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Quantum-well shape optimization for intersubband-related electro-optic modulation properties
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A method is described for the optimized design of quantum-well structures, in respect to maximizing the
second-order susceptibilities relevant for electro-optic applications. It relies on applying the isospaengy
structure preservingtransformations to an initial Hamiltonian, in order to generate parafsgteontrolled
family of Hamiltonians thati) are isospectral to the initial one and@, have the potential variation propor-
tional to the effective mass variation, being thus realizable by graded ternary alloys liéey AJAs. By
changing the values of control parameters one changes the potential shape and thus the values of matrix
elements relevant for the susceptibility to be maximized. The use of the method is demonstrated by designing
optimal quantum wells for the Stark effect or quantum interference derived electro-optical effects.
[S0163-182699)04708-9

I. INTRODUCTION Il. THEORETICAL CONSIDERATIONS

There has been a very intense research activity in the past A- Intraband electro-optic susceptibilty
decade in the field of intersubband-transitions-based optical Consider a QW of arbitrary shape, biased by an external
effects in semiconductor quantum We’]"él'rhe d|po|e ma- dc field. Intraband transitions related eleCtrO-OptiC Suscepti-
trix elements that characterize such transitions are of the oRility may be determined by considering such a system as a
der of the quantum wellQW) width, i.e., a few nm, well new structure that interacts with the optical field in a linear
above those in atoms or molecules. Large matrix elementganner, while the influence of the dc field is described im-
generally lead to significant optical nonlinearities, particu-plicitly, via bound states energies and wave functions, or
larly if these are enhanced by meeting the resonance condiensity of states, that all depend on the bias field. The linear
tions. In view of remarkable “tailorability” of QW elec- susceptibility of biased QW may then be writterf as
tronic structure and related properties, the design of QW'’s
highly matched to a particular application should be possible.
Among the most interesting perspective applications of QW
structures is the one for electr'o—optlc modulators: It (elles o, (1) K)= 2 Xi(,lj)(er)
the fact that both the absorption and the refractive index of i
QW’s may be controlled by quasistatic electric fi¢tb this

formally is a nonlinear optical effect, described by second- _ e_2 Mi; (K)M;;i (K) [Ni(K)—Ni(K)]
order susceptibility Modulation of absorption or the refrac- eoh 1] [w— o (K)—il';] ) : ’
tive index results in either amplitude or phase modulation of e
light, and is most efficient if the light is about resonant with

some transition in the QW structure.

The applied electric field influences the QW in two ways,
which both contribute to changing its index of refraction: it whereM;;=(y|z| ;) is the dipole transition matrix element
shifts the quantized electronic statéStark effect, and it between statesandj, I';; the off-diagonal relaxation rate,
changes the values of various dipole matrix elements, bw;;=(E;—E;)/%, while E;, ;= ;(2), andN;, respectively,
changing the wave functions of electronic statbss may be  denote the energy, envelope wave function, and electron
interpreted as field-induced mixing of wave functions and isdensity in the state, while K is the quasistatic electric bias
often called quantum interferenceFor purpose of phase field. The summation is to be performed over all bound states
modulation, it seems that the quantum interference effect isf this QW. Equation(1) may then be expanded in Taylor

advantageous over the the Stark effeat. any case, for a  series ink, and it suffices to take the constant and linear-in-
specified wavelength of light and type of modulation, thek terms for further consideration, i.e.,

QW shape may be designed to provide the most efficient

modulation, i.e., the largest value of the corresponding

second-order susceptibility. Dl K = v D (0.0 +Tv2 (o) + 2
In this paper we present a method for such optimized X (@ K)=x @0+ [xs(@) + xgi(@)
design of QW shape, which will maximize the electo-optic +X<C2|5(w)].|<+ el 2

effect, in particular in ternary alloy based QW'&.g.,

Al,Ga _,As). The method relies on some theoretical tools

of quantum mechanics, which will first be described in SecThe three terms in brackets are the electro-optical coeffi-
II, and its use will be illustrated in Sec. Ill. cients of the structure, and are defined as
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X(Z)(w)=2 (c?)(ij 8wij) Xg|) ) ®w—wy—ily
S 1 \doy K [ X(Sz)(w"‘wzl)— .
M2sM 3y w—wyn—il'y
xi My dxii IMy; . (5
@)= 4 4 J I Moy(Moo—Myg) A
XQ|(‘0) IEj (&Mij K oM, K K=O, 21( M2 1 21
The first term in Eq(5), representing the ratio of Stark and
type-1 QI susceptibilities is small at, or close to resonance,
@ )_E aXij ‘?_Ni+ axij 0_Ni 3 be_causd“21< @21 Therefore, absent the interference with a
A oNj oK TN, oK third state , i.e., provided,;5=0 and M,,—M;#0, the

