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The binding energies and other properties of the excitonic comp{eresid systems of electrons and holes
in two and three dimension@D and 3D are calculated by a precise variational method. The mass ratios for
the limit of the stability ofX3 (eehhB are determined in both 2D and 3D cases. Two excited states of the
biexciton are found to remain bound for any mass rd&f163-18299)01608-2

I. INTRODUCTION Another interest is the information on the sizes of these
systems. Approaching the stability border, these species are
The excitonic complexegor molecule$ including the very loosely bound and therefore their siz@sot-mean-
charged excitons have considerable importance in the devedquare radii, distances between particlegbstantially in-
opment of semiconductor physics and spectroscopy. In pagrease. With the advent of nanotechnology it has become
ticular, the biexciton has been a subject of intensivepossible to fabricate small semiconductor structures where
experimentdi and theoretic&r ' investigation. The con-  the thickness of a quantum well is comparable to the size of
stituents of these systems are electrons and holes withh electron-hole system. The root-mean-square radii and the
massesng and my, interacting via Coulomb interactions. distances between the particles of these excitonic complexes
Herem} andmy, are “effective masses.” The properties and change with the mass ratio. We will point out that the
structure of these systems significantly change with the masslectron-hole distances can be quite different in different ma-
ratio o=mj/mi , and by approaching the two limiting terials.
cases, hydrogenico(=0) and positronium ¢=1) limits, Most of theoretical approaches are variational, utilizing
one arrives at two completely different worlds. different forms of basis functiorfs.” Some calculations at-
There are several discrepancies between theory and efempt to reduce the few-particle Hamiltonian to that of a
periment. The most striking one is the difference between themaller system with fewer degrees of freedom.
experimentally estimated and theoretically predicted ratio of The hydrogenic and positronium limits have been very
the binding energies of the biexciton and the exciton. Ther@xtensively studied in atomic and molecular physics, and the
are several suggestions for additional binding mechanisms tilneoretical and experimental results are in perfect agreement.
resolve these problems, for example the stronger bindindf is interesting and useful to borrow the sophisticated tech-
might be due to some localization or confinement efféct. nique of atomic and molecular physicists to study these sys-
The aim of the present paper is to investigate a clean moddééms, even though we are aware that the 3D excitonic com-
case: to pinpoint the energies of the excitonic complexeplexes(with pure Coulomb interactignare only models of
interacting via pure Coulomb forces in two and three dimenthe real experimental situation. While most of the previous
sions (2D and 3D and to show how much of the binding calculations are based on several simplifying assumptions,
energy has to be brought by other mechanisms to reconcile.g., the neglect of exchange interactions or electronic corre-
the experiment with theory. lations, the approach we present here is free from any such
In the hydrogenic limit, several systems, e.g-,(deh),  approximations and the result can be considered as virtually
H,*(ehh), Hy(eehh, Hy;"(eehhB, or H,*(eeehhhl, exact. As will be seen later, our calculation reproduces the
etc. form bound states. By changing the mass ratio and agnergies of the two limiting cases as it should.
proaching the positronium limit, the systems containing not To solve the Schringer equation of the Coulombic few-
more than four particles remain stable, but there is no proobody problem, we use the stochastic variational method with
of existence for systems consisting of more than four parcorrelated Gaussian basfs*The correlated Gaussian func-
ticles with equal mass. It is therefore intriguing to ask ations serve as a quite suitable basis for accurate calculations
question: What is the mass ratio where the stability is lost? 1bf few-electron atoms and small molecules. They have been
experiments show the existence of a stable system beyonwidely used in atomic and molecular physt€s'® The ap-
the predicted stability limit of pure Coulomb interactions, it plications include the analogous systems of excitonic com-
is a clear signature of other binding mechanisms which ar@lexes such as 4§ H,™, or the positronium molecule (BPs
not accounted for in the present model. and the binding energies are calculated up to 8—10 digits of
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accuracy. The adequate choice of the nonlinear parameters @herer stands for a row vectorr(,r,, . .. ry) whoseith

the correlated Gaussians is an essential requirement. To SSlement isr;. The elements of a positive-definite, symmetric
lect the most appropriate ones, the stochastic variationghatrix A= (A;) are variational parameters which character-
method has been used. The stochastic variational methqge the basis function.

