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Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, con-
sidering cases where the dots connected in series are in general different. The spectral weights allow us to
understand the effects of correlations, their connection with selection rules for transport, and the role of excited
states in the experimental conductance spectra of these coupled double dot SBESnhsAn extended
Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum
confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that
interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral
weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving
rise to effective selection rules for conductance through the molecule. Most states are found to make insig-
nificant contributions to the total current for finite biases. We find also that the symmetry of the structure is
reflected in the -V characteristics, and is in qualitative agreement with experini861.63-18209)07707-3

I. INTRODUCTION to the Coulomb blockad€CB) of transport whenever this
energetic condition is not met. The CB is in fact the mecha-
A semiconductor quantum dot or “artificial atom” is an nism for the surprisingly strict control of the charge in the
electronic device defined on the nanometer stAlBhis sys- quantum dots, and their denomination as artificial atoms with
tem usually arises when a homogeneous two-dimensiona well-defined number of electrons at a given set of gate
electron gag2DEG) generated at the interface between lay-voltages. As a consequence of CB, only one electron at a
ers of semiconductor structures is laterally confined by electime can tunnel into the quantum dot for high or wide tun-
trostatic, mechanical, or other means. An artificial atom isneling barriers, and one observes oscillations of the differen-
characterized by a strong quantization of the electronic motial conductance as a function of the back gate voltage,
tion in all three spatial dimensions. This means that the speavhich controls the equilibrium charge of the dot, every time
trum of the electrons is discrete with separation between levthe electron population in the dot chande$This in-plane
els given by a characteristic valut, On the other hand, the geometry has been explored extensively both experimentally
extremely low capacitancéoth self and mutualachieved and theoretically.
in these nanostructure systems, due to the small sizes and In a different geometry, an ingenious device that uses a
compact geometries of the arrangements, produce a relaapacitor where electrons tunnel between a metallic layer
tively large charging energy df =e?C=1 meV. In most and discrete quantum levels of the confined structure has
semiconductor structures in this regime, one finds typicallybeen studied recently by several groépg-his sensitive de-
thatU> A, frequently differing by an order of magnitude or vice monitors small capacitance peaks as a function of volt-
more. age across the structure every time an electron tunnels into
In a typical “lateral” transport structurdwhich consists the dot. This method of single-electron capacitance spectros-
of a quantum dot coupled via tunnel barriers to two reser<opy has allowed researchers to monitor the intricate behav-
voirs (source and drajrand a back gate, the number of elec- ior of the many-particle states produced as function of exter-
trons can be controlled at will, starting from a small numbernal magnetic field$. Other interesting techniques used to
of electrons(or nong in the dot. The charging of the investigate properties of artificial atoms include far-infrared
N-electron atom with an additional single electron can bespectroscop§,which explores excitations of these artificial
done by changing the back gate voltage, as it controls thatoms, and recent “vertical” transport experiments in novel
depth of the local potential well holding the electrons. Thegated multiquantum well structuré$® Together, these ex-
charging takes place when the chemical potential of the emitperimental probes provide fascinating insights into the prop-
ter electrode equals the “local” chemical potential of the erties of these artificial atoms and molecules, in a similar
atom, by providing enough energy for the system to receivevay to what atomic and molecular physics yield, although
a particle. Since a large enertyyis required, this gives rise the different energies and variable electron number are un-
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like anything possible in those systems. focused on the study of a coherent molecular state than can
The conductance in transport spectroscopy through &e found in the charging diagram of the double dot system.
well-defined artificial atom is strongly affected by the Cou- This charging diagram is constructed by varying “top” and
lomb blockade, as described abdvand is a clear manifes- “back” gate voltages in the linear transport regime, and
tation of charge quantization. Notice that when the voltagetriple points” were identified where the device could be
difference between the source-drain leads is small, one is i#sed as an electron pump.
the linear-response regime. Here, one can see the collection The evolution of the differential conductance as a func-
of differential conductance peaks in terms of the so-calledion of interdot tunneling for the series-connection has been

addition spectrumi.e., the series of energy values requiredtreated theoretically for a symmetric double dot system by

31 i
to add one electron to the system. This is given by the chemi-otyar et al,”> combining a step-well model for the con-

cal potential in the leadé@nd equal to one another in this Ineément potential of the system used in Ref. 29. They used
linear regime, uy=Eni—En_ 14, Where Ey; is the @& Mott-Hubbard model to describe the electronic interac-

ground-state energy of tHé-electron artificial atom. As the tions, and obtained excellent qualitative agreement with the

back gatgor some other neighboring gateoltage is shifted, measured currents in the nonlinear regime.

it produces successive conductance peaks in the transport Here we study an artificial diatomic molecule that_ls a
simple coupled array of two quantum dots connected in se-

experiment? Therefore, one can say that the linear regime> W der th I here the two dot t
provides a direct measure of the ground states of the syster{€S: V€ considerine general case wnere the two dols are no