The X(Sz) term originates from the linear Stark shift of QW
states, While)(g,) appears as a consequence of changing th

dipole matrix elements, due to the interference of envelope

wave functions of bound states. FinallyZ) describes the

bias-dependent redistribution of electrons over the QW

states. With the field-electron interaction Hamiltonian writ-
ten asH;,;= —eKz the first-order perturbation theory may
be used to find the corrections to state energies and wa

Stark effect would be dominant. One the other hand/ i
=M,; andM 13# 0 the Stark effect would be negligible and

type-1l QI would dominate.
e

B. Isospectral transformations of the potential

It is clear from the above discussion that a QW has to be
asymmetric if it is expected to have significant electro-
optical coefficients. In symmetric structures one would have

W13=0 andM;=M,,, due to definite parity of the wave

functions, which allow the Stark and quantum interferencdunctions, hence neither the Stark nor the type-Il QI mecha-

(Ql) susceptibilities to be written As

(2) :Nle3 (Mlj)z(M]j_Mll)
XS (w) 2 . 2
th j#1 (U)_U)jl_|rjl)
2N, €e® M1,M23M 3¢
Xg|)(w)_ [

- ol [AZl(w_ w1~ i)

(M12)%(Mp—Myy)
wo1(@— w0y~

M oM 3M 31
Az(w—wz—il'3)
N (M12)%(M33—Myy)
wz(0—wz—il3)]

(4)

In these expressions the notatibh, w;;, andE; refers to
unbiased QW, and it is also assumed that the majority o
carriers resides in the lowest state, i;>N;(j#1). Fur-
thermore, the quantitieA,; and A3, are defined as

1 1 1

T s
Ay w3z oz

1 1 1

Azn 0y oz

In the QI-derived part of susceptibility, two distinct contri-

butions may be noticed. One of these originates from the

nisms would be effective. To maximize the electro-optical
performance of a QW structure, its profilee., the potential
shape should be varied in search for the largegt), of
whatever type chosen. This optimization of QW profile can
be classified as constrained, primarily due to the requirement
that the QW states should be resonant with the incoming
light. A convenient way of performing such optimization is
via the supersymmetric quantum mechan{&JSYQM).>
This method enables one to start with an arbitrary 1D poten-
tial U,(z) and generate from it a family of potentials
U(...\j,...:;2) which are isospectral to the original po-
tential U,(z). Their shapes are controlled via the scalar pa-
rametets) \;, which therefore influence the wave functions
and the values of various matrix elements while the resonant
conditions, once obtained fdt4(z), remain intact.

Here we shall give a brief description of SUSYQM back-
grounds and the working formulas. Consider the original po-
tentialU,(2z), the eigenfunctionsfln, and eigenenergids,,
\f/vhich are all known. One may then construct its partner
potential U,(2) =U4(2) — (£%/m)(d*/dZ’)Ings,, which has
all eigenenergies identical to those 0f;(z), exceptE;,
which is *“deleted.” However, the function in/li is

a solution of the Schidinger equation withJ,(z) andE;,
and another linearly independent solution is
fz_ocllfliz(z’)dz’/z,/fli, so the general solution may be written

as

tha, (M) =(Ni+ 1) i, (6)

coherent interference of envelope functions of states directly _
involved in the optical transition, which constitutes type-I Whereli=fz,ww1i2(2’)d2’. and\; is a parameter that may

quantum interference, and is described by the third angake any value out of the intervat 1<\;<0. SUSYQM

fourth term inx$). The combination of matrix elements is

then enables one to restore the stat&atk; by setting the

here the same as in Stark-derived susceptibility. The first tw@otential U(z) — (%2/m)(d?/dZ?)[In(l;+\;)], which is thus

terms inxg,) describe the type-Il quantum interference, com-

prising both the states that are directly involved in optical
transition and those which are niut still are necessary for
this type of Q). QW’'s may be designed so that one of the

fully isospectral to the original potential, and depends on the
parameter\; (i.e., a single-parameter family of isospectral
potentials is thus defined

Instead of immediately restoring tHe=E; state, how-

above three parts of susceptibility dominates over the othegver, one may choose to delete one more state;f), i.e.,

two. Generally, one may write

having found U,(z) its partner potential Us(z)=
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Ux(2)— (A2m)(d?/dP)Iny, , which is isospectral tt),(z) ex-  them. It is therefore impossible to realize, by grading a ter-
cept that the state ﬁ:éj is missing. The general solution Nhary alloy, the constant-mass-variable-potential Hamiltonian,

of the Schfdinger equation for this energy is; (\;)=(1; s delivered by SUSYQM. S . .

