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Quantum-well shape optimization for intersubband-related electro-optic modulation properties

J. Radovanovic´, V. Milanović,* Z. Ikonić, and D. Indjin
Faculty of Electrical Engineering, University of Belgrade, Bulevar Revolucije 73, 11120 Belgrade, Yugoslavia

~Received 14 September 1998!

A method is described for the optimized design of quantum-well structures, in respect to maximizing the
second-order susceptibilities relevant for electro-optic applications. It relies on applying the isospectral~energy
structure preserving! transformations to an initial Hamiltonian, in order to generate parameter~s! controlled
family of Hamiltonians that~i! are isospectral to the initial one and,~ii ! have the potential variation propor-
tional to the effective mass variation, being thus realizable by graded ternary alloys like AlxGa12xAs. By
changing the values of control parameters one changes the potential shape and thus the values of matrix
elements relevant for the susceptibility to be maximized. The use of the method is demonstrated by designing
optimal quantum wells for the Stark effect or quantum interference derived electro-optical effects.
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I. INTRODUCTION

There has been a very intense research activity in the
decade in the field of intersubband-transitions-based op
effects in semiconductor quantum wells.1–4 The dipole ma-
trix elements that characterize such transitions are of the
der of the quantum well~QW! width, i.e., a few nm, well
above those in atoms or molecules. Large matrix eleme
generally lead to significant optical nonlinearities, partic
larly if these are enhanced by meeting the resonance co
tions. In view of remarkable ‘‘tailorability’’ of QW elec-
tronic structure and related properties, the design of QW
highly matched to a particular application should be possi
Among the most interesting perspective applications of Q
structures is the one for electro-optic modulators. It relies
the fact that both the absorption and the refractive index
QW’s may be controlled by quasistatic electric field~so this
formally is a nonlinear optical effect, described by secon
order susceptibility!. Modulation of absorption or the refrac
tive index results in either amplitude or phase modulation
light, and is most efficient if the light is about resonant w
some transition in the QW structure.

The applied electric field influences the QW in two way
which both contribute to changing its index of refraction:
shifts the quantized electronic states~Stark effect!, and it
changes the values of various dipole matrix elements,
changing the wave functions of electronic states~this may be
interpreted as field-induced mixing of wave functions and
often called quantum interference!. For purpose of phase
modulation, it seems that the quantum interference effec
advantageous over the the Stark effect.4 In any case, for a
specified wavelength of light and type of modulation, t
QW shape may be designed to provide the most effic
modulation, i.e., the largest value of the correspond
second-order susceptibility.

In this paper we present a method for such optimiz
design of QW shape, which will maximize the electo-op
effect, in particular in ternary alloy based QW’s~e.g.,
Al xGa12xAs). The method relies on some theoretical to
of quantum mechanics, which will first be described in S
II, and its use will be illustrated in Sec. III.
PRB 590163-1829/99/59~8!/5637~6!/$15.00
st
al

r-

ts
-
di-

’s
e.

n
f

-

f

,

y

s

is

nt
g

d

s
.

II. THEORETICAL CONSIDERATIONS

A. Intraband electro-optic susceptibility

Consider a QW of arbitrary shape, biased by an exter
dc field. Intraband transitions related electro-optic susce
bility may be determined by considering such a system a
new structure that interacts with the optical field in a line
manner, while the influence of the dc field is described i
plicitly, via bound states energies and wave functions,
density of states, that all depend on the bias field. The lin
susceptibility of biased QW may then be written as3

x~1!~v,K !5(
i , j

x i , j
~1!~v,K !

5
e2

e0\(
i , j

M i j ~K !M ji ~K !

