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Phase transitions of electron-hole and unbalanced electron systems
in coupled quantum wells in high magnetic fields
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The superfluidity of spatially separated electrons and holes and of an unbalanced two-layer electron system
in a high magnetic field is considered. The temperalyref the Kosterlitz-Thouless transition to a superfluid
state is obtained as a function of magnetic fieldand interlayer separatidd. The equation of state for the
magnetoexciton system in the quasiclassical regime is analyzed. The transition from excitonic phase to
electron-hole phase is considered. Possible experimental manifestations of the predicted effects are briefly
discussed[S0163-182809)05204-2

I. INTRODUCTION potential and the state equation connected with interexciton
interactions for rare magnetoexciton system at fixed density
Systems of excitons with spatially separated elect(ens and temperature vanishes withincreasing.

and holes(h) (indirect excitons in coupled quantum wells I @ magnetoexciton system in coupled quantum wells at
(CQW's) in magnetic fieldsH) are now the subject of in- essentially higher temperatures than the transition to the su-
tensive experimental investigatiohs They are of interest, perfluid state the exciton ‘he”“a!' lonization takes place. The
in particular, in connection with the possibility of superflu- dependenc_e Qf maximell (H,n) is defln_ed by_ the magne-
- S . . . . toexciton binding energ¥y(H,D) and rises with magnetic
idity of indirect excitons oe-h pairs, which would manifest o1y and decreases with interlayer separatn(n is the
|tseI‘f1 in the CQW’s asaerastentelectncgl currents in eaph surface density of magnetoexcitons
well* (see also recent articfes) and also in connection with The paper is organized in the following way. In Sec. II
the quasi-Josephson phenomena in the sygs®a Ref. 8 (which has auxiliary charactewe discuss the relation be-
and references therdinIn high magnetic fields, two- tween electric current and magnetic momentum of noninter-
dimensional(2D) excitons survive in a substantially wider acting isolated magnetoexcitons, which we shall use in cal-
temperature region, as the exciton binding energies increasallation of the density of normal component. In Sec. Ill, we
with magnetic fiel®"* In addition, the 2De-h system in  consider the spectrum of collective excitations for the system

high fieldsH is interesting due to the existence, under soméf rare indirect excitons in a high magnetic field in the ladder
conditions, supersymmetry in the systeffor the single 2PProximation. In Sec. IV, we analyze the dependence of the

' : ; . density of the superfluid component on magnetic field and
guantum well leading to unique exact solutions of the many-

bod bl he | di ideal B d interlayer distance. In Sec. V, we calculate the dependence of
ody problem(the last corresponding to ideal Bose conden-ye temperature of the Kosterlitz-Thouless transition to the

sation of magnetoexciton any density. ** _superfluid phase on magnetic field and interlayer distance. In
The superfluid state appears in the system under consigec. VI, we consider thermodynamics and equation of the
eration below the temperature of Kosterlitz-Thoulessstate of rare magnetoexciton system at high temperatures and
transition®® The latter was studied recently for systems with discuss the resemblance of the system to the ideal gas in the
spatially separated electrof® and holegh) in the absence limiting case of high magnetic field. In Sec. VII, we estimate
of magnetic field the magnetoexcitons existence liigH,n) connected with
Attempts of experimental investigation of magnetoexcitonionization transitionimore strictly, this is crossover regipn
superfluidity in coupled quantum wellsnake it essential to We use the ionization equilibrium condition analogous to
study the magnetic-field dependence of the temperature diaha relation in the quasiclassical region and also discuss
phase transition to the superfluid state in systems of indired?riefly the quantum region of magnetoexciton system stabil-
magnetoexcitons and to analyze the density of the superfluilly in relation with the quantum transition of superfluid mag-
component. This is the subject of this paper. It will be shownn€toexciton system to two-layer Laughlin liquids of electrons
below that increasing of magnetic field at a fixed magnetoex@nd holes. In Sec. VIll, we discuss the phase transitions in

citon density leads to a lowering of the Kosterlitz-ThoulesstN® “dense” system. In Sec. IX we consider properties of

transition temperaturd, on account of the increase of the indirect magnetoexcitons in unbalanced two-layer electron

exciton magnetic mass as a functiontéf But it turns out system. In Sec. X, we discuss possible experimental mani-

that the highest possible Kosterlitz-Thouless transition temfestatlons of superfluidity of magnetoexcitons in CQW. In

. . o Sec. XI we present our conclusions.
perature increases witH (at smallD) due to the rise in the P
maximum density of magnetoexcitons Ms Quantum phase II. ISOLATED MAGNETOEXCITON IN THE SYSTEM

transition of a magnetoexciton system to incompressible liq-or SPATIALLY SEPARATED ELECTRONS AND HOLES
uid states is briefly discussed in connection with the problem

of maximum density of stable magnetoexciton system. The total HamiltonianH of an isolated pair of spatially
We show also that contributions to the thermodynamicseparate@ andh in the magnetic field is
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wherem,, my, are the effective electron and hole masses;
A., A, are the vector potentials in electron and hole loca-

tion, respectively;r,, r, are electron and hole locations
along quantum well$we use unitx=7%2=1).