procedure. This method is proved to be quite successful igependence. The separation of the center-of-mass motion

solving various few-particle problenis. ~ from Eq. (3) can be easily done by imposing the following
The plan of this paper is as follows. The Introduction is constraints om:1°

followed by Sec. Il, where we outline the problem and the

method of solution. In Sec. Il we present the results for 3D NN ) _
and 2D systems. The results are discussed in Sec. V. 21 kEl AU =0 (i=1,...N-1),
]j= =
4
Il. MODEL OF EXCITONIC COMPLEXES AND METHODS N
OF CALCULATION > > A=,
j=1 k=1

The general Hamiltonian of the excitonic complexes, the . , .
wherec is an arbitrary, positive constant common to each

systems ofN, electrons in positions,, . . . ,ry_andNy, holes . X , : )
> i ¢ pN—N +1N Ne b h’tt basis function. HerdJ is the matrix which connects the
IN POSIONSIN +1, -+ - IN (N=Ne+Np), can be written as single-particle coordinates and the relative and center-of-
mass coordinates={x;,X,, . .. X\}:
Ne p2 N p2 Ne eZ
H=> —+ > — x=Ur, r=U"1x. )
i=12m} i=Ng+12m} iS5 elri—rj

It is easy to see that under the conditi@h the center-of-
e? N e? mass motion contained in E(B) separates from the intrinsic
(D motion depending on only the relative coordinates and takes
the form exp&cxﬁ,/Z), which is common to all the basis

wheree is the dielectric constant of the material. The vectorsfunctions. This separability enables one to calculate the ma-

are either 3D or, if the well thickness is ignored, they are 2D [fix element of the intrinsic HamiltoniaH j=H —Tcm, with

The length and the energy are measured in excitonic unit§cm P€INg the center-of-mass kinetic energy.

with the “Bohr radius” a,=#2¢/(m? e2) and the “Rydberg The correlated Gaussia®) is rotationally invariant and

energy” R,=e?/(2ea )=Xe4m*/(2h%ez) In these units the describes the motion with zero total orbital angular momen-

Hamiltoniaxn 1) depexnds oneonly the mass rao In the UM for t'he 3D case or with vanishingcomponent of the

case wheren® is equal to the free electron mass ands total orbital angular momentum for the 2D case when the
e q .motion is on thexy plane. This assumption is acceptable

Egﬁ:l(ttg 52'2/)’(;2? ?ﬁglhonr;;col;rg;[]se:edlﬁ%ltjc():;r;(atéjsg:]ael_ﬁ;c;? O'%ecause we are interested in the ground state which is ex-
’ 9y pected to have such symmetry.

the energy of the atomic unitin general we are interested in For the systems with nonzews value we have used the

calculating the intrinsic energy which has no contribution, . X . L B
from the center-of-mass motion. To this end it is convenienttrzgmgf;&n élze)é;::alee?titél)((:g\,rr(;?;tteagnrlr?gtli\lo(n'\lbe%vzlfe:?ﬁe ar-
to introduce an appropriate set of relative coordinate{. ’ S P
) icles. In the hydrogenic limit §=0), however, the holes
{X1,...Xy—1} and the center-of-mass coordinate, P ;
N are infinitely heavy so that they can be placed at some fixed
=z e, mir+3N mE 1)/ (NemZ +Npmi) , - -
i=1ell T Zi=Ng+1h i e'e h'%h /- _spatial points. The center-of-mass of the holes is conve-
To solve the eigenvalue problem of the above Hamil-niently taken as the coordinate origin. The kinetic energy of
tonian, we assume the variational trial functidn to be  the holes is suppressed and thus the position coordinates of
given as combinations of correlated Gaussians: the holes can be treated as jushumbers. Thus we only
need to consider the motion of the electrons that move in the
Coulomb potential field created by the holes. The geometri-
‘1’22 CaAA{GA(N)Xx(L,...N)}. (2)  cal arrangement of the holes is assumed to form, e.g., an
equilateral triangle for the system with three holes. The
length of the triangle is varied to reach an energy minimum.
In order to represent several “peaks” of the density distri-
bution of the electrons when the holes are well separated and
the electrons are on “atomic orbits” around them, we extend
rjihe correlated Gaussian of E@) as follows:

