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Optical response of excitonic polaritons in photonic crystals
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Nonlocal investigations are presented for exciton-photon coupling in photonic crystals consisting of two
kinds of alternating slab€CuCI/NaC), for which excitons exist only in onéCuCl) of the two slabs. Studies
are carried out for several typical combinations of period and slab thickness. The lower branch of the excitonic
polariton for this system is found to split into many small bands separated by small bangglapison gaps
This phenomenon is explained as the band splitting caused by the coherent interference of polaritonic waves in
periodic systems. At the same time, the group velocity of light is greatly reduced in the presence of the
excitons. The present nonlocal study demonstrates a double exciton-photon coupling, in which the upper
branch of the polariton couples again with the size-quantized exciton states. A long-wavelength approximation
is also presented along with a discussion of its validity for simplifying the nonlocal theory. The absorbance and
reflectance spectra computed using the transfer matrices exactly reproduce the above small bands for the same
systems. An examination of the coupling scheme among excitons, photons, and the structural periodicity
indicates that the former two couple with each other more strongly than the other combinations of them. The
exciton component of polariton, which is localized in each slab in darkness, could be construed as being
delocalized with the assistance of the phot®0163-18289)05208-X

I. INTRODUCTION manner analogous to the electronic band gap in electroni-
cally periodic systems—could be useful in controlling the
The optical properties of semiconductor microstructuredight in the medium, because it disallows the presence of
have been the subject of intense investigations for a coupleptical modes in photonic crystiiConsiderable effort has
of decades. Here the author wishes to classify the optical been devoted to achieving usable photonic crystals experi-
response of these structures from his own point of viewmentally, and to exploring theoretically such crystals with
First, the system should be eithi@) an isolated microstruc- larger band gap$.
ture or(B) an assembly of microstructures. Second, the op- It seems to the author, however, that the study of photonic
tical response must involve either (Athe photons or (B crystals has so far focused on the formation of photonic
the matter particlegor their elementary excitationsis well  bands and band gaps. Indeed, photonic crystal exhibits an
as the photons. Among the four possible combinations ofinusual photon energy disperion, but this should be regarded
these factors, two groups Aland AB' are well known. A as a space for light. For notable optoelectronic phenomena to
typical example of group AAis Mie scattering, where the occur in this space, there must be some other participants
light is scattered by a microstructure whose size is compawhich act on the stage of this photonic dispersion. These
rable to the wavelength of light. The other group ‘ABas  other participants should be matter particletectrons and
been extensively studied up to now. This model was freholes®® or their elementary excitation@xcitons.” The au-
qguently employed for analyzing optical devices that exploitthor thus believes that the photonic crystal should be consid-
microstructures as well as understanding their optical propered as not only a space for light but also a stage for the
erties. In group AB, most optical processes are treated agphysics of the optical properties of matter. This could be
processes which could occur in an isolated microstructurelone, for example, by casting the above particles onto the
(e.g., a single quantum wglt The optical response of the stage, or the optical energy dispersion of photonic crystals.
whole systene.g., multiple quantum wellss therefore ob- This is an intense motivation for studying the last group
tained by simply summing up the responses of the individua(BB’). One possible solution for this idea may exist in a
structures. regular arrangement of active media, which exhibits energy
What we call the photonic crystal seems to fall into groupexchange between the matter and the photon systems
BA’. Photonic crystaldwhich in recent years have attracted through the electronic or excitonic transitions. In fact, some
much attention, are periodic structures consisting of alternatrotable aspects may be anticipated for the optical responses
ingly arranged dielectric materials. They should therefore bef arranged active media when these structures are no longer
regarded as special cases in group’ Bite., periodic assem- isolated and some couplings between them can therefore be
blies of microstructures. In ordinary photonic environmentspresumed. Several features arising from this cooperativity
made of uniform medium, the optical energy bands are ndiave been reported elsewhéré.The coherent interference
more than monotonic, i.e., linear and continuous. In contrasipf photons in an ordered systefordinary photonic crystal
with the photonic crystals, we may be able to obtain theappears to give an impetus to the above study from a slightly
desired photonic bands by properly designing the crystatlifferent direction. At any rate, the participation of matter
structure. In particular, the photonic band gap—formed in goarticles and their elementary excitations will undoubtedly
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enrich the optical response in photonic crystals. e \?2

From this point of view, the author initiated the study of X(f-r')=2(m—) Ipvd?>
photonic crystals in which excitons exist at all lattice poifts. 0 »
Subsequently, in order to ascertain what would occur if gain

media were employed instead at lattice points, Wep the site representation, where only the resonant term is
proposed® photonic crystals in which all lattice points are taken. Here, (0y) indicates an excifon wave function of
made of the same gain material embedded in other disSipatate \ with the wave-function value at the origin for the
tive medium. Using those crystals, we clarified thejnternal motion of the exciton. In E42), p,. is the momen-
enhancemefiand polarization anisotroyf optical gain. In - tym matrix element of the optical transition between the con-
the present paper, we extend previous sfumfyexcitons in duction and the valence bantfsand y is the phenomeno-

photonic crystals. Using the nonlocal exciton theory, we in-jogical damping factor. Ordinary notations are used for the
vestigate the exciton-photon coupliigolariton effects in - other parameters.

one-dimensional photonic crystals. The purpose of this in-  Next, consider a slab with thickness which is located
vestigation is to isolate the kinetics of excitonic polaritonspetween the coordinates of 0 and with no bounds in the
which may be exhibited in the whole system of regularly 5nqy directions. In order to obtain the equation for the light
arranged microstructures. propagating in this slalfor a one-dimensionally modulated
system with an arbitrary in-plane wave-number vector, we
assume for a while that this system has appropriate periods
Il. THEORY Ly andL, in the x andy directions, respectively. Using the
Bloch theorem in two dimensions, we next expand the elec-

tric field E(r) and dielectric constant(r) into Fourier series,
Excitons in a macroscopic-scale system must be treategl,ch that
using the nonlocal theory, because they spread throughout
the whole solid with an appropriate dispersidithis is true
as long as we consider the systems larger than a very small _
system like a quantum well. Let us begin with the general E(N=E(r;,2)=2 E(K+G,2e' " (39
Maxwell equation for electric fieldE(r) with space- ©i
dependent dielectric constante(r) and exciton

H iAnll,12
polarization. and

@ 2
C

+47-rf dr’ x(r,r"YE(r")|. (1)

(01" )* 4 (0)
hoy,—ho—iy

)

A. Nonlocal excitons in a slab

VX[VXE(r)]= e(r)E(r)

s(r)Es(rH,z)zg e(Gy,z)e'Cn, (3b)

Here we introduce the in-plane wave-number vedqr.
The integral in this equation indicates the nonlocal excitorSubstituting Eq(3) into Eq. (1) and taking the limit of the
polarization. The nonlocal polarizability of excitop(r,r’) infinite L, and L, values, we obtain the Maxwell equation
is for the one-dimensionally modulated system:

VX[VXE(K,,2)]+iKex(VXe)+V-e—e V]E(K,,z) +K%e-K°—KO. e E(K,,z)

