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Phase transitions of electron-hole and unbalanced electron systems
in coupled quantum wells in high magnetic fields

Yu. E. Lozovik,* O. L. Berman, and V. G. Tsvetus
Institute of Spectroscopy, 142092 Troitsk, Moscow region, Russia

~Received 7 August 1998!

The superfluidity of spatially separated electrons and holes and of an unbalanced two-layer electron system
in a high magnetic field is considered. The temperatureTc of the Kosterlitz-Thouless transition to a superfluid
state is obtained as a function of magnetic fieldH and interlayer separationD. The equation of state for the
magnetoexciton system in the quasiclassical regime is analyzed. The transition from excitonic phase to
electron-hole phase is considered. Possible experimental manifestations of the predicted effects are briefly
discussed.@S0163-1829~99!05204-2#
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I. INTRODUCTION

Systems of excitons with spatially separated electrons~e!
and holes~h! ~indirect excitons! in coupled quantum wells
~CQW’s! in magnetic fields~H! are now the subject of in
tensive experimental investigations.1–3 They are of interest,
in particular, in connection with the possibility of superfl
idity of indirect excitons ore-h pairs, which would manifes
itself in the CQW’s aspersistentelectrical currents in each
well4 ~see also recent articles5–7! and also in connection with
the quasi-Josephson phenomena in the system~see Ref. 8
and references therein!. In high magnetic fields, two-
dimensional~2D! excitons survive in a substantially wide
temperature region, as the exciton binding energies incre
with magnetic field.9–11 In addition, the 2De-h system in
high fieldsH is interesting due to the existence, under so
conditions, supersymmetry in the system~for the single
quantum well! leading to unique exact solutions of the man
body problem~the last corresponding to ideal Bose conde
sation of magnetoexciton atany density!. 12

The superfluid state appears in the system under con
eration below the temperature of Kosterlitz-Thoule
transition.13 The latter was studied recently for systems w
spatially separated electrons~e! and holes~h! in the absence
of magnetic field.5

Attempts of experimental investigation of magnetoexcit
superfluidity in coupled quantum wells1 make it essential to
study the magnetic-field dependence of the temperatur
phase transition to the superfluid state in systems of indi
magnetoexcitons and to analyze the density of the super
component. This is the subject of this paper. It will be sho
below that increasing of magnetic field at a fixed magneto
citon density leads to a lowering of the Kosterlitz-Thoule
transition temperatureTc on account of the increase of th
exciton magnetic mass as a function ofH. But it turns out
that the highest possible Kosterlitz-Thouless transition te
perature increases withH ~at smallD) due to the rise in the
maximum density of magnetoexcitons vsH. Quantum phase
transition of a magnetoexciton system to incompressible
uid states is briefly discussed in connection with the prob
of maximum density of stable magnetoexciton system.

We show also that contributions to the thermodynam
PRB 590163-1829/99/59~8!/5627~10!/$15.00
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potential and the state equation connected with interexc
interactions for rare magnetoexciton system at fixed den
and temperature vanishes withH increasing.

In a magnetoexciton system in coupled quantum wells
essentially higher temperatures than the transition to the
perfluid state the exciton thermal ionization takes place. T
dependence of maximalTi(H,n) is defined by the magne
toexciton binding energyE0(H,D) and rises with magnetic
field and decreases with interlayer separationD (n is the
surface density of magnetoexcitons!.

The paper is organized in the following way. In Sec.
~which has auxiliary character! we discuss the relation be
tween electric current and magnetic momentum of nonin
acting isolated magnetoexcitons, which we shall use in c
culation of the density of normal component. In Sec. III, w
consider the spectrum of collective excitations for the syst
of rare indirect excitons in a high magnetic field in the ladd
approximation. In Sec. IV, we analyze the dependence of
density of the superfluid component on magnetic field a
interlayer distance. In Sec. V, we calculate the dependenc
the temperature of the Kosterlitz-Thouless transition to
superfluid phase on magnetic field and interlayer distance
Sec. VI, we consider thermodynamics and equation of
state of rare magnetoexciton system at high temperatures
discuss the resemblance of the system to the ideal gas in
limiting case of high magnetic field. In Sec. VII, we estima
the magnetoexcitons existence lineTi(H,n) connected with
ionization transition~more strictly, this is crossover region!.
We use the ionization equilibrium condition analogous
Saha relation in the quasiclassical region and also disc
briefly the quantum region of magnetoexciton system sta
ity in relation with the quantum transition of superfluid ma
netoexciton system to two-layer Laughlin liquids of electro
and holes. In Sec. VIII, we discuss the phase transitions
the ‘‘dense’’ system. In Sec. IX we consider properties
indirect magnetoexcitons in unbalanced two-layer elect
system. In Sec. X, we discuss possible experimental m
festations of superfluidity of magnetoexcitons in CQW.
Sec. XI we present our conclusions.

II. ISOLATED MAGNETOEXCITON IN THE SYSTEM
OF SPATIALLY SEPARATED ELECTRONS AND HOLES

The total HamiltonianĤ of an isolated pair of spatially
separatede andh in the magnetic field is
5627 ©1999 The American Physical Society
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Ĥ5
1

2me
~2 i¹e1eAe!

21
1

2mh
~2 i¹h2eAh!2

2
e2

A~re2rh!21D2
, ~1!

whereme , mh are the effective electron and hole mass
Ae , Ah are the vector potentials in electron and hole lo
tion, respectively;re , rh are electron and hole location
along quantum wells~we use unitsc5\51).

A conserved quantity for isolated exciton in magne
field ~the excitonmagneticmomentum! is ~see Ref. 14!

P̂52 i¹e2 i¹h1e~Ae2Ah!2e@H,re2rh#. ~2!

