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Higher-order effects on Shapiro steps in Josephson junctions

Kim @. Rasmussen and Vadim Zharnit$ky
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Igor Mitkov
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
and Applied Theoretical and Computational Physics Division and Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, New Mexico 87545

Niels Grinbech-Jensen
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 22 July 1998

We demonstrate that the well known phase-locking mechanism leading to Shapiro steps in ac-driven Jo-
sephson junctions is always accompanied by a higher-order phase-locking mechanism similar to that of the
parametrically driven pendulum. This effect, resulting imrgeriodic effective potential for the phase, mani-
fests itself clearly in the parameter regions where the usual Shapiro steps are expected to vanish.
[S0163-182699)02502-3

The harmonically driven pendulum has been studied ex- b+ agp+sing=n+esin Ot 1)
tensively over the past decades in many different contexts. '

The_drlven pend_ulum has_bee_n one of the_key sys_tems 'C'vhered) is the pendulum angle relative to vertidalown
nonlinear dynamics due to its simplicity and richness in non-

i h h h lockifcand chaod-? and a is a normalized friction coefficient. Time is normal-
Inear pnenomena such as pnase lockingand chaos. ized tor= g/, whereg is the gravitational constant ahds
Another reason for studying the driven pendulum is that thqhe length from the pivot to the pendulum bob.is a dc-
pendulu_m equation is the most_widely usgd model for S“perforque, normalized tongl,m being the mass of th’e bob, and
conductlng Josephson 'Juncuo’n§. Partlcularly phase- the normalized frequency, and amplitudes, define the
locking of pendulum motion to an ac perturbation has beefyact ac drive of the pendulum. In the context of Josephson
extensively studied in the literature due to the general inter:

. A ; 2 unctions, ¢ is the phase difference between the quantum
ests in synchronization of oscillators and specifically due t

. . . echanical wave functions of the superconductors defining
the related Josephson junction, where pha‘?‘e"mk'ng Of.thﬁle junction,« is the normalized dissipation coefficient due
voltage response to an ac current can occur in certain regions transport of quasiparticles; and e are currents normal-
of the parameter spalelhere are two distinctively different ized to the critical current of the junction, and time is nor-
ways of driving a pendulum; direct and parametric drive. '

. - . . ' : . 'malized to the inverse Josephson plasma frequency,
The direct(torsiona) ac drive, which we will study in this hClZel,, wheref is Planck’s constant is the device

paper, is the most relevant for technologically interesting__ ; i< the critical | h
systems such as the Josephson junction, and it has begﬁpamtance, ant is the critica c_urrent. Voltage across the
found to produce efficient harmorit and subharmoni®  Josephson device is given b= ¢7#/2e, uniquely relating

phase locking of great interest for, e.g., the voltageloSephson voltage to pendulum sped.

standard! The parametric drivée.g., pivot oscillationshas Let us write the phase in the following form,
mainly been studied from the point of view of nonlinear
dynamics. The usual theoretical technique for predicting and b=0+E+E (1), )

analyzing the ac-driven pendulum is to assume that the driv-
ing frequency is much larger than the natural oscillations of

the unperturbed pendulum. Within this framework, one canWhere:(t) is a function that oscillates with frequenty, ¢

develop time separation analyses separating a fast linear ri§- @ constant to be determined, afdis a phase{6)=0.

sponse to the ac drive from the overall slow nonlinear be!nserting Eq.(2) into Eq. (1) we obtain

havior of the system. The main difference between the ef-

fects of the two driving mechanisms is that the parametric =, - aé+ aE +sin 6+ &+ )= n+esin Ot

drive usually leads to ar-periodic effective potential for the - - - ' 3)

slow nonlinear behavid?~1*while the direct drive leads to

the usual 2r periodicity!® We will demonstrate in this pa- .

per that the direct ac drive may lead tergperiodic effective ~ We will chooseZ so that, 5 +aZE =esinQt, and we then

potential in certain regions of the parameter space and th&btain

this result has consequences for the well known Shapiro

steps in the current-voltagéV) characteristics of ac-driven .