On the other hand, in theonlinear transport regime, at |der)tical (both the “symmetric” and "asymmetric” cas¢s .
finite drain-source bias voltages, additional conductancé'm”af[ todthde |s_|ystt)(te)m cljn FI{?ef.ﬁS. .We mﬁ.d?]l tthi sys]:teilm W![th
peaks are observed, which reflect the presence and nature ¥ X etnthe . tu ?r bat\r?vl onian, V\t/ IC d ? es tully Im 0
the excited states of the artificial atoms for a given particleaccc_’l_Jn € Intéraction between quantum dots n a real sys-
numbert3-1% McEuen et al1® have realized transport spec- tem: interdot tunneling interaction defined in a typical lateral

troscopy on single dots and carefully analyzed the role o trugture bly ltunaki/l\;a gatesl, a?hd the ”}”‘?‘ anfd t|fr]1terdot ct:Olf'

excited states versus source-drain bias and magnetic fiel om htreE)u S|o|n. Y ? Iflpp.y Ref ?ga]}/sl‘:,h Of el sp:ec ra

In the case of single quantum dots, exhaustive studies of th&€'9 s(“overlaps”) following Ref. 19, for the ew-electron
ilabigenstates of the quantum system. The Hamiltonian allows

states do not contribute to the conductance, signaling thds 1o ca_lculate exactly the entire energy spectrum of this
existence of selection ruldésr transport In fact, a number of muInparqcIe system by numerical diagonalization, as well as
theoretical works demonstrated that indeed unusual selectiotne full e|g¢nfunct|on_s of the system. The current through the
rules are required to account for the observed suppression B?O.IGCUIe IS determlngd o a great exten_t_ by t_he spectral
the fine structure. These selection rules appear due to stro !ghts of the states involved n the transitions in the dots,
correlations in the electron eigenstates and correspondi ich a_Iso describe the el_ectronlc co_rrelatlonS in the system.
eigenfunctiond’~1° The appearance of strict spin selection ~egarding only sequential tunneling, the total current
rules and/or those related to the orbital motion have beeFPr_ough the art.|f|C|aI mqle_cule mqldent from the left reser-
associated with the many-particle nature of these states a gir can be written epr|C|;Iy agwith a similar expression
provide a natural explanation of the experimental data. or transport through the right barrié?

Our goal in this paper is to understand how discrete en-
ergy levels, electron-electron interactions and symmetry af-, _ =L sl L
fect the spectrum in an artificial diatomic molecit®upled 1= —eo% oo [PUN=1),a)f,, =P(N,&)(1=1,,)]
guantum dots and how this is reflected in the linear and (1)
nonlinear transport characteristics. This will be especially

important for the strongly-correlated few-electron regime, asthe Fermi distribution functionf" ,=frp(AE . — 1),
it is widely expected that increasing carrier number or coNcparacterizes the occupation of the electron levels in the left

centration ends up making the quantum dot not too diSSim”aFeservoir(with chemical potentialx,). Here the resonant
from a classical polarizable dropléit zero magnetic fiejd energy AE,, =Ey.—En_14, is the difference between
Arrays of quantum dots have been modeled to study the,e energy of an N-parti'cle state @, |[N,&) and an
addition spectra and conductarf@e?>Notice also that trans- (N—1)-particle state o', [N—La'). "The probability
port measurements have been reported for arrays of two B(N,a) of finding the qu:;mtum r'nolecule in the-particle
more dots connected in different geometries. These artificia§£

. . ate « will deviate from its equilibrium value for a given
molecules have conductance peaks that split as a function @f5in-source voltage. Its dependence on the tunneling rate

interdot interactiorf>?* and show interesting charging dia- ~, _ o 193033
grams, be it in a seri€é?or parallel connectio?®? Linear L «a’ IS Well described by kinetic equatiof$****The cor-

and nonlinear transport experiments conducted on tw@esponding tunneling ratd“;a, depends on the single-
coupled dots in series indicate that as interdot tunneling iglectron tunneling rat€", for an electron traversing the sys-
turned on, this interaction allows charge to distributetem in the stater, and the details of the multiparticle states.
throughout the system andzgggntrols t_he eyolutlon_ from a tWogjnce the energyor n) dependence of - is weak and/or
dot system to a larger d6t****Beautiful direct evidence of 1101 cionic. we further conclude that the tunneling rate is
a fully developed coherent-resonant “molecular statéy ) ’ L ) ~

