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Spin dynamics and antiferromagnetic short-range order in the two-dimensional
Heisenberg model
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Institut für Theoretische Physik, Universita¨t Leipzig, D-04109 Leipzig, Germany

~Received 9 October 1998!

We investigate the spin dynamics in the presence of short-range order in the square latticeS5
1
2 Heisenberg

antiferromagnet by a spin-rotation-invariant Green’s-function theory for the dynamic spin susceptibility. The
self-energy is calculated in the lowest-order Born approximation using the results of a sum-rule–conserving
mean-field approximation. In the spin-wave region, where the damping of magnons is found to be small
compared with their energy, the dynamic structure factor is obtained in reasonable agreement with Monte
Carlo data. Moreover, the structure factor yields an indication of the crossover to the relaxation region.
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To explain the unconventional magnetic properties
high-Tc superconductors,1 the understanding of the spin dy
namics in the undoped compounds~e.g., La2CuO4!, de-
scribed by the two-dimensional spin-1

2 antiferromagnetic
~AFM! Heisenberg modelH5(J/2)S^ i , j &SiSj ~hereafter, we
setJ51 and the lattice spacinga51!, is of primary impor-
tance. At finite temperatures, the dynamics in two dim
sions is determined by the AFM short-range order~SRO!. Of
particular interest is the crossover from propagating s
wave to diffusion and relaxational behavior near characte
tic wave numbersqc andkc @k5q2Q, Q5(p,p)#, respec-
tively. These wave numbers are the lowest boundaries
weakly damped magnons.

From general sum-rule arguments, Capellmannet al.2 es-
timatedkc.T/c ~c is the spin-wave velocity!. Recently, the
crossover has been studied at low temperatures u
renormalization-group techniques3 as well as at intermediat
and high temperatures by a mode-mode coupling theory.4 In
the approaches describing the spin-wave region by pertu
tion expansions within the Dyson-Maleev formalism,5,6 the
crossover to the diffusion region is indicated by the bre
down of perturbation theory~divergent vertex corrections, c
Ref. 5! near qc}j21!T ~j is the correlation length!. As
argued in Refs. 2 and 7, the boundariesqc, kc}j21 are too
small, which may be due to shortcomings of the boso
representations. Barabanov and Maksimov7 examined the
spin-wave dampingGk at v5vk ~magnon energy! and k
close to zero within a spin-rotation-invariant theory based
the Green’s-function projection method8,9 using the initial
spin operators. In the rangeT3/2!vk!T, the soft magnons
are found to be well-defined quasiparticles (Gk!vk) with
the lowest boundarykc.T3/2/c@j21. In a previous paper,10

hereafter referred to as I, we presented a spin-rotation inv
ant theory of SRO based on the projection method8,9 and
elaborated in detail the mean-field approximation with s
dependent vertex parameters as introduced by Shimahara
Takada.11 Note that in Ref. 7 the same projection meth
was used, but vertex parameters were not considered.

In this paper we extend the previous work of I and Ref
and calculate the self-energy of the dynamic spin susce
bility x12(q,v)52^^Sq

1 ;S2q
2 &&v over the whole frequency
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and wave-vector region, whereby our perturbational
proach is analogous to that of Ref. 7. To examine the valid
of the spin-wave description, we compare our results for
dynamic structure factor with available Monte Carlo~MC!
data12 and calculate the magnon dampingGq at v5vq .

To determine the dynamic spin susceptibility in the pre
ence of AFM SRO, we employ the projection method o
lined in I and choose the two-operator basisA
5(Sq

1 ,iṠq
1)T. The two-time retarded matrix Green’s func

tion G(v)5^^A;A1&&v is exactly represented as

^^A;A1&&v5@v2M 8M212S~v!#21M , ~1!

with the momentsM5^@A,A1#& andM 85^@ i Ȧ,A1#&, and
the self-energy matrixS(v)5^^ i Ȧ(ir) ;A1&&v^^A;A1&&v

21

expressed by

S~v!5~^^ i Ȧ;2 i Ȧ1&&v2^^ i Ȧ;A1&&v^^A;A1&&v
21

3^^ i Ȧ;A1&&v!M21. ~2!

