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Optical response of excitonic polaritons in photonic crystals

S. Nojima
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

~Received 3 September 1998!

Nonlocal investigations are presented for exciton-photon coupling in photonic crystals consisting of two
kinds of alternating slabs~CuCl/NaCl!, for which excitons exist only in one~CuCl! of the two slabs. Studies
are carried out for several typical combinations of period and slab thickness. The lower branch of the excitonic
polariton for this system is found to split into many small bands separated by small band gaps~polariton gaps!.
This phenomenon is explained as the band splitting caused by the coherent interference of polaritonic waves in
periodic systems. At the same time, the group velocity of light is greatly reduced in the presence of the
excitons. The present nonlocal study demonstrates a double exciton-photon coupling, in which the upper
branch of the polariton couples again with the size-quantized exciton states. A long-wavelength approximation
is also presented along with a discussion of its validity for simplifying the nonlocal theory. The absorbance and
reflectance spectra computed using the transfer matrices exactly reproduce the above small bands for the same
systems. An examination of the coupling scheme among excitons, photons, and the structural periodicity
indicates that the former two couple with each other more strongly than the other combinations of them. The
exciton component of polariton, which is localized in each slab in darkness, could be construed as being
delocalized with the assistance of the photon.@S0163-1829~99!05208-X#
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I. INTRODUCTION

The optical properties of semiconductor microstructu
have been the subject of intense investigations for a co
of decades.1 Here the author wishes to classify the optic
response of these structures from his own point of vie
First, the system should be either~A! an isolated microstruc
ture or ~B! an assembly of microstructures. Second, the
tical response must involve either (A8) the photons or (B8)
the matter particles~or their elementary excitations! as well
as the photons. Among the four possible combinations
these factors, two groups AA8 and AB8 are well known. A
typical example of group AA8 is Mie scattering, where the
light is scattered by a microstructure whose size is com
rable to the wavelength of light. The other group AB8 has
been extensively studied up to now. This model was f
quently employed for analyzing optical devices that exp
microstructures as well as understanding their optical pr
erties. In group AB8, most optical processes are treated
processes which could occur in an isolated microstruc
~e.g., a single quantum well!.1 The optical response of th
whole system~e.g., multiple quantum wells! is therefore ob-
tained by simply summing up the responses of the individ
structures.

What we call the photonic crystal seems to fall into gro
BA8. Photonic crystals,2 which in recent years have attracte
much attention, are periodic structures consisting of alter
ingly arranged dielectric materials. They should therefore
regarded as special cases in group BA8, i.e., periodic assem
blies of microstructures. In ordinary photonic environme
made of uniform medium, the optical energy bands are
more than monotonic, i.e., linear and continuous. In contr
with the photonic crystals, we may be able to obtain
desired photonic bands by properly designing the cry
structure. In particular, the photonic band gap—formed i
PRB 590163-1829/99/59~8!/5662~16!/$15.00
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manner analogous to the electronic band gap in electr
cally periodic systems—could be useful in controlling t
light in the medium, because it disallows the presence
optical modes in photonic crystal.3 Considerable effort has
been devoted to achieving usable photonic crystals exp
mentally, and to exploring theoretically such crystals w
larger band gaps.4

It seems to the author, however, that the study of photo
crystals has so far focused on the formation of photo
bands and band gaps. Indeed, photonic crystal exhibits
unusual photon energy disperion, but this should be regar
as a space for light. For notable optoelectronic phenomen
occur in this space, there must be some other particip
which act on the stage of this photonic dispersion. Th
other participants should be matter particles~electrons and
holes!5,6 or their elementary excitations~excitons!.7 The au-
thor thus believes that the photonic crystal should be con
ered as not only a space for light but also a stage for
physics of the optical properties of matter. This could
done, for example, by casting the above particles onto
stage, or the optical energy dispersion of photonic cryst
This is an intense motivation for studying the last gro
(BB8). One possible solution for this idea may exist in
regular arrangement of active media, which exhibits ene
exchange between the matter and the photon syst
through the electronic or excitonic transitions. In fact, so
notable aspects may be anticipated for the optical respo
of arranged active media when these structures are no lo
isolated and some couplings between them can therefor
presumed. Several features arising from this cooperati
have been reported elsewhere.7–9 The coherent interferenc
of photons in an ordered system~ordinary photonic crystal!
appears to give an impetus to the above study from a slig
different direction. At any rate, the participation of matt
particles and their elementary excitations will undoubte
5662 ©1999 The American Physical Society
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enrich the optical response in photonic crystals.
From this point of view, the author initiated the study

photonic crystals in which excitons exist at all lattice point7

Subsequently, in order to ascertain what would occur if g
media were employed instead at lattice points,
proposed5,6 photonic crystals in which all lattice points ar
made of the same gain material embedded in other diss
tive medium. Using those crystals, we clarified t
enhancement5 and polarization anisotropy6 of optical gain. In
the present paper, we extend previous study7 of excitons in
photonic crystals. Using the nonlocal exciton theory, we
vestigate the exciton-photon coupling~polariton effects! in
one-dimensional photonic crystals. The purpose of this
vestigation is to isolate the kinetics of excitonic polarito
which may be exhibited in the whole system of regula
arranged microstructures.

II. THEORY

A. Nonlocal excitons in a slab

Excitons in a macroscopic-scale system must be tre
using the nonlocal theory, because they spread throug
the whole solid with an appropriate dispersion.10 This is true
as long as we consider the systems larger than a very s
system like a quantum well. Let us begin with the gene
Maxwell equation for electric fieldE~r ! with space-
dependent dielectric constant «~r ! and exciton
polarization:11,12

“3@“3E~r !#5S v

c D 2F«~r !E~r !

14pE dr 8x~r ,r 8!E~r 8!G . ~1!

The integral in this equation indicates the nonlocal exci
polarization. The nonlocal polarizability of excitonx(r ,r 8)
is
d
ke
-
s
s
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he
n
e
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l

n

x~r ,r 8!52S e

m0v D 2

upvcu2(
l

cl~0,r 8!* cl~0,r !

\vl2\v2 ig
, ~2!

in the site representation, where only the resonant term
taken. Here,cl(0,r ) indicates an exciton wave function o
statel with the wave-function value at the origin for th
internal motion of the exciton. In Eq.~2!, pvc is the momen-
tum matrix element of the optical transition between the c
duction and the valence bands,13 and g is the phenomeno-
logical damping factor. Ordinary notations are used for
other parameters.

Next, consider a slab with thicknessd, which is located
between thez coordinates of 0 andd with no bounds in thex
andy directions. In order to obtain the equation for the lig
propagating in this slab~or a one-dimensionally modulate
system! with an arbitrary in-plane wave-number vector, w
assume for a while that this system has appropriate per
Lx andLy in the x andy directions, respectively. Using th
Bloch theorem in two dimensions, we next expand the el
tric field E~r ! and dielectric constant«~r ! into Fourier series,
such that

E~r ![E~r i ,z!5(
Gi

E~K i1Gi ,z!ei ~K i1Gi !r i ~3a!

and

«~r ![«~r i ,z!5(
Gi

«~Gi ,z!eiGir i. ~3b!

