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Correlation and symmetry effects in transport through an artificial molecule
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Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, con-
sidering cases where the dots connected in series are in general different. The spectral weights allow us to
understand the effects of correlations, their connection with selection rules for transport, and the role of excited
states in the experimental conductance spectra of these coupled double dot systems~DDS!. An extended
Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum
confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that
interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral
weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving
rise to effective selection rules for conductance through the molecule. Most states are found to make insig-
nificant contributions to the total current for finite biases. We find also that the symmetry of the structure is
reflected in theI -V characteristics, and is in qualitative agreement with experiment.@S0163-1829~99!07707-3#
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I. INTRODUCTION

A semiconductor quantum dot or ‘‘artificial atom’’ is a
electronic device defined on the nanometer scale.1,2 This sys-
tem usually arises when a homogeneous two-dimensi
electron gas~2DEG! generated at the interface between la
ers of semiconductor structures is laterally confined by e
trostatic, mechanical, or other means. An artificial atom
characterized by a strong quantization of the electronic m
tion in all three spatial dimensions. This means that the sp
trum of the electrons is discrete with separation between
els given by a characteristic value,D. On the other hand, the
extremely low capacitance~both self and mutual! achieved
in these nanostructure systems, due to the small sizes
compact geometries of the arrangements, produce a
tively large charging energy ofU5e2/C.1 meV. In most
semiconductor structures in this regime, one finds typica
thatU.D, frequently differing by an order of magnitude o
more.

In a typical ‘‘lateral’’ transport structure,3 which consists
of a quantum dot coupled via tunnel barriers to two res
voirs ~source and drain! and a back gate, the number of ele
trons can be controlled at will, starting from a small numb
of electrons ~or none! in the dot. The charging of the
N-electron atom with an additional single electron can
done by changing the back gate voltage, as it controls
depth of the local potential well holding the electrons. T
charging takes place when the chemical potential of the e
ter electrode equals the ‘‘local’’ chemical potential of th
atom, by providing enough energy for the system to rece
a particle. Since a large energyU is required, this gives rise
PRB 590163-1829/99/59~8!/5717~11!/$15.00
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to the Coulomb blockade~CB! of transport whenever this
energetic condition is not met. The CB is in fact the mech
nism for the surprisingly strict control of the charge in th
quantum dots, and their denomination as artificial atoms w
a well-defined number of electrons at a given set of g
voltages. As a consequence of CB, only one electron a
time can tunnel into the quantum dot for high or wide tu
neling barriers, and one observes oscillations of the differ
tial conductance as a function of the back gate volta
which controls the equilibrium charge of the dot, every tim
the electron population in the dot changes.4–6 This in-plane
geometry has been explored extensively both experimen
and theoretically.

In a different geometry, an ingenious device that use
capacitor where electrons tunnel between a metallic lay
and discrete quantum levels of the confined structure
been studied recently by several groups.2,7 This sensitive de-
vice monitors small capacitance peaks as a function of v
age across the structure every time an electron tunnels
the dot. This method of single-electron capacitance spect
copy has allowed researchers to monitor the intricate beh
ior of the many-particle states produced as function of ex
nal magnetic fields.7 Other interesting techniques used
investigate properties of artificial atoms include far-infrar
spectroscopy,8 which explores excitations of these artifici
atoms, and recent ‘‘vertical’’ transport experiments in nov
gated multiquantum well structures.9,10 Together, these ex
perimental probes provide fascinating insights into the pr
erties of these artificial atoms and molecules, in a sim
way to what atomic and molecular physics yield, althou
the different energies and variable electron number are
5717 ©1999 The American Physical Society
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like anything possible in those systems.
The conductance in transport spectroscopy throug

well-defined artificial atom is strongly affected by the Co
lomb blockade, as described above,11 and is a clear manifes
tation of charge quantization. Notice that when the volta
difference between the source-drain leads is small, one
the linear-response regime. Here, one can see the colle
of differential conductance peaks in terms of the so-ca
addition spectrum, i.e., the series of energy values requir
to add one electron to the system. This is given by the che
cal potential in the leads~and equal to one another in th
linear regime!, mN[EN,12EN21,1, where EN,1 is the
ground-state energy of theN-electron artificial atom. As the
back gate~or some other neighboring gate! voltage is shifted,
it produces successive conductance peaks in the tran
experiment.12 Therefore, one can say that the linear regim
provides a direct measure of the ground states of the sys

On the other hand, in thenonlinear transport regime, a
finite drain-source bias voltages, additional conducta
peaks are observed, which reflect the presence and natu
the excited states of the artificial atoms for a given parti
number.13–15 McEuen et al.16 have realized transport spe
troscopy on single dots and carefully analyzed the role
excited states versus source-drain bias and magnetic fi
In the case of single quantum dots, exhaustive studies o
excited states pointed out that a large number of the avail
states do not contribute to the conductance, signaling
existence of selection rulesfor transport. In fact, a number of
theoretical works demonstrated that indeed unusual selec
rules are required to account for the observed suppressio
the fine structure. These selection rules appear due to st
correlations in the electron eigenstates and correspon
eigenfunctions.17–19 The appearance of strict spin selecti
rules and/or those related to the orbital motion have b
associated with the many-particle nature of these states
provide a natural explanation of the experimental data.