terms of the classical “symmetric/antisymmetric” or dominated by the intrinsic spectral weight so tHay,,
“ponding/antibonding” quantum mechanical statdms re- =S, wherey" is a smoothly energy-dependent single-
cently been presented by Bliek al?>3° These authors have particle tunneling rate, and the overlap or spectral weight is
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L " o lomb repulsion for thgth quantum dotV;; is the interdot
Saa':n;_ [N, @ CoIN—La")|". 2 repulsion, and,; is the tunneling matrix element between
the single-particle stateg and B in the respective neighbor-
This quantity describes the correlations in the system, and itig dots. Kotlyar and co-workers have presented a parametri-
contribution to the currentl V) characteristics proves to be zation of the classical capacitance matrix elements in terms
dominant in determining the salient features measurable inf the Hubbard Hamiltonian quantitiésSome of the details
experiments. The spectral weights govern the tunnelingvill change from their square-well potential to our harmonic
probability because they describe the overlap between thescillators, and these depend on gate geometries and other
N-electron statex, and the compound state built by an in- structural features. In either case, one would obtain intrinsic
coming electron with quantum numiigr n added to the Hubbard parameters with characteristic values of
(N—1)-electron statex’. For a system of uncorrelated elec- =1 meV, and U;>V;;=0.1 meV, in the typical GaAs
trons this overlap will be either one or zero between any twastructures used in experiments.
states, by definition, in an orthogonal basis. However, elec- The parametet,; is perhaps the most sensitive to the
tron correlations result in overlaps much less than unity, aspecific gate implementation and applied gate voltages. In
the correlations built into the states severely limit the posfact, the interdot barrier transparency has been used superbly
sible “conduction channels,” and the tunneling probability to control the overall interdot conductance in the experi-
is consequently reduced considerably. ments of Crouctet al,?® and Blick et al,?® to name a few
Our study here of the overlap matrix elements not onlygroups®* These tunneling parameters effectively control the
gives us insights into the physical process behind the seleeorrelations between states in the DDS, by limiting the wave
tion rules, but also allows us to explore the general propertiefunction overlaps. It is the well-known competition of this
of the current characteristics to be measured in these sysunneling with the Coulomb interactions that determine the
tems. The aim of this work is to investigate the effect ofdetails of correlations in the stat&s.
interdot tunneling interaction and interdot Coulomb repul- The specific values of the tunneling matrix elements de-
sion on the spectral weights and current-voltage characterigend on how the interdot barrier is formed and modeled, so
tics through a double dot syste(DDS). Given recent ex- thatt,, can be assumed to be given by a Gaussian distribu-
periments with dots with markedly different sizes, we alsotion (in energy differencethat simulates the expected de-
study the effect of this structural asymmetry on the statecreasing coupling between levels that are not resonant or
correlations and ensuing transport properties. This asymmerearly so® In order to evaluate the effect of the interdot
try, typically implemented with top gate arrangements, pro-coupling differences, we compare two different regimes. On
vides an additional parameter, which allows exploration ofthe one hand, the case of a diagonal matfjx=t5,, de-
the correlations in the system. scribes tunneling between aligned states dlikely the case
In the Hubbard approach we use here, we find that théor high/wide barriers On the other hand, the case of a
interdot tunneling interaction has a direct effect on the specconstant distribution given by, z=t, where tunneling be-
tral weights and -V characteristics, since it controls the pos-tween all states is allowed, give us two opposite coupling
sible delocalization of the wave function and effectively regimes. This latter case can be used to describe the strong
regulates the correlation of the different states. The spectralinneling regime resulting when the interdot barrier is low
weights critically depend on the number of electrdv®e-  and/or narrow. For a dot of diametet=100 nm in a
cause interactions change every time an electron enters tigaAs/ALGa,_,As heterostructure, the charging energy
system, and the number of channels increases rapidlyNvith ~1 meV, which greatly exceeds the thermal enekgy at
We find also that the structural asymmetry is most evident inhe characteristic dilution refrigerator temperatures of
the 1-V characteristics for small interdot tunneling, but ~0.1 K, so that it is safe to assume that these devices work
present even for relatively well-connected dots in the DDS.jn the quantum regiméT<t<A;<U. In this description,
we may use spin orbitals and the spin overlap contribution
Il. MODEL can be considere especially for finite magnetic fields, but
we choose to model the artificial molecule as a system of
spinless fermions for simplicity. This restriction can be
clearly relaxed, but given the typically much smaller Zeeman