The irreducible part2S̈q
1(ir) is given by

2S̈q
1~ ir!52S̈q

12vq
2Sq

1 ;vq
25Mq

~3!/Mq
~1! , ~3!

where Mq
(1)5^@ iṠq

1 ,S2q
2 #&528C1,0(12gq) and Mq

(3)5

^@2S̈q
1 ,2 iṠ2q

2 #&, with Cn,m5^S0
1SR

2&, R5nex1mey , and
gq51/2(cosqx1cosqy).

In the mean-field approximation (2S̈q
1(ir)50, cf. I! we

have x0
12(q,v)52Mq

(1)(v22vq
2)21, where the spectrum

vq is calculated by the decoupling of2S̈i
1 with vertex pa-

rametersa i as proposed by Shimahara and Takada.11 We get

vq
252~12gq!@122a1C1,012a2~C2,012C1,1!

28a1C1,0gq#. ~4!

The parametera1 is determined by the sum ruleC0,05
1
2

yielding a15a1(T). To obtaina2(T), we take, as in our
previous paper,13 the Monte Carlo value of the ground-sta
energy @3C1,0520.6693 ~Ref. 14!# and assume the ratio
@a2(T)21#/@a1(T)21#50.8530 as temperature indepe
dent.
6010 ©1999 The American Physical Society



o

ap
on

ng
s

iza-
tex

ak
non
he
ve

the

at-
en

ve

in-

PRB 59 6011BRIEF REPORTS
Calculating the self-energy matrix, we express the ren
malization of all Green’s functions in Eq.~2! in terms of

T~q,v!52~Mq
~1!!22^^2S̈q

1~ ir! ;2S̈2q
2~ ir!&&v . ~5!

Note that in Ref. 7 the renormalization of^^S̈q
1 ;S̈2q

2 &&v only
was considered. The elements ofS~v! are found to vanish
except forS21[S(q,v) given by

S~q,v!52Mq
~1!T~q,v!S 12

Mq
~1!T~q,v!

v22vq
2 D 21

. ~6!

From Eq.~1! we get the dynamic spin susceptibility

x12~q,v!52
Mq

~1!

v22vq
22S~q,v!

. ~7!

Rewriting Eq. ~6! as 2Mq
(1)T(q,v)5S(q,v)

1S(q,v)x0
12(q,v)T(q,v), and following the diagram-

matic arguments by Plakida,9 the self-energyS~q,v! is just
the irreducible part of2Mq

(1)T(q,v) which has no parts
connected by a single Green’s functionx0

12(q,v). Thus,
S~q,v! is exactly expressed as

S~q,v!5
1

Mq
~1! ^^2S̈q

1~ ir! ;2S̈2q
2~ ir!&&v

~ ir! , ~8!

with the imaginary part

S9~q,v!52@2Mq
~1!n~v!#21E

2`

`

dt eivt^S̈2q
2~ ir!S̈q

1~ ir!~ t !&~ ir!,

~9!

where n(v)5(ebv21)21. Note that S9(q,2v)5

2S9(q,v). Because the site representation ofS̈q
1 in Eq. ~9!

contains spin operators on different sites only, we obtain

S̈q
152 (

q1 ,q2

Bq1q2q3
~ 1

2 Sq1

2 Sq2

1 1Sq1

z Sq2

z !Sq3

1 , ~10!

with

Bq1q2q3
54@4~gq11q3

2gq2
!~gq3

2gq1
!2gq1

1gq21q3
2gq11q2

1gq3
#, ~11!

whereq35q2q12q2 .
Considering the spin-wave region, we make the Born

proximation, i.e., we decouple the irreducible correlati
function in Eq.~9! with Eqs.~10! and ~11! in terms of two-
spin correlation functionsCq(t)5^Sq

1S2q
2 (t)&. This yields

S9~q,v!52@8p2Mq
~1!n~v!#21 (

q1 ,q2

Bq1q2q3

2 E
2`

`

dv1

3E
2`

`

dv2Cq1
~v1!Cq2

~v2!Cq3
~v2v12v2!,

~12!

where Cq(v)5FT$Cq(t)%52n(v)Im x12(q,v). In the
lowest order, we insert the mean-field results forCq(v) ~cf.
I! and get
r-

-

S9~q,v!52p@8Mq
~1!n~v!#21

3 (
q1 ,q2

Bq1q2q3

2 S )
i 51

3 Mqi

~1!

vqi

D I q1q2q3
~v!, ~13!

with q35q2q12q2 and

I q1q2q3
~v!5 (

s1 ,s2 ,s356
F)

i 51

3

s in~s ivqi
!G

3dS v2(
i 51

3

s ivqi D . ~14!