7

—+ R
i=1 j=Ng+1 6|I'i—rj| Ne<i<j 5|ri_rj|

Here A is the operator which produces a properly antisym-
metrized wave function for the electrons and the holes, re
spectively. The functiory(1, ... N) is the spin function for
the electrons and the holes. Though the Hamiltor{iBnis
spin-independent, the symmetry property of the spin functio
is an important ingredient in determining the stability of the i~ ~
system because it affects the spatial symmetry of the system. Gagr) = exp{—rAr+sr}. (6)

The correlated Gaussian is defined by Here r={ry,...ry} stands for the positions of the
electrons only and the ‘“generator” coordinates
={s,..., are variational parameters which are chosen

E z Aijri'rj}v (3) {31 SNe} p

- 1
Ga(r)=exp—irArl=exp — =
A(r) P~ 2rAr} p{ 2 in conformity withr.

i=1j=1
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TABLE I. Energies and binding energies of the 2D and 3D excitonic complexes in the hydrogenic
(0=0) and positronium¢=1) limits. o is the mass ration; /m}; of the electron and the hole. The asterisk
refers to the state which is found to be unbound. The unit of energy is the excitonic Rydberg.

System 2D 3D

E(0=0) E(o=1) B(o=0) B(o=1) E(o=0) E(oc=1) B(c=0) B(oc=1)
eh —4.000 —2.000 4.000 2.000 —1.000 -—0.500 1.000 0.500
eeh —4.480 —2.242 0.480 0.242 —-1.055 —0.524 0.055 0.024
ehh —-5.639 —2.242 1.639 0.242 —-1.204 —-0.524 0.204 0.024
eehh —-10.66 —4.385 2.660 0.385 —-2.349 —1.032 0.348 0.032
eeehh * * * * * * * *
eehhh  —13.65 * 2.992 * —2.687 * 0.338 *

The above basis functior{6) includes Ng(Ne+1)/2  g<g,. The critical values,, for its stability is given by the
+dNe (d=2,3) parameters to be optimized. By choos&\g point where the energy curves X andX; merge, and will
=0, the trial function has its maximum at the origin and thispe discussed later. We see that the binding energy of the 2D
limit is quite suitable aroundr=1, when the particles with  system is almost a factor of 10 larger than that of the corre-
nearly equal mass are moving equally fast. At the hydrogenigponding 3D system. The binding energy in general de-
limit, when the motion of the heavy particles is very slow creases by increasing from 0 to 1, and this trend is espe-
compared to the light ones, the density distribution has sevgjally dramatic in the case ot .
eral peaks around the attractive centers, and to represent
these configurations we need to shift the maximum of the A. Three-body systems
trial functions out of the origin by choosirgappropriately. ) o )

One of the advantages of the correlated Gaussians is that Figure 3 compares the binding energies of the three-body
their matrix elements are readily available analyticatige, ~€xcitonic complexesX™ and X, , with the energies pre-
e.g., Refs. 12 and 19The most adequate parameters are
selected by the stochastic variational method. The basic idei
is to generate several sets of parameters randomly an
choose the one which gives the lowest energy. The details o
the method are given elsewhéfd® There are many
example$>1%that demonstrate the high accuracy of calcu-
lations attained in the stochastic variational approach with
the correlated Gaussian basis.