We use the extended Hubbard Hamiltonian,

O = CGte — cr e splitting, we do not expect that our conclusions would be
H E]aCJaC]a taBCIaC]B p . p -
ja apij drastically changed at these temperatures and for typical
1 structures.
+5 2 anj(nj_1)+i2>j Vinin;, 3) The procedure we follow is to solve the extended Hub-

bard Hamiltonian(3) in the particle number representation
direct diagonalization to obtain the eigenvalues and
. igenvectors for the system wibhelectrons, and use E()
interactions. Her€], andC;, are creation and annihilation tq calculate the spectral weights. The system wave functions
operatorsﬁj is the electron number operator at gitande;, ~ are expressed in the local orbital representation, and we find
are the confined energy levels of thgh state in thejth  then how the creation operatdZ| transforms the state
quantum dot; these levels are assumed to be equally spacifd—1,a'), for example. Any of these states is a linear com-
with separationd; (as appropriate for a local harmonic os- bination of local orbitals with coefficientprobability ampli-
cillator confinement potential which should be a good de-tudes that describe the state fully. As the electron enters the
scription of typical “lateral” dotg. U; is the on-site Cou- DDS, it delocalizes into a complex molecular electronic state

where the parameters take into account the different types
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C/IN—1,a’). The projection of this new state of the mol- the solution of rate equations, as discussed in the literafure,
ecule over the statfN,«) gives us information about that for an accurate evaluation of all the limiting rates during the
delocalization, which is a product of the interplay betweenconduction process. Here, we assume for simplicity, that
the hopping reducing confinement and the Coulomb interacthese probabilities are well described by a superposition of
tion, which effectively suppresses tunneling. The analogytwo equilibrium distribution functions determined by the
with chemistry, describing our system as a covalentlychemical potentials at each reservoir, so tha&(Pg
bonded artificial molecule, gives us a deeper insight into thei- p /2, whereP z= exf — B(En.«—NuyR1Z(uyg). Here,
processes taking place héreNotice, however, that the re- 7z js the Gibbs distribution function for each of the reservoirs
peated and sequential particle addition to the molecule Vig; chemical potentigk, andug. Although this independent
transport through the Iea(_js is clearly _unlike_any process imfeeding” of the DDS by each reservoir is only an approxi-
atomic or molecular physics, as mentioned in the Introductnation “it turns out that it is not too far from the full solution

tion. ) . . . . of the rate equations, except for large biases, and whenever

: We T'nd that in the strong tunneling and mteractmg " the overlaps change drastically with enefdyn this expres-
gime (highly correlated systejmmost of the spectral weights . . ;

e sion, we have also added the appropriate bias and gate volt-

take values near zero and only some specific channels domi- 0
nate the spectra as occurs for single ddtThe conse- 2d€ dependence to the enerdy spectrum, soHRat=Ey,q
quences of these strong and effective selection rules for the €N(CcVe+CsVps), whereEy , are the eigenvalues of the
current through the system are calculated using (Eg.or ~ Hamiltonian (3), and the constantsg and cg are propor-
the equivalent symmetrized expressigaking into account tional to the capacitance between the dots and the gates de-
the tunneling from the left and the right explicitly fining the voltages. As a typical example of nonidentical
dots, we take a constant value ot cg/cg=2/3, while one
would expecth =1/2 in a symmetric structure.

As a finite biasVpg is applied to the DDS, one is in the
nonlinear transport regime, and the left and right reservoirs
are offset from each other BVps= u — ur. When suffi-
ciently large bias voltag®/s is applied, new channels are
which we use in all calculations below. In this equation, theopen for electron conduction and the overlaps measure the
factors P(N,a) are the probabilities of having the system probability for single electron tunneling through each chan-
with N electrons in the stata. These can be obtained from nel. Since the spectral weigh®,,, provide the information

aa aa

e ~ ~
|:§2 P(N-1,a)[TR % —-T" " ]

+P(N,a)[(1—f- )T —(1-fR TR 1, @

1.0 ¥ hai T 1.0 T . .
L (@ t=0 (c) t=.1 (gauss)
0.8 — 0.8 _
0.6 . 0.6 ]
o . L
U)q ] 75}
04 .
0.2 _
0.0l i .
-2 o] 2 4 6
AE
1.0 ! T T
1.0 T T T L
i {b) t=.1 (diag) 1 (d) t=.1 (const) i
08f ] 0.8 _
4 8

FIG. 1. Spectral weights as a function of the energy differehEg ,, between states involved in the transitibn2— 3, for different
interdot tunneling modelga) t=0, (b) diagonalt,, =té,, , (c) Gaussian(d) constantt,,.=t. Filled circles represent channela,g’
=1) for all . Symmetric DDS casdJ),;=U,=U; A;=A,=0.3U.
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FIG. 2. Effect of number of electrors on spectral weights in the constant reginigs& 0.1). Symmetric molecule case.

for the current-voltage characteristics, and in the nonlineaboth the harmonic confinement [, %), and the local repul-
regime the energy scale of intereSNEaarOC_eVDs. we ana-  sion term ¢<L, %) yield smaller values than for the small dot
lyze these weights over varying energy intervAlE,,. t0  in site 1. We should also mention that inclusion of a finite
identify the channelsd;,«") that contribute to the currentin and reasonable interdot interactiovy, (<U/10) yields
that interval. Thus, we have the possibility of identifying the rather small energy shifts in the energy level specttsimi-
particular channel that contributes to the current at a givenar to a slight rescaling of the value &f), and negligible
voltage and proceed to compare with the experimental reeffects in the spectral weights, in general. In what follows,

sults. In this regime, to calculate the current with B, we  and without loss of generality, we present results Wit
must take into account all channels in the appropriate energy Q.