First we calculate the dynamic structure factorS(q,v)
52(12e2bv)21 Im x zz(q,v)@2xzz5x12# from Eqs. ~7!,
~13!, and ~14!, where we drop the real partS8(q,v) of the
self-energy. This may be justified as follows. Approximati
S8(q,v) by S8(q,vq), the magnon spectrum become
renormalized. On the other hand, an effective renormal
tion has already been achieved by the introduction of ver
parameters invq @Eq. ~4!#. Hence, we neglectS8(q,v).

In Fig. 1 our numerical results atT50.38 are depicted
and compared with the MC data of Ref. 12. For theq values
used we haveq@j21.0.1 ~cf. I! andvq@T. The spin-wave
peaks inS(q,v) occur nearly atvq ~cf. Fig. 3! and, as com-
pared with the MC values, are slightly shifted~by about
10%! to higher frequencies. The more pronounced pe
structures may be due to an underestimation of the mag
damping in the lowest-order Born approximation. Note t
essential role played by SRO in describing the spin-wa
dynamics. In the mode-mode coupling theory of Ref. 4,
structure factor forT50.4 andq5(p/2,p/2) exhibits a very
broad maximum around relatively high frequencies indic
ing, as argued in Ref. 4, that the SRO is not sufficiently tak
into account.

Consideringq close toQ, where MC data are available,12

we have calculated S(q,v) at T50.38 and q
5@(15/16)p,(15/16)p#. Here, we havekj.2.8 and vq
50.54.T, i.e., we are in the boundary region of spin-wa
behavior. Our result~narrow peak atvq ,! qualitatively dis-
agrees with the broad MC curve. The breakdown of the sp
wave description, seen by the comparison ofS(q,v)

FIG. 1. Dynamic structure factor atT50.38 and ~i! q
5@(5/8)p,(5/8)p#, ~ii ! q5@(p/2),(p/2)# compared with the
Monte Carlo data~dashed line! of Ref. 12.
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with the MC data, indicates the crossover to the relaxat
region which cannot be described by our theory.

To further test our spin-wave approach within the valid
region inq space~q not too close to zero orQ!, in Fig. 2 we
compare the linewidthLq of the relaxation function
F(q,v)52(12e2bv)@bvx(q)#21S(q,v) with the MC
data atT50.35,12 and we find a good agreement. The lin
width is defined by Lq

25^v2&q2^v&q
2, where ^vn&q

5*0
`dv vnF(q,v)/*0

`dv F(q,v), and yields a measure fo
the spin-wave damping.

Finally, we consider the magnon damping atv5vq
in more detail. Rewriting Eq. ~7! as x12(q,v)
52Mq

(1)(2vq)
21(s56s@v2svq2Ss(q,v)#21 with

Ss(q,v)5S(q,v)(v1svq)
21, we define the magnon

damping as

Gq52Ss9 ~q,svq!52
S9~q,vq!

2vq
. ~15!

FIG. 2. LinewidthLq at T50.35 in comparison with the MC
data~3! of Ref. 12.
n
Here, only two-magnon scattering processes@cf. Eq. ~14!
with v5vq# contribute.15

Figure 3 shows our result forGq compared withvq at T
50.35. As can be seen, theq dependence ofGq resembles
that ofLq , where we getGq.Lq/2. In the spin-wave region
we have a well-defined quasiparticle picture (Gq /vq.0.1).
On the other hand, as revealed by the frequency depend
of S(q,v) discussed above, the spin-wave description is
longer valid atT50.38 andq5@(15/16)p,(15/16)p#, al-
though we haveGq /vq.0.07. We conclude that the consid
eration of magnon damping~at v5vq) alone does not pro-
vide a sufficient criterion for the validity of the spin-wav
description, but, in addition, the dynamic structure factor h
to be considered.

To summarize, we presented a spin-rotation-invari
theory of spin-wave dynamics in the presence of SRO in
two-dimensional Heisenberg antiferromagnet. The dyna
structure factor is calculated in reasonable agreement
MC data and is found to be indicative of the crossover to
relaxation region.

FIG. 3. Magnon energyvq and dampingGq at T50.35.
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