All possible spin functions are tested and the one giving
the lowest energy is chosen in what follows. For example,
for the system including two electrorisr holes they are
taken to be in a spin-singlet state, and for the case with thres
electrongor holeg the most favorable spin function is found
to be a state with mixed symmetry, i.e.,

-2 T T T T

2
g-s
[aa)]

x(1,2,3={a(1)B(2) - f(1)a(2)} «(3). @)

-10
Ill. RESULTS

The results of our calculation for the energieés) and
the binding energieB (o) at the two limiting cases are col-
lected in Table | for 2D and 3D systems. The energies are in  -12];
perfect agreement with other theoretical results in 3D for P T W T
H2+, H_, H2(0':0) and ng P% (O': 1) The pOSitrO- 0.00 0.05 o0.10 o(?.15 0.20 0.25
nium molecule Pshas not yet been found experimentally.

The total energies of the 2D and 3D excitonic complexes are  -14

summarized in Figs. 1 and 2 as a functiorvofin the figures 0.0 02 04 06 08 1.0
the relevant threshold energies are also drawn by dashe. c
curves as a function of to get information on the binding FIG. 1. The total energies of two-dimensional excitonic com-

energies. In bgth 2D and 3D cases the charged exCitoNgjeyes as a function of the mass ratio of the electron and the hole,
X~ (een) andX; (ehh), and the biexcitorX(eehl) are all ;. mx/m# . The dashed curves are the threshold energies for the
bound for allo values. The charged biexcitore¢ehh is  three-body and four-body complexes. The inset is a magnification
unbound for all values ofc but we have found that of energy curves for the four- and five-body complexes at small
X3 (eehhh, a semiconductor analog of;H, is bound for  values. The energy is in units of the excitonic Rydberg.
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FIG. 3. The binding energies of the charged excitdns (eeh

andX; (ehh) as a function of the mass ratin The dashed curves
refer to a linear model calculation of Ref. 21. The energy is in units

) ) ) o of the excitonic Rydberg.
FIG. 2. The total energies of three-dimensional excitonic com-
plexes as a function of the mass ratio of the electron and the holdlistances between the particles also substantially change. See

a=mj/m}; . See the caption of Fig. 1.

Table Il and Fig. 4. Herér;;) and(r?

) indicate the expec-

tation values(|r;—r;[) and ((r;—r;)?), respectively and

(6(ri;)) the expectation valugs(ri—rj)). The distance be-

able agreement with the other calculations, there is a noticeween the holes iX; increases by a factor of four by chang-

able difference in th&; curve at smallr, which indicates

ing o from 0=0 to o=1. The equilibrium distance between

that a linear modéf is not a realistic approximation. By the two holes in 3DX, system (H) is 1.997 Bohr, in ex-
changingo (and therefore the binding enedgyhe average cellent agreement with the valu® Bohn found in adia-

TABLE II. Properties of the 2D and 3D charged excitoXs, (eeh) andX; (ehh), as a function of the
mass ratioo. The excitonic units are used.

2D 3D
o=0 =04 o=0.7 o=1 =0 =04 o=0.7 o=1

X~ (eeh
-E 4.480 3.18 2627 2242  1.055 0.746 0.615 0.524
(r__) 1.40 1.94 2.28 2.59 4.41 6.334 7.497 8.55
(ry2) 0.86 1.22 1.45 1.68 271 3.964 4.756 5.49
(r2_ 2.69 5.15 7.04 8.95 25.2 52.12 72.25 93.2
(r2 ) 1.27 2.58 3.63 471 11.9 26.00 36.87 48.4
(8(r_)) 0.11 0.049 0.029  0.020 0.0028 0.00071  0.00033  0.00017
(8(r,2)) 1.5 0.78 0.53 0.38 0.16 0.059 0.033 0.021
X4 (ehh
-E 5639  3.276 2656 2242  1.205 0.759 0.619 0.524
(rey) 0.518 1.60 2.12 2.59 1.997 5.200 6.856 8.55
(re2) 0.470 1.08 2.78 1.68 1.657 3.495 4.485 5.49
(r2,) 0.268 3.28 5.92 8.95 3.989 32.93 58.21 93.2
(r_) 0.298 1.86 3.20 4.71 3.389 18.26 31.01 48.4
(8(r, 1)) 0 0.027 0.025  0.020 0 0.00026  0.00024  0.00017
(8(r,2)) 2.08 0.81 0.54 0.38 0.21 0.062 0.034 0.021
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FIG. 4. The average distances of the constituents in the charged excitons as a function of the massadtio X~ (eeh and(b) for
X5 (ehh). The length is in units of the excitonic Bohr radius.