A conserved quantity for isolated exciton in magnetic

field (the excitonmagneticmomentun is (see Ref. 14

P=—iV,—iV,+e(Ac—Ay)—e[H,re—rpl. 2)
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wheremy, is the effectivemagneticmass, dependent dn
and the distanc® betweene and h layers and quantum
numberk (see Ref. 1D

The quadratic dispersion relation E®) is true for small
P at arbitrary magnetic fieldsl and follows from the fact
that P=0 is an extremal point of the dispersion lay(P).
The last statement may be proved by taking into account the
regularity of the effective Hamiltoniahl, as a function of
the parameteP at P=0 and also the invariance éfp upon
simultaneous rotation af and P in the CQW plané? For
magnetoexciton ground state,> 0.

For high magnetic fieldsy<aj and atD=<r, the qua-
dratic dispersion relation is valid &@<1/r,,, but for D
>ry it holds over a wider region — at least &<(1/
ru)(D/ry) (Ref. 10 [a} =1/2ue? is the radius of a 2D ex-

The conservation of this quantity is connected with the in-citon atH=0; u=mm,/(m+m,); m,, are the effective
variance of the system upon a simultaneous translatiom of masses oé andh].

andh and gauge transformation.

Let us consider the coordinates of the center of nfass
=(mgr e+ myr,/(me+my) and the internal exciton coordi-
natesr =r,—ry,. The cylindrical gauge for vector potential is
used:Aen=3[H,renl.

Eigenfunctions of Hamiltonian Eq1) (which are also the
eigenfunctions of the magnetic momenti®hare (see Refs.
12 and 14

e Pr
\Ppk(R,r)=exp{iR P+§[H,r] +iy?](1)k(P,r),

©)

where® (P,r) is the function of internal coordinates P is
the eigenvalue of magnetic momentukmre quantum num-
bers of exciton internal motion. In high magnetic fielkls
=(n,m), where n=min(ny,n,), m=|n;—ny,n;, are
Landau quantum numbers foe and h;}?10 y=(m,
—mg)/(My+mg).

The effective Hamiltoniard , has the form

2

1 ie e
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where u* = mgmp(Meg+my,).
Using the Feynman theorefwe denote(PK|- - -|Pk) as

Using the quadratic dispersion relation for magnetoexci-
tons, one has at arty an expression for the magnetoexciton

velocity analogous to that for the ordinary momentiin
=9e(P)/oP=P/my,. So the mass current of an isolated
magnetoexciton for smak is

M
I(P)= P

@)

Ill. SPECTRUM OF COLLECTIVE EXCITATIONS

Due to interlayer separatioD, indirect magnetoexcitons
both in ground state and in excited states have electrical di-
pole moments. We suppose, that indirect excitons interact as
parallel dipoles. This is valid, wherD is larger than the
mean separatiofr ) between electron and hole along quan-
tum wellsD>(r). We take into account that at high mag-
netic fields(ry~Pr2 ({r) is normal toP) and that the typi-
cal value of magnetic momentaith exactness to logarithm
of the exciton densityIn(n,,), see belowis P~ ngy (if the
dispersion relatiors (P) = P?/2m,, is trug. So the inequal-
ity D>(r) is valid atD> \nr3,.

The distinction between excitons and bosons manifests
itself in exchange effectésee, e.g., Refs. 16 and.5These
effects for excitons with spatially separatedndh in a rare
systemn,,a2(H,D)<1 are suppressed due to the negligible
overlapping of wave functions of two excitons on account of
the potential barrier, associated with the dipole-dipole repul-
sion of indirect excitors[here n,,, a(D,H) are respec-

(--+)) one can obtain for isolated magnetoexciton currentively density and magnetoexciton radius along quantum

(see Ref. 1%

de(P)
P

P(?Sk(P)
P P

oHp " c
P | ©
where M=m.+m,; ¢ (P) is the magnetoexciton disper-
sion law [for indirect excitonse(P) in dependence oM
and interwell separation® was analyzed in detfl].

