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Stability of two- and three-dimensional excitonic complexes
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The binding energies and other properties of the excitonic complexes~bound systems of electrons and holes!
in two and three dimensions~2D and 3D! are calculated by a precise variational method. The mass ratios for
the limit of the stability ofX3

1(eehhh) are determined in both 2D and 3D cases. Two excited states of the
biexciton are found to remain bound for any mass ratio.@S0163-1829~99!01608-2#
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I. INTRODUCTION

The excitonic complexes~or molecules! including the
charged excitons have considerable importance in the de
opment of semiconductor physics and spectroscopy. In
ticular, the biexciton has been a subject of intens
experimental1–3 and theoretical4–10 investigation. The con-
stituents of these systems are electrons and holes
massesme* and mh* , interacting via Coulomb interactions
Hereme* andmh* are ‘‘effective masses.’’ The properties an
structure of these systems significantly change with the m
ratio s5me* /mh* , and by approaching the two limiting
cases, hydrogenic (s50) and positronium (s51) limits,
one arrives at two completely different worlds.

There are several discrepancies between theory and
periment. The most striking one is the difference between
experimentally estimated and theoretically predicted ratio
the binding energies of the biexciton and the exciton. Th
are several suggestions for additional binding mechanism
resolve these problems, for example the stronger bind
might be due to some localization or confinement effec11

The aim of the present paper is to investigate a clean m
case: to pinpoint the energies of the excitonic comple
interacting via pure Coulomb forces in two and three dim
sions ~2D and 3D! and to show how much of the bindin
energy has to be brought by other mechanisms to recon
the experiment with theory.

In the hydrogenic limit, several systems, e.g., H2(eeh),
H2

1(ehh), H2(eehh), H3
1(eehhh), or H4

1(eeehhhh),
etc. form bound states. By changing the mass ratio and
proaching the positronium limit, the systems containing
more than four particles remain stable, but there is no pr
of existence for systems consisting of more than four p
ticles with equal mass. It is therefore intriguing to ask
question: What is the mass ratio where the stability is lost
experiments show the existence of a stable system bey
the predicted stability limit of pure Coulomb interactions,
is a clear signature of other binding mechanisms which
not accounted for in the present model.
PRB 590163-1829/99/59~8!/5652~10!/$15.00
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Another interest is the information on the sizes of the
systems. Approaching the stability border, these species
very loosely bound and therefore their sizes~root-mean-
square radii, distances between particles! substantially in-
crease. With the advent of nanotechnology it has beco
possible to fabricate small semiconductor structures wh
the thickness of a quantum well is comparable to the size
an electron-hole system. The root-mean-square radii and
distances between the particles of these excitonic comple
change with the mass ratio. We will point out that th
electron-hole distances can be quite different in different m
terials.

Most of theoretical approaches are variational, utilizi
different forms of basis functions.4–7 Some calculations at
tempt to reduce the few-particle Hamiltonian to that of
smaller system with fewer degrees of freedom.

The hydrogenic and positronium limits have been ve
extensively studied in atomic and molecular physics, and
theoretical and experimental results are in perfect agreem
It is interesting and useful to borrow the sophisticated te
nique of atomic and molecular physicists to study these s
tems, even though we are aware that the 3D excitonic c
plexes~with pure Coulomb interaction! are only models of
the real experimental situation. While most of the previo
calculations are based on several simplifying assumptio
e.g., the neglect of exchange interactions or electronic co
lations, the approach we present here is free from any s
approximations and the result can be considered as virtu
exact. As will be seen later, our calculation reproduces
energies of the two limiting cases as it should.