Josephson junctions. E(t)=— ———— sin(Qt+y), 4
We study the pendulum equation in the form, ® 0J0%+a? " 7 @
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wherey=tan }(a/Q) is a constant phase. Equatit8) then
takes the form

O+ af+sin( 6+ ét+5) = p— aé. (5)

Rewriting Eq.(1) in the form of Eq.(5) demonstrates how
the direct ac drive can lead to parametric effects similar to
those of the parametrically driven pendulum equation.

We can now apply three consecutive transformations that
will lead to an equation in variables where time-dependent
terms are of ordef) 3. We describe the general procedure
as a generalization of the analysis presented in Ref. 17

59

(which goes back to Poincare, see, e.g., Rej.id8he Ap-
pendix.

To average the equation we rewrite it as a system of two

ordinary differential equation$ (ODE9
6=p, (6)
p=n—aé— ap— Asind—Bcoss,
whereA andB are given by
A=cogét+5E),

B=sin(ét+E).

Carrying out the procedure described in the Appendix

three times and neglecting terrd Q) ~3) or higher we ob-
tain

O=P @
F’:77_a’f_aP—Glsin(@—’_561)_G25in(2®+5(32),
where
—J (), if &Q=Kk integer
Gl—‘(), otherwise ?
.
Jn(0) g n(T
M, if &Q=k integer
nzk  0Q%(n—k)?
Jn(T) 3 _n(T
G,— _EL;(Q, if &0=k=%
n QZ n——
3
( 0, otherwise
9
_ &
and
(B)
_ —1) "7
5Gl—tan (A’
2({B}_{A}_
Sg.=tan ? U8} A )

’ ({BY ) —({A}2 )

Brackets,(- - -), denote time average anl is given by
{f}=1—(f), wheref is a periodic function. The mean-zero
antiderivative {f}_,, is defined as
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FIG. 1. (a) SimulatedIV (7,(¢)) characteristics of the ac-
driven system described by E(l). Parameters ar@ =3,a=0.3,
andI’=5. Relevant resonatktsteps are indicated with arrows, and
the range of phase locking, 7y, is indicated for the&k=1 step.(b)
Magnitude,A n,, of the phase-locked step as a functioneofor
parameters()=3 anda=0.1. Solid line represents the usual pre-
diction of the Shapiro ste@ 7, =2|G,| for k=1 and markers are
results of numerical simulations. Inset shows details near the point
Jy(I")=0.

(fa= [ et (@ -o-o.

It is now clear that phase locking of the pendulum motion
can exist for values o¥ given by

| n— aé|<|Gysin(O + 8c,)+G2sin(20 + 5Gz)|' (10

For G,=0 this leads directly to the well-known Bessel func-
tion expression for the Shapiro steps in ac-driven Josephson
junctions and this result is correct up to ordé€d(Q?).
However, we find that, fo5,=0, i.e., at every node of the
Bessel function],, we have phase-locking originating from
the coefficientG, to the w-periodic term in Eq.7). As a
consequence, we may predict that the Shapiro steps itvthe
characteristics of ac-driven Josephson junctionsaiovan-

ish for parameter values given By(I") =0.

In order to demonstrate this we have performed numerical
simulations of(1) and measured the ranges of phase-locking
in 7 as a function ofQ2,e,k, and «. Figure 1a) shows a
typical normalized IV (r],<¢>) characteristic of an ac-driven
system and we use this to define the magnitude of the lock-
ing range A . The system parameters have here been cho-
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0 ‘ normalized IV characteristics, we are finding an artificial
107k phase locking of the dynamics to the temporal discretization.
o We have demonstrated that theperiodic effective po-
g5 107 tentials can exist in the directly ac-driven pendulum and we
107k have further given a quantitatively correct estimate of the
Lo~ significance of this effect. The magnitude of theperiodic
0 effective potential suggests that the phase-locking signature
LD of the potential should be directly observable not only in the
10 driven pendulunt®!® but also in ac-driven Josephson junc-
g“' 1072} tions. For relatively low driving frequencie$)~2, we ob-
- serve locking ranges in Fig. 2 of the order &%~0.1, in-
dicating that a standard dc current-voltage characteristic of a
107 current ac-driven junction will indeed show a significant

100 locking range where the usual Bessel function amplitude
would suggest that locking is not possible. A particularly

FIG. 2. Minimum of the locking range i as a function of the ~ convenient choice of parameters is to operate the system at
driving frequencyQ near the first node o8, for nonzeral'. Solid  the subharmonic resonandes 3, whereG; is always zero.
lines show the predictiom 7,=2|G,| and markers are results of
numerical simulations of Eq1). Open markers are far=0.1 and
closed are fora=0.05. (a) I'=2.4 andk=0. (b) I'~3.8 andk
=1.(c) '~5.1 andk=2. (d) ['~2.4 andk= 3.