Here we introduce the in-plane wave-number vectorK i .
Substituting Eq.~3! into Eq. ~1! and taking the limit of the
infinite Lx and Ly values, we obtain the Maxwell equatio
for the one-dimensionally modulated system:
“3@“3E~K i ,z!#1 iK0@e3~“3e!1“•e2e•“#E~K i ,z!1K0~e•K02K0
•e!E~K i ,z!

5S v

c D 2F«~0,z!E~K i ,z!14pSE dz8x~K i ,z,z8!E~K i ,z8!G , ~4!
-
-

whereK05(K i,0). Heree is an identity vector operator, an
it replaces itself by a vector that precedes or follows it li
(a3e)b5a3b anda(e–b)5a–b. Next, we assume for sim
plicity that the 1s exciton is confined within two hard wall
on the both sides of the slab. This assumption correspond
neglecting the dead layer effects near the walls, which a
from the finite size of the exciton. The wave function for t
exciton in such a system is

cl~0,r !5f1s~0!S21/2eiK ir iwn~z!, ~5a!
to
e

with

wn~z!5S 2

dD 1/2

sinKnz. ~5b!

In Eq. ~5a!, f1s(r) is the wave function of the internal mo
tion of the 1s exciton, andwn(z) describes the center-of
mass motion in thez direction. HereS is the area under
consideration, andKn5(p/d)(n11) is the size-quantized
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wave number (n50,1,2,...), and henceul&5uK i ,n&. Substi-
tuting Eq.~5! into Eq.~2! and replacingK i by Gi , we obtain

x~r i ,r i8 ,z,z8!52S e

m0v D 2

upvcu2uf1s~0!u2S21

3 (
Gi ,n

eiGi~r i2r i8!wn~z!wn~z8!

\vGin
2\v2 ig

. ~6a!
e

t
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ne
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Here,r5(r i ,z), r 85(r i8 ,z8), and

\vGin
5\v1s1

\2Gi
2

2m
1

\2Kn
2

2m
, ~6b!

wherem5me1mh andm215me
211mh

21. Equation~6! can
be rewritten asx(r i2r i8 ,z,z8). Its Fourier transform, which
appears as the kernel of the integration in Eq.~4!, becomes
e

x~K i ,z,z8!5S21E d~r i2r i8!x~r i2r i8 ,z,z8!e2 iK i~r i2r i8!

52S e

m0v D 2

upvcu2uf1s~0!u2S21(
n50

`
wn~z!wn~z8!

\vK in
2\v2 ig

58S e

pm0\v D 2

mdupvcu2uf1s~0!u2S21(
n50

` sin
p

d
~n11!z sin

p

d
~n11!z8

~n11!21a2
, ~7a!

with

a5S 2m

\2 D 1/2d

p S \v1s1
\2K i

2

2m
2\v2 ig D 1/2

. ~7b!

By analytically evaluating the series in Eq.~7! ~see Appendix A!, we obtain the final form of the nonlocal polarizability in on
dimension:

x~K i ,z,z8!5S e

m0v D 2 2m

\2
upvcu2uf1s~0!u2S21H cosq@d2~z1z8!#2cosq@d2uz2z8u#

q sinqd
, :qÞ0

1

2d
@2d2uz2z8u2~z1z8!#~2uz2z8u1z1z8!, :q50,

~8a!
c-

e of
B

nced
hat

e

.
e.
with

q5S 2m

\2 D 1/2S \v2\v1s2
\2K i

2

2m
1 ig D 1/2

. ~8b!

The coefficients in Eq.~8! can be rewritten in terms of th
well-known relation

upvcu2uf1s~0!u25
«am0

2v1s
2

8pe2
DLT ,

i.e., using the exciton-photon coupling constantDLT . Equa-
tions ~4! and ~8! are convenient for calculating the ligh
propagating in an arbitrary direction with wave-number ve
tor K i .

B. Excitons in a periodic structure

The schematic band diagram for the model of the o
dimensional periodic system is shown in Fig. 1, where
alternating layered structure consists of two different diel
tric materials A and B. Here, we assume that material A
excitonically active, while material B is inactive in the ph
ton energy region we are concerned about. As example
-

-
n
-
s

of

materials A and B, we will take CuCl and NaCl, respe
tively, as will be discussed later~Sec. III A!. Let the number
of the layers be infinite, periodl, and the slab A thicknessd.
We focus on the photon energy near the exciton resonanc
material A. The excitons which might be created in the
slabs can therefore be neglected because of the pronou
energy separation. That is, it is sufficient to consider t
excitons are present only in the A slab. Here w

FIG. 1. Structure of a one-dimensional periodic system~photo-
nic crystal! consisting of two different dielectric slabs A and B
Here, material A is excitonically active, and material B is inactiv
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consider the A slabs to be thick enough to ensure that
scheme of the exciton center-of-mass quantization ho
Unnecessarily thick slabs, however, would make the exc
levels unseparable. Hence, in this study, we employ s
with an appropriate thickness~see Sec. III A!. With this
structure, we must treat the excitons in it with nonloc
theory because of their spatial dispersion. The discussio
Sec. II A can therefore be applied to each A slab, i.e.,
lattice point of this photonic crystal. When electromagne
waves propagate in the direction~z axis! perpendicular to the
layers, thex component of the electric fieldEx(z) has to
satisfy the Maxwell equation

d2Ex~z!

dz2 1S v

c D 2F«~z!Ex~z!

14pSE
2`

`

dz8X~z,z8!Ex~z8!G50. ~9!

For the electric field in the~excitonic! A slabs, we immedi-
ately obtain this equation by puttingK i50 into Eq.~4! and
replacing«(0,z) and x(z,z8) by «(z) and X(z,z8), respec-
tively. The integral in Eq.~9! is again the nonlocal exciton
polarization@denoted byPx(z)#. Since we now consider a
periodic system, we have to assume some periodicity for
dielectric constant«(z) and the nonlocal polarizability
X(z,z8). Here, we assume for simplicity that there are
direct interactions between excitons in different slabs. T
implies that the exciton nonlocality works within each sl
but does not extend to other slabs. In light of this assum
tion, we intuitively impose the following periodicity on
X(z,z8). First,X(z,z8) must have a finite value when bothz
andz8 are in the same A slab, while it must vanish for a
other combinations ofz andz8 positions. That is,

X~z,z8!5 Hx~z,z8! for z and z8 in the same cell
0 for any otherz and z8 positions,

~10a!

wherex(z,z8) is the nonlocal polarizability in one A slab
Second, oncex(z,z8) is defined in a slab, it must have th
same form in other slabs. This may be expressed by

x~z1nl,z81nl !5x~z,z8!, ~10b!

for n50,61,62,..., etc.
Equation~9! is an integrodifferential equation with per

odically varying coefficients. The ordinary procedure for
equation like this is to solve it using the Bloch theorem.
the author’s knowledge, however, it does not always se
generic that the integrodifferential equation has a solution
the Bloch type. The group-theoretic approach to the in
grodifferential operator can show it to be true indeed p
vided that the kernel possesses some kind of periodicity
cluding the one in Eq.~10! ~see Appendix B!. Then, to
confirm it in a practical problem, let us tentatively assum
solution of the Bloch type,

Ex~z!5(
G

Fx~G!ei ~G1K !z, ~11!

whereFx(z) is a periodic function with periodl, and it is
expanded into a Fourier series~G is the reciprocal lattice!.
e
s.
n

bs

l
in
e
c

e
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-

m
f
-
-
-

a

The wave numberK thus introduced describes the motio
throughout the whole periodic structure, but this is not i
plied for motion in one slab. Substituting Eq.~11! into Px(z)
@the integral in Eq.~9!#, and using the periodicity ofx(z,z8)
defined above, we can show that

Px~z![SE
2`

1`

dz8X~z,z8!Ex~z8!