The dispersion relation,(P) of isolated magnetoexciton
is the quadratic function at small magnetic momenta:

Jk(P)=M<

P2

ex(P)~ (6)

2myy”

wells, respectively Small tunneling parameter connected
with this barrier is

1(ro
ex;{ ——J’ \/ZmHk
f JaH,p)

where

e’D? K?
X 2mHk) dr

K2~nlln(

87rnmé,e*D*

is the characteristic momentum of the systésae beloy;
ro=(2mye?D? k%) is the classical turning point for the
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P, P, P, P, P, P+P-P P levels and consider only the states on the lowest Landau

4
level m=n=0. Since typical value ofr is ry, and P
>:< = >:( + <1/ry in this approximation the equation for the vertex in
the magnetic momentum representatid(see Fig. 1 on the
3

P, P; Py P Py P P lowest Landau levem=n=0 has the same forftompare
with Ref. 17 as for two-dimensional boson system without a
FIGl The equation for the vertdx in the repl‘esentation of magnetlc fleld, but W|th the magnetoexcrton magnetlc mass
magnetic moment& and quantum numbers andn. my (Which depends ol andD) instead of the exciton mass
(L=my+m,) and magnetic momenta instead of ordinary
dipole-dipole interaction. In high magnetic fields, the smallmomenta:
parameter mentioned above has the form
exd —2h Y (my)Y%eDa Y4 H,D)]. Therefore, the system T'(k,q:L)=Ur(k—q)
of indirect magnetoexcitons can be treated by the diagram
technigque for a boson system. dl Ue(k—NDI'(l,q;L)
But in contrast with a 2D boson system in the absence of f (2m)? 2 L2 2 ,

magnetic fieldsee Ref. 4 some problems arise due to non- —————+if
separation of the relative motion efandh and exciton cen- M amy - my

ter of mass motion in magnetic fields*° Due to the non- ®
separation of internal and center of mass motions the Green _ K? T

functions depend on both the external coordin®eR’ and m= 2my Mexd o-

the internal coordinatesr’.

For the rare two-dimensional magnetoexciton sysfam Here u is the chemical potential of the system.
Nex@?(D,H)<1], the summation of ladder diagrams is ad- We find the solution of Eq(8) by using the approxima-
equate. The integral equation for vertExin the ladder ap- tion for the effective interaction:
proximation is represented on Fig. 1. In the strong magnetic
fields, the representation using as a basis of isolated magne- I'y, P<a (H,D)
toexciton wave function® p (r,R) is convenient. I'(P)= 0, P>a~l(H.D) 9

We use the following approximation for the interaction ' T

between two magnetoexcitons(P)=U, at P<a !(H,D) . .
andU(P)=0 atP>a 1(H,D). After exciton-exciton scat- The integral Eq(8) for the vertex can be solved analyti-

tering their total magnetic momentum is conserved, but mag(-:a".y n the approximatiork < Vn. This .|r.1equal|ty must b.e
netic momentum of each exciton can be changed. Since tlﬂfé'h;'"ed S|multane_ous_ly with the condition Of. Iovx_/_densuy
mean distance betweenandh along quantum wells is pro- N8 (H,D)<1, which is necessary for the applicability of the

portial to the magnetic momentum, the scattering is accoml_adder approximation. The solution of the integral equation

panied by the exciton polarization. We consider sufficientlyfor th_e vertexI” of thi_s system can b? expressed through the
olution of the equation for the amplitude of scatterigfx)

low temperatures when magnetoexciton states with onlff. lated pair of i : icldwith I
small magnetic momentB<<1/ry are filled. The change of of isolated pair of interacting particléwith a mass equal to

these magnetic momenta due to exciton-exciton scattering Ee ma_gne:lc mas;nﬁ of magne_tof_exlgl\;c_o)r? 'rr: the tlvv_o-
also negligible due to the conservation of the total magneti imensional systenwithout magnetic nelavth the repulsing

H — A2N2/R3.
momentum. But these small magnetic momenta correspongPtentiall(R)=e“D*/R™
to small separation between electrons and holes along quan-

tum wells p<<ry. So, magnetoexciton polarization due to (1‘) 12

scattering is negligible and the magnetoexciton dipole mo- 2k

ment keeps to be almost normal to quantum wdkseD, fo(r)= m- (10)
i.e., the interexciton interaction law is not changed due to the H

scattering.