To solve the Schro¨dinger equation of the Coulombic few
body problem, we use the stochastic variational method w
correlated Gaussian basis.12–15The correlated Gaussian func
tions serve as a quite suitable basis for accurate calculat
of few-electron atoms and small molecules. They have b
widely used in atomic and molecular physics.16–18 The ap-
plications include the analogous systems of excitonic co
plexes such as H2, H2

1 , or the positronium molecule (Ps2)
and the binding energies are calculated up to 8–10 digit
5652 ©1999 The American Physical Society
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accuracy. The adequate choice of the nonlinear paramete
the correlated Gaussians is an essential requirement. T
lect the most appropriate ones, the stochastic variatio
method has been used. The stochastic variational me
tests the quality of the basis states by a random trial and e
procedure. This method is proved to be quite successfu
solving various few-particle problems.19

The plan of this paper is as follows. The Introduction
followed by Sec. II, where we outline the problem and t
method of solution. In Sec. III we present the results for
and 2D systems. The results are discussed in Sec. IV.

II. MODEL OF EXCITONIC COMPLEXES AND METHODS
OF CALCULATION

The general Hamiltonian of the excitonic complexes,
systems ofNe electrons in positionsr1 , . . . ,rNe

andNh holes

in positionsrNe11 , . . . ,rN (N5Ne1Nh), can be written as

H5(
i 51

Ne pi
2

2me*
1 (

i 5Ne11

N pi
2

2mh*
1(

i , j

Ne e2

eur i2r j u

2(
i 51

Ne

(
j 5Ne11

N
e2

eur i2r j u
1 (

Ne, i , j

N
e2

eur i2r j u
, ~1!

wheree is the dielectric constant of the material. The vecto
are either 3D or, if the well thickness is ignored, they are 2
The length and the energy are measured in excitonic u
with the ‘‘Bohr radius’’ ax5\2e/(me* e2) and the ‘‘Rydberg
energy’’ Rx5e2/(2eax)5e4me* /(2\2e2). In these units the
Hamiltonian ~1! depends on only the mass ratios. In the
case whereme* is equal to the free electron mass ande is
equal to unity, the excitonic units reduce to the usual ato
units ~to be exact, the unit of energy reduces to one-half
the energy of the atomic unit!. In general we are interested i
calculating the intrinsic energy which has no contributi
from the center-of-mass motion. To this end it is conveni
to introduce an appropriate set of relative coordina
$x1 , . . . ,xN21% and the center-of-mass coordinatexN

5(( i 51
Ne me* r i1( i 5Ne11

N mh* r i)/(Neme* 1Nhmh* ).

To solve the eigenvalue problem of the above Ham
tonian, we assume the variational trial functionC to be
given as combinations of correlated Gaussians:

C5(
A

CAA$GA~r !x~1, . . . ,N!%. ~2!

HereA is the operator which produces a properly antisy
metrized wave function for the electrons and the holes,
spectively. The functionx(1, . . . ,N) is the spin function for
the electrons and the holes. Though the Hamiltonian~1! is
spin-independent, the symmetry property of the spin funct
is an important ingredient in determining the stability of t
system because it affects the spatial symmetry of the sys
The correlated Gaussian is defined by

GA~r !5exp$2 1
2 r̃Ar%5expH 2

1

2(i 51

N

(
j 51

N

Ai j r i•r j J , ~3!
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where r̃ stands for a row vector (r1 ,r2 , . . . ,rN) whosei th
element isr i . The elements of a positive-definite, symmet
matrix A5(Ai j ) are variational parameters which charact
ize the basis function.

The function ~3! contains the center-of-mass coordina
dependence. The separation of the center-of-mass mo
from Eq. ~3! can be easily done by imposing the followin
constraints onA:15

(
j 51

N

(
k51

N

AjkUki
2150 ~ i 51, . . . ,N21!,

~4!

(
j 51

N

(
k51

N

Ajk5c,

where c is an arbitrary, positive constant common to ea
basis function. HereU is the matrix which connects th
single-particle coordinatesr and the relative and center-o
mass coordinatesx5$x1 ,x2 , . . . ,xN%:

x5Ur , r5U21x. ~5!

It is easy to see that under the condition~4! the center-of-
mass motion contained in Eq.~3! separates from the intrinsi
motion depending on only the relative coordinates and ta
the form exp (2cxN

2 /2), which is common to all the basi
functions. This separability enables one to calculate the
trix element of the intrinsic HamiltonianH int5H2Tcm, with
Tcm being the center-of-mass kinetic energy.

