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Double-vertically-stacked Josephson junctions: Numerical and analytical analyses
of a current-biased system in a magnetic field

S. R. Maglic, P. R. Auvil, Jr., and J. B. Ketterson
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

~Received 14 July 1998!

We examine the solutions of the nonlinear equations governing the behavior of a current-biased, double-
vertically-stacked, Josephson junction. Both inline and overlap biasing current geometries are considered. The
solution space is investigated analytically and using numerical techniques. We characterize the types of solu-
tions expected analytically for zero current and find good approximations for large magnetic fields. We study
this space and its stability as a function of magnetic field and applied bias current. Selective results are
presented that characterize the general behavior of the solution space.@S0163-1829~99!04101-6#
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I. INTRODUCTION

The motivation for this work comes from recent expe
mental measurements ofI versusH in vertically-stacked Jo-
sephson junctions. These measurements have been ma
our own group1 as well as others.2,3 Also relevant is work
done on high-temperature and superconducting materi4

The general equations governing the behavior of stac
junctions were presented by Sakai, Bodin, and Peders5

Examples of dynamic solutions were given in Ref. 5 and a
by Kleiner et al.4

In this paper we look, in somewhat more detail than Re
4 and 5, at the double-junction case. We map out the c
plete solution space for the static junction in a magnetic fi
and at nonzero current. We consider both the inline and
overlap current biasing geometries. Behavior of the st
solutions at nonzero current is analyzed. Plots similar
those for a single junction are presented~Refs. 6–10!. We
evaluate the time-dependent stability of each solution
discuss the various time-dependent modes of oscillation
the stable solutions.

We characterize the types of solutions that are expe
by using a simple analytic model for the static solutions
zero bias current. This yields an accurate analytic appr
mation for large magnetic fields. For smaller magnetic fie
we give numerical examples of the solution space. Eno
detail is presented to reveal the structure of the solu
space and the stability of the various solutions.

In Sec. II, we review the basic coupled sine-Gordon-l
equations which govern the behavior of the static junction
a magnetic field. Both the inline and the overlap current
asing geometries are considered. Time-dependent term
added so that a stability analysis of the solutions can
undertaken. In Sec. III, we derive a simple analytic model
the zero current static solutions. These approximate solut
are valid for large magnetic fields. However, they also se
to delineate the general solution types for all magnetic fie
In Sec. IV we present numerical solutions for the static ju
tion with nonzero magnetic field and nonzero bias current
Sec. V we include time-dependent terms in our equati
and investigate the stability of the static solutions to sm
perturbations. For fixed magnetic field, the stability is eva
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ated as the bias current is increased. The oscillation spe
of the stable solutions are discussed. Our conclusions
summarized in Sec. VI.

II. THE BASIC EQUATIONS

We consider a one-dimensional model of a doub
vertically-stacked Josephson junction of lengthL and denote
the phase differences across the two junctions byw1(x) and
w2(x), where2L/2<x<L/2. The inline and overlap geom
etries are depicted in Fig. 1, cases~a! and~b!, respectively. A
uniform magnetic fieldH is applied in they direction. The
currentJ flows in thex andy directions, respectively, in the
two cases. We will always considerH>0 and J>0. It is
straightforward to see that this maps out the entire phys
solution space. We assume that the junction is symme
with insulating layers of thicknessd. The central supercon
ducting layer has thicknesss, and we assume that the tw
outer superconducting layers are much thicker than the L
don penetration depth,lL . The effective thickness of eac
junction is deff5d1lL @11coth(s/lL)#. The width of the
junction is W and the Josephson currents are given
J1(x)5Jc sin„w1(x)… andJ2(x)5Jc sin„w2(x)….

