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Connectivity of energy bands in crystals
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It is shown that in crystals with nonsymmorphic space groups all energy bands corresponding to elementary
band representations are composite and connected; i.e., these bands have several branches, and there are
enough contact points among them so that one can travel continuously through all of them. The concept of
elementary band representations is explained. The proof is essentially based on the property of monodromy
occurring for families of representations of nonsymmorphic space gr8p463-18209)03909-7

One of the most striking features of the quantum theory ok is a local label in the Brillouin zone for an energy band
solids is the band structure of their energy spectrum. A cenwhich specifies the eigenvalues of the translations. So, as
tral role in this theory is played by the Bloch functiogg(r) shown in Refs. 3 and 4, at the poiktof the Brillouin zone,
and the quasimomentuiy which specifies the translational the symmetry group of an energy band is the little space
symmetry of the crystdl. Qualitatively, the existence of groupGy.
bands and gaps in the energy spectrum is the basis for the Of central interest are the band representations which can-
classification of solids into metals, semiconductors, andot be decomposed as direct sums of band representations.
insulators? An energy band is called “simple” if one Bloch They were first introduced in Ref. 8 where Zak called them
function only corresponds to eaéhvector in the Brillouin  irreducible-band representatiottsere, as in Ref. 12, we call
zone. It is called composite i>1 Bloch functions corre- themelementary, and he showed that it is necessary for the
spond to a giverk vector. In addition, an energy band is w of their label to have a maximal symmetfgquivalently,
called “connected” if there are enough contact points be-G,, has to be a maximal finite subgroup of the space group
tween its branches so one can travel continuously through af). In Ref. 12 it was shown that this condition might not be
its branches. A connected energy band, be it simple or consufficient and the full list of the 40 exceptions was given; the
posite, covers a continuous interval on the energy axis.  longer list of equivalent elementary band representations

The continuity of energy band branches was proven irwith distinct labels was also established. The energy bands
Ref. 3, and the study of contacts between them began iwhose band representations are elementary are simply called
1936 in Refs. 3 and 4. But at that time, the concept of energglementary energy band¥he number of branches of an el-
bands as whole entities had no symmetry-based definition. lamentary band representation labeled(iwp) is given by
1980, after interesting preliminary worRs/ Zak introducefi  Eq. (21) of Ref. 12:
the concept of band representations: they are characterized
by the label(w,p), with w a point of the Wigner-Seitz cell b, = (diMDE)|P|/|G,/, (1)
with a given symmetry(the different cases are listed "
for each space group as “Wyckoff positions” in the where|P| and|G,| are, respectively, the number of elements
ITC = International Tables for Crystallography and p  of the groupsP andG,, .
labels an irreducible representaticﬁ)f,f) of G,,, the little Among the 230 space groups, the 73 of them which have
group (=stabilizer) ofw; indeed, they are the representa- stabilizersG,, isomorphic toP are called symmorphic. The
tions of the space grou@ induced from the irreducible rep- 157 space groups all of whose stabiliz&;g are isomorphic
resentations of the different stabilize®s, . These represen- to strict subgroups dP are called nonsymmorphic. Equation
tations are infinite dimensional since tl@®,'s are finite (1) shows that their elementary bands are composite. In this
groups isomorphic to subgroups of the point groBp paper we show that in crystals with nonsymmorphic space
=G/7, with 7 denoting the invariant subgroup of transla- group symmetry all elementary bands are connected.
tions of G. The band label is a purely group-theoretical one; As shown in Ref. 3, contacts between band branches may
it does not reflect the specific form of the periodic potentialoccur at the pointk of the Brillouin zone where the little
in the Schrdinger equation. One can compare it with the space groufs, has an irreducible representation of dimen-
labeling of spherical harmonics in atoms; in the latter casesiond>1. Indeed, the correspondimidistinct states belong
the radial functions are determined by the explicit form ofto d different branches and have the same energy. In his
the atomic potential. The labélv,p) in solids describes the thesis(summarized in Ref.4Herring made a thorough study
global symmetry properties of the energy band, while theof the pointsk and the irreducible representations @f
detailed structure of the band is determined by the potentialvhich are transformed by the addition of time reversal into a
It turns out that the Wyckoff positiow is closely related to corepresentation of double dimension. These two types of
a geometrical phase of the energy bahdike w, this geo-  contact are not sufficient for proving the connectivity of el-
metrical phase describes global properties of energy bandsmentary bands existing in nonsymmorphic groups, e.g.,
and it has recently acquired much interest in electric polarthose with only AbelianG,’s. To prove the connectivity of
ization in solidst! On the other hand, the Bloch momentum the branches of elementary bands for such groups, we will
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have to use another property of the irreducible representarthogonal toe;. Then the reciprocal lattice is generated by
tions of nonsymmorphic groups: it was found in 1942 bythe vectors ze* which satisfy