The correlated Gaussian~3! is rotationally invariant and
describes the motion with zero total orbital angular mom
tum for the 3D case or with vanishingz component of the
total orbital angular momentum for the 2D case when
motion is on thexy plane. This assumption is acceptab
because we are interested in the ground state which is
pected to have such symmetry.

For the systems with nonzeros value we have used th
trial function ~2!. The matrixA, containingN(N21)/2 free
parameters, describes the correlated motion between the
ticles. In the hydrogenic limit (s50), however, the holes
are infinitely heavy so that they can be placed at some fi
spatial points. The center-of-mass of the holes is con
niently taken as the coordinate origin. The kinetic energy
the holes is suppressed and thus the position coordinate
the holes can be treated as justc numbers. Thus we only
need to consider the motion of the electrons that move in
Coulomb potential field created by the holes. The geome
cal arrangement of the holes is assumed to form, e.g.
equilateral triangle for the system with three holes. T
length of the triangle is varied to reach an energy minimu
In order to represent several ‘‘peaks’’ of the density dist
bution of the electrons when the holes are well separated
the electrons are on ‘‘atomic orbits’’ around them, we exte
the correlated Gaussian of Eq.~3! as follows:

GAs~r !5 exp$2 1
2 r̃Ar1 s̃r%. ~6!

Here r5$r1 , . . . ,rNe
% stands for the positions of th

electrons only and the ‘‘generator’’ coordinatess
5$s1 , . . . ,sNe

% are variational parameters which are chos

in conformity with r .
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TABLE I. Energies and binding energies of the 2D and 3D excitonic complexes in the hydro
(s50) and positronium (s51) limits. s is the mass ratiome* /mh* of the electron and the hole. The asteri
refers to the state which is found to be unbound. The unit of energy is the excitonic Rydberg.

System 2D 3D

E (s50) E (s51) B (s50) B (s51) E (s50) E (s51) B (s50) B (s51)

eh 24.000 22.000 4.000 2.000 21.000 20.500 1.000 0.500
eeh 24.480 22.242 0.480 0.242 21.055 20.524 0.055 0.024
ehh 25.639 22.242 1.639 0.242 21.204 20.524 0.204 0.024
eehh 210.66 24.385 2.660 0.385 22.349 21.032 0.348 0.032
eeehh * * * * * * * *
eehhh 213.65 * 2.992 * 22.687 * 0.338 *
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The above basis function~6! includes Ne(Ne11)/2
1dNe (d52,3) parameters to be optimized. By choosings
50, the trial function has its maximum at the origin and th
limit is quite suitable arounds51, when the particles with
nearly equal mass are moving equally fast. At the hydroge
limit, when the motion of the heavy particles is very slo
compared to the light ones, the density distribution has s
eral peaks around the attractive centers, and to repre
these configurations we need to shift the maximum of
trial functions out of the origin by choosings appropriately.

One of the advantages of the correlated Gaussians is
their matrix elements are readily available analytically~see,
e.g., Refs. 12 and 19!. The most adequate parameters a
selected by the stochastic variational method. The basic
is to generate several sets of parameters randomly
choose the one which gives the lowest energy. The detai
the method are given elsewhere.12,19 There are many
examples12,15,19that demonstrate the high accuracy of calc
lations attained in the stochastic variational approach w
the correlated Gaussian basis.

All possible spin functions are tested and the one giv
the lowest energy is chosen in what follows. For examp
for the system including two electrons~or holes! they are
taken to be in a spin-singlet state, and for the case with th
electrons~or holes! the most favorable spin function is foun
to be a state with mixed symmetry, i.e.,

x~1,2,3!5$a~1!b~2!2b~1!a~2!%a~3!. ~7!