Here the characteristic magnetic momentdroontrary to
three-dimensional system is not equal to zero and is deter-
mined from the relation

The equation fol” can be solved in the strong magnetic
fields w.=eH/ u*>¢e?/ry,, when the characteristic value of
e-h separation in the magnetoexcitpfr)| has the order of
the magnetic length, = 1/\/eH. The functionsb(P,r) [see o | 12
Eqg. (3)] are dependent on the difference—p), wherep k2= —4nf (K)(ﬂ) _ (11)

2 9,14 : 0
=(rg/H)[H,P].”*" At small magnetic moment&®<1/ry !
we havep<ry, and, therefore, in function®,(r—p) we
can ignore the variable relatively tor. In the strong This is specific feature of two-dimensional Bose system
magnetic-field quantum numbekscorrespond to the quan- connected with logarithmic divergence of two-dimensional
tum numbersif,n) (see abovke For the lowest Landau level Scattering amplitude at zero energy. A simple analytical so-
we denotes oo P) = & (P) andJo(P) =J(P). Using the ortho- lution for the chemical potential can be obtained if
normality of functions®,,(0,r) we obtain approximate &Mye’D?<1.In strong magnetic fields &sry, the exciton
equation for the verteX' in strong magnetic fields. In high magnetic mass ismy~D%e?r}.’° So the inequality
magnetic field, when the typical interexciton interaction kmye’D?<1 is valid if D<(r{/n*? %, In result the chemi-
D?n%2<w,, one can ignore transitions between Landaucal potentialu is obtained in the form
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K2 8mn

magnetic fieldcompare with Ref. bby replacing of exciton
(12 massM = m+ m;, with the exciton magnetic mass,, .

1
8mrnmie*D?

2my In
V. SUPERFLUID STATE TRANSITION

The spectrum of collective excitations following from the A K.O_Ster“tz'Thomess tem_perature
solution of Eq.(8) at small magnetic momenta is the sound  The superfluidity of magnetoexcitons appears below the
e(P)=cP with the sound velocity cs=+nI'/my Kosterlitz-Thouless temperaturE, [Eq. (13)], where only

= Ju/my, whereu is defined by Eq(12). bound vortexes are present. Substituting the expression for

the superfluid component density from Eq. (17) into Eq.
IV. THE DENSITY OF THE SUPERFLUID COMPONENT (13), we obtain the equation for the Kosterlitz-Thouless tem-
' peratureT.. The solution is

The temperature of the Kosterlitz-Thouless transifign

(Ref. 13 to the superfluid state in a two-dimensional mag- - \/ 16 /mHTg)3 . 1/3
i i ; inn- = +
netoexciton system is determined by the equation: c (6><0.45)3774\ Nex
2
T.= Th nS(TC) (13) 16 /mHTg 3 1/3 Tg
¢ ZkBmH ! + 1_ + 1 .
(6x0.45%7% Nex (4m)Y3
whereng(T) is the superfluid density of the magnetoexciton (18

system as a function of temperatdremagnetic fieldH, and
interlayer distanc®; andkg is Boltzmann constant.

The functionng(T) (13) can be found from the relation
Ns=nNgx— N, (Ngy IS the total densityn,, is the normal com-
ponent density We determine the normal component den-
sity by the usial procedur®.Suppose that the magnetoexci- . 27Tnex0§mH 1/3

{25

HereTg is the auxiliary quantity equal to the temperature
of vanishing of superfluid density in the mean-field approxi-
mationng(T%)=0:

ton system moves with a velocity At nonzero temperatures

dissipating quasiparticles will appear in this system. Since 34(3)

their density is small at low temperatures, one can assume 32 1/377n

that the gas of quasiparticles is an ideal Bose gas. = ex (19
To calculate the superfluid component density we find the 5 my
| f quasiparticles in a frame in which th - 33| ———

total current of quasiparticles in a frame in which the super 8mnméD*

fluid component is at rest. Then using E§), we obtain the
mean total current of 2D magnetoexcitons in the coordinate |n high fieldsH and at smalP for the lowest Landau level
system, moving with a velocity: (n=0) and at quantum numben=0 the exciton effective
magnetic mass ismy=2%%e’r /7 at D<ry and my
(14 ~D3%/€’r}, atD>ry. At largeD, i.e., for D>a} in weak

1= P'—f P ot
)= P= | P oo

(27 fields (ry>ag) or D>ry in high fields ¢y<ag) one has
my=M+H2D3/¢2. 10
In the first order byP’u/T we have The temperaturd?=T%(D,H) may be used as a crude
estimate of the crossover region where local superfluid den-
, M 3(3) T3 sity appeares for rare magnetoexciton system on the scales
(J >:“m_H 27 o4 (19 smaller or of the order of mean intervortex separation in the
S

system. The local superfluid density can manifest itself in
local optical properties or local transport propertisse be-
low). In the rare two-dimensional system in the ladder ap-
proximation[i.e., at In(8mnemie'D* *>1] the Kosterlitz-
Thouless temperature is

Using Eq.(15), we see that the total current of the system
is proportional to the total magnetic moment@®nThen, we
determine the normal component density.

