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Double-vertically-stacked Josephson junctions: Numerical and analytical analyses
of a current-biased system in a magnetic field
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Department of Physics and Astronomy, Northwestern University, Evanston, lllinois 60208
(Received 14 July 1998

We examine the solutions of the nonlinear equations governing the behavior of a current-biased, double-
vertically-stacked, Josephson junction. Both inline and overlap biasing current geometries are considered. The
solution space is investigated analytically and using numerical techniques. We characterize the types of solu-
tions expected analytically for zero current and find good approximations for large magnetic fields. We study
this space and its stability as a function of magnetic field and applied bias current. Selective results are
presented that characterize the general behavior of the solution $p8&€3-18209)04101-9

[. INTRODUCTION ated as the bias current is increased. The oscillation spectra
of the stable solutions are discussed. Our conclusions are
The motivation for this work comes from recent experi- summarized in Sec. VI.
mental measurements bfversusH in vertically-stacked Jo-
sephson junctions. These measurements have been made by
our own group as well as other$? Also relevant is work
done on high-temperature and superconducting matérials. We consider a one-dimensional model of a double-
The general equations governing the behavior of stackedertically-stacked Josephson junction of lenggthnd denote
junctions were presented by Sakai, Bodin, and Pedérsenthe phase differences across the two junctiongbix) and
Examples of dynamic solutions were given in Ref. 5 and alsap,(x), where—L/2<x=<L/2. The inline and overlap geom-
by Kleineret al? etries are depicted in Fig. 1, cagasand(b), respectively. A
In this paper we look, in somewhat more detail than Refsuniform magnetic fieldH is applied in they direction. The
4 and 5, at the double-junction case. We map out the comeurrentJ flows in thex andy directions, respectively, in the
plete solution space for the static junction in a magnetic fieldwo cases. We will always considét=0 andJ=0. It is
and at nonzero current. We consider both the inline and thétraightforward to see that this maps out the entire physical
overlap current biasing geometries. Behavior of the stati§olution space. We assume that the junction is symmetric
solutions at nonzero current is analyzed. Plots similar tdVith insulating layers of thickness. The central supercon-
those for a single junction are present@efs. 6—10. We ducting layer has thickness and we assume that the two

evaluate the time-dependent stability of each solution an§Uter superconducting layers are much thicker than the Lon-

discuss the various time-dependent modes of oscillation oﬁ’on penetration depti, . The effective thickness of each

the stable solutions. !unct!on i_s dei=d+N_ [1+coth@\,)]. The width of. the
We characterize the types of solutions that are expect I’ICIIC_)I’]J IS .W and the d:]]osep_hjon_ currents are given by
by using a simple analytic model for the static solutions at 1(.1%; ghsell?;(gtlé;(igi?nscrze(g%i; CIZI:((tpﬁ()F()))r. maanetic-field
zer? bi?s (I:urrent. Thistyii!dlsdanFaccurat”e analytic t{ip?r(l)gi- enetration into the junction ig the gJosephsongdapjh
mation for large magnetic fields. For smaller magnetic fie 2_ _ .
we give numerical examples of the solution space. Enough here 0.)"=®/(27poderde), and ®=hi(2e) s the
detail is presented to reveal the structure of the solution
space and the stability of the various solutions. —
In Sec. I, we review the basic coupled sine-Gordon-like
equations which govern the behavior of the static junction in — 7
a magnetic field. Both the inline and the overlap current bi- | I
asing geometries are considered. Time-dependent terms are l |
added so that a stability analysis of the solutions can be Hext | L J,W/
~

undertaken. In Sec. I, we derive a simple analytic model for =z — o
the zero current static solutions. These approximate solutions y |

Il. THE BASIC EQUATIONS

A

are valid for large magnetic fields. However, they also serve

| T
|//' J /
to delineate the general solution types for all magnetic fields. x
In Sec. IV we present numerical solutions for the static junc- . B
tion with nonzero magnetic field and nonzero bias current. In |

