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Empirical cluster expansion models of cation order-disorder inA(B,5,B%,5) O3 perovskites
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Minimal cluster expansion models Bfsite cation ordering if\(B;/3,B%/5) O3 perovskites are evaluated. It
is demonstrated that the linear triplet interaction is both necessary and sufficient to stabilZentte 1:2
structure ground state that is observed in such compounds as ai);3) O; and Ba(ZA 3, Tay)) O5. The
linear triplet model exhibits #3m1—Pm3m transition atkTc /[ —Je-e-e)] =4.5184. The addition of a
nearest-neighbor pair interaction permits the transition sequ@®rel—Fm3ml:1 structure>Pm3m,
which is observed in Ca(Ga,Nb,3) O3, but not in a region of parameter space in which the lowest-energy
ground state of theAB,O;—AB]_,0; pseudobinary occurs at th&(Bj,;,B%,:)O; composition. This latter
condition can be satisfied by including a second many-body interaction, specifically, a cube minus the triangle
of three second-neighbor pairs. Monte Carlo simulations with such a model generate microstructures of the
type that are observed in Pb(ZnNb,3) O3 and Pb(Mg,3,Nb,3) O;. [S0163-18209)02509-6

[. INTRODUCTION alloying with neutral particles, and demonstrated that
10-50% neutral sites stabilize 1:1 ordering at low temp-
Several A(Bj;3,B%,) O3 perovskites, particularly those erature A(Bj;,B55) O3 perovskites with Pb as th& cation,
with Ba as theA cation (Table ), have theP3ml 1:2 e.g., Pb(Mg;,Nb,3)0; (PMN) (Refs. 3-6 and
structuré as their apparent ground statgs). This structure  Pb(Zn3,Nb,5) O3 (PZN),” are typically described as having
is characterized by a 1:2 stacking modulation Bf 1:1 ordered microregions, 2—5 rfhin a disordered matrix.
=B'?") and B"=B"®*") layers perpendicular to the Ideally, the 1:1 structure is am3m NaCl type @;.;
[111].pic Vector of thePm3m disorderedDIS) perovskite.  ~2ag) in which oneB site is occupied by NifTa) while the
Electrostatic calculations by Bellaiche and Vandefbilt other contains a disordered mixture of 2/3 Mg(Z)/3 Nb
predict that the 1:2 structure is the natural g.s. for an ideal¢Ta). This structure has significant configurational entropy,
ized ionic model of arA(B15,B%,5) O3 perovskite; i.e., for a  which precludes it as a g.s. Therefore, the logical inference is
1:2 mixture of (2-) and (1+) point charges on a simple that PZN and PMN fail to transform to their respective g.s.’s
cubic 12< 12X 12 supercell oB sites. They also considered because of unfavorable kinetics. It should also be noted that

TABLE |. Data on order-disorder transitions A&(B’,B")O; perovskites.

System Structurex—, T range Ref.

Ca(Cay3,Nb,3) O3 1:2=1:1 10,11
1300<T<1425 °C

Ba(Niy3,Nby3) O 1:2 = disordered 12
1350<T<1400 °C

Ba(Zny3,Nby3) Og 1:2 = disordered 13
1350<T:<1400 °C

Ba(Cq;3,Nby3) Og 1:2 = disordered 13

Tc ~ 1500 °C
Ba(Mgy3, Tay3) O3 1:2 = disordered 14,15
Tc ~ 1655 °C

(1—x)Ba(Znys, Tayz) Oz-(x)Bazro; 1:2, 0<x<0.02, T=1425 °C 16

1:1, 0.04&x<0.25
DIS, 0.25<x

(1—x)Ba(Mgy3,Nb,3) O3 — (x)BaZro; 1:2, 0<x<0.02, T=1350 °C 17

1:1, 0.05xx<0.15
DIS, 0.15<x

Bay v, La(Zn11x3: T&2-x3) O3 1:2, 0<x<0.02, T=1500 °C 18
1:1, 0.0xx<0.20

Bay _x, Ky(ZN(1-xy/3. T&24x)13) O3 1:2, 0<x = 0.10, T=1500 °C 18
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pseudopotential calculations by Wensell and Krakapee- 1 iY |
dict that the g.s. of Pb(Z4m,Nb,3) O3 is not 1:2, but rather ¥ 5
the “six-triangle” structure, anmm2 30-atom cell in which o & -
there is a stacking sequence of (14). planes of the form 0 02 04 06 08 I
B'.B" wherep' is [Zny3,Nby3] andB” is [Nb]. Although "=~ o—o—e)) (o—e)

the six-triangle structure may be the true g.s. of PZN, this

has not been demonstrated experimentally, whereas the full FIG. 3. Phase diagram for tHen pair+ linear triple} model at

