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Connectivity of energy bands in crystals

L. Michel* and J. Zak
Department of Physics, Technion, Israel Institute of Technology, 32000 Haifa, Israel

~Received 30 September 1998!

It is shown that in crystals with nonsymmorphic space groups all energy bands corresponding to elementary
band representations are composite and connected; i.e., these bands have several branches, and there are
enough contact points among them so that one can travel continuously through all of them. The concept of
elementary band representations is explained. The proof is essentially based on the property of monodromy
occurring for families of representations of nonsymmorphic space groups.@S0163-1829~99!03909-0#
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One of the most striking features of the quantum theory
solids is the band structure of their energy spectrum. A c
tral role in this theory is played by the Bloch functionsck(r )
and the quasimomentumk, which specifies the translationa
symmetry of the crystal.1 Qualitatively, the existence o
bands and gaps in the energy spectrum is the basis fo
classification of solids into metals, semiconductors, a
insulators.2 An energy band is called ‘‘simple’’ if one Bloch
function only corresponds to eachk vector in the Brillouin
zone. It is called composite ifb.1 Bloch functions corre-
spond to a givenk vector. In addition, an energy band
called ‘‘connected’’ if there are enough contact points b
tween its branches so one can travel continuously throug
its branches. A connected energy band, be it simple or c
posite, covers a continuous interval on the energy axis.

The continuity of energy band branches was proven
Ref. 3, and the study of contacts between them bega
1936 in Refs. 3 and 4. But at that time, the concept of ene
bands as whole entities had no symmetry-based definition
1980, after interesting preliminary works,5–7 Zak introduced8

the concept of band representations: they are characte
by the label~w,r!, with w a point of the Wigner-Seitz cel
with a given symmetry~the different cases are liste
for each space group as ‘‘Wyckoff positions’’ in th
ITC 5 International Tables for Crystallography9!, and r
labels an irreducible representationDw

(r) of Gw , the little
group (5stabilizer) of w; indeed, they are the represent
tions of the space groupG induced from the irreducible rep
resentations of the different stabilizersGw . These represen
tations are infinite dimensional since theGw’s are finite
groups isomorphic to subgroups of the point groupP
5G/T, with T denoting the invariant subgroup of transl
tions of G. The band label is a purely group-theoretical on
it does not reflect the specific form of the periodic poten
in the Schro¨dinger equation. One can compare it with t
labeling of spherical harmonics in atoms; in the latter ca
the radial functions are determined by the explicit form
the atomic potential. The label~w,r! in solids describes the
global symmetry properties of the energy band, while
detailed structure of the band is determined by the poten
It turns out that the Wyckoff positionw is closely related to
a geometrical phase of the energy band.10 Like w, this geo-
metrical phase describes global properties of energy ba
and it has recently acquired much interest in electric po
ization in solids.11 On the other hand, the Bloch momentu
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k is a local label in the Brillouin zone for an energy ban
which specifies the eigenvalues of the translations. So
shown in Refs. 3 and 4, at the pointk of the Brillouin zone,
the symmetry group of an energy band is the little spa
groupGk .

Of central interest are the band representations which c
not be decomposed as direct sums of band representat
They were first introduced in Ref. 8 where Zak called the
irreducible-band representations~here, as in Ref. 12, we cal
themelementary!, and he showed that it is necessary for t
w of their label to have a maximal symmetry~equivalently,
Gw has to be a maximal finite subgroup of the space gro
G!. In Ref. 12 it was shown that this condition might not b
sufficient and the full list of the 40 exceptions was given; t
longer list of equivalent elementary band representati
with distinct labels was also established. The energy ba
whose band representations are elementary are simply c
elementary energy bands. The number of branches of an e
ementary band representation labeled by~w,r! is given by
Eq. ~21! of Ref. 12:

b~w,r!5~dimDGw

~r! !uPu/uGwu, ~1!

whereuPu anduGwu are, respectively, the number of elemen
of the groupsP andGw .