+N)/, . wherel = [? npz (z')dZ', and\, is ‘Ja new pa- There is, however, a remedy to this situation, which relies
1772y 7=t ; ! . P on using the coordinate transform. The idea is to map the

rameter. The solution corresponding to some statob-  real space, with variable-mass Hamiltonian, into a space

tained by using the operatoa\f(d/dz)—[ln(z//zj)]’, i.e.,  where the mass would appear to be constant, and apply the
_A ; Aol SUSYQM in this latter space. In effect, we introduce an
=A ;). Now, t the statedel th . ) . J -

¢3|t t'zlllle( LIJ) O_WU res orlr;lgz/ © Z:;(fzze ||ve;\s+le new (invertible) coordinate transfornz=g(y) into the Schre

potential - U,(2)=U,(2) = (2"/m)( JUNIA 1)1, dinger equatiof};’ [note thatU(z)=6m(z), as appropriate

which is isospectral t&J,(z), its eigenfunctions being given

~ < for ternary alloy:
by 1,//4]_=1/zp3j and ha, =R 3, where A, =-—d/dz

' ; i : A2 d/ 1 d¥
+[.In(<,/;3j)] . The final step |s. to restore .the.statefr.om -5 d_(_ d—) +6m(z)V=EV, (10
which the two-parameter family of potentials is obtained: z\m(z) dz
so it becomes
2 dZ
Us (i Ap)=U,— m E|n[lﬁ1i()\j+ |j)¢4i]u ﬂ_ i[m(mgr)]d_lﬁ_ z(mg/)z[am_ _—
dy? dy "—7 “dy h? - =7
Nij<—1V\;;>0, (7) (11
which is fully isospectral tdJ(z). The wave functions cor- Where m(y)=m(g(y)).¢=4(g(y)).g"=[dg(y)]/dy. De-
responding to |t are given by f|n|ng the Scaled wave funCtlonS as
s, = L, g=u(y)ymg (12
the term in front ofdy/dy in Eq. (11) becomes zero, and this
d , _ equation reads
s, =~ d_zllfztk"‘('n ha) Ya, (KF0). (8)
d2u zmgIZ
The procedure may be extended in the obvious manner to F+ Aly)— 52 [6m—E]{u=0,
introduce more parametetsAn alternative approach would y
be to start with an original potential, delete and immediately 2 .
restore one of its statéswhich delivers the single parameter ) _ 1/ 1 d(mg) N 1d( 1 d(mg)
dependent familyUgsd\,z)=U,(2) — (A%/m)(d?/dZ)[In(\ y 4\ mg dy 2dy\mg dy |
+I(\)], and its eigenfunctions - - (13
NN+ 1) This last expression takes the standard Sdimger form if
s§= )\+—|(Z)l//1i( 2), the coordinate transform functiansatisfies
mgIZIm*>O, (14)
2 sa@ar, G
l//SS(_ lzblk )\+|(Z)) 700@(2 )lrblk(Z z, ( 1), ng72 zmg/2
(9) Aly)— 2 om=— 2 Uo(y), (15
wherel(2) = .¢*(z')dZ', and ¢(2) is the eigenfunction \yherem* is independent o, andUo(y) is any (suitable
of (arbitrarily choseplth state of the original potential. function, specified in advance. The spectra of Ed) and

This procedure should then be repeated taking the curren 3) are clearly identical, and it is generally advantageous to
Uss as the new original, and the sequence of SUSYQMchoose Uy(y), with the constant massn*, so that its
transformsU,(z) ~Usd\;,z) —>UsdX; ,Nj,2)—--- intro-  eigenenergies and eigenfunctions are explicitly known. In
duces an additional free parametey; ( which is continu-  the problem considered here, these are chosen to be the out-
ously variablg and a discrete parametel, the state in re-  put of the SUSYQM method, as described in the previous
spect to which the transformation is madeer each new section, therefore the spectrumltz) is as desired, and the
transform. wave functionsi(z), in real space, will become uniquely

