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Wilson-renormalization-group approach of the principal chiral model around two dimensions
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We study the principal chiral Ginzburg-Landau-Wilson model around two dimensions within the local
potential approximation of an exact renormalization-group equation. This model, relevant for the long-distance
physics of classical frustrated spin systems, exhibits a fixed point of the same universality class as does the
corresponding nonlinear sigma model. This allows to shed light on the long-standing discrepancy between the
different perturbative approaches of frustrated spin systg®@63-182609)00606-2

There is now a general agreement about the field theorefermations:R'— UR'V. Since, in the low-temperature phase,
ical treatment of theSO(N) spin system. The perturbative the residual symmetry group consists itdéeagonal SO(N),
approaches performed around four dimensions on thgq. (1) is indeed a lattice version of the PC model. Whereas
Ginzburg-Landau-WilsotGLW) model, around two dimen-  the microscopic derivation for frustrated spin systems leads
sions on the nonlinear sigmdLo) model and in a M in general to anisotropic interactions betweendjs, i.e.,J
expansion give a consistent picture of the critical physics ofs o dependent, we consider here the isotropic case where all
this system everywhere betweBr=2 andD=4." This pic-  the J 's are equal. It has been shown for a large class of
ture has also been confirmed by nonperturbative methodgstrated spin systems, among which is the AFT model, that

based on truncations of Wilson exact renormalization-grouqhe anisotropy is anyway irrelevant, at least near two dimen-
. -8 . . ]
(RG) equations.”® Amazingly, there is no such agreement sions, for the critical properties we are interested®it:

for many systems whose symmetry-breaking pattern is not . : .
. . . Let us first sketch out the experimental and numerical
given by SA(N) »SQ(N—1) among which are superfluid situation for frustrated spin systems which,n=3, is far

SHe >1%  frustrated  antiferromagnet$;**  supercon- ; .
ductorst>1® electroweak phase transitioh!® etc. Generi- from being clear. Indeed, the behavior of systems that are
cally perturbation theories predict that these systems underg%Jpposed to_ be descrlb_ed by the PC model like AFT
a first-order phase transition ne@r=4 and a second-order \<SYCh,RPNICL) and helimagnetéo,Dy,Tb are affected
one around = 21917131418 he origin of this discrepancy is by the presence of dlsordgr localized near the sample surface
not yet understood and calls for a nonperturbative approactand. possibly, by topological defects. As a consequence, the
In this paper we study, by means of the Wilson critical exponents strongly vary from one compound to
renorma”zation_group approach, the principa] Ch|(‘§[:) anothefz.l’zzNUmerica”y, the situation is also confused since
model, Corresponding to the symmetry_breaking schem§imu|ati0n5 performed on the PC model and direCtIy on the
SO(N)® SO(N)—SQO(N), which is the simplest one exhib- AFT model lead respectively to first order and second order
iting the nontrivial features previously quoted. The PC modebehavior with exponents of an unknown universality cfdss.
is the low-energy effective field theory of a whole class of Beyond this apparent lack of universality at the experi-
systems among which are frustrated antiferromagnets. A pamental and numerical level, the theoretical situation already
ticularly important example is the Heisenberg antiferromag-exhibits the puzzling features previously mentioned. Around
net on the triangular latticeAFT). Due to the frustration, the D=2, the critical physics is obtained by means of a low-
order parameter is a triad of orthonormal vectors, i.e., @emperature expansion performed on the PGrNhodel. A
SQ(3) rotation matrixR=(e;,&,,e3).°>** We consider, in  fixed point is found for an>2 in D=2+ e dimensions so
the following, the generalization tbl orthonormal vectors  that a second-order phase transition is expetté8on the
e,’'s with N components, i.e.SQ(N) matrices. The long-  giher hand, the weak-coupling expansion performedin

distgnce physics of this generalized AFT modgl is thus_4_ ¢ on the PC GLW model suggests a first-order phase
equivalent to that of orthonormal frames interacting ferro'transition since no fixed point is found for aly>2 As

magnetically: such, the situation is not paradoxical since perturbation theo-
N ries are only trustworthy in the immediate vicinity of their
H=-J> > € -d=-J> TrRR. (1)  respective critical dimension. However if, as usual, we ex-

