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Wilson-renormalization-group approach of the principal chiral model around two dimensions
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We study the principal chiral Ginzburg-Landau-Wilson model around two dimensions within the local
potential approximation of an exact renormalization-group equation. This model, relevant for the long-distance
physics of classical frustrated spin systems, exhibits a fixed point of the same universality class as does the
corresponding nonlinear sigma model. This allows to shed light on the long-standing discrepancy between the
different perturbative approaches of frustrated spin systems.@S0163-1829~99!00606-2#
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There is now a general agreement about the field theo
ical treatment of theSO(N) spin system. The perturbativ
approaches performed around four dimensions on
Ginzburg-Landau-Wilson~GLW! model, around two dimen
sions on the nonlinear sigma~NLs) model and in a 1/N
expansion give a consistent picture of the critical physics
this system everywhere betweenD52 andD54.1 This pic-
ture has also been confirmed by nonperturbative meth
based on truncations of Wilson exact renormalization-gro
~RG! equations.2–8 Amazingly, there is no such agreeme
for many systems whose symmetry-breaking pattern is
given by SO(N)→SO(N21) among which are superflui
3He,9,10 frustrated antiferromagnets,11–14 supercon-
ductors,15,16 electroweak phase transition,17,18 etc. Generi-
cally perturbation theories predict that these systems und
a first-order phase transition nearD54 and a second-orde
one aroundD52.19,17,13,14,18The origin of this discrepancy is
not yet understood and calls for a nonperturbative appro

In this paper we study, by means of the Wilso
renormalization-group approach, the principal chiral~PC!
model, corresponding to the symmetry-breaking sche
SO(N) ^ SO(N)→SO(N), which is the simplest one exhib
iting the nontrivial features previously quoted. The PC mo
is the low-energy effective field theory of a whole class
systems among which are frustrated antiferromagnets. A
ticularly important example is the Heisenberg antiferrom
net on the triangular lattice~AFT!. Due to the frustration, the
order parameter is a triad of orthonormal vectors, i.e.
SO(3) rotation matrixR5(e1 ,e2 ,e3).20,14 We consider, in
the following, the generalization toN orthonormal vectors
ea’s with N components, i.e.,SO(N) matrices. The long-
distance physics of this generalized AFT model is th
equivalent to that of orthonormal frames interacting fer
magnetically:

H52J(
^ i , j &

(
a51

N

ea
i
•ea

j 52J(
^ i , j &

TrtRiRj . ~1!

The Hamiltonian~1! is invariant under theSO(N) ^ SO(N)
group of leftUPSO(N) and rightVPSO(N) global trans-
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formations:Ri→URiV. Since, in the low-temperature phas
the residual symmetry group consists in a~diagonal! SO(N),
Eq. ~1! is indeed a lattice version of the PC model. Where
the microscopic derivation for frustrated spin systems le
in general to anisotropic interactions between theea’s, i.e.,J
is a dependent, we consider here the isotropic case wher
the Ja’s are equal. It has been shown for a large class
frustrated spin systems, among which is the AFT model, t
the anisotropy is anyway irrelevant, at least near two dim
sions, for the critical properties we are interested in.13,14

Let us first sketch out the experimental and numeri
situation for frustrated spin systems which, inD53, is far
from being clear. Indeed, the behavior of systems that
supposed to be described by the PC model like A
~CsVCl3 ,RbNiCl3) and helimagnets~Ho,Dy,Tb! are affected
by the presence of disorder localized near the sample sur
and, possibly, by topological defects. As a consequence,
critical exponents strongly vary from one compound
another.21,22Numerically, the situation is also confused sin
simulations performed on the PC model and directly on
AFT model lead respectively to first order and second or
behavior with exponents of an unknown universality class23