(J")y=Mn,u. (16) 10
Comparing Eqgs(16) and (15 we obtain the expression TC:(ZW)lIS' (20
for the normal density,. As a result, we have for the su-
perfluid density: At maximal temperature of superfluithe Kosterlitz-
Thouless temperaturéhe normal density approximately is
Ne=Ngy—Np=N 343 T (17) 3
s— llex n— 'lex .
2T comy Ny(To) = 3B T (21)

277 CgmH ’
It occurs that the expression for the superfluid density
in the strong magnetic field for the magnetoexciton rare sys- This estimate does not take into account small contribu-
tem differs from analogous expression in the absence dfion of vortexes. Substituting E¢18) to Eg.(21), we obtain



PRB 59 PHASE TRANSITIONS OF ELECTRON-HOLE AN . .. 5631

10 T T top Kosterlitz-Thouless temperature at high magnetic fields
corresponds to the “maximal” density,,,, of stable mag-
netoexciton system at the Landau levg|,,= Vmax1/477r|2—|

81 ~H, wherev,,(D) is the maximal filling of Landau level
for magnetoexcitons—see beloffor “antiexcitons” the
corresponding critical value is-1v,,,,(D)].

6-

TC (K) B. The problem of large magnetic momenta

44 At large magnetic momentg, the isolated magnetoexci-
ton spectrure (P) contrary to the caskl=0 has a constant
limit (being equal to Landau levélw/2 for reduced effec-

2 tive mass, see Refs. 10 and)1As a result the spectrum of
interacting magnetoexciton system also have a plateau at
great momenta. So, Landau criterium of superfluidity is not
valid at largeP for the interacting magnetoexciton system.

0 L] L) L] L) L g . . . . .
0 5 10 15 20 25 30 However, the probability of excitation of quasiparticles with
magnetic moment®> 1/r; by moving magnetoexciton sys-

H (T) ; L i - .
tem is negligibly small at small superfluid velocities. In this

FIG. 2. Dependence of temperature of Kosterlitz-Thouless tranSénse, the superfluidity of 2D magnetoexcitons keeps to be
sition T, on magnetic fielcH at different interwell separatiori. almost metastable one. This can be shown by the estimation
quasiparticles on the platea|{P) equals to the magnetoex-

of the probabilitydW of the excitation of the quasiparticle on
. \/ 16 /mHT2>3+1
(6X0.4537%\ Nex citon binding energy. At high magnetic fields we have

13 the plateau with magnetic momer®e> 1/r ; the energy of
1/3) 3
B 16 (myTg)®  [me @ ,
+1 +1 : e(P) D<a(H,D), Pri>D,

n
Ny(Te)= 4_:_([

(6X0.4537% Nex 2ty pr2’
In rare two-dimensional system in the ladder approxima- 2 e 2
tion we have S(P)NB—P—nz-l, D>a(H,D), Prg>D.
Nn(Te) _ i (23) At the motion of magnetoexciton liquid in a lattice with
Nex 2w the small velocityu, which is smaller than the sound velocity

cs, according to the Landau criteridfhcreation of the qua-

~Note that Eqs.(20) and (23) take place forany two-  gjparticles in the region of plateau at great momenta with the
dimensional rare Bose gas. The dimensionless valuianagneﬁC momentun®> 1/r,;, and the energy-E, is pos-
Nn(Tc)/Nex can be considered as the small parameter. So thgiple due to the friction between liquid and impurities, de-
approximation of the ideal Bose gas of quasiparticles isects in the lattice or roughness of boundaries of quantum
valid. Note that for the dense electron-hole system withoutye|ls. So when one quasiparticle appears the liquid gets the
magnetic field ane,— an opposite casey(Tc)/Nex—1  magnetic momentun®. The appearance of the large mag-
takes place due to exponential vanishing of the order paranyetic momentum in the liquid is equivalent to the great mean
eterA (see, e.g., Refs. 4 and.5 separation between electron and hole along one layer

According to Egs.(18) and (19), the temperature of the =(r3/H)[H,P] (see Sec. )l So magnetoexcitons withery

onset of superfluidity due to the Kosterlitz-Thouless transiyarge p does not exist due to the interaction of electron and
tion ata fixed magnetoexciton denstfgcreases as a function pqje with impurities etc.
of magnetic field due to the increasenm, as a function oH Let us estimate the probabilitgW, of the transition of

andD, while T; decreases ad "2 atD<ry or asH 2 at  yhe superfiuid system from the initial state with the magnetic

D>ry, andn is a slowly decreasing function @. The  yomentumP=0 without quasiparticles to the final state

dependencies of ;. on H are shown in Fig. 2. _ with one quasiparticle with the large magnetic momentum
From Eqs.(18) and(19) one can see that the Kosterlitz- ps. 1 by using Fermi golden rule taking into account the

Thouless temperature of a rare magnetoexciton System igyjction” interaction V. We have for the probability per unit
proportional to the magnetoexciton density,. At high . time dW(P):

magnetic fields the symmetry—1— v, e« h takes place

for the Landau leve{see Ref. 1R Thus unoccupied states on 27 .