The characteristic screening length for magnetic-fi
penetration into the junction is the Josephson depthlJ ,
where (lJ)

25F/(2pm0deffJc), and F5h/(2e) is the

FIG. 1. Schematic of the inline~A! and overlap~B! geometries.
The length and width of the junctions areL andW, respectively.
581 ©1999 The American Physical Society
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582 PRB 59S. R. MAGLIC, P. R. AUVIL, JR., AND J. B. KETTERSON
magnetic-flux quantum. We introduce the dimensionl
length, x̄5x/lJ , current,R5J/Jc5JWL/JcWL5I /I c , and
magnetic field,h5(2pdefflJ /F)H. General equations fo
multilayer junctions in both current biasing schemes ha
been derived by Sakai, Bodin, and Pedersen.5 For a double
junction these equations become

d2w1~ x̄!/dx̄25sin„w1~ x̄!…1G sin„w2~ x̄!…2~11G!R0
~1a!

and

d2w2~ x̄!/dx̄25sin„w2~ x̄!…1G sin„w1~ x̄!…2~11G!R0
~1b!

with boundary conditions

dw1~6L̄/2!/dx̄5~11G!~h6RiL̄/2! ~2a!

and

dw2~6L̄/2!/dx̄5~11G!~h6RiL̄/2!, ~2a!

where G52lL /@deff sinh(s/lL)# is the intralayer coupling
parameter. As expected, fors/lL@1, deff>d12lL and G
>0. In what follows, in order to restrict the number of p
rameters, we will useG520.75. This value is typical of the
coupling used in Ref. 1.

Note thatRi ~the relative current in the inline case! andR0
~the relative current in the overlap case! are never both non
zero. Solutions exist only forRi and/orR0<1. In the case
whereRi , R0 , andG are all equal to zero, Eqs.~1a!, ~1b!,
and ~2a!, ~2b! can be solved analytically in terms of ellipti
integrals~see Ref. 6!. However, the solution space is so lar
that numerical solutions are easier to use than the exact
lytic results.

To investigate the stability of the static solutions, we a
a wave-like coupling and a damping term to Eqs.~1a!, ~1b!.
On the right-hand side of Eqs.~1a!, ~1b! we add the extra
terms

d2w1~ x̄, t̄ !/d t̄21bdw1~ x̄, t̄ !/d t̄ ~3a!

and

d2w2~ x̄ t̄ !/d t̄21bdw2~ x̄, t̄ !/d t̄ ~3b!

to the two equations, respectively, wheret̄
5(2pJc /FC)1/2t andb5(F/2pJcC)1/2g; C andg are the
capacitance and the conductance per unit area of the j
tion, respectively.5

III. APPROXIMATE STATIC SOLUTIONS WITH ZERO
CURRENT

In order to anticipate the types of solutions that we w
find by numerical methods, it is useful to introduce appro
mate solutions to Eqs.~1a!, ~1b! and ~2a!, ~2b! in the zero
current case. As we shall see, these solutions are only v
for h@1, but solutions of a similar type persist for all valu
of the magnetic field.

To find an approximate solution to Eqs.~1a!, ~1b!, we
iterate the zeroth-order solutions in which the terms on
right-hand sides are neglected. Thus, we expectw1( x̄)>a1
s

e

a-

d

c-

l
-

lid

e

1b1x̄ and w2( x̄)>a21b2x̄. Using this as input, our nex
approximation becomes

w1~ x̄!>a11b1x̄2@sin~a11b1x̄!#/b1
2

2G@sin~a21b2x̄!#/b2
2 ~4a!

and

w2~ x̄!>a21b2x̄2@sin~a21b2x̄!#/b2
2

2G@sin~a11b1x̄!#/b1
2. ~4b!

For our purposes this is sufficient. Our boundary conditio
Eqs.~2a!, ~2b!, become

b12@cos~a12b1L̄/2!#/b12G@cos~a22b2L̄/2!#/b25h,
~5a!

b12@cos~a11b1L̄/2!#/b12G@cos~a21b2L̄/2!#/b25h,
~5b!

b22@cos~a22b2L̄/2!#/b22G@cos~a12b1L̄/2!#/b15h,
~5c!

and

b22@cos~a21b2L̄/2!#/b22G@cos~a11b1L̄/2!#/b15h.
~5d!