(]

whereK°= (K,,0). Hereeis an identity vector operator, and with
it replaces itself by a vector that precedes or follows it like
(axe)b=axb anda(e-b)=a-b. Next, we assume for sim-
plicity that the s exciton is confined within two hard walls vz
on the both sides of the slab. This assumption corresponds to en(2)= (a) sinK,z. (5b)
neglecting the dead layer effects near the walls, which arise
from the finite size of the exciton. The wave function for the
exciton in such a system is In Eq. (58), ¢15(p) is the wave function of the internal mo-
tion of the 1s exciton, and¢,(z) describes the center-of-
_ mass motion in the direction. HereS is the area under
U (01)=14(0)S Y2eKiNip (2), (58  consideration, an&,=(#/d)(n+1) is the size-quantized

e(02)E(K,,2)+47S | dZ' x(K,,z,2")E(K,,Z") |, (4)
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wave numberi§=0,1,2,...), and hende)=|K,,n). Substi- Here,r=(r;,2), r'=(r;,z'), and
tuting Eq.(5) into Eq.(2) and replacin, by G, , we obtain

h2G?  h2K?2
+

2m  2n (6b)

e | hwen=ho+
X<f|7r’1272’>=2(m )Ipvclzlms(onzsl on=f®1s
o

G (2) 00 (2') wherem=mg+m, andx~*=m;*+m; . Equation(6) can

X E 5 5 - . (63 be rewritten ag((r,—r ,z,2"). Its Fourier transform, which
Gy.n Wgn—ho=ly appears as the kernel of the integration in ), becomes

x(K, ,z,z’)=S*1f d(ry—r/)x(r,—r| 2,2 )e K=

e |\? o en(Den(Z)
— 2 2cq1 n n
_2( mow) |pVC| |¢1S(o)| S nZO ﬁwKHn_hw_i,y

r v
2 » Sin—(n+1)zsin—(n+1)z'
L~ ) mlpd? dre0)S 1S, — ‘ (78
Mo @ Ve s =0 (n+1)2+a? ’
with
2m| ¥2d h2K? vz
a= ?‘) —( w15t 5 —fho—iy| . (7b)

By analytically evaluating the series in E@) (see Appendix A we obtain the final form of the nonlocal polarizability in one
dimension:

cosq[d—(z+2z')]—cosq[d—|z—Z'|]

:q#0

e \22m gsinqd ’
X(K,Z,Z')=<m—()w) ?|Dvc|2|€751s,(0)|257l 1 (83
E[Zd—|z—z’|—(z+z’)](—|z—z’|+z+z’), :g=0,
|
with materials A and B, we will take CuCl and NacCl, respec-

tively, as will be discussed latéBec. Il A). Let the number

of the layers be infinite, period and the slab A thickness

We focus on the photon energy near the exciton resonance of
material A. The excitons which might be created in the B
The coefficients in Eq(8) can be rewritten in terms of the slabs can therefore be neglected because of the pronounced
well-known relation energy separation. That is, it is sufficient to consider that
excitons are present only in the A slab. Here we

1/2

2m| " noKZ
g= ﬁ ﬁw—ﬁwls—W'FI)/ (8b)

2 2

& mowl
IPud 2 b15(0) [ P=—— A7, B A B A B A B A B

8me E

i.e., using the exciton-photon coupling constant.. Equa- ¢
tions (4) and (8) are convenient for calculating the light
propagating in an arbitrary direction with wave-number vec-
tor K.

B. Excitons in a periodic structure

The schematic band diagram for the model of the one- Ev
dimensional periodic system is shown in Fig. 1, where an ! — > Z
alternating layered structure consists of two different dielec-
tric materials A and B. Here, we assume that material A is FIG. 1. Structure of a one-dimensional periodic systeimoto-
excitonically active, while material B is inactive in the pho- nic crysta) consisting of two different dielectric slabs A and B.
ton energy region we are concerned about. As examples ¢fere, material A is excitonically active, and material B is inactive.
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consider the A slabs to be thick enough to ensure that th&he wave numbeK thus introduced describes the motion
scheme of the exciton center-of-mass quantization holdghroughout the whole periodic structure, but this is not im-
Unnecessarily thick slabs, however, would make the excitomplied for motion in one slab. Substituting Ed.1) into P,(z)
levels unseparable. Hence, in this study, we employ slabighe integral in Eq(9)], and using the periodicity of(z,z’)
with an appropriate thicknesgee Sec. lllA. With this  defined above, we can show that

structure, we must treat the excitons in it with nonlocal
theory because of their spatial dispersion. The discussion in
Sec. Il A can therefore be applied to each A slab, i.e., the
lattice point of this photonic crystal. When electromagnetic §
waves propagate in the directiGnaxis) perpendicular to the o dKml , , ,
layers, thex component of the electric fiel&,(z) has to =S¢ fo du’x(u,u")Bu’),
satisfy the Maxwell equation

Pu21=s| dzX(z2E,@)

(12

for zandz’ in slab A of themth unit cell. Hereu andu’ are
intracell variables§z=ml+u andz’ =ml+u’ for O<u, u’
e(2)Ex(2) <d). The function given by the second integral in Etp) is
therefore a cell-periodic function. As we can see in 84),
the phase of the exciton polarization proceedbyor unit
=0. (9 translational operationnf—m+1). We thus find that the
exciton polarizationP,(z) also has the form of the Bloch
For the electric field in théexcitonig A slabs, we immedi- function. This appears to be physically correct, and reassures
ately obtain this equation by putting,=0 into Eq.(4) and  the existence of a Bloch-type solution for the integrodiffer-
replacinge(0,2) and x(z,z') by (2) andX(z,z'), respec- ential equation with the kernel having the periodicity we
tively. The integral in Eq(9) is again the nonlocal exciton imposed on the system. The next step in the calculation is the
polarization[denoted byP,(z)]. Since we now consider a Same as that for photonic crystélajthough it is more com-
periodic system, we have to assume some periodicity for thglicated in the present case because of the exciton term. We
dielectric constants(z) and the nonlocal polarizability expandes(z) as
X(z,z2'). Here, we assume for simplicity that there are no
Qiregt interactions b_etween excitpns in differer)t slabs. This s(Z)=2 £(G)e'®?, (133
implies that the exciton nonlocality works within each slab G
but does not extend to other slabs. In light of this assump- .
tion, we intuitively impose the following periodicity on with
X(z,2"). First, X(z,2") must have a finite value when bath  sinGd/2
andz’ are in the same A slab, while it must vanish for any s(G):eb56,o+(sa—sb)fe*'Gd’zT,
other combinations of andz’ positions. That is, Gd/2

d’Ex(2) 2

iz ¢

+4778f dz'X(z,z2" )Ex(Z")

(13b

, . wheref=d/l is the filling rate for slab A. Substituting Eqgs.
X(2.2')= x(z,z') for z and 7' in the same cell (11) and (13) into Eq. (9), we obtain the equation for the