5SeiKmlE
0

d

du8x~u,u8!Ex~u8!, ~12!

for z andz8 in slab A of themth unit cell. Here,u andu8 are
intracell variables~z5ml1u andz85ml1u8 for 0,u, u8
,d!. The function given by the second integral in Eq.~12! is
therefore a cell-periodic function. As we can see in Eq.~12!,
the phase of the exciton polarization proceeds byKl for unit
translational operation (m→m11). We thus find that the
exciton polarizationPx(z) also has the form of the Bloch
function. This appears to be physically correct, and reass
the existence of a Bloch-type solution for the integrodiffe
ential equation with the kernel having the periodicity w
imposed on the system. The next step in the calculation is
same as that for photonic crystals,4 although it is more com-
plicated in the present case because of the exciton term.
expand«(z) as

«~z!5(
G

«~G!eiGz, ~13a!

with

«~G!5«bdG,01~«a2«b! f e2 iGd/2
sinGd/2

Gd/2
, ~13b!

where f 5d/ l is the filling rate for slab A. Substituting Eqs
~11! and ~13! into Eq. ~9!, we obtain the equation for the
Fourier componentFx(G):

Fx~G!~K1G!25S v

c D 2

(
G8

@«~G2G8!

14pXf~G,G8!#Fx~G8!, ~14a!

with

Xf~G,G8!5
S

l E0

l E
0

l

du du8X~u,u8!eiK ~u82u!1 i ~G8u82Gu!,

~14b!

Here,X(u,u8) is x(u,u8) for 0,u, u8,d, while it vanishes
elsewhere. Sincex(u,u8) is given by Eq.~8! by making
K i50 and replacingz andz8 by u andu8, respectively, we
can expressXf(G,G8) in an analytical form~not shown here
because it is too long!. The matrix to be diagonalized is

M ~G,G8!5~K1G!2dG,G8

2S v

c D 2

@«~G2G8!14pXf~G,G8!#. ~15!

It is easy to show, using the analytical expression
Xf(G,G8), that the matrixM is Hermitian, and hence i
gives real eigenvalues as long asg50. Since this matrix is a
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function of v and K, the eigenvalue problem cannot b
solved using standard computer software. Accordingly,
determine the eigenvalues by searching the zeros of the
terminant for matrixM defined above.

C. Long-wavelength approximation

The discussion presented in Sec. II B is somewhat co
plicated because of the correct nonlocal treatment for
exciton. In the long-wavelength region, this complexity c
be reduced to a certain degree. In this subsection, we
scribe a method for simplifying the calculation. First, w
consider the situation in which the A slabs are so thin t
the electric field can be regarded as constant in each, i.ed
!l, wherel is the wavelength of light. This does not imp
the uniformity of the electric field throughout the photon
crystal, but it may differ for different slabs. Second, the e
citon Bohr radiusab is assumed to be much smaller than t
slab thicknessd, and therefore the nonlocal treatment is s
necessary, i.e.,ab!d, l . The situation satisfying the abov
requirements simultaneously, i.e.,

ab!d, l !l ~16!

could be realized by carefully selecting the structures. T
actual discussion of the structural parameters will be give
Sec. III A.

Let us rewrite the nonlocal polarizability of the excito
@makingK i50 in Eq. ~7!# in the form

x~z,z8!5S21(
n

cnwn~z!wn~z8!, ~17a!

where

cn52S e

m0v D 2 upvcu2uf1s~0!u2

\v0,n2\v2 ig
. ~17b!

The polarization in slab A of themth cell is written as

Px~z!5(
n

cnwn~z!E
mth slab

dz8wn~z8!Ex~z8!, ~18a!

wherez is in themth slab, and hence the integration in E
~18a! is carried out within themth slab. Under the condition
given by Eq.~16!, we can assume that the electric field
nearly constant in this slab. Therefore, theEx(z8) term can
be factored out asEx(zm) from the integration in Eq.~18a!,

Px~z!>(
n

cnwn~z!Ex~zm!E
mth slab

dz8wn~z8!

>xeff~z!Ex~z!, ~18b!

wherezm implies an appropriate position in themth slab, but
it just means the cell address since the electric field is u
form in this slab. Moreover, in the second equality of E
~18b!, the Ex(zm) term is factored out from the summatio
since it does not depend onn. This electric field is denoted
Ex(z), and thez dependence is recovered to show tha
varies from one slab to another in the whole photonic crys
Here we introduce the effective polarizability by
e
e-

-
e

e-

t
,

-

l

e
in

i-
.

t
l.

xeff~z!5(
n

cnwn~z!E
mth slab

dz8wn~z8!. ~19a!

What we immediately know from Eq.~19a! is that the spatial
variation of the effective polarizability is described by th
exciton wave function, and its intensity is determined by t
integrated value for the exciton wave function in the slab

E
0

d

du8wn~u8!5H A8d

p~n11!
for even n

0 for odd n,

~19b!

where the integral in themth slab is converted to the one i
the unit cell byz85ml1u8. From this selection rule, we
obtain

xeff~z!5S 4ed

m0\ D 2 upvcu2uf1s~0!u2m

p3v2
HbS p

d
uD , ~20a!

whereHb(x) is defined by

Hb~x!5 (
n50,2,...

`
sin~n11!x

@~n11!21b2#~n11!
, ~20b!

with

b5S 2m

\2 D 1/2
d

p
~\v1s2\v2 ig!1/2, ~20c!

wherez5ml1u, and the summation must be carried out f
evenn. The summation given by Eq.~20b! can be expressed
as the analytical form

Hb~x!5
p

4b2 F12
2 sinhb~p2x!

sinhbp
1

sinhb~p/22x!

sinhbp/2 G ,
~21!

wherex5(p/d)u5(p/d)(z2ml). ~See Appendix A for an
evaluation of this summation.! Using this polarizability, the
Maxwell equation is shown to become the simple form

d2Ex~z!

dz2
1S v

c D 2

@«~z!14pXeff~z!#Ex~z!50, ~22!

which is an ordinary differential equation. HereXeff (z) is
xeff (z) given by Eq.~20a! in slab A, while it vanishes in slab
B. However, sincexeff (z) is still a function ofv, Eq.~22! has
to be solved by calculating the determinant for the relev
matrix, as discussed in Sec. II B.

D. Optical response

Since the exciton polarization obtained in Sec. II B ind
cates the response of the system to the external light fi
the optical absorption could be calculated by the same n
local approach. However, the exciton polarization is a fu
tion of the position because of the nonlocal nature of
treatment. This makes it difficult to calculate the optical r
sponse~e.g., absorption!, which is in contrast to the loca
system in which the polarization depends upon the pho
energy but not upon the position. The convenient quan
defined in the local system, such as the absorption co
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cient, therefore becomes meaningless in the nonlocal
tems. In light of the above, here we calculate the opti
response of the periodic systems in terms of tranfer matri
This is a primitive but straightforward approach, and the
fore it will also help to confirm the other more elabora
approach in the preceding subsections, i.e., to solve the
grodifferential equation.