The conservation of this quantity is connected with the
variance of the system upon a simultaneous translatione
andh and gauge transformation.

Let us consider the coordinates of the center of masR
5(mere1mhrh /(me1mh) and the internal exciton coordi
natesr5re2rh . The cylindrical gauge for vector potential
used:Ae,h5 1

2 @H,re,h#.
Eigenfunctions of Hamiltonian Eq.~1! ~which are also the

eigenfunctions of the magnetic momentumP) are~see Refs.
12 and 14!

CPk~R,r !5expH iRS P1
e

2
@H,r # D1 ig

Pr

2 J Fk~P,r !,

~3!

whereFk(P,r ) is the function of internal coordinatesr ; P is
the eigenvalue of magnetic momentum;k are quantum num-
bers of exciton internal motion. In high magnetic fieldsk
5(n,m), where n5min(n1 ,n2), m5un12n2u,n1,2 are
Landau quantum numbers fore and h;12,10 g5(mh
2me)/(mh1me).

The effective HamiltonianHP has the form

ĤP52
1

2m*
D r2

ieg

2m*
@H,r #¹ r1

e2

8m*
@H,r #2

1
e

M
@H,r #P1

P2

2M
2

e2

Ar21D2
, ~4!

wherem* 5memh(me1mh).
Using the Feynman theorem~we denotê Pku•••uPk& as

^•••&) one can obtain for isolated magnetoexciton curr
~see Ref. 14!:

Jk~P!5M K ]ĤP

]P L 5M
]«k~P!

]P
5M

P

P

]«k~P!

]P
, ~5!

where M5me1mh ; «k(P) is the magnetoexciton dispe
sion law @for indirect excitons«k(P) in dependence onH
and interwell separationsD was analyzed in detail10#.

The dispersion relation«k(P) of isolated magnetoexciton
is the quadratic function at small magnetic momenta:

«k~P!'
P2

2mHk
, ~6!
;
-

-

t

wheremHk is the effectivemagneticmass, dependent onH
and the distanceD betweene and h layers and quantum
numberk ~see Ref. 10!.

The quadratic dispersion relation Eq.~6! is true for small
P at arbitrary magnetic fieldsH and follows from the fact
that P50 is an extremal point of the dispersion law«k(P).
The last statement may be proved by taking into account
regularity of the effective HamiltonianHP as a function of
the parameterP at P50 and also the invariance ofHP upon
simultaneous rotation ofr and P in the CQW plane.15 For
magnetoexciton ground statemH.0.

For high magnetic fieldsr H!a0* and atD&r H , the qua-
dratic dispersion relation is valid atP!1/r H , but for D
@r H it holds over a wider region — at least atP!(1/
r H)(D/r H) ~Ref. 10! @a0* 51/2me2 is the radius of a 2D ex-
citon atH50; m5memh /(me1mh); me,h are the effective
masses ofe andh].

Using the quadratic dispersion relation for magnetoex
tons, one has at anyH an expression for the magnetoexcito
velocity analogous to that for the ordinary momentumṘ
5]«k(P)/]P5P/mHk . So the mass current of an isolate
magnetoexciton for smallP is

Jk~P!5
M

mHk
P. ~7!

III. SPECTRUM OF COLLECTIVE EXCITATIONS

Due to interlayer separationD, indirect magnetoexcitons
both in ground state and in excited states have electrica
pole moments. We suppose, that indirect excitons interac
parallel dipoles. This is valid, whenD is larger than the
mean separation̂r & between electron and hole along qua
tum wells D@^r &. We take into account that at high mag
netic fields^r &'PrH

2 (^r & is normal toP) and that the typi-
cal value of magnetic momenta~with exactness to logarithm
of the exciton density@ ln(nex), see below# is P;Anex „if the
dispersion relation«k(P)5P2/2mHk is true…. So the inequal-
ity D@^r & is valid atD@AnrH

2 .
The distinction between excitons and bosons manife

itself in exchange effects~see, e.g., Refs. 16 and 5!. These
effects for excitons with spatially separatede andh in a rare
systemnexa

2(H,D)!1 are suppressed due to the negligib
overlapping of wave functions of two excitons on account
the potential barrier, associated with the dipole-dipole rep
sion of indirect excitons5 @here nex , a(D,H) are respec-
tively density and magnetoexciton radius along quant
wells, respectively!. Small tunneling parameter connecte
with this barrier is

expF2
1

\Ea~H,D !

r 0 A2mHkS e2D2

R3
2

k2

2mHk
D dRG ,

where

k2;n/ lnS 1

8pnmHk
2 e4D4D

is the characteristic momentum of the system~see below!;
r 05(2mHke

2D2/k2)1/3 is the classical turning point for the
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dipole-dipole interaction. In high magnetic fields, the sm
parameter mentioned above has the fo
exp@22\21(mHk)

1/2eDa21/2(H,D)#. Therefore, the system
of indirect magnetoexcitons can be treated by the diag
technique for a boson system.

But in contrast with a 2D boson system in the absence
magnetic field~see Ref. 4!, some problems arise due to no
separation of the relative motion ofe andh and exciton cen-
ter of mass motion in magnetic fields.12,10 Due to the non-
separation of internal and center of mass motions the G
functions depend on both the external coordinatesR,R8 and
the internal coordinatesr ,r 8.

For the rare two-dimensional magnetoexciton system@at
nexa

2(D,H)!1], the summation of ladder diagrams is a
equate. The integral equation for vertexG in the ladder ap-
proximation is represented on Fig. 1. In the strong magn
fields, the representation using as a basis of isolated ma
toexciton wave functionsCP,m(r ,R) is convenient.