Our goal in this paper is to understand how discrete
ergy levels, electron-electron interactions and symmetry
fect the spectrum in an artificial diatomic molecule~coupled
quantum dots!, and how this is reflected in the linear an
nonlinear transport characteristics. This will be especia
important for the strongly-correlated few-electron regime,
it is widely expected that increasing carrier number or c
centration ends up making the quantum dot not too dissim
from a classical polarizable droplet~at zero magnetic field!.
Arrays of quantum dots have been modeled to study
addition spectra and conductance.20–22Notice also that trans
port measurements have been reported for arrays of tw
more dots connected in different geometries. These artifi
molecules have conductance peaks that split as a functio
interdot interaction,23,24 and show interesting charging dia
grams, be it in a series,24,25or parallel connection.26,27Linear
and nonlinear transport experiments conducted on
coupled dots in series indicate that as interdot tunnelin
turned on, this interaction allows charge to distribu
throughout the system and controls the evolution from a tw
dot system to a larger dot.25,28,29Beautiful direct evidence o
a fully developed coherent-resonant ‘‘molecular state’’~in
terms of the classical ‘‘symmetric/antisymmetric’’ o
‘‘bonding/antibonding’’ quantum mechanical states! has re-
cently been presented by Blicket al.25,30 These authors hav
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focused on the study of a coherent molecular state than
be found in the charging diagram of the double dot syste
This charging diagram is constructed by varying ‘‘top’’ an
‘‘back’’ gate voltages in the linear transport regime, a
‘‘triple points’’ were identified where the device could b
used as an electron pump.

The evolution of the differential conductance as a fun
tion of interdot tunneling for the series-connection has be
treated theoretically for a symmetric double dot system
Kotlyar et al.,31 combining a step-well model for the con
finement potential of the system used in Ref. 29. They u
a Mott-Hubbard model to describe the electronic inter
tions, and obtained excellent qualitative agreement with
measured currents in the nonlinear regime.

Here we study an artificial diatomic molecule that is
simple coupled array of two quantum dots connected in
ries. We consider the general case where the two dots are
identical ~both the ‘‘symmetric’’ and ‘‘asymmetric’’ cases!,
similar to the system in Ref. 25. We model the system w
an extended Hubbard Hamiltonian, which takes fully in
account the interaction between quantum dots in a real
tem: interdot tunneling interaction defined in a typical late
structure by tunable gates, and the intra- and interdot C
lomb repulsion. We apply the analysis of the spect
weights~‘‘overlaps’’! following Ref. 19, for the few-electron
eigenstates of the quantum system. The Hamiltonian allo
us to calculate exactly the entire energy spectrum of
multiparticle system by numerical diagonalization, as well
the full eigenfunctions of the system. The current through
molecule is determined to a great extent by the spec
weights of the states involved in the transitions in the do
which also describe the electronic correlations in the syst
Regarding only sequential tunneling, the total curre
through the artificial molecule incident from the left rese
voir can be written explicitly as~with a similar expression
for transport through the right barrier!32

I 52e(
aa8

G̃aa8
L

@P„~N21!,a8…f aa8
L

2P~N,a!~12 f aa8
L

!#.

~1!

The Fermi distribution functionf aa8
L

5 f FD(DEaa82mL),
characterizes the occupation of the electron levels in the
reservoir ~with chemical potentialmL). Here the resonan
energy DEaa85EN,a2EN21,a8 , is the difference between
the energy of an N-particle state a, uN,a& and an
(N21)-particle state a8, uN21,a8&. The probability
P(N,a) of finding the quantum molecule in theN-particle
statea will deviate from its equilibrium value for a given
drain-source voltage. Its dependence on the tunneling

G̃aa8
L is well described by kinetic equations.12,32,33The cor-

responding tunneling rateG̃aa8
L depends on the single

electron tunneling rateGn
L for an electron traversing the sys

tem in the staten, and the details of the multiparticle state
Since the energy~or n! dependence ofGn

L is weak and/or
monotonic, we further conclude that the tunneling rate

dominated by the intrinsic spectral weight so thatG̃aa8
L

5gLSaa8
L wheregL is a smoothly energy-dependent singl

particle tunneling rate, and the overlap or spectral weigh
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Saa8
L

5 (
nPL

z^N,auCn
†uN21,a8& z2. ~2!