@v2v i j ~K !2 iG i j #
@Nj~K !2Ni~K !#,

~1!

whereMi j 5^c i uzuc j& is the dipole transition matrix elemen
between statesi and j , G i j the off-diagonal relaxation rate
v i j 5(Ei2Ej )/\, while Ei ,c i5c i(z), andNi , respectively,
denote the energy, envelope wave function, and elec
density in the statei , while K is the quasistatic electric bia
field. The summation is to be performed over all bound sta
of this QW. Equation~1! may then be expanded in Taylo
series inK, and it suffices to take the constant and linear-
K terms for further consideration, i.e.,

x~1!~v,K !5x~1!~v,0!1@xS
~2!~v!1xQI

~2!~v!

1xCD
~2! ~v!#•K1•••. ~2!

The three terms in brackets are the electro-optical coe
cients of the structure, and are defined as
5637 ©1999 The American Physical Society
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xS
~2!~v!5(

i , j
S ]x i j

]v i j

]v i j

]K D
K50

,

xQI
~2!~v!5(

i , j
S ]x i j

]Mi j

]Mi j

]K
1

]x i j

]M ji

]M ji

]K D
K50

,

xCD
~2! ~v!5(

i , j
S ]x i j

]Nj

]Nj

]K
1

]x i j

]Ni

]Ni

]K D
K50

. ~3!

The xS
(2) term originates from the linear Stark shift of QW

states, whilexQI
(2) appears as a consequence of changing

dipole matrix elements, due to the interference of envel
wave functions of bound states. Finally,xCD

(2) describes the
bias-dependent redistribution of electrons over the Q
states. With the field-electron interaction Hamiltonian wr
ten asHint52eKz, the first-order perturbation theory ma
be used to find the corrections to state energies and w
functions, which allow the Stark and quantum interferen
~QI! susceptibilities to be written as3

xS
~2!~v!5

N1e3

e0\2 (
j Þ1

~M1 j !2~M j j 2M11!

~v2v j 12 iG j 1!2
,

xQI
~2!~v!5

2N1e3

e0\2 F M12M23M31

D21~v2v212 iG21!

1
M12M23M31

D31~v2v312 iG31!
1

~M12!
2~M222M11!

v21~v2v212 iG21!

1
~M13!

2~M332M11!

v31~v2v312 iG31!
G . ~4!

In these expressions the notationNi , v i j , and Ei refers to
unbiased QW, and it is also assumed that the majority
carriers resides in the lowest state, i.e.,N1@Nj ( j Þ1). Fur-
thermore, the quantitiesD21 andD31 are defined as

1

D21
5

1

v31
1

1

v32
,

1

D31
5

1

v21
2

1

v32

.

In the QI-derived part of susceptibility, two distinct contr
butions may be noticed. One of these originates from
coherent interference of envelope functions of states dire
involved in the optical transition, which constitutes type
quantum interference, and is described by the third
fourth term inxQI

(2) . The combination of matrix elements
here the same as in Stark-derived susceptibility. The first
terms inxQI

(2) describe the type-II quantum interference, co
prising both the states that are directly involved in opti
transition and those which are not~but still are necessary fo
this type of QI!. QW’s may be designed so that one of t
above three parts of susceptibility dominates over the o
two. Generally, one may write3
e
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xQI
~2!

xS
~2!

~v'v21!52Fv2v212 iG21

v21

1
M23M31

M21~M222M11!

v2v212 iG21

D21
G . ~5!

The first term in Eq.~5!, representing the ratio of Stark an
type-I QI susceptibilities is small at, or close to resonan
becauseG21!v21. Therefore, absent the interference with
third state , i.e., providedM1350 and M222M11Þ0, the
Stark effect would be dominant. One the other hand, ifM22
5M11 andM13Þ0 the Stark effect would be negligible an
type-II QI would dominate.