Let us consider a periodic system like the one in Fig.
except that it has a finite number~N! of A slabs. Figure 2
shows the schematic picture for the light propagating in
vicinity of the nth unit cell, where the normal incidenc
to the interface is employed. Here, we assume the gr
~BA!~BA!...~BA!B structure, i.e.,N unit ~BA! cells plus an
extra B layer, sandwiched between the air. Let the B
interface in thenth unit cell have the coordinatez5zn
5(n21)l for n51,2,...,N. Therefore, the far left inter-
face between the air and layer B has the coordinatz
52( l 2d), and the far right one between layer B and the
hasz5Nl. First, the electric fields outside the system~i.e., in
the air! have the form

F left~z!5Fie
iq0~z1 l 2d!1Fre

iq0~d2 l 2z! ~23a!

at the left end with the amplitudes for the incident (Fi) and
reflected (Fr) waves, and

F right~z!5Fte
iq0~z2Nl ! ~23b!

at the right end with the amplitude for the transmitted wa
(Ft). Hereq05v/c. In layer B, the fieldFn21(z) in thenth
unit cell is

Fn21~z!5Fn21
1 eiqb~z2zn212d!1Fn21

2 eiqb~zn2z!, ~24!

whereqb5A«b(v/c) is the wave number of light in layer B
andFn21

1 andFn21
2 indicate the amplitudes of waves prop

gating in the opposite directions. WhileFn21(z) is defined
for n51,2,...,N, let FN(z) be the field in the extra B laye
furthest to the right. Since slab A is excitonic, the elect
field En(z) in thenth slab A consists of the two componen
arising from the two polariton branches,

En~z!5(
j 51

2

@En
1 jeiQ j ~z2zn!1En

2 jeiQ j ~zn1d2z!#, ~25!

FIG. 2. Schematic picture of light propagating in the vicini
of the nth unit cell. Here, the system consists of groups~BA!
~BA!...~BA!B, i.e., N unit ~BA! cells plus an extra B layer, sand
wiched between the air.
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whereEn
1 j and En

2 j are the amplitudes of the electric fiel
propagating forward and backward, respectively, for thj
polariton branch (j 51,2). HereQj is the wave number of
the bulk polariton, such that

Qj5
1

&
@q21qa

21~2 ! j$~q22qa
2!214B%1/2#1/2.

Here, the parameters inQj areqa5A«a(v/c), and

q5S 2m

\2 D 1/2

~\v2\v1s1 ig!1/2,

B52m«aS v1s

\c D 2

DLT .

Using the electric fields defined above, the exciton polari
tion in slab A of thenth unit cell is expressed as12

Pn~z!5B(
j 51

2 En
1 jeiQ j ~z2zn!1En

2 jeiQ j ~zn1d2z!

Qj
22q2

. ~26!

The electric fields in each layer can be connected to thos
the neighboring layers using the Maxwell boundary con
tions ~MBC’s!:

Fn21~zn!5En~zn! and Fn218 ~zn!5En8~zn! ~27a!

at the left interface of slab A (z5zn), and

En~zn1d!5Fn~zn1d!

and

En8~zn1d!5Fn8~zn1d! ~27b!

at the right interface of slab A (z5zn1d). These four con-
ditions are insufficient for determining the six coefficients
Eqs.~24! and~25!; two more conditions are needed to dete
mine all of them. These are known as additional bound
conditions ~ABC’s!, which arise from the two polariton
modes in slab A.14 The assumption mentioned before f
neglecting the dead layer@Eq. ~5!# gives what is called the
Pekar’s boundary conditions,14 i.e., the simplest form of the
ABC’s. They require that the polarization vanishes at t
surface of slab A, such that

Pn~zn!50 and Pn~zn1d!50. ~28!

The transfer matrix between the amplitudes (Fn21
1 ,Fn21

2 ) in
layer B and those (Fn

1 ,Fn
2) in its neighboring B layer is thus

uniquely determined. Next, by using the MBC’s to conne
F left(z) to F0(z), and to connectFN(z) to F right(z),

F left~d2 l !5F0~d2 l !,

F left8 ~d2 l !5F08~d2 l !,

FN~Nl !5F right~Nl !,

and

FN8 ~Nl !5F right8 ~Nl !,
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we obtain the relations among the amplitudes in the
~Fi , Fr , andFt!:

S Fi

Fr
D5~Mt

NMs!
21MgFt . ~29!

Matrices Ms , Mt , and Mg indicate the transfer matrice
from the air to layer B at the left end, from layer B via lay
A to layer B, and from layer B to the air at the right en
respectively. The explicit forms of matrices are given in A
pendix C. ReflectanceR and transmittanceT can be calcu-
lated by

R5UFr

Fi
U2

and T5UFt

Fi
U2

, ~30!

using Eq. ~29!. The absorbanceA is given by A512R
2T.

III. RESULTS

A. Selection of structures

In practical calculations, we employ the periodic syste
consisting of CuCl as slab A and NaCl as slab B. This
because CuCl exhibits a strong exciton-photon coupling,
the band gaps of these materials are energetically well s
rated. The importance of the nonlocal treatment for the
citon is determined by how strongly the light field varies
the region where excitons exist. We therefore introduce
ratio l/d as a measure of the effectiveness for treating e
tons nonlocally~l is the wavelength, andd the CuCl slab
thickness!. Evidently, the smallerl/d ratio augments the im
portance of the nonlocal treatment, while the largerl/d ratio
diminishes it and permits the long-wavelength approxim
tion. Figure 3 displays the contour lines of thel/d ratio for
a variety of combinations ofl andd values at a fixed CuC
exciton resonance\v1s53.2025 eV. For givenl andd val-

FIG. 3. Contour lines of thel/d ratio for a variety of combina-
tions of l and d values at a fixed CuCl exciton resonance\v1s

53.2025 eV. Herel52p/K, whereK is the wave number at\v1s

in the photonic band. The numbers indicate thel/d ratios for the
corresponding line. Samples studied in this paper are denoted A
C, and D.
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ues, we can immediately obtain the photonic band struc
~neglecting exciton effects!. Next we determineK from the
point at which the level\v5\v1s intersects with the pho-
tonic band, and thereforel52p/K at this point. Naturally,
only the lower-right half-plane (d, l ) has meaning. The
numbers in Fig. 3 indicate thel/d ratios for the correspond
ing lines. This diagram can be divided into three regio
depending on whether the exciton resonance locates in
first band, in the second band, or within the photonic ba
gap. The bottom area in this diagram gives a very highl/d
ratio, allowing the long-wavelength approximation, while t
area close to the straight line (d5 l ) gives a low ratio, which
means the nonlocal treatment of excitons is required. Am
the possible combinations ofl andd, we select four samples
~A, B, C, and D! to study the polariton effects in detail in thi
paper. Sample A is selected because it is a typical one w
nonlocal effects are important; sample B because it is a
intermediate point between samples A and C in Fig.
sample C because the long-wavelength approximation m
be possible for this sample; and sample D because the e
ton resonance is located within the photonic band gap.
~l,d! values in nm andl/d ratios are~81.3, 73.1! 2.4 for
sample A,~81.3, 51.0! 3.7 for sample B,~81.3, 10.0! 23 for
sample C, and~95.5, 73.1! 2.6 for sample D. Other param
eters used are the mass and the resonance of a CuCl ex
which arem52.5m0 and\v1s53.2025 eV, respectively; the
dielectric constants, which are«a55.00 for CuCl and«b
52.46 for NaCl; and the exciton-photon coupling consta
which is DLT55.5 meV. We set the damping factorg to 0
for calculating the polariton dispersions. For the calculat
of optical responses, we usedg of 0.001 meV.