This quantity describes the correlations in the system, an
contribution to the current (I -V) characteristics proves to b
dominant in determining the salient features measurabl
experiments. The spectral weights govern the tunne
probability because they describe the overlap between
N-electron statea, and the compound state built by an i
coming electron with quantum number~s! n added to the
(N21)-electron statea8. For a system of uncorrelated ele
trons this overlap will be either one or zero between any t
states, by definition, in an orthogonal basis. However, e
tron correlations result in overlaps much less than unity
the correlations built into the states severely limit the p
sible ‘‘conduction channels,’’ and the tunneling probabili
is consequently reduced considerably.

Our study here of the overlap matrix elements not o
gives us insights into the physical process behind the se
tion rules, but also allows us to explore the general proper
of the current characteristics to be measured in these
tems. The aim of this work is to investigate the effect
interdot tunneling interaction and interdot Coulomb rep
sion on the spectral weights and current-voltage charact
tics through a double dot system~DDS!. Given recent ex-
periments with dots with markedly different sizes, we a
study the effect of this structural asymmetry on the st
correlations and ensuing transport properties. This asym
try, typically implemented with top gate arrangements, p
vides an additional parameter, which allows exploration
the correlations in the system.

In the Hubbard approach we use here, we find that
interdot tunneling interaction has a direct effect on the sp
tral weights andI -V characteristics, since it controls the po
sible delocalization of the wave function and effective
regulates the correlation of the different states. The spec
weights critically depend on the number of electronsN be-
cause interactions change every time an electron enters
system, and the number of channels increases rapidly witN.
We find also that the structural asymmetry is most eviden
the I -V characteristics for small interdot tunneling, b
present even for relatively well-connected dots in the DD

II. MODEL

We use the extended Hubbard Hamiltonian,

Ĥ5(
j a

e j aĈj a
† Ĉj a2 (

ab i j
tabĈia

† Ĉj b

1
1

2 (
j

U j n̂j~ n̂ j21!1(
i . j

Vi j n̂i n̂ j , ~3!

where the parameters take into account the different type
interactions. HereCj a

† andĈj a are creation and annihilatio

operators,n̂ j is the electron number operator at sitej, ande j a
are the confined energy levels of theath state in thejth
quantum dot; these levels are assumed to be equally sp
with separationD j ~as appropriate for a local harmonic o
cillator confinement potential which should be a good d
scription of typical ‘‘lateral’’ dots!. U j is the on-site Cou-
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lomb repulsion for thejth quantum dot,Vi j is the interdot
repulsion, andtab is the tunneling matrix element betwee
the single-particle statesa andb in the respective neighbor
ing dots. Kotlyar and co-workers have presented a param
zation of the classical capacitance matrix elements in te
of the Hubbard Hamiltonian quantities.31 Some of the details
will change from their square-well potential to our harmon
oscillators, and these depend on gate geometries and o
structural features. In either case, one would obtain intrin
Hubbard parameters with characteristic values ofU j
.1 meV, and U j@Vi j .0.1 meV, in the typical GaAs
structures used in experiments.

The parametertab is perhaps the most sensitive to th
specific gate implementation and applied gate voltages
fact, the interdot barrier transparency has been used supe
to control the overall interdot conductance in the expe
ments of Crouchet al.,29 and Blick et al.,25 to name a few
groups.34 These tunneling parameters effectively control t
correlations between states in the DDS, by limiting the wa
function overlaps. It is the well-known competition of th
tunneling with the Coulomb interactions that determine
details of correlations in the states.20

The specific values of the tunneling matrix elements
pend on how the interdot barrier is formed and modeled,
that tab can be assumed to be given by a Gaussian distr
tion ~in energy difference! that simulates the expected d
creasing coupling between levels that are not resonan
nearly so.35 In order to evaluate the effect of the interd
coupling differences, we compare two different regimes.
the one hand, the case of a diagonal matrixtab5tdab de-
scribes tunneling between aligned states only~likely the case
for high/wide barriers!. On the other hand, the case of
constant distribution given bytab5t, where tunneling be-
tween all states is allowed, give us two opposite coupl
regimes. This latter case can be used to describe the st
tunneling regime resulting when the interdot barrier is lo
and/or narrow. For a dot of diameterd5100 nm in a
GaAs/AlxGa12xAs heterostructure, the charging energyU
.1 meV, which greatly exceeds the thermal energykBT at
the characteristic dilution refrigerator temperatures
.0.1 K, so that it is safe to assume that these devices w
in the quantum regime,kBT,t,D j,U. In this description,
we may use spin orbitals and the spin overlap contribut
can be considered,18 especially for finite magnetic fields, bu
we choose to model the artificial molecule as a system
spinless fermions for simplicity. This restriction can b
clearly relaxed, but given the typically much smaller Zeem
splitting, we do not expect that our conclusions would
drastically changed at these temperatures and for typ
structures.