1:2 g.s—1:1—DIS transition sequence is actually ob- X=1/3. Trianglgs bracket phase boundaries: solid triangle; are 1:2

served in Ca(Cas, Nbyz) Os (CCN). Therefore, the working pk(lje_lset, otpen tkr]langles a_ret 1:1 or dlsqr?eéed_tﬁhﬁse. tSolldI mfr_clt:s
f : : ICate two-phase coexistence associated wi e stron Irst-

hypOtheSI.S adopted here s that CC.N I.S the prototype SySt?nE)FPder 1:2:DIpS and 1:2=1:1 transitions. Right of the dashe?j)lline

and 1.2_ is the presumed g.s. As indicated in Table IZ 1'2at F=1/2AE(1:2),_ 1s< AE(1:1),_y,, Which is the appropriate

perovsklte§ may t.ransform.to 1:1 structure phase; in r€5.s. hierarchy for\(B.,5, B9 O5 perovskites.

sponse taeitheran increase in temperatura, alloying with

a very small amount-{2%) of a (4+) ion such as Zf*). IIl. SIMPLE ISING MODELS

The experimental data compiled in Table | indicate @ e cjyster expansion Hamiltonian is of the form

close competition between 1:2 and 1:1 phases in

A(B}3,B%9) O3 perovskites, and suggest the following three

constraints for aufficientmodel for order-disorder phenom-

ena in these materialét) yield, or at least permit, the correct

g.s. (presumablyl:2), (2) permit the transition sequences

1:2 g.s—1:1-DIS and 1:2 g.s~»DIS, and(3) have its

lowest g.s. at thex=1/3 composition in theAB,O;

E=2 Myéuda,

whereE is total enetgy« indexes all clusters in the expan-
sion,m,, are the multiplicities of clustera in a simple cubic
lattice, &£, are site and multisite correlation functions, ahd

’ are effective cluster interactiofE&Cl's (Ref. 22)].

—AB]_,0; pseudobinary. In a previous discussidh of the simple cubic g.s.
Constraint(3) obtains because=1/3 is the only compo- problent>~?’ it was reported that a sufficient Ising Hamil-
sition at which all ions may have their normal valencestonian could be obtained by including the ECI's contained
(A%*, B'@%) B"GH)  ?7) and the only composition at within the unit cube plus the linear triplet. It was noted,

which compounds form experimentally. Also, tlppropri-  however, that somandeterminedsubset of the 22 ECI's in
ate g.s. hierarchy(AE;.;y>AE;.,)=minimum) for the the cube plus linear triplet set might be sufficient. Ground-
AB,O;—AB]_,0; pseudobinary is supported by first- State analyses for each of the 33 ECI's in the unit cube plus
principles calculationd? None of the previous statistical the centered-octahedrdnn (nearest-neighboroctahedron,
models of order-disorder phenomena in PNREfs. 20 and  Fig- 1] demonstrate that further simplification is possible.
21) satisfy all three conditions. The purpose of this paper isopecifically, the linear triplet alone is sufficient to stabilize
to identify a minimal Ising-type model that is sufficient to the 1:2 gs.
treat order-disorder phenomena in these systems and to dem-

onstrate that such a model produces microstructures of the
type observed in Pb(Mg, Nb,9)O5.8 Within the {cube+ nn octahedror} ECI set, only the lin-

ear triplet interactiord ¢ - ¢ - @) is both necessary and suffi-
cient to stabilize the 1:2 g.s.; i.e., onlye_e_e) Yields a
1:2 g.s. atx=1/3. The finite-temperature behavior of the
linear triplet modekFig. 2) was determined by Monte Carlo
(MC) simulation$® performed on a 38 30x 30 simple cubic