Herring'® in a paper constructing all unitary irreducible rep-

resentations of two nonsymmorphic space grougsm3d g -6=23;. (4)
§d|amond structurjeand P6_3/mmc(hexagona| close p_ack— So the components; of a k=3;k;e* of the Brillouin zone
ing). We shall establish this property when we need it. are defined modulo2 The arounsG. With ka=k.e* are
In a space groug, if no element of the translation coset group kg TR R8T 38
Tr =rT leaves fixed a point of space, the coset elements ardll €qual to the space group, and their irreducible repre-
called nonsymmorphide.g., Ref. 4. In three dimensions sentations are one dimensional. Indeed, any lattice transla-
these elements are glide reflections or screw rotations, i.elion Vectort=Z2;n;e;, n; integers, is represented (B (t)
that the reflectiortits order isn=2) or the rotation by 2r/n, =expik-t=exp(sks). In particular, Dy (t;) =exp(ks); so
n=2,3,4,6, is followedor precedefiby a translation in the the screw rotatiom hasn inequivalent one-dimensional rep-
reflection plane or along the rotation axis; so the square of gesentations corresponding to the differamh roots of
glide reflection or thenth power of the screw rotation is a D, (e;):
pure translation. In the coset of nonsymmorphic elements we
choose, and denote by an element such that the translation ks=ks&, p=0,1,2...,n—1,modn,
r"eTis as small as possible:
D(P) (1) = gi(2mp+ka)/n. 5

r"=pt,, 0<p<n, 2 &5 (1) ®

}Ne remark that the values of the powersrofenerate the

with t, a lattice translation such that there are no shorter "~ . ! ;
full image of a representation. Whenk; varies on a full

lattice vectors colinear to it. For a glide reflection, the glide =", d it : d intkat 27 thi f .
vector is (1/2), and (p/n)t for the screw rotation. If a space perio h' It s tranfsf orme Emt st :17 tr:s trans ormatlon
group has a nonsymmorphic element, it is nonsymmorphic!aS the same effect in E@5) as the change o into p
The converse is not always true: the two exceptions are the 1:
Sg)ace group$2,2,2,; and12,3 (for the notations, see Ref. in Eq. (5) kg—~kz+t2mep—p+1. (6)
We begin our proof with the study of the simplest case ofln plain words, when we change the value of the coordinate
space groups generated by the translatidrend one non- ks we move on a circle of the Brillouin zone that we denote
symmorphic element satisfying E) with p=1. There are by I'3; making one turn on this circle makes a circular per-

nine such space groups which are denoted in#T€] by mutation of then representation@ﬁ’;) of Gy, ~G. This phe-