0 for any otherz and z' positions, Fourier componenk,(G):
(109

where x(z,z") is the nonlocal polarizability in one A slab. F(G)(K+G)2=
Second, oncg(z,z') is defined in a slab, it must have the X
same form in other slabs. This may be expressed by

® 2
3) 2 [£(G-G")
GI

+47X(G,G")F(G"), (143
x(z+nl,z’ +nl)=x(z,2"), (10D \ith

forn=0,£1,+2,..., etc. S g

Equation(9) is an integrodifferential equation with peri- X(G,G')= _j j du du' X(u ur)eiK(u’fu)Jri(G’u’qu)
odically varying coefficients. The ordinary procedure for an ’ I JoJo ’ '
equation like this is to solve it using the Bloch theorem. To (14b
the author’'s knowledge, however, it does not always see ere,X(u,u’) is y(u,u’) for 0<u, u’<d, while it vanishes
generic that the integrodifferential equation has a solution o Isev;/heré. Since((l;,u’) is give’n by éq.(8) by making
B o A p0ICAcT 10 0 eK, 0 and replacin and’ by uand', respectively, we
vided that the kernel possesses some kind of periodicity ingan expre_s_s(f(G,(Is’) ".:_ﬁn analytlcalgorg_{not shlpwg here
cluding the one in Eq(10) (see Appendix B Then, to ecause it is too long The matrix to be diagonalized is
confirm it in a practical problem, let us tentatively assume a M(G,G')=(K+G)255 o
solution of the Bloch type, '

2
w

, —| =] [e(G=G")+47X:(G,G")]. (15

E(2)= 2 Fu(G)eC7r7, (19 (C)

It is easy to show, using the analytical expression of

where F,(z) is a periodic function with period, and it is  X;(G,G’), that the matrixM is Hermitian, and hence it
expanded into a Fourier seri¢§ is the reciprocal lattice  gives real eigenvalues as longas 0. Since this matrix is a
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function of v and K, the eigenvalue problem cannot be
solved using standard computer software. Accordingly, we Xet(2) =2 Cogn(2)
determine the eigenvalues by searching the zeros of the de- "
terminant for matrixM defined above. What we immediately know from Eq199 is that the spatial
variation of the effective polarizability is described by the
C. Long-wavelength approximation exciton wave function, and its intensity is determined by the

. . . ) integrated value for the exciton wave function in the slab:
The discussion presented in Sec. II B is somewhat com-

plicated because of the correct nonlocal treatment for the Jad

exciton. In the long-wavelength region, this complexity can d | N m for evenn

be reduced to a certain degree. In this subsection, we de- JO du'en(u)=) 7 (19H)

scribe a method for simplifying the calculation. First, we 0 for odd n,

fﬁ:se'g ?:rtr}::]efieslléus:r?nb:enrg;;?g;gi?g?g; ririensga(tmgitga%/vhere the integral in thenth slab is converted to the one in
) | : . =" the unit cell byz’=ml+u’. From this selection rule, we

<\, where\ is the wavelength of light. This does not imply obtain

the uniformity of the electric field throughout the photonic

crystal, but it may differ for different slabs. Second, the ex-

citon Bohr radiusa, is assumed to be much smaller than the Xeff(z):<

slab thicknessl, and therefore the nonlocal treatment is still

necessary, i.eg,<<d<l. The situation satisfying the above

requirements simultaneously, i.e.,

bdz’<,on(z’). (193

mth sla

4ed)? [pycl?| p15(0)[?m
mefi

a
3,2 Hp gyl (209
whereH,(x) is defined by

©

ay<d<l<\ (16) Ho)= S SnFLX o
n=02..[(n+1)?+b?](n+1)
could be realized by carefully selecting the structures. The
actual discussion of the structural parameters will be given iyvith
Sec. Il A. o) V2
Let us rewrite the nonlocal polarizability of the exciton _[emy d RIS
[makingK,=0 in Eq.(7)] in the form b_( 72 7 (lors—hio=1y)7 (200

wherez=ml+u, and the summation must be carried out for
X(22)=S"1X capn(D)en(z), (178 evenn. The summation given by EG20b) can be expressed
A as the analytical form

where e [ 2SbUTx) | sinnb(mi2—x)
b X = — —_ T . y
e 2| pyel 2l 15(0)]2 17 4b? sinhb sinhb /2 .
n Mow/) hwon—fiw—iy’ (21)
o . ] wherex= (w/d)u=(7/d)(z—ml). (See Appendix A for an
The polarization in slab A of thenth cell is written as evaluation of this summationUsing this polarizability, the

Maxwell equation is shown to become the simple form

Px(z):; qupn(Z)fmthslabdz,¢n(ZI)EX(Z,), (183 d2E (2)

wherez is in themth slab, and hence the integration in Eq. dz’
(18@ is carried out within thenth slab. Under the conditions which is an Ordinary differential equation_ He)%ﬁ (Z) is
given by Eq.(16), we can assume that the electric field is y . (2) given by Eq.(20a in slab A, while it vanishes in slab
nearly constant in this slab. Therefore, thg(z') term can B, However, sincey. (2) is still a function ofw, Eq.(22) has

be factored out a&,(zy,) from the integration in Eq(188,  to be solved by calculating the determinant for the relevant
matrix, as discussed in Sec. I B.

w2
+(E) [e(2)+47X1(2)]Ex(2) =0, (22

PUD= Cogn(DEzn) | dzen(z) |
n mth slab D. Optical response
= xei(Z)Ex(2), (18b) Since the exciton polarization obtained in Sec. Il B indi-
cates the response of the system to the external light field,
wherez,,, implies an appropriate position in timeth slab, but  the optical absorption could be calculated by the same non-
it just means the cell address since the electric field is unilocal approach. However, the exciton polarization is a func-
form in this slab. Moreover, in the second equality of Eq.tion of the position because of the nonlocal nature of the
(18b), the E,(z,,) term is factored out from the summation, treatment. This makes it difficult to calculate the optical re-
since it does not depend an This electric field is denoted sponse(e.g., absorption which is in contrast to the local
E.(z), and thez dependence is recovered to show that itsystem in which the polarization depends upon the photon
varies from one slab to another in the whole photonic crystalenergy but not upon the position. The convenient quantity
Here we introduce the effective polarizability by defined in the local system, such as the absorption coeffi-
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n-th unit cell whereE) andE, are the amplitudes of the electric field
propagating forward and backward, respectively, for jhe

\

<
-

B A polariton branch (=1,2). HereQ; is the wave number of
Pn(z) the bulk polariton, such that
En(z) 1
En  —» Q= la%+aa+ (-){(a%~ )+ 4B}
Eni <« )
Here, the parameters @; areq,= \e,(w/c), and
€a
>Z 2m) 12 NT7)
Zn-1+d Zn Zn+d Zn+1 9={7z (hwo—fiwqgtiy)™s,

FIG. 2. Schematic picture of light propagating in the vicinity
of the nth unit cell. Here, the system consists of groujBA) Wis 2
(BA)..(BA)B, i.e., N unit (BA) cells plus an extra B layer, sand- B=2msa(%> Air.
wiched between the air.