(i.j) a=1 () trapolate the perturbative results =3, the two results
The Hamiltonian(1) is invariant under th& O(N)®@ SO(N)  come into conflict. It is thus of first importance to clarify this
group of leftU e SO(N) and rightV e SO(N) global trans- theoretical situation before hoping to describe real materials.
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From the theoretical point of view, the crucial fact is that precisely we show by a RG analysis that the two models
the calculation of theg functions in the two different pertur- belong to the same universality class near two dimensions
bative approaches relies on qualitatively different groundssince the GLW model exhibits a nontrivial fixed point iden-
Indeed, theB function of a NLo- model built on a manifold tical to that of the Nlo- model.

G/H only depends on the symmetry-breaking sche@Ge The partition function of the PC GLW model is obtained
—H (Ref. 25—i.e., on Goldstone modes—whereas that ofby writing the most generdb O(N) ® SO(N) invariant po-

the GLW nearD =4 is sensitive to the representation®f tential, at most quartic iflNX N real matricedM, that favors
spanned by the order parameter chosen to realize therthogonal matrices for the fiell:

symmetry-breaking scheme. This feature can be fully appre-

ciated in the N=3 PC model. Indeed, sinc&Q(3) Z_f DM ex
®S0O(3) is isomorphic toSO(4) the symmetry-breaking N P
pattern is that of the usual four-component spin system:
SO(4)—SO(3). The perturbativeB function of theN=3

PC NLo model inD=2+ € is thus identical to that of the

N=4 vector model, although the symmetry-breaking scheme . . L
is realized with a rotation matrix which is 80(4) tensor '€ domain of parameters of interest for us is given\by

and not with a four-component vectdf If this perturba- >0 since, in this case, the minimum of the potential in the
tive result remained true beyorl=2+ ¢, as it is believed Proken phase is given byl (x) =R, whereRoe SQ(N). In
in the SO(N) vectorial case, we could expect the critical thiS Phase, the model displaysSX(N) symmetry, so that
behavior of the PC model to be determined by the same fixelf!® _Symmetry-breaking ~ scheme isSSQ(N)® SQ(N)
point as theN =4 vector model everywhere between two and — SO(N) and thus corresponds to the GLW version of the
four dimensions. This is, however, not the case, at least peFC model. _
turbatively in the vicinity of D=4, since there is no fixed  Our @m being to make contact with the kLmodel, let
point in the GLW approach. us show how the orthogonality of the lattice order parameter
The origin of the discrepancy between the two approache8f Ed- (1) can be recovered from E). Letr and u go to
can be ultimately traced back to tileonperturbativespec- infinity, t.h.e ratlorlé_l,u being fixed. In this limit, one recovers
trum of both models. Whereas it is very likely that in the the partition function of the PC Nk model where a delta
SO(N) case with a vectorial order parameter thedNand fur_1ct|on enforces the orthogonality constraint ldnat each
GLW models share the same low-energy degrees of freedofP!Nt
everywhere between two and four dimensions, it is no longer

1 r
f dDXETr(VtM VM) + ETrtM M

+u Tr(*MM)Z2+ X (TrMM)?|. 2

the case for models with more general order parameters ang— | pp exp— Ef dPx| Tr(VIM - VM)

symmetries. For example, for tid=3 PC model, the spec- 2

trum of the D=2 NLo model consists in four massive r\2

particle$® whereas the spectrum of ti2=4 GLW in the +2MTV( MM+ — | +2\(Tr'M M)Z} 3)
high-temperature phase involves nine massive particles. Ide- Au

ally, we should understand at a nonperturbative level how

these two field contents are linked togethebDir 3 and how . 1 10 o ‘

they are related to the degrees of freedom of the underlying_’J DM§| ‘MM — e exp— Ef d™xTr(V'M- VM)
microscopical system. This is a formidable task that will not 0 )
be tackled here.