Sec. V we include time-dependent terms in our equations
and investigate the stability of the static solutions to small FIG. 1. Schematic of the inlingA) and overlapB) geometries.
perturbations. For fixed magnetic field, the stability is evalu-The length and width of the junctions ateand W, respectively.
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magnetic-flux quantum. We introduce the dimensionlesstb;x and ¢,(X)=a,+b,x. Using this as input, our next
length,x=x/\;, current,R=J3/J.=JWLIWL=I/l., and approximation becomes
magnetic field,h= (27 du\;/P)H. General equations for

multilayer junctions in both current biasing schemes have @1(X)=a;+byx—[sin(a; +b,x) /b7
been derived by Sakai, Bodin, and Peders&or a double . 2
junction these equations become ~Glsin(a,+b,x)]/b3 (43
2 : ; and
d2;(X)/dX*=sin(¢(X))+ G sin(e,(x))—(1+G)R,
(1a @2(X)=ap+b,x—[sin(a,+b,x) /b5

and — G[sin(a, +bX) /b2, (4b)

d2,(X)/dX*=sin(¢,(X)) + G sin(e1(X))— (1+G)Ry For our purposes this is sufficient. Our boundary conditions,

(Ib)  Egs.(2a), (2b), become

with boundary conditions — —
b,;—[coga;—b;L/2)]/b;—G[coga,—b,L/2)]/b,=h,

dey(=L/2)/d%=(1+G)(h=R.L/2) (2a) (58
and b,—[coga; +b;L/2)]/b;—G[coga,+b,L/2)]/b,=h,
_ _ (5b)
dey(£L/2)/dX=(1+G)(h=R/L/2), (2a)

where G=—\ /[des SiNnh@A\,)] is the intralayer coupling bz—[cos{az—b2L/2)]/b2—G[cos{al—blLIZ)]/b1=h(éc)

parameter. As expected, fa/\ >1, ds=d+2\ and G

=0. In what follows, in order to restrict the number of pa- and

rameters, we will us& = —0.75. This value is typical of the _ _

coupling used in Ref. 1. b,—[coga,+b,L/2)]/b,—G[coga; +bsL/2)]/by=h.
Note thatR; (the relative current in the inline cgsandR, (5d)

(the relative current in the overlap casee never both non- Expanding the cosine terms in Eq8a—(5d), we find four

zero. Solutions exist only foR; and/orRy=<1. In the case .ynditions

whereR;, Ry, andG are all equal to zero, Eq¢la), (1b),

and (2a), (2b) can be solved analytically in terms of elliptic sin(al)sin(blf/2)=0 (6a)

integrals(see Ref. i However, the solution space is so large ’

that numerical solutions are easier to use than the exact ana-

lytic results. sin(az)sin(bL/2) =0, (6b)
To investigate the stability of the static solutions, we add —
a wave-like coupling and a damping term to E(sa), (1b). b, —coga,)codb,L/2))/b,
On the right-hand side of Eq¢la), (1b) we add the extra —
ome 0 a¢la, (15 — G coga,)cosh,L/2))/b,=h (73)
L L and
d?@,(X,t)/dt?+ Bde(X,t)/dt (33 B
and b,=[cogqa,)coqb,L/2))/b,
o, (KOG + By (CO/AT @b) —G coga,)cogb;L/2))/b;=h. (7b)

_ Note that the boundary conditions, E@S), involve the con-
to the two equations, respectively, wheret  stantG where the latter was eliminated in Eq6a), (6b) by
= (27 /PC)* and B=(P/2mJ,C)*y; C andg are the  taking appropriate linear combinations. From E@s), (7b),
capacitance and the conductance per unit area of the jungnd our approximate solutions Edda), (4b) it follows that

tion, respectively. b, andb, are of ordem for largeh. This is the region where
we expect our approximate solutions to be valid, which is
. APPROXIMATE STATIC SOLUTIONS WITH ZERO confirmed by our numerical calculations. However, these ap-
CURRENT proximate solutions are also valuable for classifying the nu-

merical solutions.

In order to anticipate the types of solutions that we will Using Egs.(6a), (6b) the solutions are of three types:

find by numerical methods, it is useful to introduce approxi-

mate solutions to Eqgla), (1b) and (2a), (2b) in the zero (1) Both Sir(blf/2):O and simeDZ):O
current case. As we shall see, these solutions are only valid '
for h>1, but solutions of a similar type persist for all values (2) Both sina;)=0 and siia,)=0

of the magnetic field.
To find an approximate solution to Eq&la), (1b), we  and
iterate the zeroth-order solutions in which the terms on the .
right-hand sides are neglected. Thus, we expa¢k)=a, (3) sin(a;)=0 and sitib,L/2)=0 or visa versa.
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Solutions of type(1) are referred to as “fluxon” solutions. form a subset of the solutions to the double junction. If we
To see why this is true, we need to recall that within eacHook for solutions of Eqs(4) with equal phase in each junc-
junction, the magnetic field is related g y(x) by tion, gol@=<p2®, th_en a solution in a single junction of
_ length Le=(1+G)¥L and reduced magnetic fieldng
H1AX) = (®/2mde) ey Ax)/dx. ®) =h/(1+G)? satisfies the double-junction equations. For

