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Spin dynamics and antiferromagnetic short-range order in the two-dimensional
Heisenberg model
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We investigate the spin dynamics in the presence of short-range order in the squarS#attieteisenberg
antiferromagnet by a spin-rotation-invariant Green’s-function theory for the dynamic spin susceptibility. The
self-energy is calculated in the lowest-order Born approximation using the results of a sum-rule—conserving
mean-field approximation. In the spin-wave region, where the damping of magnons is found to be small
compared with their energy, the dynamic structure factor is obtained in reasonable agreement with Monte
Carlo data. Moreover, the structure factor yields an indication of the crossover to the relaxation region.
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To explain the unconventional magnetic properties ofand wave-vector region, whereby our perturbational ap-
high-T,. superconductorSthe understanding of the spin dy- proach is analogous to that of Ref. 7. To examine the validity
namics in the undoped compounds.g., LagCuQ,), de- of the spin-wave description, we compare our results for the
scribed by the two-dimensional spjn-antiferromagnetic ~ dynamic structure factor with available Monte CatMC)
(AFM) Heisenberg modeh = (J/2)3; ,S'S; (hereafter, we datd? and calculate the magnon dampifig at o= w.

setJ=1 and the lattice spacing=1), is of primary impor- To determine the dynamic spin susceptibility in the pres-
tance. At finite temperatures, the dynamics in two dimen£nce of AFM SRO, we employ the projection method out-
sions is determined by the AFM short-range or¢@R0). Of  lined in | and choose the two-operator basi&

particular interest is the crossover from propagating spire(Sy +iSq)". The two-time retarded matrix Green's func-
wave to diffusion and relaxational behavior near characteristion G(w)=((A;A™)),, is exactly represented as

tic wave numberg). andk, [k=q—Q, Q=(m,m)], respec- Ay A —1 1

tively. These wave numbers are the lowest boundaries for (AAT)=[o=MM =X (0)] M, @
weakly damped magnons. , with the momentsvl =([A,A"]) andM’=([iA,A"]), and
_ From general Sl_Jm—ruIe a_lrguments, Ca_lpellmanal. €S- the self-energy matrixE(w)=<(iA(");A+))w<(A;A+>);1
timatedk.=T/c (c is the spin-wave velocily Recently, the expressed by

crossover has been studied at low temperatures using

renormalization-group techniqueas well as at intermediate S(0)= (A=A = ((AAT)) J(AATH T

and high temperatures by a mode-mode coupling th&amy. ]

the approaches describing the spin-wave region by perturba- X((IA AT IM L, (2)
tion expansions within the Dyson-Maleev formalisththe ) ) S (in) e

crossover to the diffusion region is indicated by the break-TNn€ irreducible part-Sq™™ is given by

down of perturbation theorfdivergent vertex corrections, cf. (i .

Ref. 5 npear Qe & I<T (gsdis thge correlation lengdh As _S;(Ir): _S;_“’SSJ ;“’czazMgs)/Mgl)' 3
argued in Refs. 2 and 7, the boundarigs k.= ¢~ 1 are too where M(1)=<[iS+ S )=-8C,(1—v,) and M@ =
small, which may be due to shortcomings of the bosonic,. .., %._ o TLo Ya a
representations. Barabanov and Maksifexamined the {[-s '_'S*q]>’ with Cp;m=(So Sg), R=ne,+mey, and
spin-wave dampind’, at w=w, (magnon energyand k Yq= 1/2(Cosa+cosay). L

close to zero within a spin-rotation-invariant theory based on In the mean-field approximation—S; " =0, cf. I) we
the Green's-function projection metHttiusing the initial  have xg ~(g,@) = —M{P(w?~ ) *, where the spectrum
spin operators. In the range”’< w,<T, the soft magnons wq is calculated by the decoupling of S with vertex pa-