B. Polariton dispersions

The correct nonlocal calculations were carried out us
the formulation in Sec. II B to obtain the energy dispersio
of excitonic polaritons in photonic crystals. Figures 4, 5,
and 7 correspond to samples A, B, C, and D, respectively
all figures in this paper, thev andK values are normalized in
the unit of 2pc/ l and 2p/ l , respectively. Prior to mention
ing the details of polariton dispersions, we should ascer
where the exciton resonance is located in the photonic ba
Here the term ‘‘photonic band’’ implies the band obtained
neglecting the exciton effects~i.e., using«a55.00 and ne-
glecting the frequency-dependent part in the dielectric c
stant of CuCl!. The insets show the photonic bands~solid
lines! together with the exciton resonancev1s location~dot-
ted line!. The band gap produced~shaded area! separates the
photonic band into the first and second bands. While
exciton resonance for samples A, B, and C is close to the
of the first photonic band, it exists within the photonic ba
gap for sample D.

We now turn our attention to the energy dispersions of
excitonic polaritons. Among these figures, Fig. 4 covers
widest energy range. Since we are interested in the en
region near the exciton resonance, the ordinate of the up
graph in Fig. 4 is magnified in the vicinity of the resonanc
The lower graph is, conversely, scaled down to cover a wi
energy range than in the upper one and the two are joi
together continuously. Other figures depict only the vicin
of the exciton resonance. The steep vertical line~dashed line!
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PRB 59 5669OPTICAL RESPONSE OF EXCITONIC POLARITONS IN . . .
for samples A, B, and C is the photonic band~i.e., exciton
effects are neglected!, which is identical to the first band in
the inset. For sample D, the dashed line~the real part of the
complex wave number! is at the Brillouin-zone~BZ! edge,
indicating that this energy region is within the photonic ba
gap. With exciton-photon coupling, the monotonic ener
dispersion~dashed line! of the photonic crystal is found to
split into many small bands separated by small band g
Note that these bands are dispersive, i.e., giving finite gr
velocities ~see Sec. IV A!. In the higher-energy region fo
samples A, B, and D, and in the whole energy region
sample C, we observe the anticrossing of the dispers
curves, i.e., the two curves approach one another and
move apart due to the repulsion between them. The b
energy values in the higher-energy region for samples A
and D coincide well with the size-quantized exciton leve
the positions of which are indicated by bars together w
their indexn. This coincidence, however, gradually declin
with decreasing energy. In the lower-energy region, ther
evidently no correspondence between them. In contrast,
ery band energy of sample C reproduces the size-quan
exciton level. Finally, note that real polariton dispersions
observed for sample D, despite the fact that the exciton re

FIG. 4. Polariton dispersion for sample A. Here, and in Figs
6, and 7, locations of size-quantized exciton levels are indicate
bars together with their indexn. The inset shows the dispersion o
the photonic crystal~i.e., neglecting the exciton effects! and the
location of the exciton resonancev1s . In all figures in this paper,v
andK are normalized by 2pc/ l and 2p/ l , respectively.
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nance is within an energy region which would disallow o
tical modes in the absence of excitons.

IV. DISCUSSION

In this section, on the basis of the polariton dispersio
obtained in Sec. III, we extend the investigation in order
elucidate the kinetics of polaritons in photonic crystals. T
points covered in the following discussion are~1! the relation
between the nonlocal behavior in periodic systems and
bulk materials’ nonlocality with the focus on samples A a
B, ~2! the possibility of long-wavelength approximation fo

,
y

FIG. 5. Polariton dispersion for sample B.

FIG. 6. Polariton dispersion for sample C.
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samples A and C, and~3! the optical responses of systems
which the exciton resonance is in the photonic band~sample
A! and in the photonic band gap~sample D!. We regard
sample A as the primary object for the present study
consider the others as references.

A. Extension to higher-order zones

In order to clarify what happens to the energy dispers
in periodic structures when there is exciton-photon coupli
we expanded the polariton dispersion near the resonanc
sample A into the extendedK zone up to the eighth BZ@see
Fig. 8~a!#. The upper graph in Fig. 8~a! is more magnified
than the lower one. The mutual arrangement of the sm
bands in this figure~solid lines! reminds us of the splitting o
the electronic bands in what we call semiconduc
superlattices.15 In light of this, we attempted to account fo
the formation of these small bands in Fig. 8~a!. The polariton
dispersionvbK in bulk CuCl material is ordinarily obtained
by solving the equation16

S cK

vbK
D 2

5«pc1S «aDLT

\v1s0
D v1sK

v1sK2vbK
, ~31a!

taking only the resonance term into account and neglec
the damping. Here,v1sK is the exciton dispersion:

v1sK5v1s01
\2K2

2m
. ~31b!

In uniform bulk materials,«pc should be the same as«a , the
dielectric constant of CuCl, and neglecting the second te
in Eq. ~31a! gives the photonic dispersion in bulk materi
without resonance. Therefore, it seems natural to use for«pc
the dielectric constant computed from the photonic ba
~dashed line in Fig. 4!, when we investigate the bulk prop

FIG. 7. Polariton dispersion for sample D.
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erties of polaritons in periodic systems. Next, the bulk ex
ton dispersion@Eq. ~31b!# does not suit our purpose. This
because we have to observe the size-d-quantized exciton lev-
els through the window of the BZ with periodl. A simple
check suggests that we should renormalizeK in Eq. ~31b! by
a factor ofl /d in order to reproduce in the exciton levels
every BZ edge.17 This K normalization is equivalent to nor
malizing the massm by (d/ l )2. The dash-dotted line in Fig
8~a! is the bulk exciton dispersion obtained using the m
(d/ l )2m52.02m0 . Using the«pc value and the above exci
ton dispersion, we computed the polariton dispersion
terms of Eq.~31a! @see the broken line in Fig. 8~a!#. This
curve demonstrates an excellent agreement with the en
values of small polariton bands at the edge of every BZ. T
same calculation was carried out for sample B~Fig. 9! using
the mass (d/ l )2m50.98m0 . The calculation for sample B
also reproduces the polariton band edge to a certain deg
The coincidence, however, is not better than for sample A
particular near the energy region where the exciton-pho
coupling is stronger. This appears to result from the we
ening of the nonlocality because of the thinner sample
slab, which, however must be studied in more detail. Th
results are similar to what occurs in the electronic bands
semiconductor superlattices.15 These small bands can thu
found be interpreted as the bands which the lower branc
bulk polariton dispersion has split into due to the coher
interference of the polaritonic waves in the periodic system