Landau levels for spatially separated electrons and holes can dW(P)= T|<0|VCVT|0>|25[A Ex+e(P)+Puldy,,
bind to “antiexcitons” and superfluidity of “antiexcitons” (25)
can also take place at1v<1. The Kosterlitz-Thouless tem- ) ) ] )
perature for superfluidity of antiexcitons as function of Wherev, is the density of final states of the systeirE, is
H, D for strongH is symmetrical to that for excitons. The the change in the kinetic energy of superfluid ligWdis the
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“friction” interaction (see below; |0) is a ground state of their contributions to the chemical potential and the equation
magnetoexciton superfluidi}, is the quasiparticle creation of the state are additive. So, we can consider these effects
operator. After quasiparticle creation total magnetic momenseparately.

tum of the system is conserved. One has for the free enerdyof ideal gas of boson&
At large momentunP> 1/, the wave function of qua-

siparticle is almost the same as wave function of the isolated F=F (1_ Eef‘”) (29)

magnetoexciton. It means that the quasiparticle annihilation Bol '

operatorap is almost the same as the ordinary particle anni- . 0 .
hilation operatomp. The chemical potentigl” of ideal gas of magnetoexci-

In second quantified representation the “friction” interac- tons can be obtained from the normalization condition for the

. ~ number of magnetoexcitons:
tion operatorV can be represented as 9

t 0— 7| T (30)
7 — =—TIn| ——].
V— P/ZP" Vprprrap,aprr y (26) K 27Tﬁ2nex
whereVp pr is the matrix element of “friction” interaction At high temperatures and high magnetic fields the in-
calculated with the use of isolated magnetoexciton eigenequalitye*’T<1 is true for a rare system. Using the relation
functions Eq.(3). for the pressur® = — (JF/9S)t y and Eq.(29), we have for

We find the equation of the state

(0[Vah|0)=Ve(P)e~[(1-2mBIPr, 27 P

(31)

_NT mh2Ney
s '

1_
whereVg(P) is the Fourier-transform o¥. Then the prob- 2my T

ability dWp of the creation of the quasiparticle per unit of  sjng the relationu = (JF/IN) 1 s for the chemical poten-
time with the large magnetic momentufand the energy ja| ;. we obtain the contribution of exchange interactions to

e(P) is the chemical potentighk [with exactness t®(n?)]:
L - 2)/4)r,P? myT #%n
dW(P)= ————e [1*21Pv (0,P) |2 __ H 7h Nex
(ZﬂT)sz3 2 TIn thznex T omuT . (32
X S[AE+&(P) +Pu]PdP. (28)

Now we analyze the contribution of interaction. We esti-
Thus, the probabilityl W of the creation of the quasiparticle mate for rare 2D magnetoexciton system the second virial
with the large magnetic momenta>1/r,, is negligibly  coefficientB(T) in expansion of 2D pressure onSL(S is
small anWPNef[(l+2y2)/4]r,2_|P2<1' So the superfluidity of the area of the system; Boltzmann constiggit 1)
2D magnetoexcitons keeps to be almost metastable one. Note NT
that at small magnetic momenia<1/r in the region of the pP= —
sound spectrum of interacting magnetoexcitons Landau cri- S
terium of superfluidity is valid and the probabilig\W, of
the creation of the quasiparticle in the region of the sound
spectrum au<cg is zero due toS| AE+¢&(P)+Pu]=0 in 1
Eq. (25) B(T)= 5 (1-e U®mas

At low temperaturesT<T.<E, states with large mag-
netic momenta are negligibly fille@xd —e(P)/T]<1, where
e(P) is the magnetoexciton energy that has the same order ~7TT_2’3(eD)4’3In(—eX), (34)

. . . ; . myT
as magnetoexciton binding enerdy,; at high magnetic
fields Eq= \/w/2e?/r,, at D<a(H,D) andE,=e%D atD  whereU(R)=¢e’D?R? is the pair interaction between par-
>a(H,D)). So quasiparticles at large magnetic momenta ticles. We integrate Eq34) by coordinate from the classical
give a small contribution to the densities of the normal com+urning point for the dipole-dipole interactionR,
ponentn, and superfluid componentg [see Eq.(17)]. =(e?D%u)*3, substituting the chemical potential Eq.
Hence, the expressions given above for the temperature ¢80). At high temperatures,U(Ry)/T<1 [where R,
Kosterlitz-Thouless transition are valid. ~(mn) 7.
Using additivity of small exchange and dipole-dipole in-
VI. THERMODYNAMICS AND EQUATION OF THE teraction corrections, we have the equation of the state with
STATE OF THE SYSTEM AT HIGH TEMPERATURES both corrections included

