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Spin polarons in triangular antiferromagnets
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The motion of a single hole in a two-dimensional triangular antiferromagnet is investigated usitig the
model. The one-hole states are described by strings of spin deviations around the hole. Using projection
technique the one-hole spectral function is calculated. For lafigee find low-lying quasiparticlelike bands
which are well separated from an incoherent background by a gap of arblewever, for small/t this gap
vanishes and the spectrum becomes broad over an energy range of teVbeatesults are compared with
self-consistent Born approximation calculations and numerical §86€41.63-18209)07409-3

Since the discovery of high-temperature superconductiverder being the ground state of the classical spin model
ity, charge carriers in doped antiferromagnéts=) have (Fig. 1) with additional quantum fluctuations.
been studied intensively. A reliable description of the hole To investigate the hole motion we consider a one-particle
motion is important for the understanding of the low-energyGreen’s function describing the creation of a single hole with
charge dynamics in the copper-oxide planes of the cupratmomentumk at zero temperature:
superconductors. A large number of numerical and analytical
studies indicate that a single hole in an AF spin background N(AT - N
has nontrivial properties: The spectral function consists of a G(k’w):; <¢o|ckgﬁcka|¢o>a 2
pronounced coherent peak at the bottom of the spectrum and
an incoherent background at larger energies. The cohereqihere z is the complex frequency variablg=w+i7,
peak can be associated with the motion of a dressed holg;— 0. The quantityL denotes the Liouville operator defined
i.e., a hole surrounded by spin defe¢tspin polaron”).*™® by | A=[H,A]_ for arbitrary operatorsA. |¢Y) is the
Materials with spin arrangements on two-dimensionalground state of undoped system, i.e., wittelectrons orN
(2D) nonsquare lattices have also been synthesized. For egttice sites.
ample, experiments suggest the realization of a triangular The one-hole problem in the triangular lattice has up to
spin- AF in NaTiO,,” as well as in surface structufesuch  now analytically only been studiét® using self-consistent
as K/S{111):B. Delafossite cuprateRCuQ,,;, with Ra  Born approximation(SCBA). The SCBA (without vertex
rare-earth element, have Cu ions sitting on a triangulagorrectiony neglects spiral loops in the hole motion
lattice® Furthermore, recent results in the context of organidTrugman processdssince they are formally crossing dia-
superconductors indicate thet(BEDT-TTF),X, whereXis  grams. However, for the triangular lattice these processes are
an ion, may be described by a half filled Hubbard model orexpected to be more important than for the square lattice
an anisotropic triangular latticg. since only three hopping steps are necessary for one loop.
Although most of these materials do not contain a finiteHere we prefer another analytical approach which is based
concentration of holes or electrons away from half filling, it on the picture of the spin-bag quasipartit@P) or magnetic
is of fundamental theoretical interest to study the hole dyfolaron?~® The spin deviations surrounding the hole are de-
namics in this environment. In this paper we address thé&cribed by a set of path operatGrs.The correlation function
motion of a single hole in an otherwise half filled system.(2) can be evaluated using a cumulant ver$idhof Mori-
The one-hole spectral function for this case corresponds dZwanzig projection technigué.
rectly to the result of an angle-resolved photoemission ex- In the calculations of this paper the ground sta§) of
periment(ARPES on the undoped compound. the undoped THAF is assumed to be long-range ordEr&t.
We assume that a triangular AF doped with holes is welllts description is based on an expansion around the classical
described by thé-J model on a triangular lattice,

H=—t> (c],Cjs+Cl,Cin)+IX S-S (1) AR Vi
(iheo (i) D

in standard notation. Note that, in contrast to the square lat- & ---a---->&--- K
tice, there is no electron-hole symmetry for the triangular

lattice t-J model, i.e., the physics depends on the sign.of  £iG. 1. (a) The classical ground state of the triangular AF to-
For half filling this model reduces to the triangular Heisen-gether with the three unit vectoes of the lattice. The 120° spin
berg antiferromagnefTHAF) with spins3. It is by now  order defines three sublattices A, B, and(B). Brillouin zone for
widely believed that its ground state possesses magnetifie triangular system with the path in momentum space for the
long-range ordéf® which can be described as the 120° following figures.
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ground statée) of the triangular antiferromagnésee Fig.
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Green’s function(2) has to be calculated using relati¢s).

1). Translational invariance and rotation invariance in spinUsing cumulants the correlation functio@scan be rewritten
space are spontaneously broken; we choose the coordinat

that the spins if¢) are arranged in the-z plane.

