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Higher-order effects on Shapiro steps in Josephson junctions
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We demonstrate that the well known phase-locking mechanism leading to Shapiro steps in ac-driven Jo-
sephson junctions is always accompanied by a higher-order phase-locking mechanism similar to that of the
parametrically driven pendulum. This effect, resulting in ap-periodic effective potential for the phase, mani-
fests itself clearly in the parameter regions where the usual Shapiro steps are expected to vanish.
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The harmonically driven pendulum has been studied
tensively over the past decades in many different conte
The driven pendulum has been one of the key system
nonlinear dynamics due to its simplicity and richness in n
linear phenomena such as phase locking1–4 and chaos.5–7

Another reason for studying the driven pendulum is that
pendulum equation is the most widely used model for sup
conducting Josephson junctions.1,8 Particularly phase-
locking of pendulum motion to an ac perturbation has be
extensively studied in the literature due to the general in
ests in synchronization of oscillators and specifically due
the related Josephson junction, where phase-locking of
voltage response to an ac current can occur in certain reg
of the parameter space.9 There are two distinctively differen
ways of driving a pendulum; direct and parametric driv
The direct~torsional! ac drive, which we will study in this
paper, is the most relevant for technologically interest
systems such as the Josephson junction, and it has
found to produce efficient harmonic1,9 and subharmonic10

phase locking of great interest for, e.g., the volta
standard.11 The parametric drive~e.g., pivot oscillations! has
mainly been studied from the point of view of nonline
dynamics. The usual theoretical technique for predicting
analyzing the ac-driven pendulum is to assume that the d
ing frequency is much larger than the natural oscillations
the unperturbed pendulum. Within this framework, one c
develop time separation analyses separating a fast linea
sponse to the ac drive from the overall slow nonlinear
havior of the system. The main difference between the
fects of the two driving mechanisms is that the parame
drive usually leads to ap-periodic effective potential for the
slow nonlinear behavior,12–14 while the direct drive leads to
the usual 2p periodicity.1,8 We will demonstrate in this pa
per that the direct ac drive may lead to ap-periodic effective
potential in certain regions of the parameter space and
this result has consequences for the well known Sha
steps in the current-voltage~IV! characteristics of ac-driven
Josephson junctions.

We study the pendulum equation in the form,
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f̈1aḟ1sinf5h1«sin Vt, ~1!

wheref is the pendulum angle relative to vertical~down!
and a is a normalized friction coefficient. Time is norma
ized tot5Ag/ l , whereg is the gravitational constant andl is
the length from the pivot to the pendulum bob,h is a dc-
torque, normalized tomgl,m being the mass of the bob, an
the normalized frequency,V, and amplitude,«, define the
direct ac drive of the pendulum. In the context of Joseph
junctions, f is the phase difference between the quant
mechanical wave functions of the superconductors defin
the junction,a is the normalized dissipation coefficient du
to transport of quasiparticles,h and « are currents normal-
ized to the critical current of the junction, and time is no
malized to the inverse Josephson plasma frequencyt
5A\C/2eIc, where\ is Planck’s constant,C is the device
capacitance, andI c is the critical current. Voltage across th
Josephson device is given byV5ḟ\/2e, uniquely relating
Josephson voltage to pendulum speed.8

Let us write the phase in the following form,

f5u1jt1J~ t !, ~2!

whereJ(t) is a function that oscillates with frequencyV,j
is a constant to be determined, andu is a phase,̂ u̇&50.
Inserting Eq.~2! into Eq. ~1! we obtain

ü1J̈1au̇1aj1aJ̇1sin~u1jt1J!5h1«sin Vt.
~3!

We will chooseJ so that,J̈1aJ̇5«sinVt, and we then
obtain

J~ t !52
«

VAV21a2
sin~Vt1g!, ~4!
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whereg5tan21(a/V) is a constant phase. Equation~3! then
takes the form

ü1au̇1sin~u1jt1J!5h2aj. ~5!

Rewriting Eq.~1! in the form of Eq.~5! demonstrates how
the direct ac drive can lead to parametric effects similar
those of the parametrically driven pendulum equation.

We can now apply three consecutive transformations
will lead to an equation in variables where time-depend
terms are of orderV23. We describe the general procedu
as a generalization of the analysis presented in Ref.
~which goes back to Poincare, see, e.g., Ref. 18! in the Ap-
pendix.

To average the equation we rewrite it as a system of
ordinary differential equations19 ~ODEs!

u̇5p, ~6!

ṗ5h2aj2ap2Asinu2Bcosu,

whereA andB are given by

A5cos~jt1J!,

B5sin~jt1J!.

Carrying out the procedure described in the Appen
three times and neglecting termsO(V23) or higher we ob-
tain

Q̇5P ~7!

Ṗ5h2aj2aP2G1sin~Q1dG1
!2G2sin~2Q1dG2

!,

where

G15H 2Jk~G!, if j/V5k integer

0, otherwise
~8!

G255
2 (

nÞk

Jn~G!J2k2n~G!