Using the electric fields defined above, the exciton polariza-

cient, therefore becomes meaningless in the nonlocal syion in slab A of thenth unit cell is expressed s
tems. In light of the above, here we calculate the optical 5 . .
response of the periodic systems in terms of tranfer matrices. E;leQiz )+ E 1eQj(ztd=2)
This is a primitive but straightforward approach, and there- Pn(2)= le Q%—q? . (26
fore it will also help to confirm the other more elaborate J
approach in the preceding subsections, i.e., to solve the int&he electric fields in each layer can be connected to those in
grodifferential equation. the neighboring layers using the Maxwell boundary condi-

Let us consider a periodic system like the one in Fig. 1tions (MBC's):
except that it has a finite numbéx) of A slabs. Figure 2
shows the schematic picture for the light propagating in the Fn1(zn)=En(z,) and F|_,(z,)=E\(z,) (273
vicinity of the nth unit cell, where the normal incidence
to the interface is employed. Here, we assume the grou
(BA)(BA)...(BA)B structure, i.e.N unit (BA) cells plus an
extra B layer, sandwiched between the air. Let the B-A
interface in thenth unit cell have the coordinate=z, and
=(n—1)I for n=1,2,...N. Therefore, the far left inter-
face between the air and layer B has the coordirate En(zht+d)=F\(z,+d) (270
=—(I—d), and the far right one between layer B and the air
hasz=NI. First, the electric fields outside the systéra., in
the ain have the form

Bt the left interface of slab Az=z,), and

E.(z,+d)=F,(z,+d)

at the right interface of slab Az& z,+d). These four con-
ditions are insufficient for determining the six coefficients in
Egs.(24) and(25); two more conditions are needed to deter-
mine all of them. These are known as additional boundary

— igg(z+1—d igg(d—I1-z
Fien(2) =Fiel® "+ Freltl ) (233 Conditions (ABC’s), which arise from the two polariton
at the left end with the amplitudes for the incideft and ~ Modes in slab A? The assumption mentioned before for
reflected F,) waves, and neglecting the dead lay¢Eq. (5)] gives what is called the
Pekar's boundary conditiorf§,i.e., the simplest form of the
Frigni(2) = F €90z~ ND (23p  ABC's. They require that the polarization vanishes at the
surface of slab A, such that
at the right end with the amplitude for the transmitted wave
(Fy). Heregy=w/c. In layer B, the fieldF,,_,(z) in thenth Pn(z,)=0 and Py(z,+d)=0. (28)
unit cell is

The transfer matrix between the amplitud&s (, ,F,_,) in
+ —_ . . . . .
= —F' ez z1md f E- bz (24 layer B and thoseK, ,F,,) in its neighboring B layer is thus
n-1(2)=Fn1 ' n-1 " 24 uniquely determined. Next, by using the MBC’s to connect

whereq,= Vep(w/c) is the wave number of light in layer B, Fie(2) t0 Fo(2), and to connecF(z) to Fign(2),
andF,_, andF,_, indicate the amplitudes of waves propa- E (A =F(d—]
gating in the opposite directions. Whifg,_4(z) is defined er(d=1)=Fo(d=1),
for n=1,2,...N, let Fy(2) be the field in the extra B layer
furthest to the right. Since slab A is excitonic, the electric
field E,(2) in thenth slab A consists of the two components
arising from the two polariton branches, Fn(ND =Fign( NI,

Fler(d—1)=Fo(d—1),

2 and

E = EfigiQj(z=27) L E~giQj(zat+d~2) ' 25 , ,
n(2) jgl[ n €l n €l 1, (29 FRND=F/gn(ND),
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ues, we can immediately obtain the photonic band structure

120 4 CuCl/NaCl (neglecting exciton effectsNext we determind from the
] % /d - contour poi_nt at which the leveb o= w4 intergects_with the pho-
100 4 tonic band, and therefore=2#/K at this point. Naturally,
o fo, = 3.2025 eV only the lower-right half-plane d<I) has meaning. The
£ numbers in Fig. 3 indicate the/d ratios for the correspond-
- 807 ing lines. This diagram can be divided into three regions
a depending on whether the exciton resonance locates in the
§ 60 7 first band, in the second band, or within the photonic band
5 gap. The bottom area in this diagram gives a very higth
£ 407 ratio, allowing the long-wavelength approximation, while the
o area close to the straight lind€1) gives a low ratio, which
o 20- means the nonlocal treatment of excitons is required. Among
the possible combinations bfandd, we select four samples
0 | , —— (A, B, C, and D to study the polariton effects in detail in this

. ; —
0 20 40 60 80 100 120 paper. Sample A is selected because it is a typical one where
period, | (nm) nonlocal _effects are important; sample B because_ it is_ at an
intermediate point between samples A and C in Fig. 3;
FIG. 3. Contour lines of tha/d ratio for a variety of combina- sample C because the long-wavelength approximation may
tions of | and d values at a fixed CuCl exciton resonanke,;  be possible for this sample; and sample D because the exci-
=3.2025eV. Here. =27/K, whereK is the wave number dtw;s  ton resonance is located within the photonic band gap. The
in the photonic band. The numbers indicate Nie ratios for the  (I,d) values in nm and\/d ratios are(81.3, 73.1 2.4 for
corresponding line. Samples studied in this paper are denoted A, Bample A,(81.3, 51.0 3.7 for sample B(81.3, 10.0 23 for
C,and D. sample C, and95.5, 73.} 2.6 for sample D. Other param-

] ] ) . _eters used are the mass and the resonance of a CuCl exciton,
we obtain the relations among the amplitudes in the aifyhich arem= 2.5m, and# w,s= 3.2025 eV, respectively; the
(Fi, Fr, andFy): dielectric constants, which are,=5.00 for CuCl ande,,