Expanding the cosine terms in Eqs.~5a!–~5d!, we find four
conditions

sin~a1!sin~b1L̄/2!50, ~6a!

sin~a2!sin~b2L̄/2!50, ~6b!

b12cos~a1!cos„b1L̄/2)…/b1

2G cos~a2!cos„b2L̄/2)…/b25h ~7a!

and

b25@cos~a2!cos„b2L̄/2!…/b2

2G cos~a1!cos„b1L̄/2)…/b15h. ~7b!

Note that the boundary conditions, Eqs.~5!, involve the con-
stantG where the latter was eliminated in Eqs.~6a!, ~6b! by
taking appropriate linear combinations. From Eqs.~7a!, ~7b!,
and our approximate solutions Eqs.~4a!, ~4b! it follows that
b1 andb2 are of orderh for largeh. This is the region where
we expect our approximate solutions to be valid, which
confirmed by our numerical calculations. However, these
proximate solutions are also valuable for classifying the
merical solutions.

Using Eqs.~6a!, ~6b! the solutions are of three types:

~1! Both sin~b1L̄/2!50 and sin~b2L̄/2!50,

~2! Both sin~a1!50 and sin~a2!50,

and

~3! sin~a1!50 and sin~b2L̄/2!50 or visa versa.
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Solutions of type~1! are referred to as ‘‘fluxon’’ solutions
To see why this is true, we need to recall that within ea
junction, the magnetic field is related tow1,2(x) by

H1,2~x!5~F/2pdeff!dw1,2~x!/dx. ~8!

Thus, the effective flux in a junction is

f1,25deffE H1,2~x!dx5~F/2p!@w1,2~ L̄/2!2w1,2~2L̄/2!#.

~9!

When b1L̄/25m1p and b2L̄/25m2p, Eqs.~4a!, ~4b! yield
w1(L̄/2)2w1(2L̄/2)5b1L̄52m1p and w2(L̄/2)2w2

(2L̄/2)5b2L̄52m2p. Therefore, f15m1F and f2
5m2F; i.e., we havem1 units of the magnetic-flux quantum
in the upper junction andm2 units in the lower junction.

Referring to Eqs.~7! we see that because the cosine fun
tion is restricted to lie between the plus and minus one, t
~1! solutions will exist only for a certain range ofh values, if
at all. When each of the junctions hasm fluxons, this condi-
tion becomes

b2~11G!/b<h<b1~11G!/b ~10!

with b52mp/L̄. When the two junctions containm1 andm2
fluxons, respectively, there may or may not be a range oh
where Eqs.~7! can both be satisfied. However, if there is o
solution, then there are many. First, there is an essent
identical solution withm1 fluxons in the bottom junction and
m2 fluxons in the top junction. Second, Eqs.~7! determine
only the cosine ofa1 and a2 so that solutions exist for the
combinations,6a1 and 6a2 . Note that if both angles
change sign, this produces a solution with the magnetic fi
reflected aboutx50 in both junctions, i.e.,H(x)→H(2x).
For example, we find numerically that whenL̄517, h53,
andG520.75, there are solutions with eight fluxons in ea
junction and solutions with seven fluxons in one junction a
nine fluxons in the other.

Type ~2! solutions are characterized byw1(0)50 or p
andw2(0)50 or p. Type ~3! solutions are a bit more diffi-
cult to identify. However, with some algebra it can be sho
that if b1L̄/25n1p and a25m2p, then for even values o
n1 , w2(0)5@w2(L̄/2)1w2(2L̄/2)#/2 and for odd values o
n1 , w2(0)52@w2(L̄/2)1w2(2L̄/2)#/212m2p. The same
equations hold with the subscripts reversed.