Now that the lower branch of the polariton is obtained
the form mentioned above, its counterpart, i.e., the up
branch, must also show up in the energy dispersion. This
be discovered in the higher-energy region in Fig. 4, which
replotted as Fig. 8~b!. The broken line in Fig. 8~b! represents
the upper branch of bulk polariton calculated by the sa
procedure used for the lower branch. This line exactly rep

FIG. 8. Polariton dispersion replotted from Fig. 4, and mag
fied in the vicinity of the exciton resonance.~a! Dispersion ex-
panded into the extendedK zone at lower energies, and~b! disper-
sion redrawn in the first Brillouin zone at higher energies. Bu
polariton dispersions using the renormalized exciton mass
shown by broken lines in both~a! and ~b!.
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PRB 59 5671OPTICAL RESPONSE OF EXCITONIC POLARITONS IN . . .
duces the line for the anticrossings. This implies that
anticrossing phenomena are caused by the coupling of
size-quantized exciton states with the upper branch of
bulk polariton. Since the upper branch is already a resul
the exciton-photon coupling, the phenomena can be rega
as the product of the sequentially occurring double excit
photon coupling. The behavior of the polariton dispers
shown in Figs. 8 and 9 entirely results from the exciton
nonlocality and the structural periodicity. If the exciton
the slab were treated as an assembly of local oscillators
the resonance energies of size-quantized states, the ph
would couple with each oscillator separately; the result
polariton dispersion would be merely the sum of the ind
pendent polariton dispersions for every oscillator. This po
will be discussed further in Sec. IV B.

Next, in Fig. 10 we show the in-depth profiles of th
electric fieldEx(z) ~dotted lines! and the exciton polarization
Px(z) ~solid lines! at several typical points of the polarito
dispersion for sample A~Fig. 8!. The abscissa is normalize
in the unit of l. Since these profiles were calculated with t
electromagnetic energy fixed in the crystal, the relat
strength ofEx(z) and Px(z) can be compared between di
ferent points@10~a!, 10~b!, 10~c!, etc.#. As could be easily
predicted, thePx(z) component is much weaker thanEx(z)
at point a~photonlike point! and it increases gradually as
moves along the dispersion curve toward point 10~d!. This is
evidently caused by the transition of the primary compon
of the polariton from the photon to the exciton. A more d
tailed examination shows that the polarization is exactly p
portional to the photon field at point 10~a!. This tendency,
however, gradually diminishes as the excitonic characte
the polariton fades in. At point 10~e!, the fine structure of the
polarization appears to be completely determined by
form of the exciton wave function (n514), regardless of the
photon field. This is a natural result of the nonlocal treatm
of the exciton, which we recognize by checking the nonlo

FIG. 9. Polariton dispersion replotted from Fig. 5.
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polarizability @Eq. ~7a!#. At intermediate points 10~b!, 10~c!,
and 10~d!, we clearly observe a gradual change of the dom
nance from photonic to excitonic.

The group velocity of the polariton calculated from th
dispersion curve for sample A is shown in Fig. 11. Herevg is
normalized in the unit of light velocityc. The peaks and the
valleys of vg in this figure correspond to photonlike an
excitonlike components, respectively, of polaritons. Sin
the vg value for the photonic crystal~i.e., neglecting the
exciton! is estimated at about 0.44, the polariton group v
locity calculated is extraordinarily smaller. In the absence

FIG. 10. In-depth profiles of the electric field~dotted lines! and
the exciton polarization~solid lines! at several typical points of the
polariton dispersion for sample A~Fig. 8!. The abscissa is normal
ized in the unit ofl.
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5672 PRB 59S. NOJIMA
light, all exciton bands are dispersionless, i.e.,vg50, which
can be easily shown by applying the Bloch theorem to
periodic exciton system without the photon. Therefore,
following probably inaccurate but intuitively understandab
interpretation may be possible: the excitons at rest are ac
erated by photons while the photons are decelerated by
citons.

B. Long-wavelength approximation

Here, we calculate the polariton dispersions using
long-wavelength~LW! approximation. We select samples
and C as wide and narrow slabs, respectively, for this p
pose, i.e., to investigate the applicability of this approxim
tion. The results for sample A are shown in Fig. 12~solid
lines!. The dispersion is greatly magnified near the resona
to closely display the fine structures observed just below
n50 exciton level. The dotted line indicates the accur
nonlocal result~replotted from Fig. 4!. We see from this
figure that LW approximation is not a good approximati
for sample A. The lowest two bands~solid lines! are quanti-
tatively very different from those obtained by the accur
method~dotted lines!, though they show similar variations
Note that a number of extra small bands separated by s
band gaps appear just below then50 exciton level in the
LW approximation, which did not show up in the nonloc
result. This kind of fine structure is also found in highe
energy regions~not shown here!: there is a series of sma
bands converging on every exciton level of even indicesn
50,2,4,...). There are no exciton-photon coupled states
odd indices (n51,3,5,...), because of the selection rule d
duced from this approximation@Eq. ~19b!#. Different from
the nonlocal result~see the discussion of Fig. 4!, we can
specify the locations of discrete exciton levels as the c

FIG. 11. Group velocity of the polariton calculated from th
dispersion curve for sample A. Here,vg is normalized in the unit of
the light velocityc.
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verging points of the series in this approximation. These
sults may be interpreted as follows. First, for light wi
longer wavelength, the exciton states behave like the lo
oscillators with discrete energy levels. The photon coup
with these dispersionless states creates a polariton. This
lariton dispersion, however, must split into a number
small bands in the presence of the structural periodicity. T
small bands thus produced are zone folded to make a s
in Fig. 12. At any rate, the LW approximation cannot repr
duce the accurate nonlocal results for samples with this
thickness.

The results for the narrower slab~sample C! are shown in
Fig. 13. The overall behavior is almost the same as the n
local behavior in Fig. 6: the two results agree completely a
therefore only the results for the LW approximation a
shown here. There are a couple of differences between th
however. First, extra small bands showed up just below
n50 exciton level. Second, several anticrossings dis
peared with this approximation. Both of these phenome
occur for the same reasons mentioned in the discussio
Fig. 12. If we disregard the above discrepancies, the L
approximation can be considered as a good approxima
for a sample with this small slab thickness. We know that
parameters for sample C~l 581.3 nm, d510 nm, l
5230 nm, andab50.7 nm! satisfy the conditions given by
Eq. ~16!. The criteria intuitively given for the LW approxi-
mation to hold are thus verified to be true by the practi
problem.

C. Optical response

In this subsection, we demonstrate for our periodic s
tems the optical responses~absorbance and reflectance! cal-
culated using the method described in Sec. III D. For t
purpose, we select sample A as a typical example of
system in which the exciton resonance exists in the photo
band, and sample D as an example of the one whose exc
resonance falls on the photonic band gap.

