ g.s.

A. Linear triplet model

Within the ${cube + nn octahedron}$ ECI set, only the linear triplet interaction $J_{(•-•)}$ is both necessary and sufficient to stabilize the 1:2 g.s.; i.e., only $J_{(\bullet-\bullet-\bullet)}$ yields a 1:2 g.s. at $x=1/3$. The finite-temperature behavior of the linear triplet model (Fig. 2) was determined by Monte Carlo (MC) simulations²⁸ performed on a $30 \times 30 \times 30$ simple cubic

FIG. 4. The nn pair, linear triplet, tetrahedron, and cube-222 clusters.

FIG. 5. Phase diagram at $x=1/3$ for the $\{nn\ pair +\ linear\ triplet\}$ $+$ cube-222} model.

array of sites, in a canonical ensemble, via pairwise distantneighbor exchange (ions closer than five lattice spacings were not exchanged). At least 5000 iterations were performed at a given temperature before the calculations were considered to have converged. The linear triplet model yields a first-order 1:2 g.s.→ DIS transition at 4.5183< $-kT_c/[J_{(•-••)}]$ < 4.5185.

$B. nn pair + linear triplet model$

Obviously, the simplest Hamiltonian that will yield a 1:2 g.s.*→*1:1*→* DIS transition sequence must combine $J_{(\bullet-\bullet-\bullet)}$ with another ECI that stabilizes the 1:1 phase at $x=1/3$, e.g., the $\{nn\$ pair + linear triplet} model, $\{J_{\langle \bullet-\bullet\rangle}\}$ $+J_{(\bullet-\bullet-\bullet)}$. The phase diagram for this model at $x=1/3$ $(Fig. 3)$ was determined by MC simulations (triangular symbols). For values of $r=-J_{(\bullet-\bullet-\bullet)}/J_{(\bullet-\bullet)}\leq 0.25$ this model yields the desired g.s. and transition sequence at *x* $=1/3$, but only in a region of ECI space where the formation

FIG. 6. (a) Ground-state diagram for the mostly metastable $AB'_xO_3 - AB''_{1-x}O_3$ pseudobinary system in the $\{\text{nn pair} + \text{linear}\}$ triplet $+$ cube-222} model. (b) The corresponding pseudobinary phase diagram.

FIG. 7. Results of a MC simulation at $x=1/3$ and $T/T_C(1:1 \rightleftharpoons DIS) = 1.1$ for the $\{\text{nn} \text{pair} + \text{linear} \text{triplet}\}$ $+$ cube-222} model.

energy $[\Delta E(1:2)]$ for the 1:2 phase is greater than that for the 1:1 phase at $x=1/2$, $\Delta E(1:2)_{x=1/3}$. $\Delta E(1:1)_{x=1/2}$ (left of the dotted vertical line in Fig. 3). This g.s. hierarchy is contrary to both experiment and to first-principles calculations.¹⁹ Note the distinction between the 1:1 phase at $x=1/3$ and the fictive $A(B'_{1/2}, B''_{1/2})\text{O}_3$ phase with NaCl-type ordering, for which the formation energy is $\Delta E(1:1)_{x=1/2}$. The former is observed experimentally, but the latter is not.

Other combinations of two ECI's that include $J_{(0,-0,-0)}$ also stabilize the 1:1 structure, but none were found that did so with an acceptable g.s. hierarchy.

$C. nn pair + linear triplet + cube-222 model$

Investigations of three parameter models of the form ${J_{(\bullet-\bullet-\bullet)}+J_{(\bullet-\bullet)}+a}$ third ECI} revealed only one combination that satisfied all three constraints listed above. The third ECI is the cube-222 interaction, which is associated with the cluster that remains after one removes a triangle of three second nn pairs from a unit cube (Fig. 4).

Figure 5 is the $x=1/3$ phase diagram for this model, with ECI values $J_{(\bullet-\bullet)}=1, J_{(\bullet-\bullet-\bullet)}=-0.23$, and $J_{(cube-222)}$ $=$ -0.2. Figure 6(a) is the g.s. diagram, and Fig. 6(b) is a portion of the *mostly metastable* $AB'_xO_3 - AB''_{1-x}O_3$ pseudobinary, metastable because $x=1/3$ is the only composition at which phases are observed experimentally. Each solid circle on the convex hull (solid line) indicates a different ordered structure that is stable at 0 K, but only the 1:2 and 1:1 structure phases persist to high temperatures. With these ECI values, the $1:2 \rightleftharpoons 1:1$ and $1:1 \rightleftharpoons DIS$ transitions are very

FIG. 8. A (111) plane through the MC box after 5000 MC iterations at $x=1/3$ and $T/T_C(1:1 \rightleftharpoons DIS) = 1.1$, {nn pair + linear triplet + cube-222} model. Solid circles (\bullet) represent *B*^{'(2+)}ions. Open circles (\bigcirc) represent *B*^{"(5+)}ions.