III. RESULTS

The results of our calculation for the energiesE(s) and
the binding energiesB(s) at the two limiting cases are co
lected in Table I for 2D and 3D systems. The energies ar
perfect agreement with other theoretical results in 3D
H2

1 , H2, H2(s50) and Ps2, Ps2 (s51). The positro-
nium molecule Ps2 has not yet been found experimentall
The total energies of the 2D and 3D excitonic complexes
summarized in Figs. 1 and 2 as a function ofs. In the figures
the relevant threshold energies are also drawn by das
curves as a function ofs to get information on the binding
energies. In both 2D and 3D cases the charged excit
X2(eeh) andX2

1(ehh), and the biexcitonX2(eehh) are all
bound for alls values. The charged biexciton (eeehh) is
unbound for all values ofs but we have found tha
X3

1(eehhh), a semiconductor analog of H3
1 , is bound for
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s,scr . The critical valuescr for its stability is given by the
point where the energy curves ofX2 andX3

1 merge, and will
be discussed later. We see that the binding energy of the
system is almost a factor of 10 larger than that of the co
sponding 3D system. The binding energy in general
creases by increasings from 0 to 1, and this trend is espe
cially dramatic in the case ofX2

1 .

A. Three-body systems

Figure 3 compares the binding energies of the three-b
excitonic complexes,X2 and X2

1 , with the energies pre-

FIG. 1. The total energies of two-dimensional excitonic co
plexes as a function of the mass ratio of the electron and the h
s5me* /mh* . The dashed curves are the threshold energies for
three-body and four-body complexes. The inset is a magnifica
of energy curves for the four- and five-body complexes at smas
values. The energy is in units of the excitonic Rydberg.
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dicted by other models.20 Though theX2 result is in reason-
able agreement with the other calculations, there is a not
able difference in theX2

1 curve at smalls, which indicates
that a linear model20 is not a realistic approximation. By
changings ~and therefore the binding energy!, the average

FIG. 2. The total energies of three-dimensional excitonic co
plexes as a function of the mass ratio of the electron and the h
s5me* /mh* . See the caption of Fig. 1.
e-

distances between the particles also substantially change
Table II and Fig. 4. Herêr i j & and ^r i j

2 & indicate the expec-
tation values^ur i2r j u& and ^(r i2r j )

2&, respectively and
^d(r i j )& the expectation valuêd(r i2r j )&. The distance be-
tween the holes inX2

1 increases by a factor of four by chang
ing s from s50 to s51. The equilibrium distance betwee
the two holes in 3DX2

1 system (H2
1) is 1.997 Bohr, in ex-

cellent agreement with the value~2 Bohr! found in adia-

-
le,

FIG. 3. The binding energies of the charged excitonsX2 (eeh)
andX2

1 (ehh) as a function of the mass ratios. The dashed curves
refer to a linear model calculation of Ref. 21. The energy is in un
of the excitonic Rydberg.
7

7

TABLE II. Properties of the 2D and 3D charged excitons,X2 (eeh) andX2
1 (ehh), as a function of the

mass ratios. The excitonic units are used.

2D 3D

s50 s50.4 s50.7 s51 s50 s50.4 s50.7 s51

X2 (eeh)
2E 4.480 3.18 2.627 2.242 1.055 0.746 0.615 0.524
^r 22& 1.40 1.94 2.28 2.59 4.41 6.334 7.497 8.55
^r 12& 0.86 1.22 1.45 1.68 2.71 3.964 4.756 5.49

^r 22
2 & 2.69 5.15 7.04 8.95 25.2 52.12 72.25 93.2

^r 12
2 & 1.27 2.58 3.63 4.71 11.9 26.00 36.87 48.4

^d(r 22)& 0.11 0.049 0.029 0.020 0.0028 0.00071 0.00033 0.0001
^d(r 12)& 1.5 0.78 0.53 0.38 0.16 0.059 0.033 0.021

X2
1 (ehh)

2E 5.639 3.276 2.656 2.242 1.205 0.759 0.619 0.524
^r 11& 0.518 1.60 2.12 2.59 1.997 5.200 6.856 8.55
^r 12& 0.470 1.08 2.78 1.68 1.657 3.495 4.485 5.49