Our numerical calculations at zero bias current show t
all solutions fall into one of the three above types. For e
ample whenL̄53 andh54.5 with G520.75, we find eight
solutions: four of type~2! and four of type~3!. When L̄53
andh56.3 with G520.75, we find eight solutions: four o
type ~1! with three fluxons in each junction and four of typ
~2!. Further study shows that for large enough values oh
where our approximate solutions are valid, solutions of ty
~2! exist for all values ofh, whereas type~1! and type~3!
solutions only exist for certain ranges ofh. For example, for
L̄53 type ~1! solutions with two fluxons exist only fo
4.12<h<4.24 and type~3! solutions withN152 exist only
for 3.75<h<4.54.

In a previous paper, Ref. 10, we studied the solutions
the single-junction problem. These solutions, suitably sca
h
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e

lly

ld

d

t
-

e
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form a subset of the solutions to the double junction. If w
look for solutions of Eqs.~4! with equal phase in each junc
tion, w1( x̄)5w2( x̄), then a solution in a single junction o
length L̄s5(11G)1/2L̄ and reduced magnetic fieldhs
5h/(11G)1/2 satisfies the double-junction equations. F
example, a single junction of lengthL̄s51.5 andhs59 has
solutions that can be used to find equal phase solutions
a double junction of lengthL̄53 and h54.5 when G
520.75. As was shown in Ref. 10, a single junction wi
largehs has two types of solutions. For certain ranges ofhs ,
fluxon type solutions exist. For all values ofhs , two solu-
tions exist: one withw(0)50 and one withw(0)5p. For
this value,hs59, only the two nonfluxon solutions exis
When translated into solutions for the double junction th
produce two of the eight solutions noted in the previo
paragraph. The remaining six solutions for this case h
nonequal values of their phases in the two junctions. N
that in some sense there are really only three distinct e
solutions because each solution with nonequal phases
duces another solution with the phases in the junctions in
changed.

Solutions can also be identified by their symmetry. B
examining Eqs.~1! it is easy to see that we can always ge
erate a second solution set by the symmetry operat
w̃1( x̄)56w1(2 x̄) andw̃2( x̄)56w2(2 x̄). Fluxon solutions
always come in pairs and this symmetry operation tra
forms between them. Solutions of type~2! transform them-
selves into modulo 2p so that w̃1( x̄)5w1( x̄)22m1p and
w̃2( x̄)5w2( x̄)22m2p. The symmetry operation generates
second type~3! solution, but it has no distinguishing symme
try characteristics.

IV. NUMERICAL STATIC SOLUTIONS FOR ZERO
AND NONZERO CURRENT

In this section we treat in detail the case of an over
junction of lengthL̄53 with both nonzero magnetic field
and bias current. As previously mentioned, we alwa
chooseG520.75 in our examples. Solutions of Eqs.~1! and
the four boundary conditions contained in Eqs.~2! are ob-
tained computationally with an adapted ‘‘RshootingS’’ a
proach. To specify a unique solution, the two second-or
differential equations require four boundary conditions. W
dw1,2(2L̄/2)/dx̄ fixed by Eqs.~2!, we are therefore required
to vary the free parametersw1,2(2L̄/2) until dw1,2

(1L̄/2)/dx̄ satisfy the boundary conditions, Eqs.~2!. How-
ever, because the system is invariant under the transfor
tion w1( x̄)5w1( x̄)12p @and similarly for w2( x̄)#, we are
able to span the entire solution space by varyingw1( x̄) and
w2( x̄) over a range of 2p. The parameter space is broken u
into a lattice and the Cauchy problem is solved by four
order Runge-Kutta integration. Each time the integration
performed

d15dw1~1L̄/2!dx̄2dw1~2L̄/2!dx̄2~11G!RiL̄
~11a!

and
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d25dw2~1L̄/2!dx̄2dw2~2L̄/2!dx̄2~11G!RiL̄
~11b!

are monitored and compared with neighboring lattice si
Using first-order interpolation it is determined if and whe
both d1 andd2 vanish. The solutions can be obtained qu
effectively provided that the lattice spacing is chosen su
ciently small. Figure 2 shows the parameter space forh53
andR50 with a square lattice of 2p/500 on a side. On the
plot a data point appears when eitherd1 or d2 goes to zero.
A dense series of points appears on the plot as a line. L
open circles indicate where the interpolation algorithm h
successfully foundd15d250. Plots of this type are made t
verify that the algorithm is working properly and to distin
guish distinct solutions. The large open circles explici
show the six solutions forL̄53, h53 andR50. Also, the
symmetry intrinsic to the system appears in the solut
space.