window, but our calculation shows that only a rather small
number of them contribute significantly to the transport rate
via Eq. (2). A. Spectral weights

In Fig. 1, we show results for the spectral weigs,
ll. RESULTS AND DISCUSSION for the symmetricdouble dot system as a function of the
energy difference\E,,, between the states involved in the
In what follows, we will measure all energy parameters intransition, corresponding to the case where the number of
the Hamiltonian in terms of the local repulsiok electrons goes frol=2 to N=3 for different intensities of
=1 meV, characteristic of typical systems. To provide con-tunneling coupling. In all the figures, we identify with filled
trast for the different regimes, we consider here two casesircles the channelsq(1'), that represent transitions be-
(a) the case of symmetric quantum dots, where the harmonidweenall possible statefN, @) of N electrons and thground
oscillator level spacing and intradot Coulomb interaction arestate]N—1,1') of (N—1) electrons; empty circles denote all
the same in each site, i.&J;=U,=1 andA;=A,=0.3;(b)  other pairs. Figure (8 illustrates that without tunnelingt (
the “asymmetric” case, where the two quantum dots in the=0) the electrons in the system are totally uncorrelated and,
molecule are not the same, and the structural parameters agerrespondingly, the overlaps are either zero or one. Figures
different. As an example, we takk;=0.3A,=0.2 andU, 1(b) and Xc) reveal the connection between electronic cor-
=1,U,=0.8, corresponding to a larger dot with the index 2.relations and tunneling measured 8y, in the weak tun-
Notice that since the dot 2 is assumed lar@eith sizelL,), neling regime, for different coupling models. In Figblwe
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FIG. 3. Spectral weights in asymmetric DDS case, With=1; U,=0.8; A;=0.3; andA,=0.2. Electrons incident from lef{a) and
(b)] or right [(c) and(d)], with t values as shown, for thid:2— 3 transition.

use the diagonal tunneling mattix;=t4, s witht=0.1. As  observation is verified later when we actually calculldé

t is gradually increased one obtains progressively smallegliagrams and is in qualitative agreement with experimé&hts.
values ofS,,+ for most state pairs, and only a chosen few are  Figure 2 presents typical results for overlaps in the sym-
nonzero(notice large number of circles on the horizontal metric DDS case for the sequential addition of electrons,
axig). This general behavior is also obtained for differentfrom N=1 to N=5. The number of particles in the system
tapg-matrix coupling, even if the details of the suppressedypyiously modifies the interactions and, as a consequence,
transition pairs change somewhat. In Figc)lwe couple all e ejgenfunctions generate different spectral weights for
single-particle states between dots with an energy-dependegl ., channel with the addition of electrons. We use here

S;#cseSIal\rl]ogclzsemt?\l:ur):thvglrthsirzigfxt;;lgvio?ﬁgIl:igbr; J—?Eg_ =0.1 for all pairs in this system, a strongly correlated case.

extrem.e regime of strong coupling is explored by taking aWe observe that the correlations in the artificial molecule are

constant distributiont,z=t. To compare results we use d_|ffere_nt for t_he same mtervaAE?cVDs for different N,
since interactions readjust every time an electron enters the

againt=0.1, and see in Fig.(dl) that a signature of this most .
correlated system is a strong suppression of the weighéyStem' The symmetry of the artificial molecule leaves as

S,.., and a clear prevalence of the transitions involving theS'dnature on the spectral weights that the channel(ads
ground-statehighest spectral weights occur for the lowest UP having always the maximum overlap. The results are dif-
energy-filled circles in Fig. (0)], and low-lying excitations ferent in the asymmetric case. As will be shown below, there
of the DDS. As most of the channels have low spectra'e many channelse(a’), that are directly related to the
weights, their contribution to the current will be small in a €xcitation spectra of the artificial molecule, which provide
transport experiment, according with E@). Only the few  major contributions via large values of the overlaps.
channels with large spectral weights would give origin to If we calculate the spectral weights for an asymmetric
discernible peaks in the differential conductance traces, a&olecule, we observe the effects of the dot asymmetry for
we will see in the next section. In particular, in Figdy, the  different values of tunneling amplitude. For example, we
largest contribution comes from the transition involving theshow in Figs. 8) and 3b) spectral weightsS;_, for an
ground states frolN=2 to N= 3, suggesting that nonlinear electron that enters the system from the left in the transition
conductance features would be quite small at finite bias. Thisl=2— 3. Figures &) and 3d) show the corresponding re-
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FIG. 4. Spectral weights for left incidence for transitions involving the-(1)-particleground statefor t=0.1 in the constant regime

andV=0. Insets show results for incidence from right.