^r 11
2 & 0.268 3.28 5.92 8.95 3.989 32.93 58.21 93.2

^r 12
2 & 0.298 1.86 3.20 4.71 3.389 18.26 31.01 48.4

^d(r 11)& 0 0.027 0.025 0.020 0 0.00026 0.00024 0.0001
^d(r 12)& 2.08 0.81 0.54 0.38 0.21 0.062 0.034 0.021
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FIG. 4. The average distances of the constituents in the charged excitons as a function of the mass ratios. ~a! for X2 (eeh) and~b! for
X2

1 (ehh). The length is in units of the excitonic Bohr radius.
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batic calculations.21 Except for the case of the hydrogen
limit, the ratio of the standard deviation of the average d
tance to the distance itself,AŠ(r 2^r &)2

‹/^r &, is large, typi-
cally around 0.5 for the particles with identical charges a
0.7–0.8 for the particles with opposite charges. This sho
that it is not possible to have a geometrical picture of th
systems. One cannot interpret these systems as formi
triangle even in the 2D case.

B. Four-body systems

The binding energy decreases by increasings from 0 to 1
~see Figs. 1 and 2! and the binding energy of the 2D case
much larger than that of the 3D one. Figure 5 displays
Haynes factorf H5BX2

/BX , whereBX andBX2
are the bind-

ing energies of the exciton and the biexciton, respectiv
As mentioned in the Introduction, the Haynes factor e
mated experimentally differs from the value of the theore
cal calculations. Our calculation shows that the factorf H
decreases from 0.348 ats50 to 0.064 ats51 for the 3D
case, while it decreases from 0.665 ats50 to 0.193 ats
51 for 2D. Our values for 2D are significantly larger tha
those of Ref. 6, which givesf H50.564 ats50 and 0.14 at

FIG. 5. The binding energy of the biexcitonX2 (eehh) com-
pared to the binding energy of the excitonX as a function of the
mass ratios. The dashed curves refer to a variational calculation
Ref. 6.
-

d
s
e
a

e

.
i-
-

s51. The Haynes factor predicted in the pure 2D calculat
is 0.20 ats50.68 ~GaAs!, which is in good agreement with
the experimental valuef H'0.2.3

The s dependence of the average distances between
particles inX2 is shown in Fig. 6. The expectation value^r &
~and also^r 2&) decreases with decreasings. The average
distances betweenh-h (^r 11&) and e-e(^r 22&) are differ-
ent in the hydrogenic limit (s50), and gradually tend to the
same value at the equal mass end (s51). Naturally, in order
to minimize the Coulomb energy, the distance between
positive and negative charges is expected to be smaller
that between the particles with identical charges. This
what we see in Fig. 6 and Table III, except arounds50.
Around the hydrogenic limit the average distance betwe
the holes becomes smaller than that between the electron
the hole. This indicates that the binding mechanism
changed. The equilibrium distance between the two infinit

f
FIG. 6. The average distances of the constituents in the bie

ton X2 (eehh) as a function of the mass ratios. The length is in
units of the excitonic Bohr radius.
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TABLE III. Properties of the 2D and 3D biexcitonsX2 (eehh) as a function of the mass ratios. The
excitonic units are used.

2D 3D

s50 s50.4 s50.7 s51 s50 s50.4 s50.7 s51

2E 10.66 6.335 5.168 4.385 2.349 1.487 1.215 1.032
^r 22& 0.671 1.26 1.55 1.80 2.17 4.08 5.12 6.03
^r 11& 0.371 1.14 1.49 1.80 1.40 3.75 4.97 6.03
^r 12& 0.467 0.930 1.16 1.38 1.55 2.98 3.77 4.49

^r 22
2 & 0.592 2.09 3.19 4.33 5.34 20.7 33.1 46.4

^r 11
2 & 0.138 1.69 2.95 4.33 1.97 17.3 31.1 46.4

^r 12
2 & 0.309 1.29 2.05 2.88 3.04 12.4 20.3 29.1

^d(r 22)& 0.48 0.12 0.071 0.048 0.017 0.0027 0.0013 0.0006
^d(r 11)& 0 0.074 0.061 0.048 0 0.0013 0.00094 0.0006
^d(r 12)& 2.2 0.86 0.57 0.41 0.23 0.065 0.036 0.022
e
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heavy particles (s50) for 3D is found to be 1.40 Bohr, in
agreement with the calculated value for H2 .21