Among the 230 space groups, the 73 of them which h
stabilizersGw isomorphic toP are called symmorphic. The
157 space groups all of whose stabilizersGw are isomorphic
to strict subgroups ofP are called nonsymmorphic. Equatio
~1! shows that their elementary bands are composite. In
paper we show that in crystals with nonsymmorphic sp
group symmetry all elementary bands are connected.

As shown in Ref. 3, contacts between band branches
occur at the pointsk of the Brillouin zone where the little
space groupGk has an irreducible representation of dime
siond.1. Indeed, the correspondingd distinct states belong
to d different branches and have the same energy. In
thesis~summarized in Ref. 4! Herring made a thorough stud
of the pointsk and the irreducible representations ofGk
which are transformed by the addition of time reversal int
corepresentation of double dimension. These two types
contact are not sufficient for proving the connectivity of e
ementary bands existing in nonsymmorphic groups, e
those with only AbelianGk’s. To prove the connectivity of
the branches of elementary bands for such groups, we
5998 ©1999 The American Physical Society
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have to use another property of the irreducible represe
tions of nonsymmorphic groups: it was found in 1942
Herring13 in a paper constructing all unitary irreducible re
resentations of two nonsymmorphic space groups:Fm3̄d
~diamond structure! and P63 /mmc ~hexagonal close pack
ing!. We shall establish this property when we need it.

In a space groupG, if no element of the translation cose
Tr 5rT leaves fixed a point of space, the coset elements
called nonsymmorphic~e.g., Ref. 4!. In three dimensions
these elements are glide reflections or screw rotations,
that the reflection~its order isn52! or the rotation by 2p/n,
n52,3,4,6, is followed~or preceded! by a translation in the
reflection plane or along the rotation axis; so the square
glide reflection or thenth power of the screw rotation is
pure translation. In the coset of nonsymmorphic elements
choose, and denote byr, an element such that the translatio
r nPT is as small as possible:

r n5ptr , 0,p,n, ~2!

with tr a lattice translation such that there are no sho
lattice vectors colinear to it. For a glide reflection, the gli
vector is (1/2)tr and (p/n)t for the screw rotation. If a spac
group has a nonsymmorphic element, it is nonsymmorp
The converse is not always true: the two exceptions are
space groupsI212121 and I213 ~for the notations, see Re
9!.

We begin our proof with the study of the simplest case
space groups generated by the translationsT and one non-
symmorphic element satisfying Eq.~2! with p51. There are
nine such space groups which are denoted in ITC5@9# by

Pc,Cc; P21 , P31;P32 , P41;P43 , P61;P65 .
~3!

The first two contain a glide reflection, the others a scr
rotation. The symbol; between three pairs of space grou
indicates their isomorphism: ITC5@9# distinguishes be-
tween them because they correspond to opposite helicity~the
groups of theseenantiomorphic pairsare transformed into
each other by reflections through a plane containing the
tation axis!. For each of the nine groups of Eq.~3!, the sta-
bilizers of all points of space are trivial:Gw51; i.e., there
is only one Wyckoff position, the whole space. So all
ementary band representations are equivalent to the un
induced representation from the trivial subgroup 1; it
called the regular representation ofG. From Eq.~1! we see
that the number of branches isb5uPu5n, the smallest
power ofr, which is a pure translation, as defined in Eq.~2!.
Let us consider first the four isomorphic classes of group
Eq. ~3! with screw rotations. We take as basis of theT lattice
e35tr @defined in Eq.~2!# and, ase1 ,e2 , two lattice vectors
a-
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orthogonal toe3 . Then the reciprocal lattice is generated
the vectors 2pei* which satisfy

ei* •ej5d i j . ~4!

So the componentski of a k5( ikiei* of the Brillouin zone
are defined modulo 2p. The groupsGk3

with k35k3e3* are
all equal to the space groupG, and their irreducible repre
sentations are one dimensional. Indeed, any lattice tran
tion vectort5( jnjej , nj integers, is represented byDk3

(t)
5expik•t5exp(n3k3). In particular, Dk3

(tr)5exp(ik3); so
the screw rotationr hasn inequivalent one-dimensional rep
resentations corresponding to the differentnth roots of
De3

(e3):

k35k3e3* , r[0,1,2, . . . ,n21,modn,

Dk3

~r!~r !5ei ~2pr1k3!/n. ~5!