The question we address here is the possibility of aup to an overall constant. The quantitygd# — r/4u which
matching between the Nt and GLW approaches when corresponds to the minimum of E() (whenh<u) iden-
varying the dimension. This allows us, at the same time, taifies with the inverse temperature of the NLmodel. Of
test the validity of the Nlx model for frustrated systems, at course, since the preceding limit is made on the bare action,
least aroundD =2. Indeed, due to the discrepancy betweenit does not allow to conclude how both models are related
the two perturbative approaches and the absence of expetinder RG transformations. We shall show that, around two
mental and numerical evidence of @{4) critical behavior, dimensions, the GLW and Nt models actually converge to
the reliability of the Nlo model approach has been the samerenormalized trajectory in the continuum limit.
questioned! Clearly, the answer to these questions escapes To realize this program we now study the evolution of the
a perturbative treatment. In general, th&l ¥xpansion pro- PC GLW model under RG transformations within the LPA.
vides a powerful tool to link up different perturbative meth- This approximation consists in truncating the effective Wil-
ods. In the case of matrix models such an analysis is howevepnian action to its potential pad(M)= [d°xv[M(X)].
plagued by technical difficulties. Some progress has beeNote that the LPA thus misses the field renormalization. The
recently obtained but is confined to the leading ofdéf.  Wilson-Polchinski equation for the potential densiM) is
The Wilson’s scheme, which has been successfully used igiven by?*
many topics’3**%8turns out to be the most efficient ap-
proach. In this paper, we study the PC GLW model rear dv D-2 , " .
=2 by means of the Wilson-Polchinski exact 5t = Pv = 5 Mijui+ v i~ v (5)
renormalization-group within the local potential approxima-
tion (LPA). We show that the GLW and Nt approaches wherev|;=v/6M;; andt=InA, A being the dimensionless
can be reconciled in the vicinity of two dimensions. More running scale.
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There are two different ways to exploit E(p). The first  Therefore, for any initial conditions, the flow is driven to-
one is to search for an exact solution in any dimension, hawvards a one-dimensional renormalized trajectory param-
ing recourse to numerical integration. This provides a pow-etrized byg; whose evolution, obtained from Eq&®) and
erful way to obtain precise values for critical quantifféhe  (10), is given at leading orders by:
second one is to solve E) in a low-temperature expan-
sion. We follow this route since we are interested in qualita- dg? N—
tive features of the RG flow and we want to make contact - (b- 2)g{+ _gt +0(g7). (1)
with the standard perturbative analysis of the d&Nmodel.

Mitter and Ramadas used the same techniques iIS®@&)  This B8 function identifies with that of the temperature of the
case for a proof of perturbative renormalizability of thedL PC NLs model calculated perturbativef§.lt however dif-
model® fers from the standard expression where the coeffichkent

Let us parametrize the potential density by v(M)  —1 is replaced byN— 2. The origin of this difference is that,
=u(x)/g¢ with x=gZ'MM. In a perturbative approach the within the LPA, the field renormalization is set equal to one.
running potential has always a minimum as it is the case fotf the field renormalization had been taken into account,
the initial potential in Eq(3) for ‘MM =]L/g§. The running  which is the case in the next orders in the derivative expan-

temperaturey; is thus definediia: sion, we would have obtained the correct coefficient. This
difference is irrelevant for our purpose.

au —0 ©) Let us indicate how, in two dimensions, our previous re-

Xl oy ' sults allow us to recover, in the continuum limit, the hard

constraint of the Nkr model (4). After the transient
We now write the Wilson-Polchinski equation for the poten-regime—i.e., Eq(10—u(y,{\ (t)}) has con-
. . - ’ PLMP L0y n9n
tial densityu within the LPA: — : .