For the analytical treatment we locally rotate all spins to
transform the classical ground state into a formally ferromag-

netic state. The rotation is carried out aroundytfzis by an
angle of Q-R; with Q=(%,0) at sitei. The “original”

electron operators(") and the “new” operatorsl(" in the
rotated basis are related through

- ‘R . ‘R .

ciU:cos% d;,+ sin% di o 3
The resulting HamiltoniarH=H,+H, has the following
form:

SN
Hom 53 (@8, +8]8,)+ 52 T,
(ij)o (ij)

3 At o .t s
H,=—t 5<~21>o o(dl,d; _,—dld _,)

J -0+ ++
+§E (T, T/ —3T/ T/ +H.c)
i

3 + — zZ + _
+J Z{E) [TAT +T)-TAT +T)]. @
i—]

d™ are the electron destructidiereation operators in the

rotated basisT are the corresponding spin operators. As in

the originalt-J model the operatord(") exclude double oc-
cupancies. The summation symhgl—j) refers to orien-
tated pairgij ) where the linki— | runs in positive direction
with respect to one of the unit vectoes of the lattice. The
ground state oH, is now ferromagnetic, whered$, con-

“ 1 “ ’
GI(J',JO" (Z) = <¢C||QT(AICka')T( ;AJCkU’ ) ‘Q’l ¢C|>C'
(6)

The brackets( oyl - -|dg)¢ denote cumulant expectation
values with|¢). The dot () in Eq. (6) indicates that the
quantity inside (--)  has to be treated as a single entity in
the cumulant formation. The operatér transforms|e)
being the ground state &f into the exact ground statq&B‘)

of H=Hy+H, at half filling. Here( is approximated with

an exponential ansatz which introduces spin fluctuations into

| ¢cl> :

|¢3‘>=Q|¢c|>=exl(zy avsv)l(bd)- (7)

The operatorss, describe the effect of the spin-flip terms in
H,. This approach has been shown to give reasonable results
for the square lattice AE® Here operators with up to four
spin defects with a maximum distance of four lattice spac-
ings have been employed. Following Ref. 19 one obtains a
nonlinear set of equations for the coefficients,,
0=(g|STHQ| p4)¢, which can be solved self-consistently.

Using Mori-Zwanzig projection technigifeone can de-
rive a set of equations of motion for the dynamical correla-
tion functionsG,,, ;,/(2). Neglecting the self-energy terms it
reads

lE Q516D G536/ (2) = XK7,307 »

- _ v - -1
Q5,30 (2) = 2838791 = 20 Ok Lo XLgn 3or- (8
L(T"

tains the fluctuations. An important difference compared toX!o,Jo’ and w4y, are the static correlation functions and
the square-lattice hole motion problem is the existence of Fequency terms, respectively. They are given by the follow-

direct hopping terntin Hy), i.e., hopping without creation of
a background spin defect. This follows from the fact that the
spin states on adjacent sites in the classical ground state are

not exactly orthogonal.

The hole motion processes will be described in the con-

ing cumulant expressions:
X300 ={ bl AT (AiCko) T(AsCior) Ql b,

01630 ={ Dl QT(AICko) T(L(AICe)) Q| De)S. (9)

’5 . . .
cept of path operatofS*® which create strings of spin fluc- These terms describe all dynamic processes within the sub-

tuations attached to the hole. For the application of projec

tion technique we define a set of path opera{éxg which

couple to a hole and create local spin defects with respect

the classical ground state. The first operaigris the unity

operator, the second o, moves the hole by one lattice
spacing creating one spin defect and so on. We are interest
in calculating dynamical correlation functions for the opera-

tors {ACy,}:

- 1 -
G0 (D)= (Upl(ACko) ' 5= (Ao [93).  (B)

Space of the Liouville space spanned by the operators

t!tﬁ,f:k(,}. The use of cumulants ensures size consistency, i.e.,

only spin fluctuations connected with the hole enter the final
expressions for the one-hole correlation function. In the

é)&esent calculations we have employed up to 900 projection

variables with a maximum-paths length of 4. The neglection
of the self-energy terms leads to a discrete set of poles for the
Green'’s functions, in all figures we have introduced an arti-
ficial linewidth to plot the spectra. For details of the calcu-
lational procedure see, e.g., Ref. 5.

Now we turn to the discussion of the results. The one-hole
spectral function InG(k, ) for both positive and negativie

The Green's functiori2) for the physical hole is then given and different momenta is shown in Figs. 2—4/t(
by 2,Gos,0,(2). Note that it is equivalent to consider corre- =05, 2.0, and 10)0 For largeJ/t we observe pronounced

lation functions for operatorgA,d,,}; then the physical

low-lying QP bands and additional excitations with low
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FIG. 2. One-hole spectral function fdv|t|=0.5 and different FIG. 4. Same as Fig. 2 but fdf|t|=10.0.

momenta; left: positive, right: negativet. The energies are mea-

sured relative to the energy of a localized hole; the path in the 5\ er interesting feature is the splitting of the QP band
Brillouin zone is shown in Fig. 1.

into two which is especially visible at largg|t|. It is related
. ) ) ] ] to the noncollinear magnetic long-range order in the system
weight at higher energies which form an incoherent backyng can be understood as follows: The stéatgs and| ¢h)
ground. With decreasind/t the gap between the QP band haye a nonzero helicity, therefore bogidirections in spin
and the background excitations decreases.Jor 0.5 this  gpace(perpendicular to the plane defined by the spin direc-

gap is almost vanished, furthermore a sharp QP peak is onljons in| ¢,)) are not equivalent. The analysis of the eigen-
present near the bottom of the QP band. Valued/6£0.2  \actors of the dynamic matri®,,, 5, shows that the one-

lead to an incoherent spectrum. _ . . hole eigenmodes correspond to states where the missing spin
For negativet the character of the spectral function is in 55 g definitey component.(These are no eigenstates of

principle similar to thet>0 re;ults, i.e., for largel/|t| S ) These two modes have different enerdifes a given
(=1.0) the QP peak is well defined, whereas for sll| |y \yhich leads to two distinct bands in the spin-integrated

the spectra become incoherent. spectral functior(2). A spin-resolved photoemission experi-