FIG. 9. Phase diagram at $x=1/3$ for the $\{$ nn pair + linear triplet $+$ tetrahedron $+$ cube-222} model.

close together $[\tau_c(1:2)=kT/J_{\bullet-\bullet}\sim 3.885$ and $\tau_c(1:1)$ \sim 4.05]. A more negative value of *J*_{(*cube-222*) increases the} temperature range in which 1:1 phase is stable, but this range can only be expanded slightly before the g.s. at *x* $=1/2$ becomes lower than that at $x=1/3$. A less negative value of $J_{(cube-222)}$ will decrease the 1:1-phase field. The 1:2*→*1:1 transition is predicted to be strongly first order, but the 1:1 \implies DIS transition is predicted to have a critical point. Because the $1:2 \rightleftharpoons 1:1$ transition is strongly first order, it will, in general, traverse a $(1:2+1:1)$ two-phase field, unless the congruent point is exactly at $x=1/3$. Within the precision of this calculation, however, no such field is resolved.

Figure 7 is a plot of the running average, over the preceeding 100 MC iterations, of the order parameters for the 1:2 and 1:1 phases ($\eta_{1:2}$ and $\eta_{1:1}$, respectively) at $x=1/3$ and $T/T_C(1:1 \rightleftharpoons DIS) = 1.1$. Fluctuations of $\eta_{1:1}$ are just what one would expect from a microstructure characterized by 1:1-type short-range order (SRO) that manifests itself as ordered microregions in a (long-range) disordered crystal. Figure 8 is a (111) plane through the MC box after 5000 MC iterations at $T/T_c(1:1 \rightleftharpoons DIS) = 1.1$ and $x = 1/3$. This gives some idea of the predicted domain size, up to \sim 5–10 unit cells, \sim 2-4 nm, which is within the range (\sim 2-5 nm) observed experimentally⁸ in crystals that were grown from a melt at $1150\degree$ C.²⁹ Note, however, that MC simulations with larger system sizes should be performed to evaluate finitesize effects on calculated domain size.

D. nn pair + linear triplet + tetrahedron + cube-222 model

A four-ECI model that greatly expands the stability field of the 1:1 phase at $x=1/3$, while retaining an appropriate g.s. hierarchy, is obtained by adding the tetrahedron ECI's $(Fig. 4)$ to the three-parameter model discussed above. Figure 9 is the $x=1/3$ phase diagram for $J_{(\bullet-\bullet)}=1$, $J_{(\bullet - \bullet - \bullet)} = -0.23$, $J_{(tetrahedron)} = -0.25$, and $J_{(cube \text{-}222)}$ $=$ -0.3. Qualitatively, the phase diagram is similar to that for the $\{\text{nn pair} + \text{linear triplet} + cube-222\}$ model, but in this case a $(1:2+1:1)$ two-phase field is clearly present. Figure 8 is not compelling in this respect, but MC calculations at a reduced temperature $\tau = kT/J_{(0-\theta)}=4$ produce very stable $(1:2+1:1)$ two- phase assemblages, stable in the sense that $\eta_{1:2}$ and $\eta_{1:1}$ do not change sign during as many as 10 000 MC iterations.

III. DISCUSSION

The models described above suggest a simple interpretation for observed cation order-disorder phenomena in $Pb(Mg_{1/3},Nb_{2/3})O_3$.

 (i) The g.s. is 1:2 or some other ordered structure, but unfavorable kinetics cause the disordered phase to persist metastably at low temperatures.

 (iii) A 1:1-phase field may be stable at intermediate temperatures, but if such a field exists, it is below the temperature at which an equlibrium cation distribution can be achieved.

(iii) As shown in Fig. 6(b), the $1:1 \rightleftharpoons 1:2$ transition may be close to the $x=1/3$ composition over a substantial temperature range, which implies that enhanced 1:1-type SRO is stable within that broad range.