We use the following approximation for the interactio
between two magnetoexcitonsU(P)5U0 at P,a21(H,D)
andU(P)50 at P.a21(H,D). After exciton-exciton scat-
tering their total magnetic momentum is conserved, but m
netic momentum of each exciton can be changed. Since
mean distance betweene andh along quantum wells is pro
portial to the magnetic momentum, the scattering is acco
panied by the exciton polarization. We consider sufficien
low temperatures when magnetoexciton states with o
small magnetic momentaP!1/r H are filled. The change o
these magnetic momenta due to exciton-exciton scatterin
also negligible due to the conservation of the total magn
momentum. But these small magnetic momenta corresp
to small separation between electrons and holes along q
tum wells r!r H . So, magnetoexciton polarization due
scattering is negligible and the magnetoexciton dipole m
ment keeps to be almost normal to quantum wellsd5eD,
i.e., the interexciton interaction law is not changed due to
scattering.

The equation forG can be solved in the strong magne
fields vc5eH/m* @e2/r H , when the characteristic value o
e-h separation in the magnetoexcitonu^r &u has the order of
the magnetic lengthr H51/AeH. The functionsFk(P,r ) @see
Eq. ~3!# are dependent on the difference (r2r), wherer
5(r H

2 /H)@H,P#.9,14 At small magnetic momentaP!1/r H

we haver!r H , and, therefore, in functionsFk(r2r) we
can ignore the variabler relatively to r . In the strong
magnetic-field quantum numbersk correspond to the quan
tum numbers (m,n) ~see above!. For the lowest Landau leve
we denote«00(P)5«(P) andJ00(P)5J(P). Using the ortho-
normality of functions Fmn(0,r ) we obtain approximate
equation for the vertexG in strong magnetic fields. In high
magnetic field, when the typical interexciton interacti
D2n23/2!vc , one can ignore transitions between Land

FIG. 1. The equation for the vertexG in the representation o
magnetic momentaP and quantum numbersm andn.
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levels and consider only the states on the lowest Lan
level m5n50. Since typical value ofr is r H , and P
!1/r H in this approximation the equation for the vertex
the magnetic momentum representationP ~see Fig. 1! on the
lowest Landau levelm5n50 has the same form~compare
with Ref. 17! as for two-dimensional boson system withou
magnetic field, but with the magnetoexciton magnetic m
mH ~which depends onH andD) instead of the exciton mas
(L5me1mh) and magnetic momenta instead of ordina
momenta:

G~k,q;L !5UF~k2q!

1E dl

~2p!2

UF~k2 l!G~ l ,q;L !

k2

mH
1V2

L2

4mH
2

l 2

mH
1 id

,

~8!

m5
k2

2mH
5nexG0 .

Herem is the chemical potential of the system.
We find the solution of Eq.~8! by using the approxima-

tion for the effective interaction:

G~P!5H G0 , P,a21~H,D !

0, P.a21~H,D !.
~9!

The integral Eq.~8! for the vertex can be solved analyt
cally in the approximationk!An. This inequality must be
fulfilled simultaneously with the condition of low densit
na2(H,D)!1, which is necessary for the applicability of th
ladder approximation. The solution of the integral equat
for the vertexG of this system can be expressed through
solution of the equation for the amplitude of scatteringf 0(k)
of isolated pair of interacting particles~with a mass equal to
the magnetic massmH of magnetoexciton! in the two-
dimensional systemwithout magnetic fieldwith the repulsing
potentialU(R)5e2D2/R3:

f 0~k!5

S p i

2k D 1/2

ln~kmHe2D2!
. ~10!

Here the characteristic magnetic momentumk contrary to
three-dimensional system is not equal to zero and is de
mined from the relation

k2524n f0~k!S 2pk

i D 1/2

. ~11!

This is specific feature of two-dimensional Bose syst
connected with logarithmic divergence of two-dimension
scattering amplitude at zero energy. A simple analytical
lution for the chemical potential can be obtained
kmHe2D2!1. In strong magnetic fields atD@r H the exciton
magnetic mass ismH'D3/e2r H

4 .10 So the inequality
kmHe2D2!1 is valid if D!(r H

4 /n1/2)1/5. In result the chemi-
cal potentialm is obtained in the form
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m5
k2

2mH
5

8pn

2mH lnS 1

8pnmH
2 e4D4D . ~12!

The spectrum of collective excitations following from th
solution of Eq.~8! at small magnetic momenta is the sou
«(P)5csP with the sound velocity cs5AnG/mH

5Am/mH, wherem is defined by Eq.~12!.

IV. THE DENSITY OF THE SUPERFLUID COMPONENT

The temperature of the Kosterlitz-Thouless transitionTc
~Ref. 13! to the superfluid state in a two-dimensional ma
netoexciton system is determined by the equation:

Tc5
p\2ns~Tc!

2kBmH
, ~13!

wherens(T) is the superfluid density of the magnetoexcit
system as a function of temperatureT, magnetic fieldH, and
interlayer distanceD; andkB is Boltzmann constant.

The functionns(T) ~13! can be found from the relation
ns5nex2nn (nex is the total density,nn is the normal com-
ponent density!. We determine the normal component de
sity by the usial procedure.18 Suppose that the magnetoexc
ton system moves with a velocityu. At nonzero temperature
dissipating quasiparticles will appear in this system. Sin
their density is small at low temperatures, one can ass
that the gas of quasiparticles is an ideal Bose gas.

To calculate the superfluid component density we find
total current of quasiparticles in a frame in which the sup
fluid component is at rest. Then using Eq.~5!, we obtain the
mean total current of 2D magnetoexcitons in the coordin
system, moving with a velocityu:

^J8&5
M

mH
^P8&5E dP8

~2p!2
P8 f «~P8!2P8u . ~14!