The procedure we follow is to solve the extended Hu
bard Hamiltonian~3! in the particle number representatio
by direct diagonalization to obtain the eigenvalues a
eigenvectors for the system withN electrons, and use Eq.~2!
to calculate the spectral weights. The system wave functi
are expressed in the local orbital representation, and we
then how the creation operatorCn

† transforms the state
uN21,a8&, for example. Any of these states is a linear co
bination of local orbitals with coefficients~probability ampli-
tudes! that describe the state fully. As the electron enters
DDS, it delocalizes into a complex molecular electronic st
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Cn
†uN21,a8&. The projection of this new state of the mo

ecule over the stateuN,a& gives us information about tha
delocalization, which is a product of the interplay betwe
the hopping reducing confinement and the Coulomb inte
tion, which effectively suppresses tunneling. The analo
with chemistry, describing our system as a covalen
bonded artificial molecule, gives us a deeper insight into
processes taking place here.25 Notice, however, that the re
peated and sequential particle addition to the molecule
transport through the leads is clearly unlike any proces
atomic or molecular physics, as mentioned in the Introd
tion.

We find that in the strong tunneling and interacting
gime ~highly correlated system! most of the spectral weight
take values near zero and only some specific channels d
nate the spectra as occurs for single dots.19 The conse-
quences of these strong and effective selection rules for
current through the system are calculated using Eq.~1!, or
the equivalent symmetrized expression~taking into account
the tunneling from the left and the right explicitly!

I 5
e

2 (
aa8

P~N21,a8!@G̃aa8
R f aa8

R
2G̃aa8

L f aa8
L

#

1P~N,a!@~12 f aa8
L

!G̃aa8
L

2~12 f aa8
R

!G̃aa8
R

#, ~4!

which we use in all calculations below. In this equation, t
factors P(N,a) are the probabilities of having the syste
with N electrons in the statea. These can be obtained from
n
c-
y
y
e

ia
in
-

-

i-

he

the solution of rate equations, as discussed in the literatu12

for an accurate evaluation of all the limiting rates during t
conduction process. Here, we assume for simplicity, t
these probabilities are well described by a superposition
two equilibrium distribution functions determined by th
chemical potentials at each reservoir, so thatP5(PR

1PL)/2, wherePL/R5exp@2b(EN,a2NmL/R)#/Z(mL/R). Here,
Z is the Gibbs distribution function for each of the reservo
at chemical potentialmL andmR . Although this independen
‘‘feeding’’ of the DDS by each reservoir is only an approx
mation, it turns out that it is not too far from the full solutio
of the rate equations, except for large biases, and when
the overlaps change drastically with energy.33 In this expres-
sion, we have also added the appropriate bias and gate
age dependence to the energy spectrum, so thatEN,a5EN,a

0

2eN(cGVG1cBVDS), whereEN,a
0 are the eigenvalues of th

Hamiltonian ~3!, and the constantscG and cB are propor-
tional to the capacitance between the dots and the gates
fining the voltages. As a typical example of nonidentic
dots, we take a constant value ofl5cB /cG52/3, while one
would expectl51/2 in a symmetric structure.

As a finite biasVDS is applied to the DDS, one is in th
nonlinear transport regime, and the left and right reservo
are offset from each other byeVDS5mL2mR . When suffi-
ciently large bias voltageVDS is applied, new channels ar
open for electron conduction and the overlaps measure
probability for single electron tunneling through each cha
nel. Since the spectral weightsSaa8 provide the information
FIG. 1. Spectral weights as a function of the energy differenceDEaa8 between states involved in the transitionN:2→3, for different
interdot tunneling models:~a! t50, ~b! diagonaltaa85tdaa8 , ~c! Gaussian,~d! constanttaa85t. Filled circles represent channels (a,a8
51) for all a. Symmetric DDS case.U15U25U; D15D250.3U.
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FIG. 2. Effect of number of electronsN on spectral weights in the constant regime (tab50.1). Symmetric molecule case.
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for the current-voltage characteristics, and in the nonlin
regime the energy scale of interest isDEaa8}eVDS , we ana-
lyze these weights over varying energy intervalsDEaa8 to
identify the channels (a,a8) that contribute to the current in
that interval. Thus, we have the possibility of identifying t
particular channel that contributes to the current at a gi
voltage and proceed to compare with the experimental
sults. In this regime, to calculate the current with Eq.~4!, we
must take into account all channels in the appropriate ene
window, but our calculation shows that only a rather sm
number of them contribute significantly to the transport r
via Eq. ~2!.