Beyond this apparent lack of universality at the expe
mental and numerical level, the theoretical situation alrea
exhibits the puzzling features previously mentioned. Arou
D52, the critical physics is obtained by means of a lo
temperature expansion performed on the PC NLs model. A
fixed point is found for anyN.2 in D521e dimensions so
that a second-order phase transition is expected.24,25 On the
other hand, the weak-coupling expansion performed inD
542e on the PC GLW model suggests a first-order pha
transition since no fixed point is found for anyN.2.11 As
such, the situation is not paradoxical since perturbation th
ries are only trustworthy in the immediate vicinity of the
respective critical dimension. However if, as usual, we e
trapolate the perturbative results toD53, the two results
come into conflict. It is thus of first importance to clarify th
theoretical situation before hoping to describe real materi
6006 ©1999 The American Physical Society
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From the theoretical point of view, the crucial fact is th
the calculation of theb functions in the two different pertur
bative approaches relies on qualitatively different groun
Indeed, theb function of a NLs model built on a manifold
G/H only depends on the symmetry-breaking schemeG
→H ~Ref. 25!—i.e., on Goldstone modes—whereas that
the GLW nearD54 is sensitive to the representation ofG
spanned by the order parameter chosen to realize
symmetry-breaking scheme. This feature can be fully app
ciated in the N53 PC model. Indeed, sinceSO(3)
^ SO(3) is isomorphic toSO(4) the symmetry-breaking
pattern is that of the usual four-component spin syste
SO(4)→SO(3). The perturbativeb function of theN53
PC NLs model in D521e is thus identical to that of the
N54 vector model, although the symmetry-breaking sche
is realized with a rotation matrix which is aSO(4) tensor
and not with a four-component vector.13,14 If this perturba-
tive result remained true beyondD521e, as it is believed
in the SO(N) vectorial case, we could expect the critic
behavior of the PC model to be determined by the same fi
point as theN54 vector model everywhere between two a
four dimensions. This is, however, not the case, at least
turbatively in the vicinity ofD54, since there is no fixed
point in the GLW approach.

The origin of the discrepancy between the two approac
can be ultimately traced back to the~nonperturbative! spec-
trum of both models. Whereas it is very likely that in th
SO(N) case with a vectorial order parameter the NLs and
GLW models share the same low-energy degrees of free
everywhere between two and four dimensions, it is no lon
the case for models with more general order parameters
symmetries. For example, for theN53 PC model, the spec
trum of the D52 NLs model consists in four massiv
particles26 whereas the spectrum of theD54 GLW in the
high-temperature phase involves nine massive particles.
ally, we should understand at a nonperturbative level h
these two field contents are linked together inD53 and how
they are related to the degrees of freedom of the underly
microscopical system. This is a formidable task that will n
be tackled here.

The question we address here is the possibility o
matching between the NLs and GLW approaches whe
varying the dimension. This allows us, at the same time
test the validity of the NLs model for frustrated systems, a
least aroundD52. Indeed, due to the discrepancy betwe
the two perturbative approaches and the absence of ex
mental and numerical evidence of anO(4) critical behavior,
the reliability of the NLs model approach has bee
questioned.27 Clearly, the answer to these questions esca
a perturbative treatment. In general, the 1/N expansion pro-
vides a powerful tool to link up different perturbative met
ods. In the case of matrix models such an analysis is how
plagued by technical difficulties. Some progress has b
recently obtained but is confined to the leading order.28,29

The Wilson’s scheme, which has been successfully use
many topics,30–34,39,8turns out to be the most efficient ap
proach. In this paper, we study the PC GLW model neaD
52 by means of the Wilson-Polchinski exa
renormalization-group within the local potential approxim
tion ~LPA!. We show that the GLW and NLs approaches
can be reconciled in the vicinity of two dimensions. Mo
t
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precisely we show by a RG analysis that the two mod
belong to the same universality class near two dimensi
since the GLW model exhibits a nontrivial fixed point ide
tical to that of the NLs model.

The partition function of the PC GLW model is obtaine
by writing the most generalSO(N) ^ SO(N) invariant po-
tential, at most quartic inN3N real matricesM , that favors
orthogonal matrices for the fieldM :

Z5E DM exp2F E dDx
1

2
Tr~¹ tM•¹M !1

r

2
Tr tMM

1m Tr ~ tMM !21l~TrtMM !2G . ~2!