FIG. 12. Polariton dispersion calculated for sample A~with a
wide slab! using the long-wavelength approximation. The dott
line indicates the accurate nonlocal result~Fig. 4!.
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For sample A, we display optical responses at three
ergy regions in separate figures for clarity, focusing on
regions around the exciton resonance (v1s), the
longitudinal-exciton level (v1s1DLT), and the higher (n
@1) size-quantized exciton levels. Figure 14 shows the
sorbance and the reflectance aroundv1s . The solid lines
indicate the results obtained using the total number of u
cellsN5100 and the dotted lines for one layer (N51). The
long tics depicted with the indexn show the positions of the
lower polariton~LP! energy at the size-quantized wave nu
bers. The position forn50 is beyond the scope of this fig
ure. The absorbance spectrum forN51 is magnified by a
factor of 10. We find a series of the energy regions with
reflectance close to unity. This indicates that no opti
modes can exist in the crystal at these energy ranges,
therefore these ranges are regarded as the polaritonic
gaps. Evidently, these ranges show no optical absorption
contrast, we observe optical absorption due to the forma
of small bands in the remaining energy ranges. Since no s
phenomenon occurs forN51, this is evidently caused by th
periodic structure. We have thus recognized the formation
the polaritonic bands, although true continuous bands are
formed in some regions for the number of unit cells us
here (N5100). When we compare the results forN5100
and N51, it appears that the peaks observed forN51 ex-
tend toward the higher-energy side asN is increased, and
finally form the bands. The LP positions do not coincide w
the absorbance peaks for one layer (N51). This discrepancy
occurs because the upper polariton~UP! is mixed into the
actual polaritonic wave as an evanescent wave. In fact,
calculation neglecting the UP branch was found to exa
reproduce the absorbance peaks at LP positions. The re
shown in Fig. 14 coincide very well with the polariton di
persions discussed earlier~Figs. 4 and 8! quantitatively as
well as qualitatively. The above discussion reconfirms

FIG. 13. Polariton dispersion calculated for sample C~with a
narrow slab! using the long-wavelength approximation. The ma
parts of the accurate nonlocal result~Fig. 6! coincide with this
approximate result.
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interpretation that the bulk polariton dispersion splits in
several small bands because of the periodicity of the st
ture.

Next, let us briefly check the spectra in other ener
ranges. Figure 15 shows the absorbance and the reflect
spectra aroundv1s1DLT . The spectra near the longitudina
exciton resonance are somewhat complicated, because
crossing~polariton coupling! occurs in this region as well a
the band formation. This complexity obscures the band f
mation. The polariton coupling is more clearly demonstra
in the spectra near the higher exciton levels, an exampl
which is shown in Fig. 16 forn518. As discussed above, th
size-quantized exciton states with higher indices can be
garded as a local oscillator with an isolated well-defined
ergy level. The spectra in Fig. 16 appear to show the b
splitting by the coupling of the local oscillator ofn518 with
the upper branch of bulk polaritons. The small valley b
tween the two absorption peaks could be regarded as w
we call the polaritonic LT~longitudinal-transverse! splitting
for the local oscillatorn518.

Finally, we show in Fig. 17 the optical response f
sample D, in which the exciton resonance exists within
photonic band gap. Evidently, if exciton effects are n
glected, there must exist no optical modes in this crystal

FIG. 14. Absorbance and reflectance spectra for sample
around the exciton resonance (v1s). Here, and in Figs. 15, 16, an
17, the solid lines are the results obtained using the total numbe
unit cells N5100 and the broken lines are for one layer (N51).
The long tics depicted with the indexn show the positions of the
lower polariton~LP! energy at the size-quantized wave numbers
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5674 PRB 59S. NOJIMA
the energy range shown in the figure. Noteworthy here is
some absorptive structures show up in the spectra by in
ducing the exciton-photon coupling effects into this cryst
Moreover, the spectra observed are essentially no diffe
from those for sample A. The similar fact was describ
before in Sec. III A, where the polariton bands were found
be formed for sample D in the photonic band gap. The ab
results lead to a discussion of the exciton-photon coup
scheme in periodic systems.

Possible coupling schemes in the present system ar~i!
~photon plus exciton! plus periodicity,~ii ! ~exciton plus pe-
riodicity! plus photon, and~iii ! ~periodicity plus photon! plus
exciton, where~a plus b! plus c implies thata andb couple
first followed by the coupling withc. This classification is
valid when the coupling of one pair (a-b) is much stronger
than the other two~b-c and c-a!. Among these coupling
schemes,~iii ! may be ruled out because it requires us to fi
build the photonic band and then couple it with an excito
As discussed in the preceding paragraph, despite the fact
there is not a photon~i.e., the counterpart in the coupling!
near the exciton resonance in sample D, we observed p
iton bands and absorptions in this energy region. Theref
the coupling scheme must be different from~iii !. Our inter-
pretations for Figs. 3–5 are entirely based on scheme~i!, and
seem to be valid. As mentioned, the bulk polariton is fi
created as a result of a strong coupling between a photon
an exciton and then its dispersion splits into bands by

FIG. 15. Absorbance and reflectance spectra for sample
around the longitudinal-exciton state (v1s1DLT).
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subsequent coupling with the periodicity. This is exactly
analog of the miniband formation in semiconduct
superlattices.15 What differs between the two? Needless
say, one treats electrons while the other treats excitons
superlattices, the phenomenon is caused by electronic tun
ing through thin barriers with finite potential heights. Th
tunneling can be regarded as aglue that connects electronic
states in different sites. Since we consider a hard wall,
tunneling of excitons never occurs. The glue in our case
undoubtedly the photon. The phenomenon may be intuitiv
explained as follows: the photon, which is coupled to
exciton in one slab, modifies its field by this coupling;
propagates to the neighboring slab; it couples again with
exciton in this slab; and so on. The exciton in a slab th
couples with the exciton in a different slab via the photo
The situation may be made clearer if we begin with darkn
~very low optical density!. In darkness, coupling scheme~ii !
holds. The exciton shows constant discrete energy le
~instead of bands! at anyK value. Therefore, the group ve
locity is zero and the exciton is localized in each slab. Wh
the light is switched on, scheme~ii ! does not hold any more
because of the presence of photons and scheme~i! takes
over, producing the energy dispersions shown before.
final states thus attained indicate that the exciton compon
localized in each slab in darkness could be construed as
ing delocalized with the assistance of the photon.

A FIG. 16. Absorbance and reflectance spectra for sample
around the higher (n@1) size-quantized exciton level.
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V. CONCLUSION

A theory has been presented for the polaritons~the
exciton-photon coupled states! in the periodic structures o
dielectric medium~photonic crystals!. Treating the excitons
in the CuCl lattice points by nonlocal theory, we have cla
fied the kinetics of excitonic polaritons, which is exhibited
the whole system of one-dimensionally arranged CuCl/N
quantum slabs. The results are summarized as follows.

~1! The monotonic energy dispersion in photonic crys
~i.e., neglecting exciton effects! is found to change into an
assembly of many small bands separated by small band
as a result of introducing exciton effects. The polariton d
persions thus produced show very different behavior am
samples with different CuCl slab thicknesses, in particu
near the exciton resonance, indicating the nonlocality of
exciton.

~2! The above polariton dispersion is interpreted as be
produced by the splitting of the bulk lower-polariton dispe
sion in the presence of the structural periodicity. The co
terpart of this, i.e., the upper polariton dispersion, anticros
the discrete exciton levels lying at the higher-energy si
This phenomenon can be regarded as double exciton-ph
coupling.