V2~n2k!2
, if j/V5k integer

2(
n

Jn~G!J12n~G!

V2S n2
1

2D 2 , if j/V5k5 1
2

0, otherwise
~9!

G52
«

VAV21a2
,

and

dG1
5tan21 ^B&

^A&
,

dG2
5tan21

2^$B%21$A%21&

^$B%21
2 &2^$A%21

2 &
.

Brackets,^•••&, denote time average and$f% is given by
$ f %5 f 2^ f &, wheref is a periodic function. The mean-zer
antiderivative,$ f %21 , is defined as
o

at
t

7

o

x

$ f %215E $ f %dt, ^$ f %21&50.

It is now clear that phase locking of the pendulum moti
can exist for values ofh given by

uh2aju,uG1sin~Q1dG1
!1G2sin~2Q1dG2

!u. ~10!

For G250 this leads directly to the well-known Bessel fun
tion expression for the Shapiro steps in ac-driven Joseph
junctions1 and this result is correct up to orderO(V22).
However, we find that, forG150, i.e., at every node of the
Bessel functionJk , we have phase-locking originating from
the coefficientG2 to the p-periodic term in Eq.~7!. As a
consequence, we may predict that the Shapiro steps in thIV
characteristics of ac-driven Josephson junctions donot van-
ish for parameter values given byJk(G)50.

In order to demonstrate this we have performed numer
simulations of~1! and measured the ranges of phase-lock
in h as a function ofV,«,k, and a. Figure 1~a! shows a
typical normalized IV (h,^ḟ&) characteristic of an ac-driven
system and we use this to define the magnitude of the lo
ing range,Dhk . The system parameters have here been c

FIG. 1. ~a! Simulated IV (h,^ḟ&) characteristics of the ac
driven system described by Eq.~1!. Parameters areV53,a50.3,
andG55. Relevant resonantk steps are indicated with arrows, an
the range of phase locking,Dhk , is indicated for thek51 step.~b!
Magnitude,Dh1 , of the phase-locked step as a function of« for
parameters:V53 anda50.1. Solid line represents the usual pr
diction of the Shapiro step,Dh152uG1u for k51 and markers are
results of numerical simulations. Inset shows details near the p
J1(G)50.
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sen toa50.3, V53, andG55. In Fig. 1~b! we show the
magnitude of the locking range,Dhk , against « for V
53,a50.1, andk51. The solid line represents the usu
Bessel function prediction,Dh152uG1u, and the markers
represent the numerical simulations. It is clear that as lon
G1 ~the relevant Bessel function! is not close to one of the
nodes the comparison between the solid line and the mar
is good. However, from the inset we see that close to
node of G1 , we observe a relatively large discrepanc
which is obviously due to the correction from thep-periodic
effective potential given byG2 . The best parameter range
study the effect of thep-periodic effective potential is there
fore to choose parameters such thatG1'0; i.e., for Jk(G)
50 whenk is an integer.

Figure 2 shows direct comparisons between numer
simulations~markers:a50.05 closed,a50.1 open! and our
predictions~solid line!, Dhk52uG2u, for parameter values
leading to G150. The comparisons are performed at t
smallest nonzero value ofG for which Jk(G)50, and we
show comparisons fork50 @Fig. 2~a!#, k51 @Fig. 2~b!#, k
52 @Fig. 2~c!#, andk5 1

2 @Fig. 2~d!# keepingG constant for
each figure. Note that in the latter case,k5 1

2 ,G1 is always
zero. We have here, arbitrarily, chosenJ0(G52.4)'0.0. It is
obvious that our comparisons demonstrate an exce
agreement between simulations and prediction of the ma
tude of the phase-locked region inh for all the different
parameter values. The comparisons are performed in the
quency range betweenV51 andV540 since driving fre-
quencies smaller thanV52 typically lead to low stability of
the phase locked states~the analysis is developed for hig
V) and since phase-locking becomes impractical to iden
for frequencies larger thanV530. Our data shows a sligh
trend of overestimating the locking range for large frequ
cies. We have identified this to be an artifact of numerica
solving the pendulum equation with discrete time. Parti
larly, we have chosen the time step for the simulations to
a fraction of the period of the driving frequency, and thu
when looking for extremely small phase-locked steps in

FIG. 2. Minimum of the locking range inh as a function of the
driving frequencyV near the first node ofG1 for nonzeroG. Solid
lines show the prediction,Dhk52uG2u and markers are results o
numerical simulations of Eq.~1!. Open markers are fora50.1 and
closed are fora50.05. ~a! G'2.4 andk50. ~b! G'3.8 andk
51. ~c! G'5.1 andk52. ~d! G'2.4 andk5
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normalized IV characteristics, we are finding an artifici
phase locking of the dynamics to the temporal discretizati

We have demonstrated that thep-periodic effective po-
tentials can exist in the directly ac-driven pendulum and
have further given a quantitatively correct estimate of
significance of this effect. The magnitude of thep-periodic
effective potential suggests that the phase-locking signa
of the potential should be directly observable not only in t
driven pendulum,15,16 but also in ac-driven Josephson jun
tions. For relatively low driving frequencies,V'2, we ob-
serve locking ranges in Fig. 2 of the order ofDh'0.1, in-
dicating that a standard dc current-voltage characteristic
current ac-driven junction will indeed show a significa
locking range where the usual Bessel function amplitu
would suggest that locking is not possible. A particula
convenient choice of parameters is to operate the syste
the subharmonic resonance,k5 1

2 , whereG1 is always zero.