E =2.46 for NaCl; and the exciton-photon coupling constant,
(FI =(MtNMs)_1MgFt- (299  which isA r=5.5meV. We set the damping facterto 0
r for calculating the polariton dispersions. For the calculation
Matrices Mg, M,, and M indicate the transfer matrices Of optical responses, we usgcof 0.001 meV.
from the air to layer B at the left end, from layer B via layer
A to layer B, and from layer B to the air at the right end,
respectively. The explicit forms of matrices are given in Ap-
pendix C. Reflectanc® and transmittanc& can be calcu- The correct nonlocal calculations were carried out using
lated by the formulation in Sec. Il B to obtain the energy dispersions
of excitonic polaritons in photonic crystals. Figures 4, 5, 6,
and 7 correspond to samples A, B, C, and D, respectively. In
all figures in this paper, the andK values are normalized in
the unit of 2wc/l and 2r7/1, respectively. Prior to mention-
using Eq.(29). The absorbancé is given by A=1-R  ing the details of polariton dispersions, we should ascertain
- T where the exciton resonance is located in the photonic band.
Here the term “photonic band” implies the band obtained by
. RESULTS neglecting the exciton effects.e., usinge,=5.00 and ne-
glecting the frequency-dependent part in the dielectric con-
stant of CuCJ. The insets show the photonic ban@®lid
In practical calculations, we employ the periodic systemlines) together with the exciton resonaneg, location (dot-
consisting of CuCl as slab A and NaCl as slab B. This isted line. The band gap producddhaded areaseparates the
because CuCl exhibits a strong exciton-photon coupling, anghotonic band into the first and second bands. While the
the band gaps of these materials are energetically well sepaxciton resonance for samples A, B, and C is close to the top
rated. The importance of the nonlocal treatment for the exef the first photonic band, it exists within the photonic band
citon is determined by how strongly the light field varies in gap for sample D.
the region where excitons exist. We therefore introduce the We now turn our attention to the energy dispersions of the
ratio \/d as a measure of the effectiveness for treating exciexcitonic polaritons. Among these figures, Fig. 4 covers the
tons nonlocally(\ is the wavelength, and the CuCl slab  widest energy range. Since we are interested in the energy
thickness. Evidently, the smallek/d ratio augments the im- region near the exciton resonance, the ordinate of the upper
portance of the nonlocal treatment, while the langéd ratio  graph in Fig. 4 is magnified in the vicinity of the resonance.
diminishes it and permits the long-wavelength approxima-The lower graph is, conversely, scaled down to cover a wider
tion. Figure 3 displays the contour lines of théd ratio for ~ energy range than in the upper one and the two are joined
a variety of combinations df andd values at a fixed CuCl together continuously. Other figures depict only the vicinity
exciton resonancé w,,=3.2025eV. For givert andd val-  of the exciton resonance. The steep vertical (oheshed ling

B. Polariton dispersions

2 2

: (30

Fy

Fi

and T=

A. Selection of structures
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K IV. DISCUSSION

FIG. 4. Polariton dispersion for sample A. Here, and in Figs. 5, | this section, on the basis of the polariton dispersions
6, and 7, locations of size-quantized exciton levels are indicated bl’)btained in Sec. Ill, we extend the investigation in order to
bars together with their indem. The inset shows the dispersion of elucidate the kinetics of polaritons in photonic crystals. The
the photonic crystali.e., neglecting the exciton effe¢tand the points covered in the following discussion 4t the relation
location of the ex‘.:iton resonanegs. In all ﬁgures.in this papex between the nonlocal behavior in periodic systems and the
andK are normalized by zc/l and 2r/l, respectively. bulk materials’ nonlocality with the focus on samples A and

B, (2) the possibility of long-wavelength approximation for

for samples A, B, and C is the photonic bafig., exciton
effects are neglect¢dwhich is identical to the first band in
the inset. For sample D, the dashed litiee real part of the 0.213 g Jl

complex wave numberis at the Brillouin-zongBZ) edge, ,
indicating that this energy region is within the photonic band [ 4-
gap. With exciton-photon coupling, the monotonic energy
dispersion(dashed ling of the photonic crystal is found to 0.212
split into many small bands separated by small band gaps. :
Note that these bands are dispersive, i.e., giving finite group ro87
velocities (see Sec. IV A In the higher-energy region for [
samples A, B, and D, and in the whole energy region for 3 0.211f : : ;
sample C, we observe the anticrossing of the dispersion 2'5 | g
curves, i.e., the two curves approach one another and then - : | :
move apart due to the repulsion between them. The band e __// |
energy values in the higher-energy region for samples A, B, 0.210F~ 07 |
and D coincide well with the size-quantized exciton levels, |
the positions of which are indicated by bars together with .
their indexn. This coincidence, however, gradually declines C: (I, d)=(81.3, 10.0) nm | .
with decreasing energy. In the lower-energy region, there is 0.209 i L L L i
evidently no correspondence between them. In contrast, ev- 0 0.1 02 0.3 0.4 05
ery band energy of sample C reproduces the size-quantized K

exciton level. Finally, note that real polariton dispersions are

observed for sample D, despite the fact that the exciton reso- FIG. 6. Polariton dispersion for sample C.

photonic band
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0 0.1 0.2 0.3 0.4 0.5 fied in the vicinity of the exciton resonancé) Dispersion ex-
K panded into the extendd€l zone at lower energies, artk) disper-
sion redrawn in the first Brillouin zone at higher energies. Bulk
FIG. 7. Polariton dispersion for sample D. polariton dispersions using the renormalized exciton mass are

shown by broken lines in botfa) and (b).
samples A and C, an(@®) the optical responses of systemsin ) ) o _
which the exciton resonance is in the photonic bésaiple  erties of polaritons in periodic systems. Next, the bulk exci-
A) and in the photonic band gd{samp|e D We regard ton diSperSiOf[Eq. (31b)] does not suit our purpose. This is

sample A as the primary object for the present study andecause we have to observe the slzgaantized exciton lev-
consider the others as references. els through the window of the BZ with peridd A simple

check suggests that we should renormakzie Eq. (31b) by

a factor ofl/d in order to reproduce in the exciton levels at

. . _ every BZ edgé! This K normalization is equivalent to nor-
~In order to clarify what happens to the energy dispersionnajizing the massn by (d/I)2. The dash-dotted line in Fig.

in periodic structures when there is exciton-photon couplinggy) s the bulk exciton dispersion obtained using the mass
we expanded the polariton dispersion near the resonance f@5/|)2m:2_02m0_ Using thee . value and the above exci-
sample A into the extendeld zone up to the eighth BFsee  on “gispersion, we computed the polariton dispersion in
Fig. 8@a)]. The upper graph in Fig.(8) is more magnified erms of Eq.(318 [see the broken line in Fig.(8]. This

than the lower one. The mutual arrangement of the smalkrve demonstrates an excellent agreement with the energy
bands in this _flgurésolld I|_ne3 reminds us of the sp_httmg of values of small polariton bands at the edge of every BZ. The
the electronic bands in what we call semiconductorsame calculation was carried out for sampléFBy. 9) using
superlatticeg® In light of this, we attempted to account for the mass @/1)2m=0.98n,. The calculation for sample B
the formation of these small bands in FigaB The polariton 5156 reproduces the polariton band edge to a certain degree.
dispersionwp in bulk CuCl material is ordinarily obtained The coincidence, however, is not better than for sample A, in
by solving the equatidf] particular near the energy region where the exciton-photon

A. Extension to higher-order zones

cK |2 e A © coupling is stronger. This appears to result from the weak-

(_) =gt | 7o '-T) sk (319  ening of the nonlocality because of the thinner sample B

Wpk hwiso) 15k~ Wpk slab, which, however must be studied in more detail. These

taking only the resonance term into account and neglectinfeSults are similar to what occurs in the electronic bands of
the damping. Herep,x is the exciton dispersion: Semiconductor superlatticés.These small bands can thus

found be interpreted as the bands which the lower branch of

h2K?2 bulk polariton dispersion has split into due to the coherent

W1sK= @150 (31b  interference of the polaritonic waves in the periodic systems.
Now that the lower branch of the polariton is obtained in
In uniform bulk materialsg . should be the same ag, the  the form mentioned above, its counterpart, i.e., the upper
dielectric constant of CuCl, and neglecting the second ternbranch, must also show up in the energy dispersion. This can
in Eg. (318 gives the photonic dispersion in bulk material be discovered in the higher-energy region in Fig. 4, which is
without resonance. Therefore, it seems natural to usefor replotted as Fig. @). The broken line in Fig. &) represents
the dielectric constant computed from the photonic bandhe upper branch of bulk polariton calculated by the same