B. Isospectral transformations of the potential

It is clear from the above discussion that a QW has to
asymmetric if it is expected to have significant electr
optical coefficients. In symmetric structures one would ha
M1350 andM115M22, due to definite parity of the wave
functions, hence neither the Stark nor the type-II QI mec
nisms would be effective. To maximize the electro-optic
performance of a QW structure, its profile~i.e., the potential
shape! should be varied in search for the largestx (2), of
whatever type chosen. This optimization of QW profile c
be classified as constrained, primarily due to the requirem
that the QW states should be resonant with the incom
light. A convenient way of performing such optimization
via the supersymmetric quantum mechanics~SUSYQM!.5

This method enables one to start with an arbitrary 1D pot
tial U1(z) and generate from it a family of potentia
U( . . . ,l j , . . . ;z) which are isospectral to the original po
tential U1(z). Their shapes are controlled via the scalar p
rameter~s! l i , which therefore influence the wave function
and the values of various matrix elements while the reson
conditions, once obtained forU1(z), remain intact.

Here we shall give a brief description of SUSYQM bac
grounds and the working formulas. Consider the original p
tentialU1(z), the eigenfunctionsc1n

, and eigenenergiesEn ,
which are all known. One may then construct its partn
potential U2(z)5U1(z)2(\2/m)(d2/dz2)lnc1i

, which has

all eigenenergies identical to those ofU1(z), except Ei ,
which is ‘‘deleted.’’ However, the function 1/c1i

is

a solution of the Schro¨dinger equation withU2(z) and Ei ,
and another linearly independent solution
*2`

z c1i

2(z8)dz8/c1i
, so the general solution may be writte

as

c2i
~l i !5~l i1I i !/c1i

, ~6!

where I i5*2`
z c1i

2(z8)dz8, andl i is a parameter that ma

take any value out of the interval21<l i<0. SUSYQM
then enables one to restore the state atE5Ei by setting the
potential U1(z)2(\2/m)(d2/dz2)@ ln(Ii1li)#, which is thus
fully isospectral to the original potential, and depends on
parameterl i ~i.e., a single-parameter family of isospectr
potentials is thus defined!.

Instead of immediately restoring theE5Ei state, how-
ever, one may choose to delete one more state ofU1(z), i.e.,
having found U2(z) its partner potential U3(z)5
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U2(z)2(\2/m)(d2/dz2)lnc 2j
, which is isospectral toU2(z) ex-

cept that the state atE5Ej is missing. The general solutio
of the Schro¨dinger equation for this energy isc3 j

(l j )5(I j

1l j )/c2 j
, where I j5*2`

z c2 j

2 (z8)dz8, and l j is a new pa-

rameter. The solution corresponding to some statel is ob-
tained by using the operatorÂ25(d/dz)2@ ln(c 2j

)#8, i.e.,

c3l
5Â2c2l

(l i). Now, restoring the statej delivers the new

potential U4(z)5U2(z)2(\2/m)(d2/dz2)$ ln@lj1I j(z)#%,
which is isospectral toU2(z), its eigenfunctions being given
by c4 j

51/c3 j
and c4l

5Â2
1c3l

, where Â2
152d/dz

1@ ln(c3j
)#8. The final step is to restore the statei, from

which the two-parameter family of potentials is obtained:

U5SS
~l i ,l j !5U12

\2

m

d2

dz2
ln@c1i

~l j1I j !c4i
#,

l i , j,21~l i , j.0, ~7!

which is fully isospectral toU1(z). The wave functions cor-
responding to it are given by

c5i
51/c4i

,

c5k
52

d

dz
c4k

1~ ln c4i
!8c4k

, ~kÞ i !. ~8!

The procedure may be extended in the obvious manne
introduce more parameters.5 An alternative approach would
be to start with an original potential, delete and immediat
restore one of its statesi, which delivers the single paramete
dependent familyUSS(l,z)5U1(z)2(\2/m)(d2/dz2)@ ln(l
1I(l)#, and its eigenfunctions

cSSi
5

Al~l11!

l1I ~z!
c1i

~z!,

cSSk
5c1k

2
w~z!

l1I ~z!)E2`

z

w~z8!c1k
~z8!dz8, ~kÞ i !,

~9!

where I (z)5*2`
z w2(z8)dz8, and w(z) is the eigenfunction

of ~arbitrarily chosen! lth state of the original potential.
This procedure should then be repeated taking the cur

USS as the new original, and the sequence of SUSYQ
transformsU1(z)→USS(l i ,z)→USS(l i ,l j ,z)→••• intro-
duces an additional free parameter (l l , which is continu-
ously variable! and a discrete parameter (l , the state in re-
spect to which the transformation is made! per each new
transform.