This work was performed under the auspices of the U
Department of Energy. V.Z. acknowledges partial supp
from NSF Grant No. DMS-9627721.

APPENDIX

Let us consider a system of equations~6! written in vector
form

ẋ5 f ~x,t!,

wheret5Vt,x5(u,p), and f 5( f 1 , f 2). We will apply an
averaging procedure as follows.

Let x5x11V21h1(x1 ,t) be the first transformation with
yet undefinedh1 . This function is restricted to be periodic i
t so that the new variables are close to the old ones
formly in time. In the new variables the equation takes t
form

~ I 1V21Dx1
h1!ẋ11h1t5 f ~x11V21h1~x1 ,t!,t!,

whereI is the unit matrix andDx denotes differentiation with
respect to the elements inx. We obtain by Taylor expanding
f,

~ I 1V21Dx1
h1!ẋ11h1t

5 f ~x1 ,t!1V21Dx1
f ~x1 ,t!h11•••.

In order to eliminate the oscillatory part off (x1 ,Vt) we
choose h15$ f (x1 ,t)%21 ($g%5g2^g& and $g%21 is a
mean-zero antiderivative of$g%) to obtain

ẋ15^ f &~x1!1V21R1~x1 ,t,V21!,

whereR1 is polynomial inV21. The second transformation
given by x15x21V22h2(x2 ,t) with h25$R1(x1 ,t,0)%21 ,
moves time dependence to second order inV21

ẋ25^ f &~x2!1V21^R1&~x2,0!1V22R2~x2 ,t,V21!.

Continuing this procedure one can bring the system to
form

ẋn5^ f &~xn!1V21^R1&~xn,0!

1•••1V2n11^Rn21&~xn,0!1V2nRn~xn ,t,V21!.



ni

pl

-

. A

,

.

E

y

p-

dly
In
ing
to

ari-
ta-
n
ase

PRB 59 61BRIEF REPORTS
*Present address: Division of Applied Mathematics, Brown U
versity, Providence, RI 02912.

1T. Van Duzer and C. W. Turner,Principles of Superconductive
Devices and Circuits~Elsevier, Amsterdam, 1981!, p. 180.

2R. L. Kautz, J. Appl. Phys.52, 3528~1981!.
3J. Miles, Phys. Lett. A133, 295 ~1988!.
4N. Gro”nbech-Jensen, and M. R. Samuelsen, Phys. Lett. A191, 57

~1994!.
5B. A. Huberman, J. P. Crutchfield, and N. H. Packard, Ap

Phys. Lett.37, 750 ~1980!.
6R. L. Kautz, Am. J. Phys.61, 407 ~1993!.
7J. A. Blackburn and N. Gro”nbech-Jensen, Phys. Rev. E53, 3068

~1996!.
8A. Barone and G. Paterno`, Physics and Applications of the Jo

sephson Effect~Wiley, New York, 1982!.
9S. Shapiro, Phys. Rev. Lett.11, 80 ~1963!.

10G. Filatrella, B. A. Malomed, and R. D. Parmentier, Phys. Lett
180, 346 ~1993!.

11R. L. Kautz, Rep. Prog. Phys.59, 935 ~1996!.
12L. D. Landau and E. M. Lifshitz,Mechanics~Pergamon Press

New York, 1976!, p. 93.
-

.

13J. A. Blackburn, H. J. T. Smith, and N. Gro”nbech-Jensen, Am. J
Phys.60, 903 ~1992!.

14V. Zharnitsky, I. Mitkov, and M. Levi, Phys. Rev. B57, 5033
~1998!.

15H. J. T. Smith and J. A. Blackburn, Phys. Rev. E50, 539~1994!.
16H. J. T. Smith and J. A. Blackburn, Am. J. Phys.60, 909 ~1992!.
17V. Zharnitsky, I. Mitkov, and N. Gro”nbech-Jensen, Phys. Rev.

58, 52 ~1998!.
18V. I. Arnold, Geometrical Methods in the Theory of Ordinar

Differential Equations~Springer-Verlag, Berlin, 1983!.
19It is important to apply the normal form procedure, see the A

pendix, to the system of two first order ODEs for (u,p) rather
than to the original second order ODE foru. The reason is that
the group of transformations which are used to move rapi
oscillating terms to higher order must be sufficiently large.
the first case we obtain the averaged equations by transform
(u,p); see the Appendix. In the second case it is impossible
arrive at the same result as the transformations of only one v
ableu do not give enough freedom. This is another manifes
tion of the well known fact that transformations in configuratio
space form a subgroup of canonical transformations in ph
space.