sults for an electron incident from the riglﬁsa, . For the

same channels in the same interdd, we obtain in general
as one would expect that the single-particle
level asymmetry would carry over to the many-particle
states. The overall reduction of the overlaps is evident whe
tincreases, as one electron is added to the system from eith
left or right. At the same time, we notice a big difference
with the symmetric molecule. In the asymmetric case man

thatS; ,#S,

aa’ !

even largerthan the (1,1) ground-state transitions ftﬁtm,

in Fig. 3(b).

Fig. 4 for incidence from the leftemitter side for positive

Vps). Here, only the contribution from transitiona ') are

right (left) for transitions from evexodd to odd(even N, as

expected from the asymmetry considef@tger dot on the

comes from a given side and decreasing the other.

The previous analysis illustrates two characteristics of the
overlaps. First, they provide selection rules in transport spec-

troscopy that allow us to explain why the flow of current
from the left can be lower or larger for a particular channel
as discussed above. The important point is that for any chan-
el in question, we can analyze the calculation and offer an
8{<planation of their contribution to the current. The second
point is closely related with the physical process of tunnel-

k - , ¥ng. This coupling mixes single-electron states and builds up
channels corresponding to transitions between excited statgsmoecular state where electrons are correlated. Thus, many

have large overlaps even in the strong tunneling regime, angiectron wave functions of the artificial molecule contain in-
formation about “bonds” between quantum dots. Tunneling
provides a kind of bonding interaction and, as described, this
Increasing the number of electrons sequentially in theaffects the spectral weights in a nontrivial way. In the local-
asymmetric case gives the values of the overlaps shown irbital approximation, we can understand that upon operat-
we create ariN-particle
stateC!|[N—1,a'), which is in general not one of the eigen-
shown(from Eﬁ_lylto Eﬁ,’a). In the insets, the correspond- states of the systerfiN,a) but is rather represented as a
ing overlaps for incidence from the right are shown. In eacHinear combination of basis vectors in theparticle Hilbert
case, the largest contribution comes from the transition bespace. If there is a dominatingN¢-1)-particle state in a
tween ground states, and is larger for incidence from theiven spectral weight, say thjé state, the overlap will be
given byS, . (n)=|\;|?|uy|? Here,|\;|? is the probability
that the system withN— 1) electrons is in thgth basis state.
right). These transitions involve states that are weighted prein a similar way, |u,|? represents the probability that the
dominantly on either of the dots, increasing the overlap thaartificial molecule occupies thkth basis state withN elec-
trons. If we assume that both states correspond to maximum

ing with the creation operata®
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(or minimum probability, this qualitative simplification
gives us another approach to explain high or low spectral
weights in terms of probabilities associated with basis states.
For example, we can explain the values of overlaps for chan-
nel (1,1) in Fig. 1(b) this way. We calculate the spectral
weight and obtair{\;,|2=0.9997 for an electron incoming
from left or right. The operatioﬁ:{lN— 1,1’y gives a vector
that is projected over the ground stditg 1). This state has a
maximum occupation probability,|?=0.4984, so that the
overlap is given byl\;/|?|u,|?=0.5. The exact value ob-
tained from Eq(2) is 0.4996. Notice that this simple analysis
gets complicated rather quickly asincreases, since many
more occupation probabilitidsmj-l2 need to be considered to
build up the given stattN—1,a"), i.e., electrons delocalize
with increasing tunneling interaction. Spectral weights reflect
this delocalization and measure the corresponding correla-
tions in the system. If the interactions in the system are such
that the system is strongly correlated, more states participate
in the overlaps, but their contributions come with different
phases. This gives rise to a strong suppression of the avail-
able transport channels, so that only a few contribute signifi-
cantly to the current.

B. Current-voltage characteristics

We can use the values of the overlaps obtained in the
previous section to calculate the current through the system
as a function of gate voltag€s and source-drain voltage
bias eVps=u —ur, via Eq. (4). Vps is specified by the
chemical potentials of emitter and collector electrodes, while
sweeping the gate voltagé; through positive values shifts
down the electrostatic potential of tidelectron system in
the DDS. For the symmetric case, we present in Fig. 5 results
for the current for a range of values of interdot tunneling, in .
a gray-scale contour plot, where dark corresponds to small -1.0 =01 0.8 1.7 2.6
current(lighter shades indicate highél| values, with sign
equal to that oVp<). The temperature for these calculations
was set akgT=0.01 (=120 mK), an order of magnitude
smaller than the mean level spacing. The general charact
istics of these plots have been analyzed for sitfgfeand
doublé&® quantum dot systems. Notice that here we plot cur-
rent, and not the differential conductance typically plotted, ag-ermi levels. Lines parallel to the edges and away from the
a function of bothV and Vg, providing similar physical CB diamonds correspond to transitions involving excited
information (sample differential conductance traces are disstates of the quantum molecule. For positilgs, we iden-
cussed beloy tify resonances parallel to the negatite positive slope