, Next we are going to examine 'ghe pr(_)perties of the IOW'ment(with spins parallel or antiparallel to the helicity direc-
lying bands. Figure 5 shows the dispersignof the lowest 1) should observe oner the other of these bands.

pole for positivet and differentd/t in comparison with data The one-hole dispersion fart=0.5 calculated here is in

from the literature. Fot>0 the band has its energy mini- quantitative agreement with exact diagonalizatiE®) data
mum at momentumg(w,0) and equivalent points. Fo,kx0  on a 12-site clustel The J/t=10 dispersion curve agrees
and largeJ/|t|=4 the situation is similar to the positive  with recent results which where obtained using the SCBA
case with the dispersion of the QP band revelseed Fig. 4. technique and ED on a 21-site clusfeisee Fig. 5. To com-
However, for intermediatd/|t| andt<O the QP dispersion pare results, one has to take into account an overall shift of

almost vanishegFig. 3. This can be explained from the the hole momenta by4@r,0) between clusters with odd and
composite nature of the hole motion process in the triangulag,en number of sites.

system. The motion consists of direct hoppiregnplitude Finally we want to compare the QP bandwidth with the
t/2, cf. Eq.(5)] and spin-fluctuation-assisted hoppif&s in e found for the square lattice hole motion. In Fig. 6 we

the square latticewith an amplitude being nearly indepen- 1\,ye plotted the bandwidth for both systems depending on
dent of the sign oft (since the main contribution contains

two hopping steps and one spin-flip proge$%r negativet
these two contributions to the dispersion tend to cancel eacl

. 05 ]
other leading to the very narrow band3f{t|=2.0. s
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M A ] FIG. 5. Dispersion of the low-lying QP band for>0. Left:
oo J/|t|=0.5, present calculatior(solid and ED data(12 sites,
2 0 2 4 6 crossep taken from Ref. 14. Rightd/|t|= 10, present calculation
Energy [f] (solid) together SCBA dat&dotg and ED data21 sites, triangles

from Ref. 15. The energy zero level has been set at the center of
FIG. 3. Same as Fig. 2 but fdf|t|=2.0. mass of the band.
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physical picture for the hole quasiparticle is the following:
At small and intermediaté/t the hole is surrounded by spin
fluctuations, the dynamics consists of coherent quasiparticle
motion and of incoherent processes within the quasiparticle
(which dominate the spectrum at smallt). At large J/t
spin fluctuations are suppressed, but the direct hopping term
allows the hole to move without creating background spin
defects. So the pure hole hops witl2 as a(nearly free
fermion.

Summarizing, we have studied the one-hole motion in a
triangular AF described by theJ model. Using the spin-
polaron concept which describes the hole states in terms of

FIG. 6. Comparison of the hole QP bandwidth in triangular andlocal spin defects we find that the one-hole spectral function
square lattice antiferromagnets. Solid/dashed: Triangular/square la8hows a QP peak for sufficiently largé|t|. In this regime
tice, present calculation. Circles: Square lattice SCBA results fronthe picture of a mobile hole dressed by spin fluctuations

Ref. 6. Inset:J range from O to 1.

the ratioJ/t. For the square lattice it is kno®if that the
bandwidth for small/t (<1) is essentially given by since

hole hopping always creates spin defects with respect to th
AF background. These defects have to be “repaired” by th
transverse part of the Heisenberg exchange with energy sc
J. In contrast, in the triangular lattice the bandwidth for small

J/t is given byat+bJ, whereas for largd/t values it satu-

rates at 4.6 This behavior follows from the existence of the exchangéo which

direct hopping term with prefactdr2 in Hy [Eq. (5)] which

(known from the square lattic@lso applies to the triangular
system. The QP dispersion arises both from direct and spin-
flip-assisted hopping processes which leads to differences
between the>0 andt<0 cases. For small/|t| the one-
fole spectra become incoherent, i.e., the QP weight de-

%r?eases and the gap between the QP band and the back-

ound formed by additional magnetic excitations vanishes.

Note that the addition of more than one hole to a triangu-
lar AF may lead to hole pairing induced by spin-wave
is likely relevant for organic
superconductor¥’

has been discussed above. It leads to a disperison propor-

tional tot; the saturation bandwidth is half of the bandwidth

of the uncorrelated system ()9 Additional hole motion pro-
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cesses accompanied by spin fluctuations lead to a dispersitispitality of the NHMFL (Tallahasseeare gratefully ac-
proportional taJ (at smallJ/t) as in the square lattice. So the knowledged.
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