Our results do not support the basic assumption of R
22, in which it was assumed that the 2DX2 forms a square
where the opposite charges are situated in the opposite
tices of the square. In our work we can evaluate the ave
distances and the variances of the average distances bet
the particles without any model assumption. First we po
out that, except for the case of heavy positive charges, al
variances of average distances are large, so that no geom
cal interpretation can be made in 2D. Second, the distan
between the11 and22 charges are not equal, except f
thes51 case, so that they do not form a square. They do
sit on the vertices of a square fors51 either, because
^r 11&/^r 12&ÞA2.

Table III also shows the probability of finding two pa
ticles at the same point in coordinate space.

C. Five-body systems

As mentioned at the beginning of this section, the char
biexcitonX3

1 (eehhh) forms a bound system for small va
ues of s, while the (eeehh) system is unbound for an
values ofs. This is in contradiction with the result of Re
20, which relies on a schematic model for these five-bo
f.

er-
ge
een
t
e
tri-
es

ot

d

y

excitonic complexes. In Table IV we tabulate the total en
gies of X2 and X3

1 for various values ofs. The binding
energy ofX3

1 , BX
3
1, is given byEX2

2EX
3
1. To determine

the critical mass ratio, accurate calculations are needed.
have obtained thatBX

3
152.99 Rydberg ats50 in the 2D

case, whereas it decreases to 0.338 Rydberg in the 3D c
The binding energy gets smaller ass increases. The critica
s value is found to be

0.26,scr,0.27 for 2D,
~8!

0.22,scr,0.23 for 3D.

No experimental confirmation has been obtained yet for
existence of the charged biexcitonX3

1 .
The structure change ofX3

1 , when approaching the bor
der of the stable region, is interesting. Table V lists the pr
erties ofX3

1 as a function ofs. Figure 7 plots the change o
the average distances between the particles as a functio
s. It is noted that theh-h and e-h distances significantly
increase withs approaching thescr value but thee-e dis-
tance remains rather stable. This suggests that though
three holes form an equilateral triangle with a length of 1.
Bohr ats50 ~in 3D!, one of the holes tends to separate fro
he

TABLE IV. Energies of the 2D and 3D charged biexcitonX3

1 (eehhh), given in units of the excitonic
Rydberg, as a function of the mass ratios. EX2

and EX
3
1 are the total energies of the biexciton and t

charged biexciton, respectively, andBX
3
15EX2

2EX
3
1 is the binding energy of the charged biexciton.

2D 3D

s 2EX2
2EX

3
1 BX

3
1 s 2EX2

2EX
3
1 BX

3
1

0 10.66 13.65 2.99 0 2.349 2.687 0.338
0.05 9.116 9.936 0.821 0.02 2.199 2.350 0.151
0.10 8.457 8.830 0.373 0.05 2.092 2.187 9.4831022

0.15 7.9616 8.1192 0.158 0.10 1.9597 1.999 3.9831022

0.20 7.5481 7.5936 4.5531022 0.15 1.8530 1.8665 1.3531022

0.25 7.191311 7.194725 3.4131023 0.20 1.76212 1.76416 2.0531023

0.26 7.1252300 7.1261974 9.6731024 0.21 1.74534 1.74637 1.0231023

0.27 7.0606665 7.0596177 unbound 0.22 1.728977 1.729144 1.6731024

0.23 1.712999 1.712722 unbound
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TABLE V. Properties of the 2D and 3D charged biexcitonsX3
1 (eehhh) as a function of the mass rati

s. The excitonic units are used.