batic calculation$! Except for the case of the hydrogenic o=1. The Haynes factor predicted in the pure 2D calculation
limit, the ratio of the standard deviation of the average disdis 0.20 ato=0.68(GaAs, which is in good agreement with
tance to the distance itse{(r —(r))?)/(r), is large, typi- the experimental valué,~0.23

cally around 0.5 for the particles with identical charges and The o dependence of the average distances between the
0.7-0.8 for the particles with opposite charges. This showsarticles inX, is shown in Fig. 6. The expectation val(ie

that it is not possible to have a geometrical picture of theséand also(r?)) decreases with decreasing The average
systems. One cannot interpret these systems as forming distances betweeh-h ({r, ,)) ande-e({r__)) are differ-

triangle even in the 2D case. ent in the hydrogenic limit¢=0), and gradually tend to the
same value at the equal mass end=(1). Naturally, in order
B. Four-body systems to minimize the Coulomb energy, the distance between the

- . ; positive and negative charges is expected to be smaller than
The binding energy decreases by increasirigom 0 to 1 that between the particles with identical charges. This is

(see Figs. 1 and)2and the binding energy of the 2D case is what we see in Fig. 6 and Table Ill, except aroune 0.

m:cre?;ggo}haf éha}t; J ﬂ\:vehgrl:é; nzhgg]urzrg flr:zptl)ﬁqy;_ thEfbxround the hydrogenic limit the average distance between
Yy H™ 2X5 72X X Xz the holes becomes smaller than that between the electron and

ing energies of the exciton and the biexciton, respectivelyihe hole. This indicates that the binding mechanism has

As mentioned in the Introduction, the Haynes factor esti-changed. The equilibrium distance between the two infinitely
mated experimentally differs from the value of the theoreti-

cal calculations. Our calculation shows that the fadtgr
decreases from 0.348 at=0 to 0.064 ato=1 for the 3D
case, while it decreases from 0.665cat 0 to 0.193 ato
=1 for 2D. Our values for 2D are significantly larger than
those of Ref. 6, which gives,=0.564 atc=0 and 0.14 at

By, / By

FIG. 5. The binding energy of the biexcitofy, (eehl) com-
pared to the binding energy of the excit¥has a function of the FIG. 6. The average distances of the constituents in the biexci-
mass ratiar. The dashed curves refer to a variational calculation ofton X, (eehh as a function of the mass ratie. The length is in
Ref. 6. units of the excitonic Bohr radius.
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TABLE lll. Properties of the 2D and 3D biexciton$, (eehh as a function of the mass ratio. The

excitonic units are used.

2D 3D
=0 oc=0.4 o=0.7 o=1 =0 oc=0.4 o=0.7 o=1

-E 10.66 6.335 5.168  4.385  2.349 1.487 1.215 1.032
(r ) 0.671 1.26 1.55 1.80 2.17 4.08 5.12 6.03
(ryy) 0.371 1.14 1.49 1.80 1.40 3.75 4.97 6.03
(ry) 0.467 0.930 1.16 1.38 1.55 2.98 3.77 4.49
(r2_) 0.592 2.09 3.19 4.33 5.34 20.7 33.1 46.4
(r2.) 0.138 1.69 2.95 4.33 1.97 17.3 31.1 46.4
(r2_) 0.309 1.29 2.05 2.88 3.04 12.4 20.3 29.1
(8(r__)) 0.48 0.12 0.071 0.048  0.017  0.0027 0.0013  0.00063
(8(ri 1)) 0 0.074 0.061 0.048 0 0.0013  0.00094  0.00063
(8(ry2)) 2.2 0.86 0.57 0.41 0.23 0.065 0.036 0.022