In the first order byP8u/T we have

^J8&5u
M

mH

3z~3!

2p

T3

cs
4

. ~15!

Using Eq.~15!, we see that the total current of the syste
is proportional to the total magnetic momentumP. Then, we
determine the normal component densitynn :

^J8&5Mnnu. ~16!

Comparing Eqs.~16! and ~15! we obtain the expressio
for the normal densitynn . As a result, we have for the su
perfluid density:

ns5nex2nn5nex2
3z~3!

2p

T3

cs
4mH

. ~17!

It occurs that the expression for the superfluid densityns
in the strong magnetic field for the magnetoexciton rare s
tem differs from analogous expression in the absence
-

-

e
e

e
-

te

s-
of

magnetic field~compare with Ref. 5! by replacing of exciton
massM5me1mh with the exciton magnetic massmH .

V. SUPERFLUID STATE TRANSITION

A. Kosterlitz-Thouless temperature

The superfluidity of magnetoexcitons appears below
Kosterlitz-Thouless temperatureTc @Eq. ~13!#, where only
bound vortexes are present. Substituting the expression
the superfluid component densityns from Eq. ~17! into Eq.
~13!, we obtain the equation for the Kosterlitz-Thouless te
peratureTc . The solution is

Tc5F H 11A 16

~630.45!3p4S mHTc
0

nex
D 3

11J 1/3

1H 12A 16

~630.45!3p4S mHTc
0

nex
D 3

11J 1/3G Tc
0

~4p!1/3
.

~18!

HereTc
0 is the auxiliary quantity equal to the temperatu

of vanishing of superfluid density in the mean-field appro
mationns(Tc

0)50:

Tc
05S 2pnexcs

4mH

3z~3!
D 1/3

5S 32

3z~3!ln2S 1

8pnmH
2 D4D D

1/3
pnex

mH
. ~19!

In high fieldsH and at smallP for the lowest Landau leve
(n50) and at quantum numberm50 the exciton effective
magnetic mass ismH523/2/e2r HAp at D!r H and mH

'D3/e2r H
4 at D@r H . At large D, i.e., for D@a0* in weak

fields (r H@a0* ) or D@r H in high fields (r H!a0* ) one has
mH5M1H2D3/c2.10

The temperatureTc
05Tc

0(D,H) may be used as a crud
estimate of the crossover region where local superfluid d
sity appeares for rare magnetoexciton system on the sc
smaller or of the order of mean intervortex separation in
system. The local superfluid density can manifest itself
local optical properties or local transport properties~see be-
low!. In the rare two-dimensional system in the ladder a
proximation @i.e., at ln(8pnexmH

2e4D4)21@1] the Kosterlitz-
Thouless temperature is

Tc5
Tc

0

~2p!1/3
. ~20!

At maximal temperature of superfluid~the Kosterlitz-
Thouless temperature! the normal density approximately is

nn~Tc!5
3z~3!

2p

Tc
3

cs
4mH

. ~21!

This estimate does not take into account small contri
tion of vortexes. Substituting Eq.~18! to Eq. ~21!, we obtain
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nn~Tc!5
nex

4pH F11A 16

~630.45!3p4S mHTc
0

nex
D 3

11G 1/3

1F12A 16

~630.45!3p4S mHTc
0

nex
D 3

11G 1/3J 3

.

~22!

In rare two-dimensional system in the ladder approxim
tion we have

nn~Tc!

nex
5

1

2p
. ~23!

Note that Eqs.~20! and ~23! take place forany two-
dimensional rare Bose gas. The dimensionless va
nn(Tc)/nex can be considered as the small parameter. So
approximation of the ideal Bose gas of quasiparticles
valid. Note that for the dense electron-hole system with
magnetic field atnex→` an opposite casenn(Tc)/nex→1
takes place due to exponential vanishing of the order par
eterD ~see, e.g., Refs. 4 and 5!.

According to Eqs.~18! and ~19!, the temperature of the
onset of superfluidity due to the Kosterlitz-Thouless tran
tion ata fixed magnetoexciton densitydecreases as a functio
of magnetic field due to the increase inmH as a function ofH
andD, while Tc decreases asH21/2 at D!r H or asH22 at
D@r H , and ns is a slowly decreasing function ofD. The
dependencies ofTc on H are shown in Fig. 2.

From Eqs.~18! and ~19! one can see that the Kosterlitz
Thouless temperature of a rare magnetoexciton system
proportional to the magnetoexciton densitynex . At high
magnetic fields the symmetryn→12n, e↔h takes place
for the Landau level~see Ref. 12!. Thus unoccupied states o
Landau levels for spatially separated electrons and holes
bind to ‘‘antiexcitons’’ and superfluidity of ‘‘antiexcitons’’
can also take place at 12n!1. The Kosterlitz-Thouless tem
perature for superfluidity of antiexcitons as function
H, D for strongH is symmetrical to that for excitons. Th

FIG. 2. Dependence of temperature of Kosterlitz-Thouless tr
sition Tc on magnetic fieldH at different interwell separationsD.
-

e
he
s
t
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is

an

top Kosterlitz-Thouless temperature at high magnetic fie
corresponds to the ‘‘maximal’’ densitynmax of stable mag-
netoexciton system at the Landau levelnmax5nmax1/4pr H

2

;H, wherenmax(D) is the maximal filling of Landau leve
for magnetoexcitons—see below@for ‘‘antiexcitons’’ the
corresponding critical value is 12nmax(D)].