Thus, the effective flux in a junction is example, a single junction of lengthy=1.5 andh,=9 has
solutions that can be used to find equal phase solutions for
b1=0egr | Hy A X)dX=(D/27)[ @1 ALI2)— @1 A —L/2)]. a double junction of length.=3 and h=4.5 when G
9 =—0.75. As was shown in Ref. 10, a single junction with
largehg has two types of solutions. For certain ranges of
Whenb;L/2=m;7 andb,L/2=m,m, Egs.(4a), (4b) yield fluxon type solutions exist. For all values bf, two solu-
<p1(_f/2)—goi—f/2)=blf=2m17r and QDz(DZ)—qu tio_ns exist: oie withp(0)=0 and one Withcp(O)f . For
(—Li2)=b,L=2m,m. Therefore, ¢;=m,® and ¢, this value,hg=9, _only the_two nonfluxon solu_t|ons_ exist.
—m,®: i.e., we havam, units of the magnetic-flux quantum When translated into splunons for the doubile junction Fhey
in thze l’Jp.pé,r junction alnm units in the lower junction produce two of the nght sqlunons'noted n 'ghe previous
Referring to Eqs(7) we gee that because the cosiné func_paragraph. The remaining six so_lut|ons for .th|s case have
tion is restricted to lie between the plus and minus one, typ nonequal values of their phases in the two junctions. Note
. i . ) » YP%hat in some sense there are really only three distinct extra
(1) solutions will exist only for a certain range bfvalues, if

; . : . solutions because each solution with nonequal phases pro-
?})glté’ggﬂ;:am of the junctions hastluxons, this condi- duces another solution with the phases in the junctions inter-

changed.
b—(1+G)/b<h<b+(1+G)/b (10) Sol_u'_tions can glso be identified by their symmetry. By
. examining Eqgs(1) it is easy to see that we can always gen-
with b=2ma/L. When the two junctions contain; andm,  erate a second solution set by the symmetry operation,
fluxons, respectively, there may or may not be a rangk of ¢1(X)= = ¢1(—X) andg,(X) = + ¢,(—X). Fluxon solutions
where Egs(7) can both be satisfied. However, if there is onealways come in pairs and this symmetry operation trans-
solution, then there are many. First, there is an essentiallforms between them. Solutions of tyj2) transform them-
identical solution wittm; fluxons in the bottom junction and selves into modulo 2 so that'e,(X)= ¢1(X) —2m;7 and
m, fluxons in the top junction. Second, Eq3) determine  ¢,(X) = ¢,(X) —2m, 7. The symmetry operation generates a
only the cosine ofa; anda, so that solutions exist for the second typ&3) solution, but it has no distinguishing symme-
combinations, +a, and *a,. Note that if both angles try characteristics.
change sign, this produces a solution with the magnetic field
reflected aboux=0 in both junctions, i.e.H(x) —=H(—Xx).
For example, we find numerically that whén=17, h=3,
andG= —0.75, there are solutions with eight fluxons in each
junction and solutions with seven fluxons in one junction and |n this section we treat in detail the case of an overlap
nine fluxons in the other.

IV. NUMERICAL STATIC SOLUTIONS FOR ZERO
AND NONZERO CURRENT

X i junction of lengthL=3 with both nonzero magnetic field
Type (2) solutions are characterized l(0)=0 or m  3nq hias current. As previously mentioned, we always
and ¢,(0)=0 or 7. Type (3) solutions are a bit more diffi- -,q556G = —0.75 in our examples. Solutions of Eq$) and
cult to identify. However, with some algebra it can be showny,g four boundary conditions contained in E¢&) are ob-
that if b;L/2=n,7 anda,=m,m, then for even values of tained computationally with an adapted “RshootingS” ap-
Ny, ©2(0)=[¢,(L/12)+ @,(—L/2)]/2 and for odd values of proach. To specify a unique solution, the two second-order
Ny, ©2(0)=—[@x(L/2)+ @o(—L/2)]/2+2m,m. The same differential equations require four boundary conditions. With
equations hold with the subscripts reversed. de; A —L/2)/dx fixed by Eqs.(2), we are therefore required
Our numerical calculations at zero bias current show thato vary the free parametersPl,z(—f/Z) until dey,