This work was performed under the auspices of the U.S.
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from NSF Grant No. DMS-9627721.

sen toa=0.3,2=3, andI'=5. In Fig. 1b) we show the APPENDIX

magnitude of the locking ranged »,, againste for Q

=3,0=0.1, andk=1. The solid line represents the usual Let us consider a system of equatidfswritten in vector
Bessel function predictionA 7,=2|G,|, and the markers form

represent the numerical simulations. It is clear that as long as x=f(x,7),

G, (the relevant Bessel functipms not close to one of the

nodes the comparison between the solid line and the markekghere 7=Qt,x=(6,p), and f=(f,f,). We will apply an

is good. However, from the inset we see that close to th@veraging procedure as follows. _ _
node of G;, we observe a relatively large discrepancy, L€tX=X1+Q " 'hy(xy,7) be the first transformation with,
which is obviously due to the correction from theperiodic yet undefinech; . This fl_Jnctlon is restricted to be periodic in _
effective potential given b{s,. The best parameter range to SO th_at f[he new variables are close to the .OId ones uni-
study the effect of ther-periodic effective potential is there- formly in time. In the new variables the equation takes the
fore to choose parameters such tkat=~0; i.e., for J,(T") form .

=0 whenk is an integer. (1+ Q71D hy)xg+hy,=f(x3+ Q7 hy(xg,7),7),

Figure 2 shows direct comparisons between numerical ) ) . ] o .
simulations(markers:a=0.05 closedex=0.1 open and our wherel is the unit matrix and, denotes differentiation with

predictions(solid line), A7,=2|G,|, for parameter values respect to the elements ¥ We obtain by Taylor expanding
leading to G;=0. The comparisons are performed at the"

smallest nonzero value df for which J,(I')=0, and we (1+Q 71D, hy)X;+hy,
show comparisons fok=0 [Fig. 2], k=1 [Fig. 2b)], k !
=2 [Fig. 20)], andk=3 [Fig. 2(d)] keepingl" constant for =f(xl,r)+Q*1Dle(x1,r)h1+ e

each figure. Note that in the latter cakes 3,G, is always

zero. We have here, arbitrarily, chosiy{l’'=2.4)~0.0. Itis  In order to eliminate the oscillatory part d{x;,Qt) we
obvious that our comparisons demonstrate an excellerthoose hy={f(x;,7)}_-; ({9}=g—(g) and {g}_; is a
agreement between simulations and prediction of the magnmean-zero antiderivative ¢fj}) to obtain

tude of the phase-locked region in for all the different oo 1 1

parameter values. The comparisons are performed in the fre- X1 =(HX)F Q7 Re(xq, 7.0,

quency range betweefl=1 and{(2=40 since driving fre- whereR; is polynomial inQ~1. The second transformation,
quencies smaller thafl =2 typically lead to low stability of  given by x;=x,+Q ~?h,(X,,7) with hy,={R;(X;,7,0)}_,
the phase locked statgthe analysis is developed for high moves time dependence to second ordefint

1) and since phase-locking becomes impractical to identify . 1 _ 1

for frequencies larger thafd =30. Our data shows a slight X2=(f)(x2) + Q7 (Ry)(%2,0) + Q7 “Ra(xz, 7,2 77).

trend of overestimating the locking range for large freque”'(:ontinuing this procedure one can bring the system to the
cies. We have identified this to be an artifact of numericallysg

solving the pendulum equation with discrete time. Particu-

larly, we have chosen the time step for the simulations to be ; _ -1

a fraction of the period of the driving frequency, and thus, Xn= (1)) + 7R (x0,0)

when looking for extremely small phase-locked steps in the ++ Q" HR ) (X0, 00+ Q"R (X, 7, Q7).
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