In these plots, the current in the linear regime,Vals  Coulomb diamond edges as unoccupied DDS levels in reso-
=0 shows CB steps corresponding to changes in the grounuance with the sourc@r drain Fermi level, i.e.u, (or ug).
state of the coupled dots from thé to the N+1 electron For the ideal symmetric double dot system for weak tun-
configuration (the “addition spectrum). The differential neling in Fig. %a), we obtain Coulomb blockade regions
conductance traces would show CB peaks in the linear recorresponding to “even-even” double-dot ground states in
gime, separated by the actual charging energy required tahich each dot has the same number of electrons, and in-
add one electron to the system. A g increases, excited creasing the gate voltage adds electronpairs to the sys-
states of both configurations become accessible near eatdm, as the symmetric and antisymmetric quantum mechani-
CB peak, providing new tunneling channels through thecal states are nearly degenerate for smatnd the local
double dot. This results in broadening of the CB peaks tdnteraction dominates. The charging energy and correspond-
form multiple peak structures enclosing “Coulomb dia- ing CB diamonds are quite largen comparison with those
monds” (appearing darkest in Fig.,)5corresponding to CB in other panels, see belgwAs t increases, Fig.(®), and the
regions of zero conductance and fixed electron number, aanergy splitting between ground states becomes significant,
indicated in each diamond. The lines defining the diamondve see that the current steps split, producing two different
edges correspond to transmission “resonances” or alignsize diamonds. The smaller diamonds signalNireld states,
ment of the ground states of the DDS with source or draimas one would expect that the split pairs in a bonding/

FIG. 5. Current as a function of gate voltayg and source-
e?j[ain voltageVpg, for different values of interdot tunnelinga) t
=0.01,(b) t=0.1, and(c) t=0.2. Symmetric DDS case.
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FIG. 6. Current inVg-Vpg plane for asymmetric DDS(a) t
=0.01,(b) t=0.1, and(c) t=0.2. Notice asymmetry is nearly ab-
sent in(c) but still clearly seen in the finite bias current steps. 100

antibonding picture would be far away in energy from the
next. This is intuitively expected for single-particle states
mixed by a weak tunneling matrix element. That it is also the
case for a multiparticle state with several local orbitals mixed ©
in by tunneling and Coulomb interaction is a somewhat sur-
prising result. Moreover, Bliclet al. have shown that this
mixing of many-particle ground states by parts is quite suc-
cessful in describing experimental data in a double-dot
geometry®®

As t increases further, the two types of diamonds are  _sgo

5.0

urrent

0.0

L r

nearly identical[Fig. 5(c)], indicating that the states of the -1.0 -05 0.0 05 10

o i ) ; . VDS
individual dots are fully mixed into an overall single dot with
smaller charging energyand then smaller CB diamonds FIG. 7. Current and its derivativdl/dVpg as a function of
without any even-odd charging differentiation. Basically source-drain voltag¥ps for (a) symmetrict=0.1; (b) asymmetric
identical results have been nicely obtained in Ref. 31 byt=0.1, and(c) asymmetrict=0.01 DDS. Gate voltages fixed as
combining a two-site generalized Hubbard model with a oneexplained in text. Conductance peaks away frégy=0 are pro-
dimensional step-well model for the confining double dotduced by a few of the excited states.
potential. Their calculated nonlinear transport characteristics
are in excellent qualitative agreement with experiment bysuch series structure in the linear regime, as discussed
Crouchet al,?® for which they were designed. above®® Our results for the asymmetric cadarger QD on

In the case of asymmetric dots, recent experimental studhe righd in the nonlinear regime, are shown in Fig. 6 again
ies by Blick et al. have presented the charging diagram ofas a gray-scale contour plot of the current in ¥g-Vpg
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plane. Here, we see a structure of small and large diamondapt carried over as sharply in the current or conductance
even att=0, which reflects the built-in asymmetry in the curves. Inspection of the symmetrized expression for the cur-
dots producing differences in charging energy from even tgent, Eq.(4), suggests that the addition of the appropriate
odd N, as opposed to the ideal symmetric case where wéerms withT'" and I'® tends to deemphasize these differ-

have full level degeneracy and charging by two electrons at &nces.
time [see Fig. 5a)]. Also, note that -V traces aresubstan-