B. The problem of large magnetic momenta

At large magnetic momentaP, the isolated magnetoexci
ton spectrum«(P) contrary to the caseH50 has a constan
limit ~being equal to Landau level\vc/2 for reduced effec-
tive mass, see Refs. 10 and 12!. As a result the spectrum o
interacting magnetoexciton system also have a plateau
great momenta. So, Landau criterium of superfluidity is n
valid at largeP for the interacting magnetoexciton system
However, the probability of excitation of quasiparticles wi
magnetic momentaP@1/r H by moving magnetoexciton sys
tem is negligibly small at small superfluid velocities. In th
sense, the superfluidity of 2D magnetoexcitons keeps to
almost metastable one. This can be shown by the estima
of the probabilitydW of the excitation of the quasiparticle o
the plateau with magnetic momentaP@1/r H ; the energy of
quasiparticles on the plateau«(P) equals to the magnetoex
citon binding energy. At high magnetic fields we have

«~P!;Ap

2

e2

r H
2

e2

PrH
2

, D!a~H,D !, PrH
2 @D,

~24!

«~P!;
e2

D
2

e2

PrH
2

, D@a~H,D !, PrH
2 @D.

At the motion of magnetoexciton liquid in a lattice wit
the small velocityu, which is smaller than the sound velocit
cs , according to the Landau criterium18 creation of the qua-
siparticles in the region of plateau at great momenta with
magnetic momentumP@1/r H and the energy;E0 is pos-
sible due to the friction between liquid and impurities, d
fects in the lattice or roughness of boundaries of quant
wells. So when one quasiparticle appears the liquid gets
magnetic momentumP. The appearance of the large ma
netic momentum in the liquid is equivalent to the great me
separation between electron and hole along one layer
5(r H

2 /H)@H,P# ~see Sec. II! So magnetoexcitons withvery
largeP does not exist due to the interaction of electron a
hole with impurities etc.

Let us estimate the probabilitydWP of the transition of
the superfluid system from the initial state with the magne
momentumP50 without quasiparticles to the final sta
with one quasiparticle with the large magnetic moment
P@1/r H by using Fermi golden rule taking into account th
‘‘friction’’ interaction V. We have for the probability per uni
of time dW(P):

dW~P!5
2p

\
u^0uV̂â†u0& z2d@DEk1«~P!1Pu#dn« ,

~25!

wheren« is the density of final states of the system;DEk is
the change in the kinetic energy of superfluid liquid;V̂ is the

-
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‘‘friction’’ interaction ~see below!; u0& is a ground state o
magnetoexciton superfluid;aP

† is the quasiparticle creatio
operator. After quasiparticle creation total magnetic mom
tum of the system is conserved.

At large momentumP@1/r H , the wave function of qua-
siparticle is almost the same as wave function of the isola
magnetoexciton. It means that the quasiparticle annihila
operatoraP is almost the same as the ordinary particle an
hilation operatoraP .

In second quantified representation the ‘‘friction’’ intera
tion operatorV̂ can be represented as

V̂5 (
P8P9

VP8P9aP8
† aP9 , ~26!

whereVP8P9 is the matrix element of ‘‘friction’’ interaction
calculated with the use of isolated magnetoexciton eig
functions Eq.~3!.

We find

^0uV̂aP
† u0&5VF~P!e2[ ~122/g!8]P2r H

2
, ~27!

whereVF(P) is the Fourier-transform ofV. Then the prob-
ability dWP of the creation of the quasiparticle per unit
time with the large magnetic momentumP and the energy
«(P) is

dW~P!5
1

~2p!2\3
e2[ ~112g2!/4]r H

2 P2
uVF~0,P!u2

3d@DE1«~P!1Pu#PdP. ~28!

Thus, the probabilitydWP of the creation of the quasiparticl
with the large magnetic momentaP@1/r H is negligibly

small asdWP;e2[(112g2)/4]r H
2 P2

!1. So the superfluidity of
2D magnetoexcitons keeps to be almost metastable one.
that at small magnetic momentaP!1/r H in the region of the
sound spectrum of interacting magnetoexcitons Landau
terium of superfluidity is valid and the probabilitydWP of
the creation of the quasiparticle in the region of the sou
spectrum atu,cs is zero due tod@DE1«(P)1Pu#50 in
Eq. ~25!.

At low temperatures,T,Tc!E0 states with large mag
netic momenta are negligibly filled„exp@2«(P)/T#!1, where
«(P) is the magnetoexciton energy that has the same o
as magnetoexciton binding energyE0 ; at high magnetic
fields E05Ap/2e2/r H at D!a(H,D) and E05e2/D at D
@a(H,D)…. So quasiparticles at large magnetic momentaP
give a small contribution to the densities of the normal co
ponent nn and superfluid componentns @see Eq. ~17!#.
Hence, the expressions given above for the temperatur
Kosterlitz-Thouless transition are valid.

VI. THERMODYNAMICS AND EQUATION OF THE
STATE OF THE SYSTEM AT HIGH TEMPERATURES

Now, we estimate correction terms in the chemical pot
tial and the equation of the state for slightly nonideal gas
2D magnetoexcitons at high temperatures due to excha
effects and dipole-dipole interaction betwe
magnetoexcitons.19 We show these correction terms a
small at high magnetic fields and high temperatures, and
-

d
n

i-

n-

ote

ri-

d

er

-

of

-
f
ge

so

their contributions to the chemical potential and the equat
of the state are additive. So, we can consider these eff
separately.

One has for the free energyF of ideal gas of bosons:20

F5FBolS 12
1

4
em/TD . ~29!

The chemical potentialm0 of ideal gas of magnetoexci
tons can be obtained from the normalization condition for
number of magnetoexcitons:

m052T lnS mHT

2p\2nex
D . ~30!