The SUSYQM theory is normally used for the consta
~effective! mass system. This may represent a drawback
its application to semiconductor quantum-well systems,
cause the effective mass there will almost certainly
variable.6–8 In particular, in QW’s based upon graded terna
alloys AxB12xC, the potential and the effective mass a
related viaU(z)5@DEc /Dm#m(z)[um(z), whereDEc is
the conduction-band offset betweenAC and BC materials,
and Dm is the difference of electron effective masses
to

y
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t
r
-

e

them. It is therefore impossible to realize, by grading a t
nary alloy, the constant-mass-variable-potential Hamiltoni
as delivered by SUSYQM.

There is, however, a remedy to this situation, which rel
on using the coordinate transform. The idea is to map
real space, with variable-mass Hamiltonian, into a sp
where the mass would appear to be constant, and apply
SUSYQM in this latter space. In effect, we introduce
~invertible! coordinate transformz5g(y) into the Schro¨-
dinger equation,6,7 @note thatU(z)5um(z), as appropriate
for ternary alloy#:

2
\2

2

d

dzS 1

m~z!

dC

dz D1um~z!C5EC, ~10!

so it becomes

d2c

dy2
2

d

dy
@ ln~mg8!#

dc

dy
2

2~mg8!2

\2
@um2E#c50,

~11!

where m(y)5m„g(y)…,c5c„g(y)…,g8[@dg(y)#/dy. De-
fining the scaled wave functions as

c5u~y!Amg8 ~12!

the term in front ofdc/dy in Eq. ~11! becomes zero, and thi
equation reads6

d2u

dy2
1FA~y!2

2mg82

\2
@um2E#Gu50,

A~y!52
1

4S 1

mg8

d~mg8!

dy D 2

1
1

2

d

dyS 1

mg8

d~mg8!

dy D .

~13!

This last expression takes the standard Schro¨dinger form if
the coordinate transform functiong satisfies

mg825m* .0, ~14!

A~y!2
2mg82

\2
um52

2mg82

\2
U0~y!, ~15!

wherem* is independent onz, andU0(y) is any ~suitable!
function, specified in advance. The spectra of Eq.~10! and
~13! are clearly identical, and it is generally advantageous
choose U0(y), with the constant massm* , so that its
eigenenergies and eigenfunctions are explicitly known.
the problem considered here, these are chosen to be the
put of the SUSYQM method, as described in the previo
section, therefore the spectrum ofU(z) is as desired, and the
wave functionsc(z), in real space, will become uniquel
and straightforwardly@via Eq. ~12!# determined once the
function g(y) or, equivalently,m(z) is known.

In order to findm(z) we introduce a new functionv(y)
and substitutem51/@4qm0uv2# in Eqs.~14! and~15!, where
q52me /\2 and m05m* /me ~here me denotes the free-
electron mass!, which results in the nonlinear differentia
equation

2vv92v8224qm0U0~y!v21150. ~16!
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Its solutions may be written9 asv(y)5s1s2 , wheres1 ands2
are two solutions of the characteristic equation

s92qm0U0~y!s50 ~17!

chosen so that their Wronskian satisfies@W(s1 ,s2)#251. In
order to finds1,2 we take that the potentialU0 may be written
as

U0~y![v0~y!1V0 , v0~y!5H f ~y!,0, uyu,ymax,

0, uyu>ymax,
~18!

where V0 is a positive constant which determines t
asymptotic value ofm(y), and 2ymax is the range where the
potential varies significantly enough, before taking a co
stant valueV0 . Now we write the two particular solution
sL,R in the form

sL~y!5H e2ky1RLeky, y<2ymax,

ALg1~y!1BLg2~y!, uyu,ymax,

TLe2ky, y>ymax,

~19!