A. Linear triplet model
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FIG. 4. The nn pair, linear triplet, tetrahedron, and cube-222
FIG. 2. Phase diagram for the linear triplet modekat1/3. clusters.
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] o ] FIG. 7. Results of a MC simulation atk=1/3 and
FIG. 5. Phase diagram at=1/3 for the{nn pair + linear triplet /7 _(1:1—=DIS)=1.1 for the {nn pair + linear triplet

+ cube-222 model. + cube-222 model.

array of sites, in a canonical ensemble, via pairwise d'Stanténergy[AE(LZ)] for the 1:2 phase is greater than that for

neighbor exchangedions closer than five lattice spacings ; _ ) }
. . the 1:1 phase at=1/2AE(1:2),— 15> AE(1:1)y=1, (left
were not exchanggd At least 5000 iterations were per- of the dotted vertical line in Fig.)3 This g.s. hierarchy is

formed at a given temperature before the calculations WergOntrary to both experiment and to first-principles

considered to have converged. The linear triplet model yields .19 o .
a fistorder 1:2 gs- DIS transifion at 45183 2alculations® Note the distinction between the 1:1 phase at

~ x=1/3 and the fictiveA(B1,,,B7,,) O; phase with NaCl-type
KTc/[J@-o-0)]<4.5185. ordering, for which the formation energy SE(1:1),_1,.

The former is observed experimentally, but the latter is not.
Other combinations of two ECI’s that includge — ¢ —e)
Obviously, the simplest Hamiltonian that will yield a also stabilize the 1:1 structure, but none were found that did

1:2 g.s—1:1— DIS transition sequence must combine so with an acceptable g.s. hierarchy.

Je-e-e) With another ECI that stabilizes the 1:1 phase at

B. nn pair + linear triplet model

x=1/3, e.g., the{nn pair + linear triple} model,{J e o) C. nn pair + linear triplet + cube-222 model
+Je-e-@)}- The phase diagram for this modehat 1/3 o
(Fig. 3 was determined by MC simulatiorisiangular sym- Investigations of three parameter models of the form

bols. For values ofr=—Je e e)/Je e =<0.25 this 1J@-e-e)*Je-e) +athird EC} revealed only one com-
model yields the desired g.s. and transition sequence at Pination that satisfied all three constraints listed above. The

= 1/3, but only in a region of ECI space where the formationthird ECI is the cube-222 interaction, which is associated
with the cluster that remains after one removes a triangle of

= 7 three seconahn pairs from a unit cubéFig. 4).

ot Figure 5 is thex=1/3 phase diagram for this model, with
;f ECI ValueSJ(.,.): 1,\](.,.,.): —0.23, andJ(Cub&zzz)
g2 \ =—0.2. Figure ) is the g.s. diagram, and Fig(l§ is a
3 . \ v portion of themostly metastable Af;— AB]_,O; pseudo-
g \, binary, metastable because 1/3 is the only composition at
S 6 \/.4.. 1:1 which phases are observed experimentally. Each solid circle
4 1.0 % on the convex hullsolid line) indicates a different ordered

-8 structure that is stable at 0 K, but only the 1:2 and 1:1

structure phases persist to high temperatures. With these ECI
values, the 1:21:1 and 1:E=DIS transitions are very

T=

0 0.2 0.4 0.6 0.8 1
B’(5+) XAB'03 B'2+) 101j

FIG. 6. (8 Ground-state diagram for the mostly metastable FIG- 8. A (111 plane through the MC box after 5000 MC
AB.O;—AB]_,0, pseudobinary system in th@n pair + linear iterations atx=1/3 andT/T(1:1=DIS)=1.1{nn palr/+ linear
triplet + cube-222 model. (b) The corresponding pseudobinary triplet + cube-222 model. Solid circles ®) represenB’ ®*)ions.
phase diagram. Open circles Q) represenB’®ions.
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Jo-o-0)=—0.23, Jitetranedron™ —0.25, and Jicype202)
g Do = —0.3. Qualitatively, the phase diagram is similar to that
8 08 for the {nn pair + linear triplet + cube222 model, but in
§ 06 this case &1:2+1:1) two-phase field is clearly present.
5 Figure 8 is not compelling in this respect, but MC calcula-
04 12 DIS tions at a reduced temperature=kT/J ¢_ey=4 produce
~§ 02 ’ very stablg1:2+1:1) two- phase assemblages, stable in the
O ,loeeneaacs | sense thaty;., and »;.; do not change sign during as many
as 10000 MC iterations.