verged towardsi(x,g;) which can be expanded in powers of

au , gz
=Du—(D—-2)xu;

ot
Lk
u(x, . 12
_(uj,luj/k+ ujrlull(j+ulljujlk+ ul,julij)XH( (X gt) < (gt (X) ( )
2
O , , (0) i
+ E[(U]'s,ijrUsfj,ijr U}s,pj Ugj,p,-))(ser 2Nu/] We have found thexactform of u‘*’(y) so that the domi

nant part of the potential density at low temperature writes:

,d[ 1
gt dt g (XIJ ji ) (7)

Under the iterations of the RG, &IO(N) ® SO(N) invariant
terms are generated so that the evolved potential writes:

1 1
v(M)~ Eu<°>(X)= z—ngr[\/gftM M-1]2. (13
t t

Suppose now that, after blocking, the model having con-
verged to the one-dimensional renormalized trajectory, the

u(x, {)\pl A pyat 2 > )\pl agi. g (D effective running temperature hag reaqhed the valye at
PP ad scaleu. Reversing the flow on this trajectory, towards the

D114 DG ultraviolet, Eq.(11) gives the bare temperatugg at scale of

[Tr(x—DP - [Tr(x = DA ®  the overall cutoffAy (typically, the inverse lattice spacipg

The Wilson-Polchinski Eq(7) generates the flow of all the Due to asymptotic freedom, goes to zero when taking the

»..q,(1)’s. When combined with Eq(6) we also continuum limitAy—oo. It is easy to see from E¢13) that,

get the evolution ofy, : in this limit, the configurations contributing to the partition
t-

function correspond t&O(N) matrices(up to a normaliza-
Qt 02 1 gf‘ tion):fthe dglta cg_rrllstrai.nt ﬁf Eq.4)_ is reclqvgrec:] frc&rlnv\FlzG .
=— g2+ transformations. Thus, in the continuum limit, the an
dt Can 2h24(1)+2NAy A1) NLo models coincide. The statistical interpretation of this is
that the soft field GLW model appears as the block-spin it-
[(L2N+12)\54(t) + 24NN, 5(1) +4(N?+N+4)Np 1.1 (1) erated Nlo- model.
) These results show that the PC GLW and dNmodels
HA4(2N+1)Ao1(D) + 4N+ 2)N A1) ]. (9 belong to the same universality class near two dimensions.
This is a strong evidence of the validity of the NlLmodel
The flow analysis shows that all the, q,;...;p,.q,(1)'S @€ annr0ach and of the existence of a second-order phase tran-
irrelevant coupling constants: after an exponentially rapidsjtion near two dimensions. Thus the critical behavior of the
transient regime, their scale dependence is entirely controlleBC GLW model must change 8svaries betweeid =2 and

by that ofg, : D=4. This, of course, relies on the assumptions that our
—u results persist beyond the low-temperature expansion and the
Npagi ., qn(t) p1 i Py qn+)\pl) Ayi- . qngt LPA, and that thee=4—D expansion of the GLW model is

meaningful. The change of critical behavior could be a gen-
+0(gp). (100 eral feature of models that are afflicted by the same troubles
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even if their origins—presence of topological excitations,Kosterlitz-Thouless phase transiti#hin the context of the
role of irrelevant operators—certainly depend on the precis®C model, it will be addressed in a future publication.
model under study. In any case, analyzing this requires us t0 \ye thank P. K. Mitter, B. Doymt, and G. Zumbach for

vary the dimension and to use thengXt orders of approximayery yseful discussions about the Wilson RG point of view.
tion in the derivative expansicfi-®® A somewhat similar e also thank J. Vidal for a careful reading of the manu-
study has been performed for superconduéfamad for the script.
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