(dashed line in Fig. # when we investigate the bulk prop- procedure used for the lower branch. This line exactly repro-

2m
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duces the line for the anticrossings. This implies that the
anticrossing phenomena are caused by the coupling of the _, ! !
size-quantized exciton states with the upper branch of the 1
bulk polariton. Since the upper branch is already a result of
the exciton-photon coupling, the phenomena can be regarded . ,
as the product of the sequentially occurring double exciton- /\_,\ A[\ /\
photon coupling. The behavior of the polariton dispersion ° A4 \/ \j b
shown in Figs. 8 and 9 entirely results from the excitonic ’
nonlocality and the structural periodicity. If the exciton in
the slab were treated as an assembly of local oscillators with 1 L . '
the resonance energies of size-quantized states, the photon 1
would couple with each oscillator separately; the resulting e
polariton dispersion would be merely the sum of the inde-
pendent polariton dispersions for every oscillator. This point @R‘ ﬂ R
will be discussed further in Sec. IV B. \ !
Next, in Fig. 10 we show the in-depth profiles of the
electric fieldE,(z) (dotted lineg and the exciton polarization e
P.(2) (solid lineg at several typical points of the polariton -
dispersion for sample AFig. 8. The abscissa is normalized 0 1 2 3 4

in the unit ofl. Since these profiles were calculated with the Z
electromagnetic energy fixed in the crystal, the relative

strength (.)fEX(Z) and P,(z) can be compared between .dlf' the exciton polarizatiotsolid line9 at several typical points of the
ferent points[10(a), 10(b), 10(C)'_ etc]. As could be easily polariton dispersion for sample &-ig. 8). The abscissa is normal-
predicted, theP,(z) component is much weaker th&3}(z)  jzed in the unit ofl.

at point a(photonlike point and it increases gradually as it

moves along the dispersion curve toward poinfdlOThis is polarizability [Eq. (7a)]. At intermediate points 1), 10(c),
evidently caused by the transition of the primary componengng 1qd), we clearly observe a gradual change of the domi-
of the polariton from the photon to the exciton. A more de-nance from photonic to excitonic.

tailed examination shows that the polarization is exactly pro- The group velocity of the polariton calculated from the
portional to the photon field at point (). This tendency, dispersion curve for sample A is shown in Fig. 11. Hegés
however, gradually diminishes as the excitonic character ofiormalized in the unit of light velocitg. The peaks and the
the polariton fades in. At point 1), the fine structure of the valleys of v in this figure correspond to photonlike and
polarization appears to be completely determined by thexcitonlike components, respectively, of polaritons. Since
form of the exciton wave functiomn(=14), regardless of the the v, value for the photonic crystali.e., neglecting the
photon field. This is a natural result of the nonlocal treatmengxciton is estimated at about 0.44, the polariton group ve-
of the exciton, which we recognize by checking the nonlocalocity calculated is extraordinarily smaller. In the absence of

0.2095
0

E&P
o
QO

A: (I, d)=(81.3, .7-3.1)I nm

FIG. 10. In-depth profiles of the electric fie{dotted lineg and
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FIG. 11. Group velocity of the polariton calculated from the
dispersion curve for sample A. Heng, is normalized in the unit of
the light velocityc.

verging points of the series in this approximation. These re-
sults may be interpreted as follows. First, for light with
longer wavelength, the exciton states behave like the local
oscillators with discrete energy levels. The photon coupled
ith these dispersionless states creates a polariton. This po-
ariton dispersion, however, must split into a number of

periodic exciton system without the photon. Therefore, th Il bands in th f the structural periodicity. Th
following probably inaccurate but intuitively understandable SMal bancs in the presence of the structural periodicity. 1he
mall bands thus produced are zone folded to make a series

interpretation may be possible: the excitons at rest are accel!"2 . g
P y be p n Fig. 12. At any rate, the LW approximation cannot repro-

erated by photons while the photons are decelerated by eX’ . -
citons yPp P y duce the accurate nonlocal results for samples with this slab
' thickness.
The results for the narrower sldsample ¢ are shown in

B. Long-wavelength approximation Fig. 13. The overall behavior is almost the same as the non-

Here, we calculate the polariton dispersions using théocal behavior in Fig. 6: the two results agree completely and
long-wavelengtiLW) approximation. We select samples A therefore only the results for the !_W approximation are
and C as wide and narrow slabs, respectively, for this purshown herg. There are a couple of differences .between them,
pose, i.e., to investigate the applicability of this approxima-nowever. First, extra small bands showed up just below the
tion. The results for sample A are shown in Fig. (lid n=0 exc!ton I_evel. Sec_:ondl, several anticrossings disap-
lines). The dispersion is greatly magnified near the resonancBeared with this approximation. Both of these phenomena
to closely display the fine structures observed just below th&ccur for the same reasons mentioned in the discussion of
n=0 exciton level. The dotted line indicates the accurate™id.- 12. If we disregard the above discrepancies, the LW
nonlocal result(replotted from Fig. & We see from this @pproximation can _be con5|dered_ as a good approximation
figure that LW approximation is not a good approximationfor a sample with this small slab thickness. We know that the
for sample A. The lowest two bandsolid lineg are quanti- Parameters for sample Ql=81.3nm, d=10nm, \
tatively very different from those obtained by the accurate=230nm, anda,=0.7nm satisfy the conditions given by
method (dotted line$, though they show similar variations. EQ- (16). The criteria intuitively given for the LW approxi-
Note that a number of extra small bands separated by smdmation to hold are thus verified to be true by the practical
band gaps appear just below the=0 exciton level in the ~Problem.

LW approximation, which did not show up in the nonlocal _

result. This kind of fine structure is also found in higher- C. Optical response

energy regiongnot shown here there is a series of small  |n this subsection, we demonstrate for our periodic sys-
bands converging on every exciton level of even indiges ( tems the optical responséasbsorbance and reflectanazl-
=0,2,4,...). There are no exciton-photon coupled states fotulated using the method described in Sec. llID. For this
odd indices 6=1,3,5,...), because of the selection rule de-purpose, we select sample A as a typical example of the
duced from this approximatiofEq. (19b)]. Different from  system in which the exciton resonance exists in the photonic
the nonlocal resul(see the discussion of Fig),4we can band, and sample D as an example of the one whose exciton
specify the locations of discrete exciton levels as the conresonance falls on the photonic band gap.