all solutions_fall into one of the three above types. For ex'(+f/2)/d?satisfy the boundary conditions, Ed&). How-
ample wherlL =3 andh=4.5 withG=—0.75, we find eight  ever, because the system is invariant under the transforma-
solutions: four of typeg2) and four of type(3). WhenL=3  tion ¢1(X)=¢1(X)+27 [and similarly for ¢,(x)], we are
andh=6.3 with G=—0.75, we find eight solutions: four of able to span the entire solution space by varyngx) and
type (1) with three fluxons in each junction and four of type ¢,(x) over a range of 2 The parameter space is broken up
(2). Further study shows that for large enough valued of into a lattice and the Cauchy problem is solved by fourth-
where our approximate solutions are valid, solutions of typeorder Runge-Kutta integration. Each time the integration is
(2) exist for all values ofh, whereas typdl) and type(3) performed
solutions only exist for certain ranges laf For example, for
L=3 type (1) solutions with two fluxons exist only for — — —
4.12<h=<4.24 and typd3) solutions withN1=2 exist only dl=dey(+L/2)dXx=dey(~L/2)dx—(1+G)RL
for 3.75<h=4.54. (113

In a previous paper, Ref. 10, we studied the solutions to
the single-junction problem. These solutions, suitably scaledand
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FIG. 2. The phase space for numerical solutionslfer3, h FIG. 3. The six solution§(A), (B), (C), and(D)] for L=3, h

=3, R=0, andG=-0.75 with a lattice spacing of @500 on a  _3 R_( andG=—0.75.(C) and (D) represent two solutions

side. A daFa point i,s plotted where eithd; or. d2 is zero. The. each with the magnetic fieldsin the junctions interchanged.
dense series of points appears as a solid line. The open circles

indicate a solution point. . - . . .
P of comparison, characteristics of the single layer junction

. . . (indicated with dashed lingsare superimposed. AR, in-
d2=dg,(+L/2)dx—de,(—L/2)dx—(1+G)R;L creases, solutions cease to exist in pairs. Therefore, under
(11b each boundary lobe there are two solutions.hAt3 there
are three lobes corresponding to the Rjpe= 0 solutions de-
are monitored and compared with neighboring lattice sitesscribed above and shown in Fig. 3. Similarly at other values
Using first-order interpolation it is determined if and whereof the magnetic field aRy=0, there exist: six solutions at
bothdl andd2 vanish. The solutions can be obtained quiteh=0, four solutions ath=1, eight solutions ah=2, six
effectively provided that the lattice spacing is chosen suffisolutions ath=3, eight solutions ah=4, etc. For example,
ciently small. Figure 2 shows the parameter spacenfeB  in terms of our classification of solutions in Sec. Il lat
andR=0 with a square lattice of 2500 on a side. On the =2: two solutions are of typél) with one fluxon, four so-
plot a data point appears when eitlidr or d2 goes to zero. lutions are of typg?2), and two solutions are of typ@). At
A dense series of points appears on the plot as a line. Large=4: four solutions are of typ&) and four solutions are of
open circles indicate where the interpolation algorithm hagype (3).
successfully foundil=d2=0. Plots of this type are made to
verify that the algorithm is working properly and to distin-

guish distinct solutions. The large open circles explicitly V. TIME-DEPENDENT STABILITY

show the six solutions fok =3, h=3 andR=0. Also, the In order to access whether the preceding static solutions
symmetry intrinsic to the system appears in the solutiorwould be found in a real doubly-stacked, Josephson junction
space. we need to study their stability. To do this we add the time-

Figures 3A)—3(D) show the magnetic-field variation dependent terms of EqE3) to Egs.(1). Two approaches are
within the junction for the different solutions. Four sets of possible. First, we could simply integrate the resulting equa-
plots are shown because the antisymmetric solutions aréon starting at=0 with one of our static solutionslightly
identical if one interchanges the boundary conditions in theperturbed. However, here we consider an alternative pertur-
two junctions. Two solutions, Figs.(8) and 3B), have

equal magnetic fields in the two junctions. As discussed in 1

Sec. lll, these two solutions correspond to single-junction i
solutions withL=1.5 andhs=6. We note that solutions are 0.8 ¢
available in the double junction where the distribution of the 1
magnetic field in one junction is maximum where the mag- 06 |

netic field is minimum in the adjacent one. We also note that R
this pattern corresponds to the magnetic-flux quanta arranged 04 [
in a triangular array. Stability of this flux arrangement was [
discussed by Kivshar and Sobole¥an terms of our classi- 02|
fication of solutions in Sec. lll, all six of these solutions are [
of type (2). ol