2D 3D

s50 s50.05 s50.15 s50.25 s50 s50.05 s50.15 s50.21

2E 13.65 9.936 8.1192 7.194725 2.687 2.187 1.8665 1.746
^r 22& 0.556 0.881 1.187 1.165 1.986 2.841 3.595 3.584
^r 11& 0.404 0.887 1.487 4.467 1.652 2.929 4.699 9.118
^r 12& 0.424 0.733 1.103 2.619 1.572 2.392 3.466 5.727

^r 22
2 & 0.397 0.999 1.881 1.853 4.517 9.688 16.18 16.29

^r 11
2 & 0.163 0.941 2.843 36.26 2.727 9.859 27.72 139.7

^r 12
2 & 0.237 0.749 1.868 18.65 2.971 7.457 17.67 74.09

^d(r 22)& 0.65 0.26 0.15 0.15 0.019 0.0089 0.0051 0.0047
^d(r 11)& 0 0.0032 0.014 0.022 0 0.000029 0.00021 0.0003
^d(r 12)& 2.0 1.2 0.87 0.73 0.17 0.11 0.076 0.068
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the other particles with increasings, leading to anX21h
two-cluster structure.~Both the energy and the equilibrium
distance of the holes for H3

1 are in good agreement wit
those obtained by adiabatic calculations.23! In fact, thee-e
distance around the stability limit is close to that obtained
X2 with s5scr . This argument is further corroborated b
the behavior of the correlation functions between the p
ticles. Here the correlation function,C(r ), between particles
i and j is defined by

C~r !5r 2^Cud~r i2r j2r !uC& ~9!

for the 3D case and

C~r !5r ^Cud~r i2r j2r !uC& ~10!

for the 2D case. In Fig. 8 we show the correlation functio
for three cases: For example, for the 2DX3

1 system three

FIG. 7. The average distances of the constituents in the cha
biexciton X3

1 (eehhh) as a function of the mass ratios. The
length is in units of the excitonic Bohr radius.
r

r-

s

cases include~a! s50.01, ~b! s50.15, and~c! s50.25.
Case~a! is near the hydrogenic limit, while case~c! is close
to the stability limit. The correlation function for the hole
depends ons dramatically: It is sharply peaked near th
hydrogenic limit corresponding to the triangular configur
tion with small variance but has a very wide distributio
around the stability limit. In the stability limit the distribu
tion has one peak reflecting the underlyingX2 subsystem as
well as one plateau corresponding to the separated hole
the contrary, the correlation function between the electr
changes rather moderately in three cases.

D. Excited states of the biexciton

Most theoretical investigations have concentrated on
ground state of the biexciton. This system, however, has s
eral excited states as well. The energies and properties o
excited states constitute very important information wh
may show the extent of the validity of the model with pu
Coulomb interaction. The energy difference between the
cited states and the ground state is a very characteristic p
erty and different biexciton models would lead to differe
excitation energies.

In our previous paper14 we have searched for bound e
cited states of the positronium molecule Ps2 . To this end, we
have calculated the energies of differentL ~orbital angular
momentum in 3D or itsz component in the 2D case! andS
~spin! states of Ps2 . We have not found any bound excite
state below the Ps1Ps ~atom-atom! threshold. There are
states, however, for which the Ps1Ps channel is closed du
to symmetry considerations,15,24and they can only decay into
the Ps1Ps* ~ground-state atom-excited-state atom! channel.
We have found that a state with (L,S)5(1,0) and negative
parity is below the Ps1Ps* threshold, so that it forms a
bound state. Another state, with quantum numbers (L,S)
5(0,1) and positive parity, is also below this threshold.17,24

We have calculated the energies of these two exc
states as a function of the mass ratio. The details of the b
function for nonzero orbital angular momentum are given
Refs. 15 and 19. These states remain bound for any m
ratio in both 2D and in 3D~see Fig. 9!. The electron spins
are coupled to zero in both excited states, while two holes
in a spin-singlet state in the negative-parity excited state

ed
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FIG. 8. The correlation functions for the charged biexcitonX3
1(eehhh) for three typical values of the mass rations. ~a! For 2D and~b!

for 3D. The excitonic units are used.