We remark that the values of the powers ofr generate the
full image of a representationr. When k3 varies on a full
period, it is transformed intok312p; this transformation
has the same effect in Eq.~5! as the change ofr into r
11:

in Eq. ~5! k3°k312p⇔r°r11. ~6!

In plain words, when we change the value of the coordin
k3 we move on a circle of the Brillouin zone that we deno
by G3 ; making one turn on this circle makes a circular pe
mutation of then representationsDk3

(r) of Gk3
;G. This phe-

nomenon, discussed by Herring in Ref. 13, is calledmono-
dromy in mathematics. The circular permutation defined
Eq. ~6! is denoted by the cycleg5(12 . . .n), and it must be
emphasized that then-element cyclic group generated byg
acts transitively on then representations~equivalently, these
n representations form one orbit of the monodromy grou!.
Each of thesen representations corresponds to a distin
branch of the elementary band. So proof of the connectio
the n branches is straightforward: follow the continuo
energy function along the branch labeled by the represe
tion r; this function is not necessarily periodic since after
complete turn on the circleG3 we are over the starting point
but on the branch corresponding to the representation lab
by r11, etc. Aftern turns on the circleG3 , we will have
followed the continuous energy value through all t
branches; that means that they form a connected graph.
proof is similar~with n52! for the groupsPc, Cc gener-
ated by a glide reflection~choose againe35tc!, but since the
elementary bands have only two branches, time reversa
sufficient for proving connectivity.
labeled

line
TABLE I. Contacts imposed by time reversal between branches whose band representations are
by r,0<r,n in Eq. ~5! for the nine space groups listed in Eq.~3!. For the space groupsP21 , P41

;P43 , P61;P65 , since they containP21 as subgroup, Ref. 4 shows that the contacts listed in the last
of this table extend to the whole face (k1 ,k2 ,p) of the Brillouin zone.

k35k3e3* Pc,Cc,P21 P31;P32 P41;P43 P61;P65

k350 E15E2 E15E3 E15E5 , E25E4

k35p E085E18 E085E28 E085E38 , E185E28 E085E58 , E185E48 , E285E38
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The given proof of the connectivity of the elementa
bands for the nine space groups listed in Eq.~3! does not tell
where the contacts between the branches are. Their pos
is given by time reversal symmetry. At the Brillouin zon
point k3 with k350 and p, the screw rotationr is repre-
sented by the phases exp(i2pr/n) and exp@ip(2r11)/n#, re-
spectively. We know from Ref. 4 that the branches cor
sponding to complex conjugate representations meet at t
points. Let us denote byEr andEr8 the energy of the branch
r at these two points. Table I gives the energy degeneracy
the different groups.

In Fig. 1 we have drawn the connected graph of the
ergy overG3 for the different groups. We have chosen t
order of the energy levelsEr and Er8 such that there is no
other crossing overG3 than those imposed by time reversa
In Fig. 2, by changing the order of the levels atk350 for the
groupP41 two more contacts must appear. They correspo

FIG. 1. Schematic plots of the energy functionE(k3) for the
space groups listed in Eq.~3!. With the chosen ordering of the
energy levels atk50,p, no accidental degeneracy occurs.

FIG. 2. Alternative ordering of the energy levels atk50 for the
space groupsP41 and P43 imposes two accidental degeneraci
indicated by the dashed-line circles.
ion

-
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to the accidental degeneracies studied in Ref. 4. They ca
moved overG3 by changing the potential and they can
removed as Fig. 1~c! shows.