heavy particles ¢=0) for 3D is found to be 1.40 Bohr, in excitonic complexes. In Table IV we tabulate the total ener-
agreement with the calculated value fos A gies of X, and X3 for various values ofo. The binding
Our results do not support the basic assumption of Refenergy ofX; , By-, is given byEx,—Ex:. To determine
. . . 3 3
22, in which it was assumed that the 20 forms a square e ¢ritical mass ratio, accurate calculations are needed. We

where the opposite charges are situated in the opposite V&l5ve obtained thaB.: = 2.99 Rydberg ar=0 in the 2D
tices of the square. In our work we can evaluate the average X3

distances and the variances of the average distances betwegdte: Whereas it decreases to 0.338 Rydberg in the 3D case.
the particles without any model assumption. First we point! "€ binding energy gets smaller asincreases. The critical
out that, except for the case of heavy positive charges, all th@ Value is found to be
variances of average distances are large, so that no geometri-
cal interpretation can be made in 2D. Second, the distances 0.26<0<0.27 for 2D,
between thet + and — — charges are not equal, except for
theo=1 case, so that they do not form a square. They do not
sit on the vertices of a square far=1 either, because
(re YK _)#42.

Table 1l also shows the probability of finding two par-
ticles at the same point in coordinate space.

®)
0.22<0,<0.23 for 3D.

No experimental confirmation has been obtained yet for the
existence of the charged biexcitd( .

The structure change of; , when approaching the bor-
der of the stable region, is interesting. Table V lists the prop-
erties ofX3 as a function ofr. Figure 7 plots the change of
the average distances between the particles as a function of

As mentioned at the beginning of this section, the charged-. It is noted that then-h and e-h distances significantly
biexcitonX3 (eehhl) forms a bound system for small val- increase withe approaching ther,, value but thee-e dis-
ues of o, while the @eehb system is unbound for any tance remains rather stable. This suggests that though the
values ofc. This is in contradiction with the result of Ref. three holes form an equilateral triangle with a length of 1.65
20, which relies on a schematic model for these five-bodyBohr ato=0 (in 3D), one of the holes tends to separate from

C. Five-body systems

TABLE IV. Energies of the 2D and 3D charged biexcits§ (eehhB, given in units of the excitonic
Rydberg, as a function of the mass ratio Ex, and EX3+ are the total energies of the biexciton and the

charged biexciton, respectively, aﬁid(3+= EXZ—EX3+ is the binding energy of the charged biexciton.

2D 3D

o - Exz - EX; BX; o - Exz - EX3+ Bxg

0 10.66 13.65 2.99 0 2.349 2.687 0.338

0.05 9.116 9.936 0.821 0.02 2.199 2.350 0.151

0.10 8.457 8.830 0.373 0.05 2.092 2.187 X492

0.15 7.9616 8.1192 0.158 0.10 1.9597 1.999 3962

0.20 7.5481 7.5936 4.55102 0.15 1.8530 1.8665 1.3510°2

0.25 7.191311 7.194725 34103 0.20 1.76212 1.76416 2.6510°3

0.26 7.1252300 7.1261974 98710 * 0.21 1.74534 1.74637 1.6210°3

0.27 7.0606665 7.0596177 unbound 0.22 1.728977 1.729144 X1B7
0.23 1.712999 1.712722 unbound
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TABLE V. Properties of the 2D and 3D charged biexcitofis (eehhb as a function of the mass ratio

o. The excitonic units are used.

2D 3D
=0 0=0.05 ¢=0.15 0=0.25 =0 o=0.05 =015 ¢=0.21

-E 13.65 9.936 8.1192 7.194725  2.687 2.187 1.8665 1.74637
(r__) 0.556 0.881 1.187 1.165 1.986 2.841 3.595 3.584
(riy) 0.404 0.887 1.487 4.467 1.652 2.929 4.699 9.118
(ry_) 0.424 0.733 1.103 2.619 1.572 2.392 3.466 5.727
(r%,} 0.397 0.999 1.881 1.853 4517 9.688 16.18 16.29
(r?H} 0.163 0.941 2.843 36.26 2.727 9.859 27.72 139.7
(ri,} 0.237 0.749 1.868 18.65 2.971 7.457 17.67 74.09
(8(r-_)) 0.65 0.26 0.15 0.15 0.019 0.0089 0.0051 0.0047
(8(ry4)) 0 0.0032 0.014 0.022 0 0.000029 0.00021 0.00032
(8(ry-)) 2.0 1.2 0.87 0.73 0.17 0.11 0.076 0.068

the other particles with increasing, leading to anX,+h

cases includga) ¢=0.01, (b) 0=0.15, and(c) 0=0.25.