III. RESULTS AND DISCUSSION

In what follows, we will measure all energy parameters
the Hamiltonian in terms of the local repulsionU
.1 meV, characteristic of typical systems. To provide co
trast for the different regimes, we consider here two cas
~a! the case of symmetric quantum dots, where the harmo
oscillator level spacing and intradot Coulomb interaction
the same in each site, i.e.,U15U251 andD15D250.3; ~b!
the ‘‘asymmetric’’ case, where the two quantum dots in t
molecule are not the same, and the structural parameter
different. As an example, we takeD150.3,D250.2 andU1
51,U250.8, corresponding to a larger dot with the index
Notice that since the dot 2 is assumed larger~with sizeL2),
r

n
e-

gy
ll
e

-
s:
c-
e

e
are

.

both the harmonic confinement (}L2
22), and the local repul-

sion term (}L2
21) yield smaller values than for the small do

in site 1. We should also mention that inclusion of a fin
and reasonable interdot interactionV12 (&U/10) yields
rather small energy shifts in the energy level spectrum~simi-
lar to a slight rescaling of the value ofU!, and negligible
effects in the spectral weights, in general. In what follow
and without loss of generality, we present results withV12
50.

A. Spectral weights

In Fig. 1, we show results for the spectral weightsSaa8
for the symmetricdouble dot system as a function of th
energy differenceDEaa8 between the states involved in th
transition, corresponding to the case where the numbe
electrons goes fromN52 to N53 for different intensities of
tunneling coupling. In all the figures, we identify with fille
circles the channels (a,18), that represent transitions be
tweenall possible statesuN,a& of N electrons and theground
stateuN21,18& of (N21) electrons; empty circles denote a
other pairs. Figure 1~a! illustrates that without tunneling (t
50) the electrons in the system are totally uncorrelated a
correspondingly, the overlaps are either zero or one. Figu
1~b! and 1~c! reveal the connection between electronic c
relations and tunneling measured bySaa8 in the weak tun-
neling regime, for different coupling models. In Fig. 1~b! we
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FIG. 3. Spectral weights in asymmetric DDS case, withU151; U250.8; D150.3; andD250.2. Electrons incident from left@~a! and
~b!# or right @~c! and ~d!#, with t values as shown, for theN:2→3 transition.
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use the diagonal tunneling matrixtab5tda,b with t50.1. As
t is gradually increased one obtains progressively sma
values ofSaa8 for most state pairs, and only a chosen few a
nonzero~notice large number of circles on the horizon
axis!. This general behavior is also obtained for differe
tab-matrix coupling, even if the details of the suppress
transition pairs change somewhat. In Fig. 1~c!, we couple all
single-particle states between dots with an energy-depen
Gaussian distribution with a maximum att50.1 on reso-
nance. Notice the rather similar behavior to Fig. 1~b!. The
extreme regime of strong coupling is explored by taking
constant distributiontab5t. To compare results we us
againt50.1, and see in Fig. 1~d! that a signature of this mos
correlated system is a strong suppression of the wei
Saa8 , and a clear prevalence of the transitions involving
ground-states@highest spectral weights occur for the lowe
energy-filled circles in Fig. 1~d!#, and low-lying excitations
of the DDS. As most of the channels have low spec
weights, their contribution to the current will be small in
transport experiment, according with Eq.~2!. Only the few
channels with large spectral weights would give origin
discernible peaks in the differential conductance traces
we will see in the next section. In particular, in Fig. 1~d!, the
largest contribution comes from the transition involving t
ground states fromN52 to N53, suggesting that nonlinea
conductance features would be quite small at finite bias. T
er
e
l
t
d

ent
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ts
e
t

l

as

is

observation is verified later when we actually calculateI -V
diagrams and is in qualitative agreement with experiment29

Figure 2 presents typical results for overlaps in the sy
metric DDS case for the sequential addition of electro
from N51 to N55. The number of particles in the syste
obviously modifies the interactions and, as a conseque
the eigenfunctions generate different spectral weights
each channel with the addition of electrons. We use het
50.1 for all pairs in this system, a strongly correlated ca
We observe that the correlations in the artificial molecule
different for the same intervalDE}VDS for different N,
since interactions readjust every time an electron enters
system. The symmetry of the artificial molecule leaves
signature on the spectral weights that the channel (1,18) ends
up having always the maximum overlap. The results are
ferent in the asymmetric case. As will be shown below, th
are many channels (a,a8), that are directly related to the
excitation spectra of the artificial molecule, which provid
major contributions via large values of the overlaps.