) nomenon, discussed by Herring in Ref. 13, is calledno-
Pc.Cc P2, P3,~P3;, P4;~P4s, P61~P65'3 dromyin mathematics. The circular permutation defined by
®) Eq. (6) is denoted by the cyclg=(12 .. .n), and it must be
The first two contain a glide reflection, the others a screwemphasized that the-element cyclic group generated by
rotation. The symbot- between three pairs of space groupsacts transitively on tha representationgequivalently, these
indicates their isomorphism: IT€[9] distinguishes be- n representations form one orbit of the monodromy gjoup
tween them because they correspond to opposite heftbidy Each of thesen representations corresponds to a distinct
groups of theseenantiomorphic pairsare transformed into branch of the elementary band. So proof of the connection of
each other by reflections through a plane containing the rothe n branches is straightforward: follow the continuous
tation axig. For each of the nine groups of E@), the sta- energy function along the branch labeled by the representa-
bilizers of all points of space are trivial:G,,=1; i.e., there tion p; this function is not necessarily periodic since after a
is only one Wyckoff position, the whole space. So all el-complete turn on the circlE; we are over the starting point,
ementary band representations are equivalent to the unigumut on the branch corresponding to the representation labeled
induced representation from the trivial subgroup 1; it isby p+1, etc. Aftern turns on the circld 5, we will have
called the regular representation ® From Eq.(1) we see followed the continuous energy value through all the
that the number of branches I3=|P|=n, the smallest branches; that means that they form a connected graph. The
power ofr, which is a pure translation, as defined in E2). proof is similar(with n=2) for the groupsPc, Cc gener-
Let us consider first the four isomorphic classes of groups irated by a glide reflectiofchoose agaie;=t;), but since the
Eq. (3) with screw rotations. We take as basis of fhiattice  elementary bands have only two branches, time reversal is
e;=t, [defined in Eq(2)] and, ase;,e,, two lattice vectors  sufficient for proving connectivity.

TABLE I. Contacts imposed by time reversal between branches whose band representations are labeled
by p,0<p<n in Eq. (5) for the nine space groups listed in EE). For the space groupB2,, P4,
~P4,, P6,~P6g, since they contai2, as subgroup, Ref. 4 shows that the contacts listed in the last line
of this table extend to the whole fack;(k,,) of the Brillouin zone.

k3:k3%* PC,CC,P21 P31~ P32 P41~ P43 P61~ P65

k=0 Ei=E; Ei=Es Ei=Es, E;=E,
k= E¢=E; E4=E,  E,=E}, E|=E} E¢=Ei, Ej=E,, Ej=E}
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Pc,Cc,P2 P3,~ P32 P23
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FIG. 3. For the bandg,1) of the space grouf2,3, at the point

o Pe . P6 kr we have a one-dimensional and a three-dimensional irreducible
P4 P43 | 5 representation. At the poitdy there are 2 inequivalent irreducible
3 2,3 two-dimensional representations. Connectivity of all the four
3 ? 1,2 2 branches is unavoidable. At the poiky, like at ki, there is a
a one-dimensional and a three-dimensional representation, with the
13 1,4 order determined by the potential.
0,3 J
to the accidental degeneracies studied in Ref. 4. They can be
) 0 K 0 » moved overF3_ by changing the potential and they can be
¢ z L) kz, removed as Fig. (£) shows.
- Y T T 0 ™ The five other space groups generated by the translations

and one nonsymmorphic element af4,, 14,, P6,
~P6,, P63: their value ofp in Eq. (2) is >1; it is
2,2,2,2,3, respectively. These groups have several band rep-
resentations, and an application of the same method proves
) o their connectivity. The 149+5 groups studied contain all
The given p_roof of the connectivity of the elementary nonsymmorphic symmetry operations defined by @yand
bands for the nine space groups listed in &j.does not tell )| nonsymmorphic elements existing in the nonsymmorphic
where the contacts between the branches are. Their positiqRree-dimensional space groups belong to one of these 14
is given b)_/ time reversal symmetry. At thg Bri_llouin Zone types. So we can apply the same method to all other non-
point k3 with k3=0 and 7, the screw rotation is repre-  symmorphic groups except two of them that we have to
sented by the phases epfp/n) and expim(2p+1)/n], re-  study directly: they are the two nonsymmorphic groups
spectively. We know from Ref. 4 that the branches correhich do not contain nonsymmorphic elements. The space
sponding to complex conjugate representations meet at theg?oup 12,2,2, has three Wyckoff positions with maximal
points. Let us denote bz, andE, the energy of the branch symmetry(they are labelea,b,cin Ref. 9. Each one yields
p atthese two points. Table | gives the energy degeneracy far two-branch elementary band representations. To prove
the different groups. their connectivity, it is sufficient to read tables of irreducible
In Fig. 1 we have drawn the connected graph of the enrepresentationsee, e.g., Ref. 24f space groups and notice
ergy overl's for the different groups. We have chosen thethat all those ofGy (kg represents the vertices of the