~3! The group velocity of light is shown to be great
reduced in the presence of excitons. The polarization
depth profiles have a form reflecting the exciton wave fu
tion, because of the excitonic nonlocality.

FIG. 17. Absorbance and reflectance spectra for sample
around the exciton resonance (v1s).
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~4! The long-wavelength approximation is found to be
good approximation for the sample with the CuCl slab thic
ness of d510 nm, whereas it is not the one withd
573.1 nm. However, this approximation produces a num
of extra small bands converging on the exciton level, b
cause it assumes a uniform electric field in the slab.

~5! The absorption and reflectance spectra calculated
ing the transfer matrices exactly agree with the polariton d
persions mentioned in~1! and ~2! above. Two kinds of ab-
sorption spectra are observed due to~i! the bands formed by
the structural periodicity, and~ii ! the exciton levels split due
to the coupling between the exciton and the upper polar
branch.

~6! The results for the sample where the exciton re
nance is in the photonic band gap suggests that the exc
photon coupling is much stronger than photon-periodic
and periodicity-exciton couplings.

~7! As a result, in the present periodic systems, the ex
ton component localized in each slab in darkness could
construed as being delocalized with the assistance of
photon.

APPENDIX A: ANALYTICAL EVALUATION
OF SERIES †EQS. „7a… AND „20b…‡

The summation in Eq.~7a! was evaluated elsewhere usin
the integration in the complexK plane. Here, we give a mor
straightforward way to evaluate it. This summation~denoted
S1! can be modified to

S15 (
n51

` sin
pnz

d
sin

pnz8

d

n21a2

5mS d

p\ D 2F f aS p

d
~z82z! D2 f aS p

d
~z81z! D G , ~A1!

where we replacedn11 by n, and the functionf a(x) is
defined by

f a~x!5 (
n51

`
cosnx

n21a2
. ~A2!

This series is known to have an analytical form18

f a~x!5
p

2a

cosha~p2x!

sinhap
2

1

2a2 ~A3!

for 0,x,2p. Since 0,z, z8,d, then 0,(p/d)(z81z)
,2p and2p,(p/d)(z82z),p. Hence, formula~A3! can
be used to calculatef a„(p/d)(z81z)…. On the other hand
the above formula can also be used to calcul
f a„(p/d)(z82z)… by replacing its argument by (p/d)uz8
2zu, because 0,(p/d)uz82zu,p. This replacement doe
not change the result. We thus obtain the analytical exp
sion for the polarization in Eq.~8!.

The summation given by Eq.~20b! ~denotedS2! can be
rewritten as

S25 (
n51,3,...

`
sinnx

~n21b2!n
, ~A4!
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replacing n11 by n, where x5(p/d)u and hence 0,x
,p. Here the summation must be carried out for oddn.
Since we focus onK i50, thena defined in Eq.~7b! is the
same asb defined in Eq.~20c!. Consider a function defined
by

Fb~x![E
0

x

dx fb~x!, ~A5!

wheref b(x) is given by replacingb with a in Eq. ~A2!. Since
0,x,p for x in Eq. ~A4!, this condition falls within the
requirement 0,x,2p for formula ~A3! to hold. This inte-
gration gives a formula

Fb~x!5 (
n51

`
sinnx

~n21b2!n
5

p

2b2 F12
sinhb~p2x!

sinhbp G2
x

2b2
.

~A6!

Here we usedFb(0)50. ThenS2 can be obtained by sub
tracting the two series

S25 (
n51

`
sinnx

~n21b2!n
2 (

n52,4,...

`
sinnx

~n21b2!n

5Fb~x!2
1

8
Fb/2~2x!. ~A7!

The second series in Eq.~A7! was evaluated by changingn
by 2n8 (n851,2,3,...) and using Eq.~A6!. Since 0,2x
,2p, the formula of Eq.~A3! can be used to calculat
Fb/2(2x). The formula obtained forS2 gives the function
Hb(x) in Eq. ~21!.

APPENDIX B: BLOCH THEOREM FOR
INTEGRODIFFERENTIAL EQUATION

Here we demonstrate, by the group-theoretic approac19

that the Bloch theorem can be applied to the operator inc
ing the integral operator described by

H5
d2

dz2
1a~z!1E

2`

`

dz8b~z,z8! ~B1!

under some kind of spatial periodicity for the coefficien
a(z) andb(z,z8). Here, needless to say, the integral ope
tor in Eq. ~B1!—when it operates onto a functio
w(z)—implies integration overz8 after taking this function
asw(z8) into its integrand. We introduce a translation ope
tor Tn by

Tnw~z![w~z1nl !. ~B2!

Our problem is equivalent to the problem of whether or n
Tn always commutates withH:

@Tn ,H#50. ~B3!

Then, we compute the commutator for a functionw(z),
e wave
In

h the
@Tn ,H#w~z!5a~z1nl !w~z1nl !2a~z!w~z1nl !1E
2`

`

dz8b~z1nl,z8!w~z8!2E
2`

`

dz8b~z,z8!w~z81nl !. ~B4!

By replacing the variablez8 by z81nl in the first integral in Eq.~B4!, we obtain

@Tn ,H#w~z!5@a~z1nl !2a~z!#w~z1nl !1E
2`

`

dz8@b~z1nl,z81nl !2b~z,z8!#w~z81nl !. ~B5!

Since the background dielectric constant terma(z) is periodic in our system, this part evidently commutates withTn . Under
the periodicity we imposed intuitively before on the kernelb(z,z8) @Eqs. ~10a! and ~10b!#, the second term in Eq.~B5!
evidently vanishes. Therefore, our assumption for the kernel’s periodicity supports the existence of the Bloch-typ
function. Noteworthy here is that one of our intuitive assumptions@Eq. ~10a!# is unnecessary to satisfy the Bloch theorem.
other words, the Bloch theorem holds only if

a~z1nl !5a~z! and b~z1nl,z81nl !5b~z,z8! ~B6!

for any combinations ofz and z8 in the periodic structures. These conditions permit us to treat the system, in whic
nonlocality extends to other slabs~neighboring and next neighboring slabs, etc.!.

APPENDIX C: TRANSFER MATRICES

Ms5
1

2 S 11q0qb
21

~12q0qb
21!e2 iqb~ l 2d!

12q0qb
21

~11q0qb
21!e2 iqb~ l 2d!D , ~C1!

Mg5
1

2 S ~11q0qb
21!e2 iqb~ l 2d!

12q0qb
21 D , ~C2!

and
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Mt5S 1
qb

eiqb~ l 2d!

2qbeiqb~ l 2d!D 21S eiQ1d

Q1eiQ1d
eiQ2d

Q2eiQ2d
1

2Q1

1
2Q2

D

3S ~Q1
22q2!21

~Q1
22q2!21eiQ1d

1
Q1

~Q2
22q2!21

~Q2
22q2!21eiQ2d

1
Q2

~Q1
22q2!21eiQ1d

~Q1
22q2!21

eiQ1d

2Q1eiQ1d

~Q2
22q2!21eiQ2d

~Q2
22q2!21

eiQ2d

2Q2eiQ2d

D21 S 0
0

eiqb~ l 2d!

qbeiqb~ l 2d!

0
0
1

2qb

D .

~C3!
.
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