FIG. 9. The total energies of the excited states of the biexcitonX2 (eehh) as a function of the mass ratios. ~a! For 2D and~b! for 3D.
The solid curves are the energies of the negative-parity state with (L,S)5(1,0) and the dashed curves are the energies of the positive-p
state with (L,S)5(0,1). The dotted curves are the threshold energies ofX1X and X1X* , respectively. The energy is in units of th
excitonic Rydberg.
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in a spin-triplet state in the positive-parity excited state,
spectively. To form a state with (L,S)5(0,1), it is possible
to couple the electrons to a spin-triplet state and the hole
a spin-singlet state. We have found that the state of
symmetry is also bound and that its energy is close to tha
the positive-parity excited state mentioned above. T
negative-parity state with (L,S)5(1,0) may have more im-
portance because it can be excited by an electric dipole t
sition.

IV. DISCUSSIONS

This work gives a unified numerical description of th
excitonic complexes in 2D and 3D. We have investigated
excitonic trions, the biexcitons, and the charged biexcito
The model we have considered here takes pure Coul
interaction between the particles, neglecting the effect of
other circumstances, such as electronic bands, confinem
mirror charges, etc. Though this is certainly just an appro
mation to the realistic situation, hopefully this clear mod
case helps to understand the basic physics of these sys
Our variational approach is free of any bias and contains
approximation~i.e., we do not neglect the exchange intera
tion, etc.!.

The novelty of this work is the investigation of the stab
ity of the charged biexcitons. A very accurate calculation
required to find the stability domain. When the mass ra
approaches the border of the stable domain, the binding
ergy becomes very very tiny and the size of the system
comes extremely large. At the end of this process, the b
ing energy becomes zero~the size of the system in principl
could become infinite at this point! and finally the charged
biexciton autodissociates by ‘‘emitting’’ a hole. The critic
mass ratio, where the charged biexciton becomes unboun
aroundscr50.22 in 3D andscr50.26 in 2D. This means tha
the charged biexciton is not bound for any mass ratio bu
has a stability domain 0<s,scr .

The properties of the 2D and 3D systems are found to
generally very similar. Even though the binding energy a
therefore the relative distances are very different in 2D a
3D, the binding energies and average distances, etc. s
very similar behavior as a function ofs. It is a striking
similarity that the stability of the charged biexciton is lo
nearly exactly at the samescr in 2D and 3D.

We have pointed out here that the excitonic comple
are highly nontrivial quantum-mechanical systems in b
-
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2D and 3D. The relative motion of the particles is comp
cated and it is impossible to model these systems by so
rigid geometrical picture, e.g., by assuming that the biexci
forms a static square in 2D. The interpretation of the biex
ton molecule as a system of two exciton atoms is also ov
simplified.

Besides theX3
1 charged biexciton, we have tried to inves

tigate theX2
2(hheee) system as well. In 3D, thes50 case

would correspond to the H2
2 . In a fully adiabatic approach

if the distance between the two~infinitely heavy! protons is
larger than 1.6 a.u., the potential energy curve of H2

2 is
slightly below of that of H2 , indicating a bound system.25 In
the realistic situation where the proton mass is finite, t
state is realized as a broad resonance.26 In accordance with
this, we have found no boundX2

2 for anys value in both 2D
and 3D. If either theX2

2 for any s or theX3
1 outside the 0

<s,scr interval were found to be bound experimentall
that would indicate that other mechanisms play an import
role in the binding.

Besides the ground state of the biexciton, we have a
investigated the two excited states as well. Both states
above the exciton plus exciton threshold but their decay
that channel is forbidden. If a biexciton would be complete
isolated, such excited states could remain bound. In the
experimental situation, however, they can interact in the s
rounding material and they would decay. The first excit
state that we studied belongs toL50 andS51. This state
differs from the ground state by only its spin. Its experime
tal observation could be difficult and unlikely. The other e
cited state withL51 and S50 is more interesting. This
system is practically formed by an exciton and an excit
exciton atom. This state may be excited by an electric dip
transition from the ground state with a charasteristic pho
energy so its experimental observation might be more re
istic.
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