two-cluster structure(Both the energy and the equilibrium Case(a) is near the hydrogenic limit, while case) is close
distance of the holes for §1 are in good agreement with to the stability limit. The correlation function for the holes

those obtained by adiabatic calculatidisin fact, thee-e

depends ono dramatically: It is sharply peaked near the

distance around the stability limit is close to that obtained forhydrogenic limit corresponding to the triangular configura-
X, with o=0,. This argument is further corroborated by tion with small variance but has a very wide distribution
the behavior of the correlation functions between the pararound the stability limit. In the stability limit the distribu-
ticles. Here the correlation functiof,(r), between particles tion has one peak reflecting the underlyidg subsystem as

i andj is defined by

C()=r¥¥|s(ri—rj—r)|¥)

for the 3D case and

C(r)=r(¥|&(r;—r;—n)|¥)

<r>

©)

(10

for the 2D case. In Fig. 8 we show the correlation function
for three cases: For example, for the 2Q

0.10

0.25

S

well as one plateau corresponding to the separated hole. On
the contrary, the correlation function between the electrons
changes rather moderately in three cases.

D. Excited states of the biexciton

Most theoretical investigations have concentrated on the
ground state of the biexciton. This system, however, has sev-

system three  grg| excited states as well. The energies and properties of the

excited states constitute very important information which
may show the extent of the validity of the model with pure
Coulomb interaction. The energy difference between the ex-
cited states and the ground state is a very characteristic prop-
erty and different biexciton models would lead to different
excitation energies.

In our previous papéf we have searched for bound ex-
cited states of the positronium molecule, P$o this end, we
have calculated the energies of differénf{orbital angular
momentum in 3D or itz component in the 2D capand S
(spin states of Ps We have not found any bound excited
state below the PsPs (atom-atom threshold. There are
states, however, for which the P#®s channel is closed due
to symmetry consideratiorts;**and they can only decay into
the Ps+Ps* (ground-state atom-excited-state ajarhannel.

We have found that a state witl. (S)=(1,0) and negative
parity is below the P$Ps‘ threshold, so that it forms a
bound state. Another state, with quantum numbersS)
=(0,1) and positive parity, is also below this threshtfid?

We have calculated the energies of these two excited
states as a function of the mass ratio. The details of the basis
function for nonzero orbital angular momentum are given in
Refs. 15 and 19. These states remain bound for any mass

FIG. 7. The average distances of the constituents in the chargddtio in both 2D and in 30(see Fig. 9. The electron spins

biexciton X3 (eehhB as a function of the mass rati@. The
length is in units of the excitonic Bohr radius.

are coupled to zero in both excited states, while two holes are
in a spin-singlet state in the negative-parity excited state and
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FIG. 8. The correlation functions for the charged biexcitgi{eehhb for three typical values of the mass ration(a) For 2D and(b)
for 3D. The excitonic units are used.
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FIG. 9. The total energies of the excited states of the biexéftor(eehl) as a function of the mass ratia (a) For 2D and(b) for 3D.
The solid curves are the energies of the negative-parity state wj8) € (1,0) and the dashed curves are the energies of the positive-parity
state with (,S)=(0,1). The dotted curves are the threshold energieX-6X and X+ X*, respectively. The energy is in units of the
excitonic Rydberg.
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in a spin-triplet state in the positive-parity excited state, re2D and 3D. The relative motion of the particles is compli-
spectively. To form a state with.(S)=(0,1), it ispossible cated and it is impossible to model these systems by some
to couple the electrons to a spin-triplet state and the holes tagid geometrical picture, e.g., by assuming that the biexciton
a spin-singlet state. We have found that the state of thiforms a static square in 2D. The interpretation of the biexci-
symmetry is also bound and that its energy is close to that adfon molecule as a system of two exciton atoms is also over-
the positive-parity excited state mentioned above. Thesimplified.