sR~y!5H TReky, y<2ymax,

ARg1~y!1BRg2~y!, uyu,ymax,

RRe2ky1eky, y>ymax,

~20!
i

o

-

wherek5Aqm0V0, and the functionsg1,2 satisfy the funda-
mental boundary conditions aty50, i.e., g1(0)51, g18(0)
51, g2(0)50, g28(0)51. The solutionssL,R should be mul-
tiplied by a suitable constantC to get s1,2 that satisfy
@W(s1 ,s2)#251, and in terms of which the solution to th
original problem reads

m~y!5
1

4qm0u@C1s1
26A114C1C2s1s21C2s2

2#2
,

~21!

whereC1,2 are some constants. From the equality of Wro
skians aty56ymax it follows TL5TR5T, and the value of
‘‘normalization’’ constantC is then straightforwardly found
so Eq.~21! becomes

m~y!5
~V0 /u!T2

@C1sL
26A114C1C2sLsR1C2sR

2 #2
. ~22!

If m(y) is to remain nonzero aty56` we must setC1
50 and C250. Finally, the constantsAL,R , BL, R , RL, R ,
andT are determined from the continuity ofsL,R andsL,R8 at
6ymax, and the effective mass vs coordinate depende
reads
m~y!55
V0 /u

@11RLe2ky#2
, y<2ymax,

~V0 /u!T2

$@ARg1~y!1BRg2~y!#@ALg1~y!1BLg2~y!#%2
, uyu,ymax,

V0 /u

@11RRe22ky#2
, y>ymax.

~23!
est
r

nd
tial

d
rm
ntial
The normalized wave functions in real space are given
parametric form as

c5u~y!
A4 m~y!

A4 m0

,

z5g~y!5Am0E
y0

y dy8

Am~y8!
~24!

and correspond to the potential in real spaceU(z)5um(z),
realizable by graded ternary alloy.

III. NUMERICAL RESULTS

In the optimization of QW shape, to get maximal electr
optic effect, we started with symmetric Po¨schl-Teller
potential,10,11
n

-

U~y!52
Ũ

cosh2~y/d!
. ~25!

Its energies are known analytically, asEi52(\2/8m* d2)

$2(112i )1@11(8Ũd2m* /\2)#1/2%2, i 50,1,2, . . . , and
for any value of the parameterŨ one may find the half-width
d, which provides the appropriate spacing of the two low
states, (E105E12E0). The bound-state wave functions fo
this potential are also known explicitly: c0(y)
51/@cosh(y/d)#s,c1(y)5sinh(y/d)/@cosh(y/d)#s,c2(y)5@112(1
2s)sinh2(y/d)#/@cosh(y/d)#s, . . . , where s51/2$211@1
1(8Ũm* d2/\2)#1/2%, ~Ref. 10!. Taking this potential as the
original, we made the SUSYQM transform of deleting a
restoring the lowest two states, which delivered the poten
dependent on two parameters,v0(l i ,l j ,y), i.e., the poten-
tial U05v01V0 with analytically known eigenvalues an
eigenfunctions. Then, using the coordinate transfo
method, we constructed the variable-mass-variable-pote
Hamiltonian, with U(l i ,l j ,z)5U* (l i ,l j ,z)1V0
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FIG. 1. ~a! The optimum QW potential shape, and the envelope wave functions squared, calculated when maximizing the Sta
derived susceptibility, and~b! the discretized, step-graded, version of this potential, with the step width equal to three crystalline mono
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5um(li ,lj ,z). By varying the parametersl i andl j we found
widely changing values of dipole matrix elements betwe
relevant states. For some values ofl i andl j , one or another
component of the second-order susceptibility~4! becomes
highly dominant.