At high temperatures and high magnetic fields the
equalityem/T!1 is true for a rare system. Using the relatio
for the pressureP52(]F/]S)T,N and Eq.~29!, we have for
the equation of the state

P5
NT

S S 12
p\2nex

2mHT D . ~31!

Using the relationm5(]F/]N)T,S for the chemical poten-
tial m, we obtain the contribution of exchange interactions
the chemical potentialm @with exactness toO(n2)]:

m52T lnS mHT

2p\2nex
D 12T

p\2nex

2mHT
. ~32!

Now we analyze the contribution of interaction. We es
mate for rare 2D magnetoexciton system the second v
coefficientB(T) in expansion of 2D pressure on 1/S (S is
the area of the system; Boltzmann constantkB51)

P5
NT

S F11
NB~T!

S
1••• G . ~33!

At high temperatures the virial coefficient is

B~T!5
1

2E ~12e2U~R!/T!dS

'pT22/3~eD!4/3 lnS 2p\2nex

mHT D , ~34!

whereU(R)5e2D2/R3 is the pair interaction between pa
ticles. We integrate Eq.~34! by coordinate from the classica
turning point for the dipole-dipole interactionR0
5(e2D2/m)1/3, substituting the chemical potentialm Eq.
~30!. At high temperatures,U(R0)/T!1 @where R0
;(pn)21/2].

Using additivity of small exchange and dipole-dipole i
teraction corrections, we have the equation of the state w
both corrections included

PS5NTF12
p\2nex

2mHT
1pT22/3~eD!4/3nex lnS 2p\2nex

mHT D G .
~35!

For the chemical potentialm, we obtain with exactness to
O(n2) the chemical potential with both terms included
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m52T lnS mHT

2p\2nex
D 12pT1/3~eD!4/3nex lnS 2p\2nex

mHT D
12T

p\2nex

2mHT
. ~36!

The virial coefficientB(T) decreases vsH due to increase
of magnetic massmH . Hence, in high magnetic fields, th
system of indirect magnetoexcitons is almost ideal gas du
B(T)!1. Decrease of interexciton interaction can be inv
tigated experimentally. In noninteracting system shape
spectral lines of magnetoexciton photoluminescence is de
mined by Doppler effect. For an interacting system it w
demonstrated21 that the shape of lines of photoluminescen
of semiconductor quantum wells is dominated by many-bo
interactions, and it is essentially different from isolated p
ticles because of exciton-exciton interactions. Compar
lineshapes at the different magnetic fields, one can dem
strate transition to an ideal gas in the exciton system in h
magnetic fields.

VII. REGION OF EXISTENCE
OF MAGNETOEXCITON PHASE

A. Ionization of magnetoexcitons in the quasiclassical region

In magnetoexciton system in coupled quantum wells
essentially higher temperatures than the transition to the
perfluid state the exciton thermal ionization takes pla
Magnetoexcitons existence lineTi(H,n) ~more strictly,
crossover region! can be obtained in quasiclassical regim
from the ionization equilibrium condition analogous to Sa
relation20 from condition of equality of exciton chemical po
tential to the sum of chemical potentials of electrons a
holes.

We neglect transitions between Landau levels in h
magnetic fields\vc@T (vc5eH/mec is the cyclotron en-
ergy! and are measured the chemical potentials of electr
me , holesmh and magnetoexcitonsmex from the lowest Lan-
dau level. Then, we have for the chemical potentials of e
trons and holes at 2pr H

2 n5n!1 (n is the density of mag-
netoexcitons atT50) ~see Ref. 25!

me5mh5E0n ~37!

and the chemical potential of magnetoexcitons is

mex52T lnS mHT

2p\2nex
D 12TFp\2nex

mH

1pT22/3~eD!4/3nex lnS 2p\2nex

mHT D G1E0 , ~38!

wheren is the filling factor andE0 is the magnetoexciton
energy; at high magnetic fieldsE05Ap/2e2/r H at D
!a(H,D) andE05e2/D at D@a(H,D).10

We obtain the equation for the characteristic tempera
of ionizationTi(nex ,D,H) from the condition of the ioniza-
tion equilibrium:20
to
-
f
r-

s

y
-
g
n-
h

t
u-
.

d

h

ns

-

re

05mex2me2mh52T lnS mHT

2p\2nex
D 12TS p\2nex

2mHT D
1pT22/3~eD!4/3nex lnS 2p\2nex

mHT D1E02E0n. ~39!

As nex→0 the characteristic temperature of ionizatio
Ti(nex ,D,H)→0 ~and the same for antiexcitons!. The de-
pendence of maximalTi(H) ~corresponding to the maxima
magnetoexciton density! is defined by the magnetoexcito
binding energyE0 ~so Ti;AH at small D) and rises vs
magnetic field and decreases vs the interlayer separatio
crease.

If we introducey5Edeg/E0 (Edeg52p\2nex /mH is the
energy of degeneration! and x5T/E0 , this dependence is
shown on Fig. 3.

B. Quantum transition to two-layer incompressible liquid state

The rare excitonic system is stable atD,Dcr(H) andT
50 when the magnetoexciton energyEexc(D,H) ~calculated
in Ref. 10! is larger than the sum of activation energiesEL
5ke2/er H for incompressible Laughlin liquids of electron
or holes;k50.06 for n5 1

3 , etc.22 ~compare Ref. 23 for sta
bility of denseexcitonic phase—see below!. Sincek!1, the
critical value Dcr@r H . In this case one hasEexc5(e2/
eD)(12r H

2 /D2) for a magnetoexciton with quantum num
bersn5m50 ~see Ref. 10!. As a result, we have from the
stability condition ~see above! Dcr5r H(1/2k22k). For
greatern it gives an upper bound onDcr . In the rare sys-
tem in high magnetic fields,m!Eex . The coefficientk in
the activation energyEL may be represented ask5k0An.
So, from the relation betweenDcr and r H one has:ncr

5(1/k0
2)(r H

2 /D2)(12r H
2 /8D2). Thus, maximal density for

stable magnetoexciton phase isnmax5ncr/2pr H
2 ~see below!.