The domain of parameters of interest for us is given byl
.0 since, in this case, the minimum of the potential in t
broken phase is given byM (x)5R0 whereR0PSO(N). In
this phase, the model displays aSO(N) symmetry, so that
the symmetry-breaking scheme isSO(N) ^ SO(N)
→SO(N) and thus corresponds to the GLW version of t
PC model.

Our aim being to make contact with the NLs model, let
us show how the orthogonality of the lattice order parame
of Eq. ~1! can be recovered from Eq.~2!. Let r andm go to
infinity, the ratior /4m being fixed. In this limit, one recover
the partition function of the PC NLs model where a delta
function enforces the orthogonality constraint onM at each
point:

Z5E DM exp2
1

2E dDxFTr~¹ tM•¹M !

12mTrS tMM1
r

4m D 2

12l~TrtMM !2G ~3!

→E DMdS tMM2
1

g0
2D exp2

1

2E dDxTr~¹ tM•¹M !

~4!

up to an overall constant. The quantity 1/g0
252r /4m which

corresponds to the minimum of Eq.~3! ~whenl!m) iden-
tifies with the inverse temperature of the NLs model. Of
course, since the preceding limit is made on the bare act
it does not allow to conclude how both models are rela
under RG transformations. We shall show that, around
dimensions, the GLW and NLs models actually converge to
the samerenormalized trajectory in the continuum limit.

To realize this program we now study the evolution of t
PC GLW model under RG transformations within the LP
This approximation consists in truncating the effective W
sonian action to its potential partV(M )5*dDxv@M (x)#.
Note that the LPA thus misses the field renormalization. T
Wilson-Polchinski equation for the potential densityv(M ) is
given by:2,4

]v
]t

5Dv2
D22

2
Mi j v i j8 1

1

4p
v i j ,i j9 2v i j8 v i j8 , ~5!

wherev i j8 5dv/dMi j andt5 lnL, L being the dimensionles
running scale.
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There are two different ways to exploit Eq.~5!. The first
one is to search for an exact solution in any dimension, h
ing recourse to numerical integration. This provides a po
erful way to obtain precise values for critical quantities.8 The
second one is to solve Eq.~5! in a low-temperature expan
sion. We follow this route since we are interested in qual
tive features of the RG flow and we want to make cont
with the standard perturbative analysis of the NLs model.
Mitter and Ramadas used the same techniques in theSO(N)
case for a proof of perturbative renormalizability of the NLs
model.35

Let us parametrize the potential densityv by v(M )
5u(x)/gt

2 with x5gt
2 tMM . In a perturbative approach th

running potential has always a minimum as it is the case
the initial potential in Eq.~3! for tMM51/g0

2. The running
temperaturegt is thus definedvia:

]u

]xU
x51

50. ~6!

We now write the Wilson-Polchinski equation for the pote
tial densityu within the LPA:

]u

]t
5Du2~D22!x i j uj i8

2~ujl8 ujk8 1ujl8 uk j8 1ul j8 ujk8 1ul j8 uk j8 !x lk

1
gt

2

4p
@~ujs, jp9 1us j, jp9 1ujs,p j9 1us j,p j9 !xsp12Nuii8 #

1gt
2 d

dtS 1

gt
2D ~x i j uj i8 2u!. ~7!

Under the iterations of the RG, allSO(N) ^ SO(N) invariant
terms are generated so that the evolved potential writes:

u„x,$lp1 ,q1 ; . . . ;pn ,qn
~ t !%…5(

i
(

$pk ,qk%
lp1 ,q1 ; . . . ;pi ,qi

~ t !

@Tr~x21!p1#q1
• • • @Tr~x21!pi#qi. ~8!

The Wilson-Polchinski Eq.~7! generates the flow of all the
lp1 ,q1 ; . . . ;pn ,qn

(t)’s. When combined with Eq.~6! we also

get the evolution ofgt :

dgt
2

dt
52~D22!gt

21
1

4p

gt
4

2l2,1~ t !12Nl1,2~ t !