In numerical calculations we used the valuesm*
50.075me , Ũ50.32 eV,E105116 meV,V051.265 eV,u
59.036~in eV/me units!, which enable the realization of th
obtained potential by AlxGa12xAs alloy ~the value ofV0 was
chosen so that the effective mass never exceeds 0.15me ,
i.e., the largest possible value in this alloy!. Furthermore, the
conduction band offset wasDEc5750 meV, andmGaAs
50.067me , mAlAs50.15me . The functionssL,R , which de-
termine the effective mass dependence~23!, were calculated
by the fourth- or fifth-order Runge-Kutta method, combin
with a modification of the WBK method. With the Po¨schl-
Teller potential depth ofŨ50.32 eV, the appropriate valu
of d553.67 Å will deliver the requiredE105116 meV, and
such potential supports four bound states, withE05
2253.2,E152137.2,E25256.5, andE35211.0 meV.

The (l i ,l j ) parameters space was first searched for
largest value of Stark susceptibility. The maximum val
was found forl i521.0002,l j50.01, and the correspond
ing QW profile is displayed in Fig. 1~a!. This structure has
n

e

M13'0 and uM222M11u5125.9 Å. Certainly, the continu-
ous grading~i.e., potential! is not exactly realizable, and in
Fig. 1~b! we give the discretized step-graded version of
optimized QW profile, with the step width of 332.83 Å ~3
ML !. This discretization changes the energies and matrix
ements insignificantly, i.e., toE052253.2 meV, E15
2137.8 meV,E25255.0 meV,M1350.29 Å, uM222M11u
5125.8 Å. For comparison, we note that a QW for this ty
of electro-optic effect was designed in Ref. 1. Unfortunate
neither the values of matrix elements obtained, nor the m
terials parameters used in calculation, were stated the
So, using the same parameters as in this work, we co
estimate that the QW of Fig. 1 providesuM222M11u'20 Å
~indeed, it is not claimed that this QW has been optimized
any way!, and the design presented here is significantly b
ter.

Another search was performed to find the best QW sh
for the type-II QI effect. Here we seek for the structure w
M222M1150 while M13Þ0 and as large as possible. Th
best result obtained wasM1352.58 Å andM222M11'0,
which occurs with the values of SUSYQM parametersl i
50.0197 andl j50.1. The optimized potential shape and
discretized version are given in Figs. 2~a! and 2~b!. Here
again the discretization produces only minor changes in
FIG. 2. Same as Fig. 1, but for maximizing the type-II quantum interference derived susceptibility.
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sults, i.e.,E052253.0 eV,E252136.6 eV,E35255.2 eV,
M222M1150.013 Å,M1352.38 Å. A QW designed for this
type of electro-optic effect was presented in Ref. 3, for wh
we could estimate the valueuM13u'0.675 Å~it is not explic-
itly stated therein!, and the design presented here is ag
significantly better.

IV. CONCLUSION

A method is described for the optimized design
quantum-well structures with respect to the second-or
susceptibilities relevant for electro-optic applications. T
method relies on isospectral transformations~SUSYQM and
coordinate transform!. It starts by some initial potential
which may even be symmetric, to generate a family of p
tentials, the shape of which is controlled by one or mo
scalar parameters, and which are accompanied with the
fective mass variation proportional to the potential variatio
h

n

f
er
e

-
e
ef-
,

being therefore realizable in graded ternary alloys. By va
ing the values of control parameters, i.e., the potential sha
one can change the values of dipole matrix elements relev
for a particular susceptibility, and find the best potent
shape, while the energy levels, once obtained in the ini
potential, remain unchanged throughout this search. In
work the optimized potentials have been found for either
linear Stark effect derived or for quantum interference d
rived electro-optical effects.

There are numerous possible generalizations and mo
cations of the procedure used in this work. Using the init
potential other than Po¨schl-Teller ~possibly asymmetric!,
choosing the states for the SUSYQM transform other th
the lowest two, introducing more free parameters—the
may improve the results of the optimization, though it
difficult to assess the potential benefits from all these dir
tions, either theoretically or by numerical experimenting.
e
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