tially different depending on thsign of the polarization

Vps, Since occupancy of states in the DDS in the collector

side differs from that on the emitter side. Additionally, note  Using an extended Hubbard Hamiltonian, which takes
that as in the symmetric case, small diamonds increase iimto account intra- and interdot Coulomb interactions and
size and width as interdot tunneling increases, since tunnel:ariable interdot hopping, we calculate the overlap matrix

ing allows the extra electron to be shared between the tW@IementsSZ/aR, and corresponding-V characteristics for ar-
dots, and tends to effectively reduce the structural asymmegicia| diatomic molecules, in both symmetric and asymmet-
try. By the timet=0.2 in this asymmetric molecule, one can yic geometries. The calculations are performed in the weak
hardly distinguish the structural asymmetry any more, agng strong tunneling regimes, as the number of electrons in
shown in Fig. &). The interdot tunneling has basically {he system increases froh=0, as a function of the gate
transformed the DDS into a single larger dot, with nearlyygjtage. The effects of interdot Coulomb interaction are
identical CB diamonds for alN's and even similar excited-  tq,nd to be small and equivalent to a minor rescaling of the
state structures. _local intradot interaction, in agreement with Staffeidal >°
From this discussion, it is clear that the most asymmetric 1 is found in all cases that only a few of the many chan-
situation occurs whenever the quantum dots making the molye|s jnvolving excited states of the DDS contribute to the
ecule are not identical and the interdot tunneling is not toq,,irent. In the symmetric case, the largest contribution cor-
large. To further illustrate this, in Fig. 7 we plot the current responds to the channel involving the ground statels ahd
and the differential conductanceé|/dVps, as a function of N1 particles. Indeed, the contour diagrams of nonlinear
Vps, for fixed values of the gate voltagés and interdot  ¢yrrent as a function of gate voltagé, and source-drain
tunneling. In the symmetric case, Figal, Ve=1.09 andt  jtageV, (Fig. 5 show the formation of primary and sec-
=0.1, while in the asymmetric cases, Figsbj7and 4c),  ondary diamondéCB regions evolving as interdot tunneling
V=0.87,t=0.1 andVg=1, 1=0.01, respectively. increases, in excellent qualitative agreement with experi-
These values oW/ are taken from Figs. 5 and 6, and ments with nearly-identical coupled dé&° In the asym-
correspond to the charging energy for the transit®n  metric case, with the largest dot on the right, we have to

2—33" The excited state symmetry is clearly observed in.onsider the difference in the overlagh , and S¥ , for
the curves shown for both the current and its derivative, a8 cidence from left or right respectivel;clmln tfmaro% tun-

can be seen in Fig.(d. The central peak in differential neling regime, we find that in contrast to the symmetric case,

cond_uctance is the grou_nd state to ground-state contributioghere are several channels involving excited states that con-
and is clearly the most important in all cases, although Ies%.bute oSt On the other hand. the main contribution to
so in the asymmetric structure. The lateral peaks correspon&q C '

to the contributions from excited states, and we see that thes&,,» comes from the ground states ®fandN+1 particles.
start contributing at a smaller positive value \8fs in the ~ From the behavior of the overlaps in this case we can say
asymmetric case. Notice that the large feature in Filg) &t  that the system is less correlated and that there are strong
Vps=—1 corresponds to transitions involving the groundcompeting effects between tunneling coupling and asymme-
statesN:3—4, which have become accessible at the finitetry. These effects enter in the calculation of the current, and
bias. However, a':VDS|<1v we see a humber of transitions the final influence of excited states in the asymmetric case
via excited states, some of which have quite a large value.can best be appreciated in the diagrams for the current in the
In the case of the effectively more asymmetric systemWeaktunneling regime of Figs. (@) and &b) or 7(c). The
given its small value of interdot couplirig=0.01, the differ-  €xperimental work by Blicket al*® on asymmetric double
ential conductance is remarkably asymmetric, as shown ifot structures was concerned with thigs=0 regime. We
F|g 7((:) The |arge feature NDS:_O'G is associated with believe that analySiS of finite bias data in these structures
the ground_state transitidd:3— 4 (just as abov)e while all should giVe Unique inSightS into the dot molecular states, and
the other smaller peaks are related to excited states: THENCOUrage experimental groups to test asymmetric structures.
feature atVps=—0.4 is produced by an excited state Mf Finally, a detailed theoretical analysis of the differential con-
=3 in the DDS, while that at=—0.8 is via aN=4 excited ductance as a function of “back” and “top” voltages, as
configuration. On the other hand, the two differential con-defined in the split-gate experimental setup of Ref. 25 is
ductance peaks fovps>0 are excited states of thé=2 possible with our present approach, and will be presented
configuration, which make quite a large contribution to the€lsewhere.
current and conductance. Notice that other transitions involv-
ing ex_cited stateScIea_rIy seen in Fig. (b), or in the corre- . ACKNOWLEDGMENTS
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