Figures 3~A!–3~D! show the magnetic-field variatio
within the junction for the different solutions. Four sets
plots are shown because the antisymmetric solutions
identical if one interchanges the boundary conditions in
two junctions. Two solutions, Figs. 3~A! and 3~B!, have
equal magnetic fields in the two junctions. As discussed
Sec. III, these two solutions correspond to single-junct
solutions withL̄s51.5 andhs56. We note that solutions ar
available in the double junction where the distribution of t
magnetic field in one junction is maximum where the ma
netic field is minimum in the adjacent one. We also note t
this pattern corresponds to the magnetic-flux quanta arran
in a triangular array. Stability of this flux arrangement w
discussed by Kivshar and Soboleva.11 In terms of our classi-
fication of solutions in Sec. III, all six of these solutions a
of type ~2!.

Figure 4 presents the current versus magnetic-field c
acteristic of a double overlap junction of lengthL̄53 and a
coupling constant,G520.75. The solid lines represent th
critical current for each of the related solutions. For the s

FIG. 2. The phase space for numerical solutions forL̄53, h
53, R50, andG520.75 with a lattice spacing of 2p/500 on a
side. A data point is plotted where eitherd1 or d2 is zero. The
dense series of points appears as a solid line. The open ci
indicate a solution point.
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of comparison, characteristics of the single layer junct
~indicated with dashed lines! are superimposed. AsR0 in-
creases, solutions cease to exist in pairs. Therefore, u
each boundary lobe there are two solutions. Ath53 there
are three lobes corresponding to the sixR050 solutions de-
scribed above and shown in Fig. 3. Similarly at other valu
of the magnetic field atR050, there exist: six solutions a
h50, four solutions ath51, eight solutions ath52, six
solutions ath53, eight solutions ath54, etc. For example,
in terms of our classification of solutions in Sec. III, ath
52: two solutions are of type~1! with one fluxon, four so-
lutions are of type~2!, and two solutions are of type~3!. At
h54: four solutions are of type~2! and four solutions are o
type ~3!.

V. TIME-DEPENDENT STABILITY

In order to access whether the preceding static soluti
would be found in a real doubly-stacked, Josephson junc
we need to study their stability. To do this we add the tim
dependent terms of Eqs.~3! to Eqs.~1!. Two approaches are
possible. First, we could simply integrate the resulting eq
tion starting att50 with one of our static solutions~slightly
perturbed!. However, here we consider an alternative pert

les

FIG. 3. The six solutions@~A!, ~B!, ~C!, and ~D!# for L̄53, h
53, R50, and G520.75. ~C! and ~D! represent two solutions
each with the magnetic fieldsh in the junctions interchanged.

FIG. 4. Envelope of maximum bias current values for an over

junction with L̄53, h53, andG520.75.
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bative approach, which we showed in Ref. 10 produces
isfactory results for the single junction.

Let w1,2( x̄) be one of our static solution sets and consid
w1,2( x̄, t̄ )5w1,2( x̄)1d1,2( x̄, t̄ ) for small d1,2( x̄, t̄ ). This
yields approximate equations of motion which are the sa
in both the inline and the overlap cases

d2d1~ x̄, t̄ !/d t̄21bdd1~ x̄, t̄ !/d t̄5d2d1~ x̄, t̄ !/dx̄2

2cos„w1~ x̄!…d1~ x̄, t̄ !2G cos„w2~ x̄!…d2~ x̄, t̄ !,

~12a!

d2d2~ x̄, t̄ !/d t̄21bdd2~ x̄, t̄ !/d t̄5d2d2~ x̄, t̄ !/dx̄2

2cos„w2~ x̄!…d2~ x̄, t̄ !2G cos„w1~ x̄!…d1~ x̄, t̄ !,

~12b!

where dd1,2(6L̄/2,t̄ )/dx̄50. Note we have a linear set o
equations ford1,2( x̄, t̄ ). We now look for solutions of the

type d1,2( x̄, t̄ )5d1,2( x̄)ev t̄ which yields

d2d1~ x̄!/dx̄22cos„w1~ x̄!…d1~ x̄!2G cos„w2~ x̄!…d2~ x̄!