The five other space groups generated by the translat
and one nonsymmorphic element areP42 , I41 , P62
;P64 , P63 : their value of p in Eq. ~2! is .1; it is
2,2,2,2,3, respectively. These groups have several band
resentations, and an application of the same method pro
their connectivity. The 145915 groups studied contain a
nonsymmorphic symmetry operations defined by Eq.~2! and
all nonsymmorphic elements existing in the nonsymmorp
three-dimensional space groups belong to one of these
types. So we can apply the same method to all other n
symmorphic groups except two of them that we have
study directly: they are the two nonsymmorphic grou
which do not contain nonsymmorphic elements. The sp
group I212121 has three Wyckoff positions with maxima
symmetry~they are labeleda,b,c in Ref. 9!. Each one yields
2 two-branch elementary band representations. To pr
their connectivity, it is sufficient to read tables of irreducib
representations~see, e.g., Ref. 14! of space groups and notic
that all those ofGkR

~kR represents the vertices of th
Brillouin cell! are two dimensional.

The space groupI213 has two Wyckoff positionsa andb
with maximal symmetry whose stabilizers are the cyc
groupsC3 andC2 ; we label their irreducible representation
by 1,v5exp(2ip/3), v̄ and by 1, 2, respectively. So the
labels of their five elementary band representations
(a,1), (a,v), (a,v̄), (b,1), (b,2). The 12-element~tetra-
hedral! point groupT523 leaves fixed four isolated points o
the Brillouin zone:14 kG5054kP , kP , kH52kP , kP8
53kP ~H and P,P8 represent, respectively, the 6 four-ed
vertices and the 8 three-edge vertices on the surface of
Brillouin zone with 12 rhombic faces!. We denote by 1,v,
v̄, andv the four irreducible representations ofT ~the first
three are one-dimensional representations andv is its three-
dimensional vector one!. From Ref. 14 we read thatGkP

;GkP8
have only two-dimensional irreducible represen

tions. For the four-branch band (a,1), a straightforward
computation yields for the representations of theGk , 1% v at
kG , kH and the direct sum of 2 two-dimensional irreducib

FIG. 3. For the band (a,1) of the space groupI213, at the point
kG we have a one-dimensional and a three-dimensional irreduc
representation. At the pointkP there are 2 inequivalent irreducibl
two-dimensional representations. Connectivity of all the fo
branches is unavoidable. At the pointkH , like at kG , there is a
one-dimensional and a three-dimensional representation, with
order determined by the potential.
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representations atkP , kP8 . This is obviously sufficient for
proving the connectivity of the energy band by using t
same simple argument given in Ref. 15 for the diamondl
structure: see Fig. 3. By replacing 1 byv andv̄, in the sets
of representations atkG andkH , the same argument applie
to the elementary bands (a,v) and (a,v̄). We remark that
time reversal combines the two corresponding complex c
jugate elementary band representations into 1 eight-bra
elementary bandcorepresentation, which is globally con-
nected because the representationsv,v̄ of GkG

,GkH
, are

combined into an irreducible two-dimensional corepresen
tion.

The connectivity of the 2 six-branch elementary ban
(b6) is obtained for both bands from the fact that the re
resentations ofGkP

and GkP8
are the direct sum of their 3

inequivalent two-dimensional irreducible representatio
and, for some otherGk , the direct sum of 2 three
dimensional irreducible representations. Indeed, theGk rep-
resentations reduce tov % v both atkG for the (b,1) band
representation and atkH for the (b,2) one.

In Ref. 15 the connectivity of the branches of the fr
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quency bands in the vibration spectrum of solids has a
been proven for some other crystals~e.g., close hexagona
packing! by using the supplementary property that the th
acoustic branches meet at zero frequency. Presently, we
also studying the connectivity of elementary bands for
symmorphic groups. To prove it for some of them, we ha
to use a new property~not explained here! of the elementary
band representations. We will present it in another publi
tion.

In conclusion, we have shown in this paper the powerf
ness of the symmetry band label~w,r! of an elementary band
representation. Namely, the energy band, correspondin
such a band representation in crystals with nonsymmorp
space groups, has all its branches necessarily connecte
some remarkable combination of symmetry, continuity, a
periodicity.
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