are found to be well-defined quasiparticldS; & w) With  rametersa; as proposed by Shimahara and Tak&déle get
the lowest boundari.=T¥%c> &1, In a previous paper

hereafter referred to as I, we presented a spin-rotation invari- w§= 2(1=yg)[1-2a,Cy ot 2a5(Cy g+ 2Cy )
ant theory of SRO based on the projection meftfoand 8a.C 4
elaborated in detail the mean-field approximation with site- —8a1Cq,07q]- (4)

dependent vertex parameters as introduced by Shimahara aMtle parametewr; is determined by the sum rul€y = 3
Takada' Note that in Ref. 7 the same projection methodyielding a;= a;(T). To obtaina,(T), we take, as in our
was used, but vertex parameters were not considered. previous papet? the Monte Carlo value of the ground-state

In this paper we extend the previous work of | and Ref. 7energy [3C, o= —0.6693 (Ref. 14] and assume the ratio
and calculate the self-energy of the dynamic spin suscept-a,(T)—1]/[a;(T)—1]=0.8530 as temperature indepen-
bility x* (0, 0)=—((Sy ;S_4)). Over the whole frequency dent.
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Calculating the self-energy matrix, we express the renor-

malization of all Green’s functions in Eq2) in terms of
T(q,0)=—(M) (=5 ";=-8)),.

Note that in Ref. 7 the renormalization &fS; ;S_))., only
was considered. The elements Bfw) are found to vanish
except for>,,=3,(q,w) given by

MIYT(q,w)) ~?
EM&ﬁz_MQU%w%l——iyggﬂ). 6)

w _(I)q

From Eq.(1) we get the dynamic spin susceptibility

Mg

+- -

X (Qaw)_ wZ_wg_E(q,w)' @)
Rewriting Eq. (6 as —Mél)T(q,w)IE(qyw)

+3(q,0)xg (9,0)T(q,0), and following the diagram-
matic arguments by Plakidathe self-energys(q,w) is just
the irreducible part of-M{™T(q,w) which has no parts
connected by a single Green’s functioy ~(q,). Thus,
2(q,w) is exactly expressed as

E(q*w):W«_Sa-(lr);_si(”)»gr)v (8)
g
with the imaginary part

E”(q,w):_[ZME]l)n(a))]_]'Jm dt eiwt<é:gir)é;-(ir)(t)>(ir),
€)
where n(w)=(ef*—1)"'. Note that 3"(q,~w)=

—3"(g,0). Because the site representatiorgfin Eq. (9)
contains spin operators on different sites only, we obtain

St= lg— ot Z oZ +
T Q%z Bz zsqlsq2+ SqlsQ2)S 3’ (10
with
Bq1q2q3= 44 Yag+az™ ’}’qz)( Ya;— 7q1) —Yq
T Yay+a,™ Yay+a, T Yol (1)

whereq;=q—0q;—0,.
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FIG. 1. Dynamic structure factor af=0.38 and (i) q
=[(5/8)m,(5/8)7], (i) q=[(m/2),(7/2)] compared with the
Monte Carlo datgdashed lingof Ref. 12.

3"(q,0)=—a[8M{n(w)]
3 M(l)

i

2
Xq%z Bqqu% |q1q2q3((u), (13

i=1 Wq

with gz=q—0g;—g, and

mw

] Uin((riwqi)}

I Q1Q2Q3(w): 2 |:

01,02,03==% |1

X & (14

3
w—zl inqi)-
i=

First we calculate the dynamic structure fact(q, )
=2(1-e P*) " Yim yAq,w)[2x**=x* "] from Egs. (7),
(13), and(14), where we drop the real pa¥’(q,w) of the
self-energy. This may be justified as follows. Approximating
2'(q,0) by 2'(q,04), the magnon spectrum becomes
renormalized. On the other hand, an effective renormaliza-
tion has already been achieved by the introduction of vertex
parameters ing [Eq. (4)]. Hence, we negled’(q,»).