IV. CONCLUSIONS

A sufficient Ising model to describe *B*-site order-disorder phenomena in $A(B_{1/3}', B_{2/3}'')O_3$ perovskites must permit both the 1:2 g.s. and the transition sequence 1:2 g.s. \rightarrow 1:1 \rightarrow DIS, and it must do so with the minimum g.s. in the AB'_x , $B''_{1-x}O_3$ pseudobinary at $x=1/3$. The linear triplet interaction is both necessary and sufficient to stabilize the 1:2 g.s. and the $\{$ linear triplet $+$ nn pair $\}$ model is sufficient to generate the 1:2 g.s.*→*1:1*→* DIS transition sequence, but only with an inappropriate g.s. hierarchy. The $\{nn pair +$ linear triplet $+$ cube-222} model is the simplest one that satisfies all three sufficiency constraints. Finite-temperature MC simulations with $J_{(\bullet-\bullet)}=1, J_{(\bullet-\bullet-\bullet)}=-0.23$, and $J_{(cube-222)} = -0.2$ yield the 1:2 g.s. \rightarrow 1:1 \rightarrow DIS transition sequence with the 1:1 phase stable over a very narrow temperature range (3.885 $\leq \tau = kT/J_{\bullet} \leq 4.05$). The simulated microstructure is qualitatively consistent with experiment, but finite-size effects on the calculated domain size should be analyzed in greater detail.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research under ONR Contract No. N00014-94-F0017.

¹A.J. Jacobson, B.M. Collins, and B.E.F. Fender, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 32, 1083 (1976).

- 4N. de Mathan, E. Husson, G. Calvarin, J.R. Gavarri, A. Hewatt, and A. Morell, J. Phys.: Condens. Matter 3, 8159 (1991).
- 5T. Egami, W. Dmowski, S. Teslic, P.K. Davies, I.-W. Chen, and H. Chen, Ferroelectrics **206-207**, 231 (1998).
- 6 H.D. Rosenfeld and T. Egami, Ferroelectrics **158**, 351 (1994).

 2 L. Bellaiche and D. Vanderbilt, Phys. Rev. Lett. **81**, 1318 (1998).

³E. Husson, M. Chubb, and A. Morell, Mater. Res. Bull. **23**, 357 $(1988).$

- 7C.A. Randall and A.S. Bhalla, Jpn. J. Appl. Phys., Part 1 **29**, 327 $(1990).$
- 8H.B. Krause, J.M. Cowley, and J. Wheatley, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. **35**, 1015 $(1979).$
- 9M. Wensell and H. Krakauer, in *First-Principles Calculations for Ferroelectrics*, edited by R.E. Cohen, AIP Conf. Proc. 436 (AIP, New York, 1998), p. 165.
- 10 T. Nakamura and I. Ishii, Mater. Res. Bull. 11, 1097 (1976).
- $¹¹R.S.$ Roth (personal communication).</sup>
- ¹² I-T. Kim, S.J. Chung, and K.S. Hong, Ferroelectrics **173**, 125 $(1995).$
- 13U. Treiber and S. Kemmler-Sack, J. Solid State Chem. **43**, 51 $(1982).$
- 14R. Guo, A.S. Bhalla, and L.E. Cross, J. Appl. Phys. **75**, 4704 (1994) .
- ¹⁵ I.G. Siny, R. Rao, R.S. Katiyar, R. Guo, and A.S. Bhalla, J. Phys. Chem. Solids 59, 181 (1998).
- ¹⁶L. Chai and P.K. Davies, J. Am. Ceram. Soc. 80, 3193 (1997).
- 17 M. Akbas and P.K. Davies, J. Am. Ceram. Soc. **81**, 670 (1998).
- 18 C-C. Lee, C-C. Chou, and D-S. Tsai, Ferroelectrics (to be published).
- 19B.P. Burton, R.P. McCormack, G. Ceder, R.L.B. Selinger, G. Kresse, and J. Hafner, in *First-Principles Calculations for Ferroelectrics* (Ref. 9), p. 20.
- ²⁰ A.G. Khachaturyan, Phys. Rev. B **48**, 2949 (1993).
- 21L.A. Bursill, H. Qian, J.L. Peng, and X.D. Fan, Physica B **216**, 1 $(1995).$
- ²² J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica A **128**, 334 $(1984).$
- 23R. McCormack and B.P. Burton, Comput. Mater. Sci. **8**, 153 $(1997).$
- ²⁴ S. Katsura and A. Narita, Prog. Theor. Phys. **50**, 1426 (1973).
- 25 M. Kaburagi and J. Kanamori, Prog. Theor. Phys. **54**, 30 (1975).
- ²⁶ M.D. Lipkin, Physica A **150**, 18 (1988).
- 27 G. Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda, Phys. Rev. B **49**, 1 (1994).
- 28N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
- 29W.A. Bonner and L.G. Van Uitert, Mater. Res. Bull. **2**, 131 $(1967).$