!

order of the energy levelE, andE, such that there is N0  gjliguin cell) are two dimensional.

other crossing ovel'; than those imposed by time reversal.  The space group2,;3 has two Wyckoff positiona andb

In Fig. 2, by changing the order of the levelskgt=0 for the  \ith maximal symmetry whose stabilizers are the cyclic
groupP4; two more contacts must appear. They correspongyroupsC, andC,; we label their irreducible representations
by 1,w=exp(27/3), w and by +, —, respectively. So the

- labels of their five elementary band representations are
P4~ P43 (a1), (@), (a,), (b,+), (b,—). The 12-clementtetra-
hedra) point groupT = 23 leaves fixed four isolated points of
the Brillouin zone!* kp=0=4kp, kp, ky=2kp, kp:
=3kp (H andP,P’ represent, respectively, the 6 four-edge
vertices and the 8 three-edge vertices on the surface of the
Brillouin zone with 12 rhombic facesWe denote by 1w,

w, andv the four irreducible representations ®f(the first
three are one-dimensional representations:aiglits three-
dimensional vector one From Ref. 14 we read tha‘r;kp

- 0 " ~ka, have only two-dimensional irreducible representa-
FIG. 2. Alternative ordering of the energy levelskatO for the  tions. For the four-branch banda(l), a straightforward

space groupd4; and P4, imposes two accidental degeneracies computation yields for the representations of@g 1owv at
indicated by the dashed-line circles. kr, ky and the direct sum of 2 two-dimensional irreducible

FIG. 1. Schematic plots of the energy functi&ks) for the
space groups listed in Eq3). With the chosen ordering of the
energy levels ak=0,7, no accidental degeneracy occurs.
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representations &p, kp:. This is obviously sufficient for quency bands in the vibration spectrum of solids has also
proving the connectivity of the energy band by using thebeen proven for some other crystagsg., close hexagonal
same simple argument given in Ref. 15 for the diamondlikedacking by using the supplementary property that the three
structure: see Fig. 3. By replacing 1 byandw, in the sets ~ acoustic branches meet at zero frequency. Presently, we are
of representations & andk,, the same argument applies also studying the connectivity of elementary bands for the
to the elementary bandsi(w) and @, »). We remark that Symmorphic groups. To prove it for some of them, we have
time reversal combines the two corresponding complex cont0 Use a new propertinot explained hepeof the elementary
jugate elementary band representations into 1 eight-brandpand representations. We will present it in another publica-
elementary bandorepresentationwhich is globally con-  tion.

nected because the representatiens of G, ,G, , are In conclusion, we have shown in this paper the powerful-
r H

combined into an irreducible two-dimensional c:orepresenta[‘ess of the symmetry band laltel,p) of an elementary ba_nd

tion. representation. Namely, the energy band, corresponding to

The connectivity of the 2 six-branch elementary bandssuch a band represent.ation in crystals with r)onsymmorphic
(bx) is obtained for both bands from the fact that the rep—SpaCe groups, has all 't.s br.anches necessarily cpnr)ected by
resentations of3, and G,_, are the direct sum of their 3 some remarkable combination of symmetry, continuity, and

P P’

. . . ) : _ . éoeriodicity.

inequivalent two-dimensional irreducible representation
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