Hence, themaximum Kosterlitz-Thouless temperature, a
which superfluidity appears in the system isTc

max

;nmax(H,D)/mH;AH at D<r H or Tc
max;H21 at D@r H

in high magnetic fields. It would be interesting to check th
fact in experiments on magnetoexciton systems. Note tha
at a given density ofe and h and a given magnetic fieldH

FIG. 3. Magnetoexcitons existence lineTi(H,n); y
5Edeg/E0 , Edeg52p\2nex /mH is the energy of degeneration an
x5T/E0 .
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several Landau levels are filled~but high-field limit r H!a0*
is true! the superfluid phase can exist for magnetoexcitons
the highest nonfilled Landau level. Atn5 1

2 the elecron-hole
phase can be unstable due to the pairing of electron and
composite fermions~which form the Fermi surface of com
posite fermions in the mean-field approximation24!.

VIII. PHASE TRANSITIONS IN THE ‘‘DENSE’’ SYSTEM

In the ‘‘dense’’ system~at n;1/2 contrary to rare system
at n!1) the ionization of magnetoexcitons can be estima
in the Gor’kov approximation.25 It takes place at the tem
peratureTi

dense,

Ti
dense5

J

2

122n

ln~n2121!
, ~40!

where

J5E d2q

~2p!2
V12~q!exp~2q2r H

2 /2! ~41!

and

V12~q!5
2pe2

q
exp~2qD!. ~42!

So the temperature of the ionization crossover in
Gor’kov approximation increases with rise of magnetic fie
asAH and decreases with the interlayer separation~it is con-
sist and with the estimation for the rare system—see abo!.

Let us calculate now the density of the normal compon
nn . The contribution of the one-particle overgap excitatio
to the density of the normal component is determined by
transitions between Landau levels.12 So, in high magnetic
fields this contribution is negligible ase2/r Hvc!1. We need
also to take account of the contribution of collective exci
tions to the density of the normal component. In contras
superconductors, where, as a consequence of the char
the Cooper pairs, instead of an acoustic spectrum of col
tive oscillations high-frequent plasma mode arises, in the
citon phasee-h pairs are neutral and zero-gap collective e
citations exist. At low temperatures, the contribution of t
elementary excitations in thermodynamic equilibrium can
described in the approximation of an ideal Bose gas. So,
density of the superfluid componentns can be estimated by
Eq. ~17!. Now, one need to estimate the sound velocitycs of
collective mode in the system.

It can be shown easily that the equations of the hydro
namics of magnetoexcitons containP85(M /mH)P instead
of P. So, we have for the sound velocity

cs
25

]P8

]r
5

M

mH

]P

]r
. ~43!

In result we obtain the expression for sound velocity w
magnetic massmH instead ofM ~compare Ref. 18!

cs
25

n

mH

]m

]n
. ~44!

Using the relationn52pr H
2 n we have
n

ole

d

e

t
s
e

-
o

of
c-
x-
-

e
he

-

cs5A n

mH

]m

]n
. ~45!

The chemical potential of dense system of electron-h
pairs with spatially separatede andh in high magnetic field
is25

m52J12n~ I 2J!. ~46!

Here, I 5*@d2q/(2p)2#V11(q)exp(2q2rH
2 /2), V11(q)

52pe2/q, andJ is defined by Eq.~41!.
From Eqs.~46! and ~45!, one has for the sound velocity

cs5A2n~ I 2J!

mH
. ~47!

The temperature of the Kosterlitz-Thouless transition
the superfluid state can be calculated by using Eq.~18! ~see
Sec. V!, whereTc

0 is the auxiliary quantity equal to the tem
perature of vanishing of superfluid density in the mean-fi
approximationns(Tc

0)50

Tc
05S ncs

4mH

3r H
2 z~3!

D 1/3

5S 32r H
4 ~ I 2J!2

3z~3!mH
D 1/3 n

2r H
2

. ~48!

In high magnetic fields for the dense system, t
Kosterlitz-Thouless temperature is obtained by substitut
of Tc

0 from Eq.~48! to Eq.~18!. Kosterlitz-Thouless tempera
ture decreases vs magnetic field analogously to the rare
tem ~see above!.

Then we have

I 2J5e2E
0

`

~12e2qD!e2q2r H
2 /2dq. ~49!

Let us consider for estimate small interlayer distancesD
!1/q0 , where q0 is the characteristic wave vectorq0

;1/r 0 , where r 051/Apnex is the mean distance betwee
particles. Maximal density of particles atn5 1

2 is nex

51/4pr H
2 ~at n.1/2 we deal with antiexcitons—see below!.

If D&r H , using Eq.~49!, we have

I 2J5e2DE
0

`

qe
2q2r H

2

2 dq5
e2D

r H
2

. ~50!

Then, we have for the temperature of the phase transi
to the superfluid state in the mean-field approximation
small D

Tc
05S 2pnexcs

4mH

3z~3!
D 1/3

5S 32e4D2

3z~3!mH
D 1/3

pnex . ~51!