light, all exciton bands are dispersionless, g+ 0, which
can be easily shown by applying the Bloch theorem to th
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For sample A, we display optical responses at three en-
ergy regions in separate figures for clarity, focusing on the .
; ; 0.0
regions around the exciton resonancew,d, the 0.2099 0.2100
Iongltu_dmal—exc_lton Ievgl @1S+ALT),_and the higher r{ )
>1) size-quantized exciton levels. Figure 14 shows the ab-
sorbance and the reflectance aroung,. The solid lines FIG. 14. Absorbance and reflectance spectra for sample A

indicate the results obtained using the total number of unjground the exciton resonance,(). Here, and in Figs. 15, 16, and
cellsN=100 and the dotted lines for one laydi<1). The 17, the solid lines are the results obtained using the total number of

. . . . » unit cellsN=100 and the broken lines are for one lay&r<1).
long tics depicted with the index show the positions of the The long tics depicted with the indaxshow the positions of the

lower polariton(LP) energy at the size-quantized wave nUM- o er nolariton(LP) energy at the size-quantized wave numbers.
bers. The position fon=0 is beyond the scope of this fig-

ure. The absorbance spectrum fd=1 is magnified by a interpretation that the bulk polariton dispersion splits into
factor of 10. We find a series of the energy regions with theseveral small bands because of the periodicity of the struc-
reflectance close to unity. This indicates that no opticakure.

modes can exist in the crystal at these energy ranges, and Next, let us briefly check the spectra in other energy
therefore these ranges are regarded as the polaritonic barghges. Figure 15 shows the absorbance and the reflectance
gaps. Evidently, these ranges show no optical absorption. Ispectra around;s+ A 1. The spectra near the longitudinal-
contrast, we observe optical absorption due to the formatioexciton resonance are somewhat complicated, because anti-
of small bands in the remaining energy ranges. Since no sualrossing(polariton coupling occurs in this region as well as
phenomenon occurs fdd= 1, this is evidently caused by the the band formation. This complexity obscures the band for-
periodic structure. We have thus recognized the formation ofnation. The polariton coupling is more clearly demonstrated
the polaritonic bands, although true continuous bands are nit the spectra near the higher exciton levels, an example of
formed in some regions for the number of unit cells usedwhich is shown in Fig. 16 fon=18. As discussed above, the
here (N=100). When we compare the results fd.=100 size-quantized exciton states with higher indices can be re-
andN=1, it appears that the peaks observedNs+1 ex- garded as a local oscillator with an isolated well-defined en-
tend toward the higher-energy side Msis increased, and ergy level. The spectra in Fig. 16 appear to show the band
finally form the bands. The LP positions do not coincide withsplitting by the coupling of the local oscillator af= 18 with

the absorbance peaks for one laylr<1). This discrepancy the upper branch of bulk polaritons. The small valley be-
occurs because the upper polaritdyP) is mixed into the tween the two absorption peaks could be regarded as what
actual polaritonic wave as an evanescent wave. In fact, theve call the polaritonic LT(longitudinal-transvergesplitting
calculation neglecting the UP branch was found to exacthfor the local oscillaton=18.

reproduce the absorbance peaks at LP positions. The results Finally, we show in Fig. 17 the optical response for
shown in Fig. 14 coincide very well with the polariton dis- sample D, in which the exciton resonance exists within the
persions discussed earliéFigs. 4 and 8 quantitatively as photonic band gap. Evidently, if exciton effects are ne-
well as qualitatively. The above discussion reconfirms theglected, there must exist no optical modes in this crystal for
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FIG. 15. Absorbance and reflectance spectra for sample A F|G. 16. Absorbance and reflectance spectra for sample A
around the longitudinal-exciton state{s+Ay). around the higherr(>1) size-quantized exciton level.

the energy range shown in the figure. Noteworthy here is thad,psequent coupling with the periodicity. This is exactly an
ducing the exciton-photon coupling effects into this crystal.gyperlatticed® What differs between the two? Needless to
Moreover, the spectra observed are essentially no different,, one treats electrons while the other treats excitons. In

from those for sample A. The similar fact was describedg, o atices, the phenomenon is caused by electronic tunnel-
before in Sec. lll A, where the polariton bands were found to

. . ing through thin barriers with finite potential heights. This
be formed for sample D n the photonic l_Jand gap. The abpv?unneling can be regarded agjlue that connects electronic
results lead to a discussion of the exciton-photon couplin

scheme in periodic systems, %tates in different sites. Since we consider a hard wall, the

Possible coupling schemes in the present systeriare tunneling of excitons never occurs. The glue in our case is
(photon plus excitonplus periodicity, (i) (exciton plus pe- undogbtedly the photon. The phenome'non'may be intuitively
I'IOdICIty) p|US phOtOﬂ, an(ﬂlll) (perlod|C|ty p|US phOtth'US eXp_Ialne_d as follows: the_ PhO'[.Oﬂ, -WhICh IS .COUp|Ed- to gn
exciton, wherea plus b) plus c implies thata andb couple exciton in one slab, _modlfl_es its fle_ld by this cou_pllng; it
first followed by the coupling witrc. This classification is Propagates to the neighboring slab; it couples again with an
valid when the coupling of one paig¢b) is much stronger €Xciton in this slab; and so on. The exciton in a slab thus
than the other twdb-c and c-a). Among these coupling couples with the exciton in a different slab via the photon.
schemes(iii ) may be ruled out because it requires us to firstThe situation may be made clearer if we begin with darkness
build the photonic band and then couple it with an exciton.(very low optical density In darkness, coupling schenfie)

As discussed in the preceding paragraph, despite the fact theolds. The exciton shows constant discrete energy levels
there is not a photofii.e., the counterpart in the coupling (instead of bandsat anyK value. Therefore, the group ve-
near the exciton resonance in sample D, we observed polalecity is zero and the exciton is localized in each slab. When
iton bands and absorptions in this energy region. Thereforehe light is switched on, schentg) does not hold any more
the coupling scheme must be different frdiin). Our inter-  because of the presence of photons and schéimtakes
pretations for Figs. 3—5 are entirely based on sch@mand  over, producing the energy dispersions shown before. The
seem to be valid. As mentioned, the bulk polariton is firstfinal states thus attained indicate that the exciton component
created as a result of a strong coupling between a photon ardcalized in each slab in darkness could be construed as be-
an exciton and then its dispersion splits into bands by théng delocalized with the assistance of the photon.
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(4) The long-wavelength approximation is found to be a
|. . good approximation for the sample with the CuCl slab thick-
ness of d=10nm, whereas it is not the one with
=73.1nm. However, this approximation produces a number
of extra small bands converging on the exciton level, be-
cause it assumes a uniform electric field in the slab.

(5) The absorption and reflectance spectra calculated us-
ing the transfer matrices exactly agree with the polariton dis-
persions mentioned ifil) and (2) above. Two kinds of ab-
sorption spectra are observed dudijahe bands formed by
the structural periodicity, an@i) the exciton levels split due
to the coupling between the exciton and the upper polariton
ssomner® : 3 branch.

0.2465 0.2466 0.2467 (6) The results for the sample where the exciton reso-

) nance is in the photonic band gap suggests that the exciton-
photon coupling is much stronger than photon-periodicity
and periodicity-exciton couplings.

(7) As a result, in the present periodic systems, the exci-
ton component localized in each slab in darkness could be
construed as being delocalized with the assistance of the
photon.