negative-parity state withL(,S)=(1,0) may have more im- Besides theéX; charged biexciton, we have tried to inves-
portance because it can be excited by an electric dipole tranigate theX, (hheeg system as well. In 3D, the=0 case
sition. would correspond to the H . In a fully adiabatic approach,
if the distance between the twiinfinitely heavy protons is
IV. DISCUSSIONS larger than 1.6 a.u., the potential energy curve of Hs

. . . . - slightly below of that of H, indicating a bound systefi.In
This work gives a unified numerical description of the the realistic situation where the proton mass is finite, this

excitonic complexes in 2D and 3D. We have investigated th%tate is realized as a broad resongide. accordance with

excitonic trions, the biexcitons, and the charged biexcitons,, . — :
The model we have considered here takes pure Coulom pis, we have found no bouri, for any o value in both 2D

interaction between the particles, neglecting the effect of alfde 3D. I_f either theX, for any o or the X3 OUtS'd? the 0
other circumstances, such as electronic bands, confinement,? < e interval were found to be bound experimentally,
mirror charges, etc. Though this is certainly just an approxiinat would indicate that other mechanisms play an important
mation to the realistic situation, hopefully this clear model™!€ in the binding. o

case helps to understand the basic physics of these systems.BeSides the ground state of the biexciton, we have also
Our variational approach is free of any bias and contains n§lvestigated the two excited states as well. Both states are

approximation(i.e., we do not neglect the exchange interac-2P0Ve the exciton plus exciton threshold but their decay to
tion, etc). that channel is forbidden. If a biexciton would be completely

The novelty of this work is the investigation of the stabil- isolatgd, such gxci'ged states could remain_ bound. _In the real
ity of the charged biexcitons. A very accurate calculation is€XPerimental situation, however, they can interact in the sur-
required to find the stability domain. When the mass ratig®©Unding material and they would decay. The first excited
approaches the border of the stable domain, the binding ers{at€ that we studied belongs lic=0 andS=1. This state
ergy becomes very very tiny and the size of the system pediffers from _the ground stqtg by only its spin. Its experimen-
comes extremely large. At the end of this process, the bindt-"?‘l observatlo_n could be difficult _and unllk_ely. Thg other_ex-
ing energy becomes zefthe size of the system in principle cited stqte W|th_L=1 and S=0 is more interesting. Thl_s
could become infinite at this poinand finally the charged SYStém is practically formed by an exciton and an excited
biexciton autodissociates by “emitting” a hole. The critical XCiton atom. This state may be excited by an electric dipole
mass ratio, where the charged biexciton becomes unbound, f@&nsition from the ground state with a charasteristic photon
aroundo,=0.22 in 3D andr,=0.26 in 2D. This means that EN€rgy so its experimental observation might be more real-
the charged biexciton is not bound for any mass ratio but itSt¢:
has a stability domain€o<o,.

The properties of the 2D and 3D systems are found to be
generally very similar. Even though the binding energy and
therefore the relative distances are very different in 2D and
3D, the binding energies and average distances, etc. show This work was supported by Grants-in-Aid for Scientific
very similar behavior as a function af. It is a striking ResearciiNos. 08044065 and 1064025&f the Ministry of
similarity that the stability of the charged biexciton is lost Education, Science and Cultuf@apan and OTKA Grant
nearly exactly at the same,, in 2D and 3D. No. T17298 (Hungary. The work of K.V. was also sup-

We have pointed out here that the excitonic complexeported by the U. S. Department of Energy, Nuclear Physics
are highly nontrivial quantum-mechanical systems in bothDivision, under Contract No. W-31-109-ENG-39.
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