@~12N112!l3,1~ t !124Nl1,3~ t !14~N21N14!l2,1;1,1~ t !

14~2N11!l2,1~ t !14~N212!l1,2~ t !#. ~9!

The flow analysis shows that all thelp1 ,q1 ; . . . ;pn ,qn
(t)’s are

irrelevant coupling constants: after an exponentially ra
transient regime, their scale dependence is entirely contro
by that ofgt :

lp1 ,q1 ; . . . ;pn ,qn
~ t !→l̄p1 ,q1 ; . . . ;pn ,qn

~o! 1l̄p1 ,q1 ; . . . ;pn ,qn

~1! gt
2

1O~gt
4!. ~10!
v-
-

-
t

r

-

d
ed

Therefore, for any initial conditions, the flow is driven to
wards a one-dimensional renormalized trajectory para
etrized bygt whose evolution, obtained from Eqs.~9! and
~10!, is given at leading orders by:

dgt
2

dt
52~D22!gt

21
N21

4p
gt

41O~gt
6!. ~11!

This b function identifies with that of the temperature of th
PC NLs model calculated perturbatively.24 It however dif-
fers from the standard expression where the coefficienN
21 is replaced byN22. The origin of this difference is that
within the LPA, the field renormalization is set equal to on
If the field renormalization had been taken into accou
which is the case in the next orders in the derivative exp
sion, we would have obtained the correct coefficient. T
difference is irrelevant for our purpose.

Let us indicate how, in two dimensions, our previous
sults allow us to recover, in the continuum limit, the ha
constraint of the NLs model ~4!. After the transient
regime—i.e., Eq.~10!—u„x,$lp1 ,q1 ; . . . ;pn ,qn

(t)%… has con-

verged towardsū(x,gt) which can be expanded in powers
gt

2 :

ū~x,gt!5 (
k>0

~gt
2!kū~k!~x!. ~12!

We have found theexactform of ū(0)(x) so that the domi-
nant part of the potential density at low temperature write

v~M !;
1

gt
2
ū~0!~x!5

1

2gt
2
Tr@Agt

2 tMM21#2. ~13!

Suppose now that, after blocking, the model having c
verged to the one-dimensional renormalized trajectory,
effective running temperature has reached the valuegm , at
scalem. Reversing the flow on this trajectory, towards t
ultraviolet, Eq.~11! gives the bare temperatureg0 at scale of
the overall cutoffL0 ~typically, the inverse lattice spacing!.
Due to asymptotic freedomg0 goes to zero when taking th
continuum limitL0→`. It is easy to see from Eq.~13! that,
in this limit, the configurations contributing to the partitio
function correspond toSO(N) matrices~up to a normaliza-
tion!: the delta constraint of Eq.~4! is recovered from RG
transformations. Thus, in the continuum limit, the GLW a
NLs models coincide. The statistical interpretation of this
that the soft field GLW model appears as the block-spin
erated NLs model.

These results show that the PC GLW and NLs models
belong to the same universality class near two dimensio
This is a strong evidence of the validity of the NLs model
approach and of the existence of a second-order phase
sition near two dimensions. Thus the critical behavior of t
PC GLW model must change asD varies betweenD52 and
D54. This, of course, relies on the assumptions that
results persist beyond the low-temperature expansion and
LPA, and that thee542D expansion of the GLW model is
meaningful. The change of critical behavior could be a g
eral feature of models that are afflicted by the same troub
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even if their origins—presence of topological excitation
role of irrelevant operators—certainly depend on the prec
model under study. In any case, analyzing this requires u
vary the dimension and to use the next orders of approxi
tion in the derivative expansion.36–38 A somewhat similar
study has been performed for superconductors39 and for the
a

ry,
O

cl
,
e
to
a-

Kosterlitz-Thouless phase transition.40 In the context of the
PC model, it will be addressed in a future publication.
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