If we calculate the spectral weights for an asymmet
molecule, we observe the effects of the dot asymmetry
different values of tunneling amplitude. For example, w
show in Figs. 3~a! and 3~b! spectral weightsSaa8

L for an
electron that enters the system from the left in the transit
N52→3. Figures 3~c! and 3~d! show the corresponding re
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FIG. 4. Spectral weights for left incidence for transitions involving the (N21)-particleground state, for t50.1 in the constant regime
andV50. Insets show results for incidence from right.
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sults for an electron incident from the right,Saa8
R . For the

same channels in the same intervalDE, we obtain in genera
thatSaa8

R ÞSaa8
L , as one would expect that the single-partic

level asymmetry would carry over to the many-partic
states. The overall reduction of the overlaps is evident w
t increases, as one electron is added to the system from e
left or right. At the same time, we notice a big differen
with the symmetric molecule. In the asymmetric case ma
channels corresponding to transitions between excited s
have large overlaps even in the strong tunneling regime,
even largerthan the (1,18) ground-state transitions forSaa8

L

in Fig. 3~b!.
Increasing the number of electrons sequentially in

asymmetric case gives the values of the overlaps show
Fig. 4 for incidence from the left~emitter side for positive
VDS). Here, only the contribution from transitions (a,18) are
shown~from EN21,1

0 to EN,a
0 ). In the insets, the correspond

ing overlaps for incidence from the right are shown. In ea
case, the largest contribution comes from the transition
tween ground states, and is larger for incidence from
right ~left! for transitions from even~odd! to odd~even! N, as
expected from the asymmetry considered~larger dot on the
right!. These transitions involve states that are weighted p
dominantly on either of the dots, increasing the overlap t
comes from a given side and decreasing the other.
n
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e
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h
e-
e

e-
t

The previous analysis illustrates two characteristics of
overlaps. First, they provide selection rules in transport sp
troscopy that allow us to explain why the flow of curre
from the left can be lower or larger for a particular chann
as discussed above. The important point is that for any ch
nel in question, we can analyze the calculation and offer
explanation of their contribution to the current. The seco
point is closely related with the physical process of tunn
ing. This coupling mixes single-electron states and builds
a molecular state where electrons are correlated. Thus, m
electron wave functions of the artificial molecule contain
formation about ‘‘bonds’’ between quantum dots. Tunneli
provides a kind of bonding interaction and, as described,
affects the spectral weights in a nontrivial way. In the loc
orbital approximation, we can understand that upon ope
ing with the creation operatorCn

† , we create anN-particle
stateCn

†uN21,a8&, which is in general not one of the eigen
states of the systemuN,a& but is rather represented as
linear combination of basis vectors in theN-particle Hilbert
space. If there is a dominating (N21)-particle state in a
given spectral weight, say thejth state, the overlap will be
given bySa,a8(n).ul j u2umku2. Here,ul j u2 is the probability
that the system with (N21) electrons is in thejth basis state.
In a similar way, umku2 represents the probability that th
artificial molecule occupies thekth basis state withN elec-
trons. If we assume that both states correspond to maxim
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~or minimum! probability, this qualitative simplification
gives us another approach to explain high or low spec
weights in terms of probabilities associated with basis sta
For example, we can explain the values of overlaps for ch
nel (1,18) in Fig. 1~b! this way. We calculate the spectr
weight and obtainul18u

250.9997 for an electron incoming
from left or right. The operationC1

†uN21,18& gives a vector
that is projected over the ground stateuN,1&. This state has a
maximum occupation probabilityum1u250.4984, so that the
overlap is given byul18u

2um1u2.0.5. The exact value ob
tained from Eq.~2! is 0.4996. Notice that this simple analys
gets complicated rather quickly ast increases, since man
more occupation probabilitiesul j u2 need to be considered t
build up the given stateuN21,a8&, i.e., electrons delocalize
with increasing tunneling interaction. Spectral weights refl
this delocalization and measure the corresponding corr
tions in the system. If the interactions in the system are s
that the system is strongly correlated, more states partici
in the overlaps, but their contributions come with differe
phases. This gives rise to a strong suppression of the a
able transport channels, so that only a few contribute sign
cantly to the current.

B. Current-voltage characteristics

We can use the values of the overlaps obtained in
previous section to calculate the current through the sys
as a function of gate voltageVG and source-drain voltag
bias eVDS5mL2mR , via Eq. ~4!. VDS is specified by the
chemical potentials of emitter and collector electrodes, wh
sweeping the gate voltageVG through positive values shift
down the electrostatic potential of theN-electron system in
the DDS. For the symmetric case, we present in Fig. 5 res
for the current for a range of values of interdot tunneling,
a gray-scale contour plot, where dark corresponds to sm
current ~lighter shades indicate higheruI u values, with sign
equal to that ofVDS). The temperature for these calculatio
was set atkBT50.01 (.120 mK), an order of magnitude
smaller than the mean level spacing. The general chara
istics of these plots have been analyzed for single13,36 and
double29 quantum dot systems. Notice that here we plot c
rent, and not the differential conductance typically plotted,
a function of bothVG and VDS , providing similar physical
information ~sample differential conductance traces are d
cussed below!.