The SUSYQM theory is normally used for the constantand straightforwardlyfvia Eq. (12)] determined once the
(effective mass system. This may represent a drawback fofynction g(y) or, equivalentlym(z) is known.
its application to semiconductor quantum-well systems, be- |n order to findm(z) we introduce a new function(y)
cause the effective mass there will almost certainly beyng substituten=1/]4qm,6v?] in Egs.(14) and(15), where
variable®® In particular, in QW's based upon graded ternaryq=2m_/#2 and my=m*/m, (here m, denotes the free-
alloys A,B, _C, the potential and the effective mass areelectron mags which results in the nonlinear differential
related viaU(z) =[AE./Am]m(z)=6m(z), whereAE; is  equation
the conduction-band offset betwe&C and BC materials,
and Am is the difference of electron effective masses in 200" —v'"?—4qmyUo(y)v2+1=0. (16)
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Its solutions may be writtérasv(y) =s;s,, wheres; ands,  wherek= VamyVy, and the functiong), , satisfy the funda-
are two solutions of the characteristic equation mental boundary conditions 3t=0, i.e., g;(0)=1,g;(0)
. _ =1, 9,(0)=0,95(0)=1. The solutions,_ r should be mul-
s"=ameUo(y)s=0 (17 tiplied by a suitable constanC to gets;, that satisfy
chosen so that their Wronskian satisfi&¥(s;,s,)]?°=1. In  [W(s;,S,)]1?=1, and in terms of which the solution to the
order to finds, , we take that the potentiél, may be written  original problem reads

as
. f(y)<0’ |y|<ymaxa m(y): ! ,
Uo(y)=vo(y)+Vo, voly)= 0 NES . — 4Aqmf[ C1S5+ 1+4C,C,8;5,+ C,8,2]?

(21

where Vo is a positive constant which determines thewhereC, , are some constants. From the equality of Wron-
asymptotic value om(y), and /4 is the range where the skjans aty= +y., it follows T, =Tg=T, and the value of

potential varies significantly enough, before taking a con-ngrmalization” constantC is then straightforwardly found,
stant valueVy. Now we write the two particular solutions so Eq.(21) becomes

S r in the form

_ 2
e HR e, Y="Ymax: m(y)= Vol OT . @2
s (y)=3 ALO1(Y)+BL3x(Y), |Y[<Vmax,» (19 - [C1S{ = V1+4C;Cos spt Cos3)?
Te =
L ’ Y=Ymax:

If m(y) is to remain nonzero ag=*+o we must setC,
Toeky -_ =0 and C,=0. Finally, the constant® r, B, g, R_ g,
rE, Y=~"Y¥Ymax . I i y
andT are determined from the continuity ef r ands|  at
sr(Y) =1 ArG1(Y) +Br32(Y), [YI<Ymax»  (20) *Ymax, and the effective mass vs coordinate dependence

Rge V+eW, Y=Vimax reads
[ V6
T oimzr VST Ymax
[1+R e™]
(Vol0)T?
m(y) =¥ o IYI<Ymac (23
- {[Arg1(Y) +Bra2(Y) I[ALG1(Y) +BLga(Y) 1} e
Vol6 _
\ [1+RRe‘2"y]2' Y= Ymax-
|
The normalized wave functions in real space are given in U
parametric form as Uy)=- m. (25
B Um(y) lts energies are known analytically, &= — (#2/8m* d?)
y=uly) —, —(1+2i)+[1+(8Ud?m* /22)]¥32, i=0,1,2..., and
Vmg ~
for any value of the parametér one may find the half-width
d, which provides the appropriate spacing of the two lowest
y dy’ states, E,o=E;—Eg). The bound-state wave functions for
z=g(y)=mq z (24)  this potential are also known explicitly: yo(y)
yovm(y")
oIty = [ coshg/d) ]°,¢1(y) =sinh(y/d)/[cosh/d) I, y(y) =[1+2(1
—9)sink(y/d))[cosh@/d)T, ..., where s=1/24—1+[1

and correspond to the potential in real spade) = 6m(z), +(8U m* d2/42)]43), (Ref. 10. Taking this potential as the

realizable by graded ternary alloy. original, we made the SUSYQM transform of deleting and
restoring the lowest two states, which delivered the potential
Ill. NUMERICAL RESULTS erendent on two' parametgcs)(xi ALY, i:e., the poten-
tial Ug=vo+V, with analytically known eigenvalues and
In the optimization of QW shape, to get maximal electro-eigenfunctions. Then, using the coordinate transform
optic effect, we started with symmetric “&hl-Teller method, we constructed the variable-mass-variable-potential
potentiall®t Hamiltonian, ~ with ~ U(\;,\j,2)=U*(\; ,\j,2)+V,
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FIG. 1. (a) The optimum QW potential shape, and the envelope wave functions squared, calculated when maximizing the Stark effect
derived susceptibility, antb) the discretized, step-graded, version of this potential, with the step width equal to three crystalline monolayers.