T=kTY, ) IIl. DISCUSSION

The models described above suggest a simple interpreta-
FIG. 9. Phase diagram at=1/3 for the{nn pair+ linear triplet  {jon for observed cation order-disorder phenomena in
+ tetrahedromt+ cube-222 model. Pb(Mg3,Nby9) Os.

(i) The g.s. is 1:2 or some other ordered structure, but
close together[7;(1:2)=kT/Jg_~3.885 and 7¢(1:1)  ynpfavorable kinetics cause the disordered phase to persist
~4.05]. A more negative value Qf¢ pe202) increases the metastably at low temperatures.
temperature range in which 1:1 phase is stable, but this (jj) A 1:1-phase field may be stable at intermediate tem-
range can only be expanded slightly before the g.sx at peratures, but if such a field exists, it is below the tempera-
=1/2 becomes lower than that &at=1/3. A less negative tyre at which an equlibrium cation distribution can be
value of Jcypenoz) Will decrease thel:1-phase field. The achieved.
1:2—1:1 transition is predicted to be strongly first order,  (jii) As shown in Fig. &), the 1:1=1:2 transition may
but the 1:1 = DIS transition is predicted to have a critical be close to thex=1/3 Composition over a substantial tem-

point. Because the 1:2= 1:1 transition is strongly first perature range, which implies that enhantet-type SRO is
order, it will, in general, traverse @l:2+1:1) two-phase stable within that broad range.

field, unless the congruent point is exactlyxat 1/3. Within
the precision of this calculation, however, no such field is IV. CONCLUSIONS
resolved.

Figure 7 is a plot of the running average, over the pre- A sufficient Ising model to describB-site order-disorder
ceeding 100 MC iterations, of the order parameters for thoghenomena iA(B;,5,B%,5) Oz perovskites must permit both
1:2 and 1:1 phasesp., and 7.1, respectivelyatx=1/3  the 1:2 g.s. and the transition sequence 1:2-¢g.4:1 —
and T/T¢(1:1= DIS)=1.1. Fluctuations ofp,.; are just DIS, and it must do so with the minimum g.s. in the
what one would expect from a microstructure characterized\By, ,B]_,O; pseudobinary ak=1/3. The linear triplet in-
by 1:1-type short-range ord¢BRO that manifests itself as teraction is both necessary and sufficient to stabilize the
ordered microregions in @dong-range disordered crystal. 1:2 g.s. and th¢ linear triplet+nn pait model is sufficient
Figure 8 is a111) plane through the MC box after 5000 MC to generate the 1:2 g¢g-s.1:1— DIS transition sequence,
iterations atT/T (1:1=DIS)=1.1 andx=1/3. This gives but only with an inappropriate g.s. hierarchy. Tne pair+
some idea of the predicted domain size, up~t6—10 unit  linear triplet + cube-222 model is the simplest one that
cells, ~2—4 nm, which is within the range~(2-5 nm) satisfies all three sufficiency constraints. Finite-temperature
observed experimentaftyn crystals that were grown from a MC simulations with Jeo-0)=1Je-e-0)=—0.23, and
melt at 1150 °C>* Note, however, that MC simulations with J.,,pe200=— 0.2 yield the 1:2 g.s-1:1— DIS transition
larger system sizes should be performed to evaluate finitesequence with the 1:1 phase stable over a very narrow tem-
size effects on calculated domain size. perature range (3.885r=kT/Jg_<4.05). The simulated

microstructure is qualitatively consistent with experiment,
D. nn pair + linear triplet + tetrahedron + cube-222 model ~ but finite-size effects on the calculated domain size should be

analyzed in greater detail.
A four-ECI model that greatly expands the stability field yzeding I

of the 1:1 phase at=1/3, while retaining an appropriate
g.s. hierarchy, is obtained by adding the tetrahedron ECI's
(Fig. 4 to the three-parameter model discussed above. Fig- This work was supported by the Office of Naval Research
ure 9 is the x=1/3 phase diagram for)e¢ )=1, under ONR Contract No. NO0014-94-F0017.
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