In these plots, the current in the linear regime, atVDS
.0 shows CB steps corresponding to changes in the gro
state of the coupled dots from theN to the N11 electron
configuration ~the ‘‘addition spectrum’’!. The differential
conductance traces would show CB peaks in the linear
gime, separated by the actual charging energy require
add one electron to the system. AsVDS increases, excited
states of both configurations become accessible near
CB peak, providing new tunneling channels through
double dot. This results in broadening of the CB peaks
form multiple peak structures enclosing ‘‘Coulomb di
monds’’ ~appearing darkest in Fig. 5!, corresponding to CB
regions of zero conductance and fixed electron number
indicated in each diamond. The lines defining the diamo
edges correspond to transmission ‘‘resonances’’ or ali
ment of the ground states of the DDS with source or dr
al
s.
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Fermi levels. Lines parallel to the edges and away from
CB diamonds correspond to transitions involving excit
states of the quantum molecule. For positiveVDS , we iden-
tify resonances parallel to the negative~or positive! slope
Coulomb diamond edges as unoccupied DDS levels in re
nance with the source~or drain! Fermi level, i.e.,mL ~or mR).

For the ideal symmetric double dot system for weak tu
neling in Fig. 5~a!, we obtain Coulomb blockade region
corresponding to ‘‘even-even’’ double-dot ground states
which each dot has the same number of electrons, and
creasing the gate voltage adds electronsin pairs to the sys-
tem, as the symmetric and antisymmetric quantum mech
cal states are nearly degenerate for smallt, and the local
interaction dominates. The charging energy and correspo
ing CB diamonds are quite large~in comparison with those
in other panels, see below!. As t increases, Fig. 5~b!, and the
energy splitting between ground states becomes signific
we see that the current steps split, producing two differ
size diamonds. The smaller diamonds signal theN odd states,
as one would expect that the split pairs in a bondin

FIG. 5. Current as a function of gate voltageVG and source-
drain voltageVDS , for different values of interdot tunneling:~a! t
50.01, ~b! t50.1, and~c! t50.2. Symmetric DDS case.
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antibonding picture would be far away in energy from t
next. This is intuitively expected for single-particle stat
mixed by a weak tunneling matrix element. That it is also
case for a multiparticle state with several local orbitals mix
in by tunneling and Coulomb interaction is a somewhat s
prising result. Moreover, Blicket al. have shown that this
mixing of many-particle ground states by parts is quite s
cessful in describing experimental data in a double-
geometry.25

As t increases further, the two types of diamonds
nearly identical@Fig. 5~c!#, indicating that the states of th
individual dots are fully mixed into an overall single dot wi
smaller charging energy~and then smaller CB diamonds!
without any even-odd charging differentiation. Basica
identical results have been nicely obtained in Ref. 31
combining a two-site generalized Hubbard model with a o
dimensional step-well model for the confining double d
potential. Their calculated nonlinear transport characteris
are in excellent qualitative agreement with experiment
Crouchet al.,29 for which they were designed.

In the case of asymmetric dots, recent experimental s
ies by Blick et al. have presented the charging diagram

FIG. 6. Current inVG-VDS plane for asymmetric DDS.~a! t
50.01, ~b! t50.1, and~c! t50.2. Notice asymmetry is nearly ab
sent in~c! but still clearly seen in the finite bias current steps.
e
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such series structure in the linear regime, as discus
above.25 Our results for the asymmetric case~larger QD on
the right! in the nonlinear regime, are shown in Fig. 6 aga
as a gray-scale contour plot of the current in theVG-VDS

FIG. 7. Current and its derivativedI/dVDS as a function of
source-drain voltageVDS for ~a! symmetrict50.1; ~b! asymmetric
t50.1, and~c! asymmetrict50.01 DDS. Gate voltages fixed a
explained in text. Conductance peaks away fromVDS50 are pro-
duced by a few of the excited states.
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plane. Here, we see a structure of small and large diamo
even att.0, which reflects the built-in asymmetry in th
dots producing differences in charging energy from even
odd N, as opposed to the ideal symmetric case where
have full level degeneracy and charging by two electrons
time @see Fig. 5~a!#. Also, note thatI -V traces aresubstan-
tially different depending on thesign of the polarization
VDS , since occupancy of states in the DDS in the collec
side differs from that on the emitter side. Additionally, no
that as in the symmetric case, small diamonds increas
size and width as interdot tunneling increases, since tun
ing allows the extra electron to be shared between the
dots, and tends to effectively reduce the structural asym
try. By the timet50.2 in this asymmetric molecule, one ca
hardly distinguish the structural asymmetry any more,
shown in Fig. 6~c!. The interdot tunneling has basical
transformed the DDS into a single larger dot, with nea
identical CB diamonds for allN’s and even similar excited-
state structures.