Figure 4 presents the current versus magnetic-field char-
acteristic of a double overlap junction of lendth-3 and a
coupling constantG=—0.75. The solid lines represent the FIG. 4. Envelope of maximum bias current values for an overlap
critical current for each of the related solutions. For the sakgunction withL=3, h=3, andG=—0.75.
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bative approach, which we showed in Ref. 10 produces saffhe equation fors(x) now becomes
isfactory results for the single junction.
Let ¢; o(X) be one of our static solution sets and consider
P1AX )= @1 X) + 1 AX,t) for small & (x,t). This d?(D 8(x))/dx*— H(x) 8(X) = & (D 8(X)). (19

yields approximate equations of motion which are the same

in both the inline and the overlap cases

d25,(x, t)/dt2+ Bd 8, (X, t)/dt=d2 8, (X, t)/dx2

—cogg1(X))81(X,1) — G codg,(X))8x(X 1),
(129

d25,(X,t)/dt2+ BdS,(X, t)/dt=d28,(X, t)/dx?

—cog¢,(X))82(X,1) — G code(X)) 81 (X 1),
(12b

whered&lyz(tflzﬂid?=0. Note we have a linear set of

equations ford; A(x,t). We now look for solutions of the
type 81 X, t) = 81 (X)e“" which yields

d251(ﬂ/d7_ cog¢1(X))81(X) — G cog (X)) 55(X)

=& 51(@ y (133)
d252(ﬂ/d7_ cog(¢,(X))81(X) — G cod (X)) F(X)
=£68,(X), (13b

where dd; +L/2)/dx=0 ande=w?+ Bw. Inverting this
equation, we find two solutionsw.=—B2*[(B/2)?
+¢]Y2 Thus, if a solution to Eqs(13) hase>0, we also
havew, >0 and the solution is unstable.

To study the properties of these solutions, it is convenient

to introduce a matrix notation. We define

)
o[ i (9
and
H () = ( cogp4(X)) G 005(4’2(?))) (15
|G cogpi(X)  codey(X))
so that Eqs(13) become
d28(X)/dx2—H(X) 8(X) =& 8(X). (16)

To diagonalizeH (x) we multiply Eq.(16) by the matrix

1 -G
D:(—G 1 ) 17)
which yields
DH(X)=H(x)
:((1—62)008(%(?)) 0 )
0 (1-G?)codep(X))/

(18

In this form, using the usual techniques, we can show that
the eigenvalues are real and the solutions form an orthogo-
nal set when convoluted with the matiix We have verified
this with our numerical solutions. Numerically, we find that
the fluxon-type solutions are degeneréte., have the same

e value at zero current, but all solutions are nondegenerate
for nonzero current. To evaluate the stability of a given static
solution, we look for the solutiony(x), with the maximum
value ofe. If that value is greater than zero, the solution is
unstable. Numerically we find that solutions which are un-
stable at zero current do not become stable at nonzero cur-
rent.

One might hope that the solutions which are stabl® at
=0 would be the ones that continue to exist for the highest
values ofR. Unfortunately, that is not the case. For example,
referring to Fig. 4, ath=2.4 we see that some solutions
persist toR,,,=0.125. However, our numerical calculations
show that the two solutions stable R&=0 cease to exist at
Rmax=0.05. Similarly, ath=3 and ath=4.5 we find that the
solutions which are stable &=0 are not the ones that per-
sist to the highesR,4 Values. These results for the double
junction are not too surprising since we found similar results
for a single junction in Ref. 10. In that paper we also looked
at possible energy functionals which might be used to predict
stability and the persistence of high current solutions. Ex-
trema of these energy functionals did not yield predictions
consistent with the stability analysis.

VI. CONCLUSIONS

We have investigated in some detail the solutions of the
equations for a Josephson junction in a magnetic field with
nonzero current in both the inline and the overlap geom-
etries. We found a useful approximation that yields a satis-
fying classification of the solution types. This same approxi-
mation gives an accurate approximation to our numerical
solutions for large magnetic fields. For smaller fields we
have mapped the solution space numerically. For the nonzero
current we have mapped the maximum current envelope for
each solution. Not all of the static solutions are stable. We
have calculated the evolution of the solutions that are stable
at zero current. Unfortunately, the solutions which appear to
be the most stable at zero current, are not always the ones
that persist to the highest current values. Likewise, in an
attempt to predict this dependence using an energy criteria,
we again found that the solutions with the lowest energy at
zero current were not always the ones that persisted to the
highest current values.
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