®
LP 1"
.o T T T T T

n=1

| D: (1, d)=
_(95.5, 73.1) nm

0.5

ABSORBANCE

1 APPENDIX A: ANALYTICAL EVALUATION
: OF SERIES[EQS. (7a) AND (20b)]

REFLECTANCE

The summation in Eq7a was evaluated elsewhere using
the integration in the compléx plane. Here, we give a more
straightforward way to evaluate it. This summatiglenoted
S,;) can be modified to

o mnz _ anZ
% Sin——sin
FIG. 17. Absorbance and reflectance spectra for sample D s _2 d d
around the exciton resonance (). 17~ n2+ a2
V. CONCLUSION ( d\? f (77( ) (77( -, )) AL
=m| —- —(Z'-2)|-f |z (Z+2 ]|,
A theory has been presented for the polaritgiise wh) | 2\ d & d

exciton-photon coupled stajem the periodic structures of
dielectric medium(photonic crystals Treating the excitons
in the CuCl lattice points by nonlocal theory, we have clari-
fied the kinetics of excitonic polaritons, which is exhibited in

where we replacedh+1 by n, and the functionf,(x) is
defined by

the whole system of one-dimensionally arranged CuCl/NaCl fax)=> cosnx. (A2)
guantum slabs. The results are summarized as follows. n=1 n’+a?

(1) The monotonic energy dispersion in photonic crystal__ . L .
(i.e., neglecting exciton effedtss found to change into an 1S Series is known to have an analytical fofm
assembly of many small bands separated by small band gaps 7 cosha(m—x) 1
as a result of introducing exciton effects. The polariton dis- faX) = ————— = (A3)
persions thus produced show very different behavior among 2a  sinham 2a

samples with different CuCl slab thicknesses, in particularsy, g« y<2+ Since 0<z. z'<d. then 0< (wld) (2’ +2)

near the exciton resonance, indicating the nonlocality of the_, .4 7r.<(77/d)(z’ —'z)<7r. ’Hence formuldA3) can

exciton. L o __be used to calculaté,((7/d)(z’ +2z)). On the other hand,
(2) The above polariton dispersion is interpreted as belnqhe above formula can also be used to calculate

produced by the splitting of the bulk lower-polariton diSper'fa((w/d)(z’—z)) by replacing its argument bys(d)|z’

sion in the presence of the structural periodicity. The coun-° 7|, because & (w/d)|z' —z|<. This replacement does

terpart of this, i.e_., the upper p_olariton disp_ersion, anticro;seﬁot change the result. We thus obtain the analytical expres-
the discrete exciton levels lying at the higher-energy S|deSion for the polarization in EqS8).

This phenomenon can be regarded as double exciton-photon The summation given by Eq20b) (denotedS,) can be

coupling. .
(3) The group velocity of light is shown to be greatly rewritten as

reduced in the presence of excitons. The polarization in- o
depth profiles have a form reflecting the exciton wave func- S,= - (Ad)
tion, because of the excitonic nonlocality. n=13,..(n>+b?)n



5676 S. NOJIMA PRB 59

replacingn+1 by n, where x=(#w/d)u and hence €x <2, the formula of Eq.(A3) can be used to calculate
<. Here the summation must be carried out for add F,,(2x). The formula obtained fofS, gives the function
Since we focus ofK;=0, thena defined in Eq.(7b) is the  Hy(x) in Eq. (21).

same ad defined in Eq(200. Consider a function defined

by APPENDIX B: BLOCH THEOREM FOR
INTEGRODIFFERENTIAL EQUATION

X
Fo(x)= fo dX f(x), (AS) Here we demonstrate, by the group-theoretic apprdach,
o ) o ) that the Bloch theorem can be applied to the operator includ-
wherefy(x) is given by replacing with ain Eq. (A2). Since  ing the integral operator described by
0<x< for x in Eq. (A4), this condition falls within the

requirement &Xx<24r for formula (A3) to hold. This inte- d2

gration gives a formula H= E +a(z)+ dz'B(z,z") (B1)
F0= sinnx_ _ lz[ _ sinhb(w—x) _ X under some kind of spatial periodicity for the coefficients
n=1 (n®+b%n 2b sinhbm 2b? a(z) andB(z,z"). Here, needless to say, the integral opera-

(A6) tor in Eq. (Bl)—when it operates onto a function
Here we used~,(0)=0. ThenS, can be obtained by sub- ‘P(Z)_,'m_p“e_s mtegraﬂog c\)/\\;erz_ aftgr taking th'is f_unctlon
tracting the two series as¢(z') into its integrand. We introduce a translation opera-
tor T,, by

“ sinnx - sinnx

=2 ——— X2 ———— Tap(2)=@(z+nl). (B2)

4 (n2+b?)n 4. (n2+b?)n . .

Our problem is equivalent to the problem of whether or not
1 T, always commutates witHi:

=Fy(0)~ g Fo(2X). (A7) n A
o . [Tn,H]=0. (B3)
The second series in EGA7) was evaluated by changing
by 2n’ (n’=1,2,3,...) and using Eq(A6). Since 6<2x  Then, we compute the commutator for a functip(e),

[Tn,H](p(2)=a(Z+n|)(p(Z+n|)—a(Z)(p(Z+n|)+fjo dz’ﬁ(z+n|,z’)<p(z’)—£o dz' B(z,z')p(z’' +nl). (B4)

By replacing the variable’ by z’ +nl in the first integral in Eq(B4), we obtain

[To,H]le(2)=[a(z+nl)—a(2)]e(z+nl)+ fio dzZ'[B(z+nl,z" +nl)—B(z,2")]e(Z' +nl). (B5)

Since the background dielectric constant texz) is periodic in our system, this part evidently commutates With Under

the periodicity we imposed intuitively before on the kermlz,z') [Egs. (10a and (10b)], the second term in EqB5)
evidently vanishes. Therefore, our assumption for the kernel's periodicity supports the existence of the Bloch-type wave
function. Noteworthy here is that one of our intuitive assumptidtts (109 ] is unnecessary to satisfy the Bloch theorem. In
other words, the Bloch theorem holds only if

a(ztnl)=a(z) and B(z+nl,z'+nl)=B(z,2") (B6)

for any combinations ok and z’' in the periodic structures. These conditions permit us to treat the system, in which the
nonlocality extends to other slalgseighboring and next neighboring slabs, etc.

APPENDIX C: TRANSFER MATRICES

1 1+qo0p 1—0qoqp *
MS_E((l—qoqbl)ei%“d) (1+qoq, He 'l =D ) (CY
972 1- qoqb ’

and
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o 1 gitp(l—d) )—1 giQud giQad 1 1
Clay  —gpeet Qe Q%! -Q -Q,
Qi—a9)™"  (Q3-g) ! (Qi=q") et (Qy-g*) e\ 0 0
| @)t (Q-a) e Q- (QG-)! 0 0
1 1 glQ1d giQ2d gldp(l=d) 1
Q1 Q. — Qe — Qe gpe'®! - —qy
(c3)
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