NB(T)

S (33

At high temperatures the virial coefficient is

Now, we estimate correction terms in the chemical poten- ThNey o 3 27h Ny
tial and the equation of the state for slightly nonideal gas of PS=NT| 1— SmoT 7T “(eD) nex'”(v)
2D magnetoexcitons at high temperatures due to exchange . 4 (35)
effects and dipole-dipole interaction between
magnetoexcitons’ We show these correction terms are For the chemical potential, we obtain with exactness to
small at high magnetic fields and high temperatures, and s@(n?) the chemical potential with both terms included
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2 0.4
uw=—TIn #i;ex) + 21-rT1’3(eD)4’3nexln(%_:ex)
4 o7 T Mex (36) N -
2myT Y
0.21 -

The virial coefficientB(T) decreases W due to increase
of magnetic massn,,. Hence, in high magnetic fields, the
system of indirect magnetoexcitons is almost ideal gas due to
B(T)<1. Decrease of interexciton interaction can be inves-
tigated experimentally. In noninteracting system shape of
spectral lines of magnetoexciton photoluminescence is deter- 0.0
mined by Doppler effect. For an interacting system it was o X 1
demonstratett that the shape of lines of photoluminescence
of semiconductor quantum wells is dominated by many-body FIG. 3. Magnetoexcitons existence lineT;(H,n); y
interactions, and it is essentially different from isolated par-=Eqgeq/Eo. Egeg=27%%ne,/my, is the energy of degeneration and
ticles because of exciton-exciton interactions. Comparing=T/Eo.
lineshapes at the different magnetic fields, one can demon-
2
myT >+2T( wh nex)
27h 2Ny 2myT
2
+ wT2’3(eD)4’3nexln(m) +Eq—Egv. (39
myT

strate transition to an ideal gas in the exciton system in high
magnetic fields. 0= ptex— = pn=—TIn

VII. REGION OF EXISTENCE
OF MAGNETOEXCITON PHASE

A. lonization of magnetoexcitons in the quasiclassical region . L

_ _ As ng,—0 the characteristic temperature of ionization

In magnetoexciton system in coupled quantum wells atr;(n, ,D,H)—0 (and the same for antiexcitonsThe de-

essentially higher temperatures than the transition to the Sysendence of maximal;(H) (corresponding to the maximal
perfluid state the exciton thermal ionization takes placemagnetoexciton densityis defined by the magnetoexciton
Magnetoexcitons existence lin&;(H,n) (more strictly,  pinding energyE, (so T;~+H at smallD) and rises vs

crossover regioncan be obtained in quasiclassical regimemagnetic field and decreases vs the interlayer separation in-
from the ionization equilibrium condition analogous to Sahagrease.

relatiorf® from condition of equality of exciton chemical po- If we introducey=Egeq/Eq (Egeq= 275 2Nex/my is the
tential to the sum of chemical potentials of electrons a”denergy of degenerati()r;nd x=T/Ego, this dependence is
holes. shown on Fig. 3.

We neglect transitions between Landau levels in high
magnetic fieldiw.>T (w.=eH/m is the cyclotron en-
ergy) and are measured the chemical potentials of electron
Me, holesu,, and magnetoexcitons,, from the lowest Lan- The rare excitonic system is stable@& D, (H) andT
dau level. Then, we have for the chemical potentials of elec=0 when the magnetoexciton energy,{(D,H) (calculated
trons and holes at2rin=v<1 (n is the density of mag- in Ref. 10 is larger than the sum of activation energis
netoexcitons al =0) (see Ref. 2b =ke?/ery for incompressible Laughlin liquids of electrons
or holes:k=0.06 for v=1%, etc?? (compare Ref. 23 for sta-
bility of denseexcitonic phase—see beldpwSincek<1, the
critical value D ,>ry. In this case one ha&...=(e?/
eD)(l—rﬁ/Dz) for a magnetoexciton with quantum num-
bersn=m=0 (see Ref. 10 As a result, we have from the
stability condition (see above D =ry(1/2k—2k). For

myT Th Ney greaterv it gives an upper bound oD, . In the rare sys-

my tem in high magnetic fieldsy<E,. The coefficientk in
the activation energy, may be represented ds=kg/v.