From this discussion, it is clear that the most asymme
situation occurs whenever the quantum dots making the m
ecule are not identical and the interdot tunneling is not
large. To further illustrate this, in Fig. 7 we plot the curre
and the differential conductance,dI/dVDS , as a function of
VDS , for fixed values of the gate voltageVG and interdot
tunneling. In the symmetric case, Fig. 7~a!, VG51.09 andt
50.1, while in the asymmetric cases, Figs. 7~b! and 7~c!,
VG50.87, t50.1 andVG51, t50.01, respectively.

These values ofVG are taken from Figs. 5 and 6, an
correspond to the charging energy for the transitionN:
2→3.37 The excited state symmetry is clearly observed
the curves shown for both the current and its derivative
can be seen in Fig. 7~a!. The central peak in differentia
conductance is the ground state to ground-state contribu
and is clearly the most important in all cases, although l
so in the asymmetric structure. The lateral peaks corresp
to the contributions from excited states, and we see that th
start contributing at a smaller positive value ofVDS in the
asymmetric case. Notice that the large feature in Fig. 7~b! at
VDS.21 corresponds to transitions involving the grou
statesN:3→4, which have become accessible at the fin
bias. However, atuVDSu,1, we see a number of transition
via excited states, some of which have quite a large valu

In the case of the effectively more asymmetric syste
given its small value of interdot couplingt50.01, the differ-
ential conductance is remarkably asymmetric, as show
Fig. 7~c!. The large feature atVDS.20.6 is associated with
the ground-state transitionN:3→4 ~just as above!, while all
the other smaller peaks are related to excited states:
feature atVDS.20.4 is produced by an excited state ofN
53 in the DDS, while that at.20.8 is via aN54 excited
configuration. On the other hand, the two differential co
ductance peaks forVDS.0 are excited states of theN52
configuration, which make quite a large contribution to t
current and conductance. Notice that other transitions inv
ing excited states@clearly seen in Fig. 7~b!, or in the corre-
sponding spectral weights# are suppressed here. Once aga
this is consequence of the subtle wave function mixing t
takes place for nonzerot. We should point out that althoug
larger differences are apparent in Fig. 4 for the spec
weights for left- or right-incidence in asymmetric dots, this
s,
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not carried over as sharply in the current or conducta
curves. Inspection of the symmetrized expression for the c
rent, Eq. ~4!, suggests that the addition of the appropria
terms with GL and GR tends to deemphasize these diffe
ences.

IV. CONCLUSIONS

Using an extended Hubbard Hamiltonian, which tak
into account intra- and interdot Coulomb interactions a
variable interdot hopping, we calculate the overlap mat
elementsSaa8

L/R and correspondingI -V characteristics for ar-
tificial diatomic molecules, in both symmetric and asymm
ric geometries. The calculations are performed in the w
and strong tunneling regimes, as the number of electron
the system increases fromN50, as a function of the gate
voltage. The effects of interdot Coulomb interaction a
found to be small and equivalent to a minor rescaling of
local intradot interaction, in agreement with Staffordet al.20

It is found in all cases that only a few of the many cha
nels involving excited states of the DDS contribute to t
current. In the symmetric case, the largest contribution c
responds to the channel involving the ground states ofN and
N11 particles. Indeed, the contour diagrams of nonlin
current as a function of gate voltageVG and source-drain
voltageVDS ~Fig. 5! show the formation of primary and sec
ondary diamonds~CB regions! evolving as interdot tunneling
increases, in excellent qualitative agreement with exp
ments with nearly-identical coupled dots.28,29 In the asym-
metric case, with the largest dot on the right, we have
consider the difference in the overlapsSaa8

L and Saa8
R for

incidence from left or right, respectively. In thestrong tun-
neling regime, we find that in contrast to the symmetric ca
there are several channels involving excited states that
tribute toSaa8

L . On the other hand, the main contribution
Saa8

R comes from the ground states ofN andN11 particles.
From the behavior of the overlaps in this case we can
that the system is less correlated and that there are st
competing effects between tunneling coupling and asym
try. These effects enter in the calculation of the current, a
the final influence of excited states in the asymmetric c
can best be appreciated in the diagrams for the current in
weak tunneling regime of Figs. 6~a! and 6~b! or 7~c!. The
experimental work by Blicket al.25 on asymmetric double
dot structures was concerned with theVDS50 regime. We
believe that analysis of finite bias data in these structu
should give unique insights into the dot molecular states,
encourage experimental groups to test asymmetric structu
Finally, a detailed theoretical analysis of the differential co
ductance as a function of ‘‘back’’ and ‘‘top’’ voltages, a
defined in the split-gate experimental setup of Ref. 25
possible with our present approach, and will be presen
elsewhere.
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