As we mentioned above in high magnetic fields the sy
metry n→12n, e↔h takes place at the Landau level an
unoccupied states on Landau levels for spatially separ
electrons and holes can bind to form ‘‘antiexcitons’’ an
superfluidity of ‘‘antiexcitons’’ can take place. Th
Kosterlitz-Thouless temperature for superfluidity of antiex
tons as function ofH, D is symmetrical to that for excitons
Hence, in expressions for temperatures of phase transit
in Eqs.~48!, and~51! we can usen(12n) instead ofn.



litz
si

er

an

a

s

al

sa

.
s
a

nd
sit

s

-
e

ba
w
o
s

f
el
a

tu
dis
o
le

yer
le
sys-

eous

l-
es
-
and

-
etic

s of
ne-
the
dau

tz-
f per-

own,
ect
of

su-
mag-
of
m
ted
tion
ases
an-
t

etal
the

tis-

G.
rted
and
as
-

PRB 59 5635PHASE TRANSITIONS OF ELECTRON-HOLE AND . . .
We can see that the temperature of the Koster
Thouless transition to the superfluid state at fixed den
decrease with rise of magnetic field asH21/6 ~for the rare
system asH21/2—see above!. Tc decreases also vs interlay
separation. At values ofD greater than some critical oneDcr
the dense superfluid system of magnetoexitons must tr
form into the system of two incompressible liquids.23 The
dense excitonic system is stable atD,Dcr(H) and T50
when the Hartree-Fock energy is larger than the sum of
tivation energiesEL5ke2/er H for incompressible Laughlin
liquids of electrons or holes~it is consistent with the result
for rare system—see above!.

IX. MAGNETOEXCITONS IN UNBALANCED
TWO-LAYER ELECTRON SYSTEM

The system of indirect magnetoexcitons can appear
in unbalanced two-layerelectronsystem in CQW in strong
magnetic fields near the filling factorn51. An external elec-
tric voltage between quantum wells change the filling, so
in the first quantum well the filling factor will ben15Dn
! 1

2 and in another one it will ben2512Dn. Unbalanced
filling factors n1511Dn, n2512Dn is also possible
Thus, in the first quantum well~QW! there are rare electron
on the second Landau level, and in the second QW there
rare empty places~‘‘holes’’ ! on the first Landau level. ‘‘Ex-
cess’’ electrons in the first QW and ‘‘holes’’ in the seco
QW can bound to indirect magnetoexcitons with the den
nex5eHDn/2p. Superfluidity in a two-layere-e system in
high magnetic fields in the cases mentioned is analogou
the superfluidity of two-layere-h system.

The expressions for critical valuesncr , Dcr for
Kosterlitz-Thouless temperatureTc calculated above are ap
plicable also for two-layer electron system under consid
ation. So, in this approximation the phase diagram for un
anced two-layer electron system is analogous to the t
layer electron-hole system. In condition for the stability
superfluid magnetoexciton liquid relating to quantum tran
tion to two incompressible Laughlin liquids~see Sec. VII!
one must useDn instead ofn. Due to Jain’s mapping o
fractional Landau-level fillings to integer Landau-lev
fillings26 analogous results take place also for slightly unb
anced fractional fillings.

X. POSSIBLE EXPERIMENTAL MANIFESTATIONS
OF MAGNETOEXCITON SUPERFLUIDITY

The appearance of local superfluid density aboveTc can
be manifested, for example, in observations of tempera
dependence of the exciton diffusion on intermediate
tances~with the help of local measurements of exciton ph
toluminescence at two points using optical fibers or pinho
in experiments like those in Ref. 1!.

The superfluid state atT,Tc can manifest itself in the
existence of persistent~‘‘superconducting’’! oppositely di-
-
ty
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rected electric currents in each layer. The interla
tunneling in anequilibrium spatially separated electron-ho
system leads to interesting Josephson phenomena in the
tem: to a transverse Josephson current, inhomogen
~many sin-Gordon soliton! longitudinal currents,8 diamagne-
tism in a magnetic fieldH parallel to the junction~whenH is
less than some critical valueHc1 , depending on the tunne
ing coefficient!, and a mixed state with Josephson vortic
for H.HC1 ~Ref. 15! ~in addition, taking tunneling into ac
count leads to a loss of symmetry of the order parameter
to a change in the character of the phase transition!.

XI. CONCLUSIONS

We have shown that at fixed exciton densitynex the
Kosterlitz-Thouless temperatureTc for the onset of superflu
idity of magnetoexcitons decreases as a function of magn
field asH21/2 ~at D&r H). But the maximal Tc ~correspond-
ing to the maximal magnetoexciton densities! increases with
H in high magnetic fields asTc

max(H,D);AH ~at D&r H).
This fact needs to be compared in detail with the result
experimental studies of the collective properties of mag
toexcitons. The excitonic phase is more stable than
Laughlin states of electrons and holes at a given Lan
filling n if D,Dcr5r H(1/2k22k), wherek is the coeffi-
cient in the Laughlin activation energy. Below the Kosterli
Thouless temperature one can observe the appearance o
sistent currents in separate quantum wells. We have sh
that in extremely high magnetic fields the system of indir
magnetoexcitons at fixedT has the statistical properties
almost ideal gas. At small interlayer distancesD&r H the
temperature of the Kosterlitz-Thouless transition to the
perfluid state in the dense system decreases with rise of
netic field asH21/6 due to rise of the magnetic mass
indirect magnetoexciton.10 We discuss also the quantu
transition to the incompressible liquid state. We calcula
the characteristic temperature of insulator-metal transi
and established that it rises with magnetic field and decre
with interlayer separation. Note that in some region of L
dau filling inside (0,ncr) ~see above! crystal phase of indirec
magnetoexcitons must exist~see Ref. 27!. Note that its melt-
ing curve is analogous to one for electron crystal near m
gate because due to image forces effective interaction in
system is also dipole-dipole interaction28,29 ~the difference in
results for these two systems is due to their different sta
tics!.
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