In Fig. 1 our numerical results a&=0.38 are depicted
and compared with the MC data of Ref. 12. For thealues
used we have> & 1=0.1(cf. I) andwqy>T. The spin-wave
peaks inS(q, w) occur nearly ato, (cf. Fig. 3 and, as com-
pared with the MC values, are slightly shiftédy about
10%) to higher frequencies. The more pronounced peak

Considering the spin-wave region, we make the Born apstryctures may be due to an underestimation of the magnon
proximation, i.e., we decouple the irreducible correlationgamping in the lowest-order Born approximation. Note the

function in Eq.(9) with Egs.(10) and(11) in terms of two-
spin correlation function€,(t) =(S, S_4(t)). This yields

3"(q,w)= —[87r2Mgl)n(w)]_lq%2 Bglqzqsf_mdwl

X J_ dequ(wl)qu(wZ)CqS(w_ w1~ ®3),

12

where Cy(w)=FT{Cy(t)}=2n(w)Imx"(q,»). In the
lowest order, we insert the mean-field results @) (cf.
I) and get

essential role played by SRO in describing the spin-wave
dynamics. In the mode-mode coupling theory of Ref. 4, the
structure factor folf = 0.4 andq= (#/2,7/2) exhibits a very
broad maximum around relatively high frequencies indicat-
ing, as argued in Ref. 4, that the SRO is not sufficiently taken
into account.

Consideringg close toQ, where MC data are availabté,
we have calculated S(q,w) at T=0.38 and q
=[(15/16)m,(15/16)r]. Here, we havek§=2.8 and w
=0.54>T, i.e., we are in the boundary region of spin-wave
behavior. Our resultnarrow peak at,) qualitatively dis-
agrees with the broad MC curve. The breakdown of the spin-
wave description, seen by the comparison $fq,)
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FIG. 2. LinewidthA, at T=0.35 in comparison with the MC
data(X) of Ref. 12.
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FIG. 3. Magnon energw, and dampind’q at T=0.35.

Here, only two-magnon scattering proces$ets Eq. (14)

with the MC data, indicates the crossover to the relaxatiowith o= wg] contribute!®

region which cannot be described by our theory.

Figure 3 shows our result fdf, compared withw, at T

To further test our spin-wave approach within the validity =0.35. As can be seen, tliedependence of ; resembles

region ing space(q not too close to zero dp), in Fig. 2 we
compare the linewidthA, of the relaxation function
F(g,w)=2(1—e P)[Boux(q)] 1S(q,w) with the MC

that of A, where we get';=A /2. In the spin-wave region,
we have a well-defined quasiparticle pictulé,(w,=0.1).
On the other hand, as revealed by the frequency dependence

data atT=0.3512 and we find a good agreement. The line- of S(q,w) discussed above, the spin-wave description is no

width is defined by AZ=(w?)q—(w)5, where ("),
=[sdw 0"F(q,0)/[;dw F(g,0), and yields a measure for
the spin-wave damping.

Finally, we consider the magnon damping at= wq
in more detail. Rewriting Eq.(7) as x' (g,w)
=-MP 2wy 13, colo—cw—3,(q0)] 1 with
3 ,(0,0)=3(q,0)(w+owy) "', we define the magnon
damping as

E”(qawq)

o (15

Fq: —EZ(q,O'wq)Z -

longer valid atT=0.38 andq=[(15/16)r,(15/16)7], al-
though we have’,/w,=0.07. We conclude that the consid-
eration of magnon dampin@t v =w,) alone does not pro-
vide a sufficient criterion for the validity of the spin-wave
description, but, in addition, the dynamic structure factor has
to be considered.

To summarize, we presented a spin-rotation-invariant
theory of spin-wave dynamics in the presence of SRO in the
two-dimensional Heisenberg antiferromagnet. The dynamic
structure factor is calculated in reasonable agreement with
MC data and is found to be indicative of the crossover to the
relaxation region.
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