5«d1~ x̄!, ~13a!

d2d2~ x̄!/dx̄22cos„w2~ x̄!…d1~ x̄!2G cos„w1~ x̄!…d2~ x̄!

5«d2~ x̄!, ~13b!

where dd1,2(6L̄/2)/dx̄50 and «5v21bv. Inverting this
equation, we find two solutions,v652b/26@(b/2)2

1«#1/2. Thus, if a solution to Eqs.~13! has«.0, we also
havev1.0 and the solution is unstable.

To study the properties of these solutions, it is conveni
to introduce a matrix notation. We define

d~ x̄!5S d1~ x̄!

d2~ x̄! D ~14!

and

H~ x̄!5S cos„w1~ x̄!… G cos„w2~ x̄!…

G cos„w1~ x̄!… cos„w2~ x̄!…
D ~15!

so that Eqs.~13! become

d2d~ x̄!/dx̄22H~ x̄!d~ x̄!5«d~ x̄!. ~16!

To diagonalizeH( x̄) we multiply Eq.~16! by the matrix

D5S 1
2G

2G
1 D , ~17!

which yields

DH~ x̄!5H̄~ x̄!

5S ~12G2!cos„w1~ x̄!… 0

0 ~12G2!cos„w2~ x̄!…
D .

~18!
t-

r

e

t

The equation ford( x̄) now becomes

d2
„Dd~ x̄!…/dx̄22H̄~ x̄!d~ x̄!5«„Dd~ x̄!…. ~19!

In this form, using the usual techniques, we can show t
the eigenvalues« are real and the solutions form an orthog
nal set when convoluted with the matrixD. We have verified
this with our numerical solutions. Numerically, we find th
the fluxon-type solutions are degenerate~i.e., have the same
« value! at zero current, but all solutions are nondegener
for nonzero current. To evaluate the stability of a given sta
solution, we look for the solution,d( x̄), with the maximum
value of«. If that value is greater than zero, the solution
unstable. Numerically we find that solutions which are u
stable at zero current do not become stable at nonzero
rent.

One might hope that the solutions which are stable aR
50 would be the ones that continue to exist for the high
values ofR. Unfortunately, that is not the case. For examp
referring to Fig. 4, ath52.4 we see that some solution
persist toRmax50.125. However, our numerical calculation
show that the two solutions stable atR50 cease to exist a
Rmax50.05. Similarly, ath53 and ath54.5 we find that the
solutions which are stable atR50 are not the ones that pe
sist to the highestRmax values. These results for the doub
junction are not too surprising since we found similar resu
for a single junction in Ref. 10. In that paper we also look
at possible energy functionals which might be used to pre
stability and the persistence of high current solutions. E
trema of these energy functionals did not yield predictio
consistent with the stability analysis.

VI. CONCLUSIONS

We have investigated in some detail the solutions of
equations for a Josephson junction in a magnetic field w
nonzero current in both the inline and the overlap geo
etries. We found a useful approximation that yields a sa
fying classification of the solution types. This same appro
mation gives an accurate approximation to our numer
solutions for large magnetic fields. For smaller fields w
have mapped the solution space numerically. For the non
current we have mapped the maximum current envelope
each solution. Not all of the static solutions are stable.
have calculated the evolution of the solutions that are sta
at zero current. Unfortunately, the solutions which appea
be the most stable at zero current, are not always the o
that persist to the highest current values. Likewise, in
attempt to predict this dependence using an energy crite
we again found that the solutions with the lowest energy
zero current were not always the ones that persisted to
highest current values.
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