=6m(\; \; ,2). By varying the parameteds and\; we found M y3~0 and|M,—M4|=125.9 A. Certainly, the continu-
widely changing values of dipole matrix elements betweerous grading(i.e., potential is not exactly realizable, and in
relevant states. For some values\pfand\;, one or another  Fig. 1(b) we give the discretized step-graded version of the
component of the second-order susceptibil@y becomes optimized QW profile, with the step width 0f32.83 A (3

highly dominant. ML). This discretization changes the energies and matrix el-
In numerical calculations we used the values"  ements insignificantly, i.e., tE,=—253.2 meV, E;=
=0.075m,, U=0.32 eV,E;;=116 meV,V,=1.265 eV,§  —137.8 meV,E,=—55.0 meV,M5=0.29 A, M ,,— M|

=9.036(in eV/m, units), which enable the realization of the =125.8 A. For comparison, we note that a QW for this type
obtained potential by AlGa; _,As alloy (the value oVywas  of electro-optic effect was designed in Ref. 1. Unfortunately,
chosen so that the effective mass never exceeds 1815 neither the values of matrix elements obtained, nor the ma-
i.e., the largest possible value in this alloffurthermore, the  terjals parameters used in calculation, were stated therein.
conduction band offset wadE.=750 meV, andMgaas  So, using the same parameters as in this work, we could
=0.06"M¢, Majas=0.15Mm. The functionss, r, which de-  estimate that the QW of Fig. 1 providél§l ,,— M 5|~20 A
termine the effective mass depende(28), were calculated  (indeed, it is not claimed that this QW has been optimized in
by the fourth- or fifth-order Runge-Kutta method, combinedany way, and the design presented here is significantly bet-
with a modification of the WBK method. With the Bchl- g,

Teller potential depth of) =0.32 eV, the appropriate value  Another search was performed to find the best QW shape
of d=53.67 A will deliver the required,,=116 meV, and for the type-ll QI effect. Here we seek for the structure with
such potential supports four bound states, wity= M,,—M1,=0 while M3#0 and as large as possible. The
—253.2,E,=—-137.2,E,=—56.5, andE;=—11.0 meV. best result obtained wall,;3=2.58 A andM ,,—M,,~0,

The (\j,\j) parameters space was first searched for thevhich occurs with the values of SUSYQM parametars
largest value of Stark susceptibility. The maximum value=0.0197 and\;=0.1. The optimized potential shape and its
was found forhj=—1.0002,\;=0.01, and the correspond- discretized version are given in Figs(a@ and 2b). Here
ing QW profile is displayed in Fig. (&). This structure has again the discretization produces only minor changes in re-

U*(z) [eV] U*(z) [eV]
0 0
-0.05 -0.05
-0.10 -0.10
0151 0.15 |
-0.20 -0.20
0.25 -0.25
-0.30 ] -0.30 ]
0235 z1Al a5 z[A]
200 -150 -100 50 0 50 100 150 200 200 -150 -100 50 0 50 100 150 200

@ (b)

FIG. 2. Same as Fig. 1, but for maximizing the type-Il quantum interference derived susceptibility.
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sults, i.e.Eo=—253.0eV,E,=—-136.6 eVE;=—55.2eV, being therefore realizable in graded ternary alloys. By vary-
M,,—M,;=0.013 A,M,3=2.38 A. A QW designed for this ing the values of control parameters, i.e., the potential shape,
type of electro-optic effect was presented in Ref. 3, for whichone can change the values of dipole matrix elements relevant

we could estimate the valy#,4~0.675 A(it is not explic-  for a particular susceptibility, and find the best potential
itly stated thereipy and the design presented here is agairshape, while the energy levels, once obtained in the initial
significantly better. potential, remain unchanged throughout this search. In this
work the optimized potentials have been found for either the

IV. CONCLUSION linear Stark effect derived or for quantum interference de-

A method is described for the optimized design of rived electro-optical effects. . o -
quantum-well structures with respect to the second-order |Neré are numerous possible generalizations and modifi-
susceptibilities relevant for electro-optic applications. Thec@tions of the procedure used in this work. Using the initial
method relies on isospectral transformati¢8)SYQM and ~ Potential other than Fehl-Teller (possibly asymmetric
coordinate transforin It starts by some initial potential, ¢hoosing the states for the SUSYQM transform other than
which may even be symmetric, to generate a family of poihe lowest two, introducing more free parameters—these
tentials, the shape of which is controlled by one or moremay improve the results of the optimization, though it is
scalar parameters, and which are accompanied with the eglifficult to assess the potential benefits from all these direc-
fective mass variation proportional to the potential variation,tions, either theoretically or by numerical experimenting.
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