@. Quantum transition to two-layer incompressible liquid state

Me= pun=Eqv (37

and the chemical potential of magnetoexcitons is

Mex=—TIn

27 Ney

2

2mhen So, from the relation betweeB., and ry one has:v
—-2/3, 4/3 ex ) cr H cr
+aT "4eD) ”eX'”( maT || "B B8 —(1a3)(r2/D?2)(1-r2/8D?). Thus, maximal density for

stable magnetoexciton phasanis,= vc,/27r 7 (see below
where v is the filling factor andE, is the magnetoexciton Hence, themaximum Kosterlitz-Thouless temperature, at
energy; at high magnetic field&€,=n/2e%r, at D  Which superfluidity appears in the system g
<a(H,D) andEy=e?/D atD>a(H,D).* ~n™(H,D)/my~JH at D<ry or T"®*~H ! at D>ry,
We obtain the equation for the characteristic temperaturén high magnetic fields. It would be interesting to check this
of ionizationT;(n.4,D,H) from the condition of the ioniza- fact in experiments on magnetoexciton systems. Note that if
tion equilibrium?° at a given density o€ andh and a given magnetic fielHl
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is true) the superfluid phase can exist for magnetoexcitons on Cs= (45)
the highest nonfilled Landau level. At=3 the elecron-hole
phase can be unstable due to the pairing of electron and hole The chemical potential of dense system of electron-hole

composite fermiongwhich form the Fermi surface of com- pairs with spatially separateglandh in high magnetic field

several Landau levels are fillgbut high-field limitry<ag [ i
my dv’

posite fermions in the mean-field approximati&yn is25
VIIl. PHASE TRANSITIONS IN THE “DENSE” SYSTEM u==J3+2v(1=-J). (46)
In the “dense” systen{at v~ 1/2 contrary to rare system Here, , I=f[dzq/(_27r)2]V11(q)exp(—q2rﬁ/2), V1a(a)
at v<1) the ionization of magnetoexcitons can be estimated® 2me/d, andJ is defined by Eq(41). .
in the Gorkov approximatiof® It takes place at the tem-  From Eqgs.(46) and(45), one has for the sound velocity
dense
peratureT; g 20(1=3)
Ce=\/—. 47
d J 1-2v my
T| ense:_ T, (40)
2In(v~1-1) The temperature of the Kosterlitz-Thouless transition to
where the superfluid state can be calculated by using(E8). (see
Sec. V), whereTg is the auxiliary quantity equal to the tem-
d%q ) perature of vanishing of superfluid density in the mean-field
ZJWVQ(Q)GXF(—QZFH/Z) (41)  approximationng(T2)=0
1/3
and o [ veimy _(3Zﬂ|(| —J)z)mi 48
o2 ¢ \3rae®) 3¢3my | 2ry
\% = exp(—gD). 42
14) q R=ab) 42 In high magnetic fields for the dense system, the

So the t i f the ionizati in th Kosterlitz-Thouless temperature is obtained by substituting
,0 € temperature ot the lonizalion Crossover in th&,e T2 from Eq.(48) to Eq.(18). Kosterlitz-Thouless tempera-
Gor’kov approximation increases with rise of magnetic field

. . o ture decreases vs magnetic field analogously to the rare sys-
as+H and decreases with the interlayer separatibis con- 9 g y y

) . o tem (see abov
sist and with the estimation for the rare system—see ghove ( e
| Then we have
Let us calculate now the density of the normal component

n,. The contribution of the one-particle overgap excitations o 22

to the density of the normal component is determined by the |—J=62J’ (1-e 9P)e 9Tdq. (49)
transitions between Landau levéfsSo, in high magnetic 0

fields this contribution is negligible a@s/r v <1. We need Let us consider for estimate small interlayer distanDes

also to take account of the contribution of collective excita-<1/q,, where q, is the characteristic wave vectay,
tions to the density of the normal component. In contrast tq_ 1/ry, wherery=1/\/mn,, is the mean distance between
superconductors, where, as a consequence of the Charge&(rticles. Maximal dengﬁy of particles at=1% is n
the Cooper pairs, instead of an acoustic spectrum of collec- 4,2 (at v>1/2 we deal with antiexcitons—see beelﬁw
tive oscillations high-frequent plasma mode arises, in the X p<r H using Eq.(49), we have

citon phases-h pairs are neutral and zero-gap collective ex- T T

citations exist. At low temperatures, the contribution of the g% e2D

elementary excitations in thermodynamic equilibrium can be |—J=e?D fxqe 2 dq:_z' (50
described in the approximation of an ideal Bose gas. So, the 0 My
density of the superfluid componemg can be estimated by .
Eq. (17). Now, one need to estimate the sound velocigypf Then, we have for the temperature of the phase transition
collective mode in the system. to the superfluid state in the mean-field approximation at

It can be shown easily that the equations of the hydrodySmallD
namics of magnetoexcitons contaii=(M/my)P instead 4 13 42 \ 13
of P. So, we have for the sound velocity TO= 27 NexCsMy _(3%D mn (51)

¢ 34(3) 34(3)my e

P M 9P
Cg:a_:m_ ErS 43 As we mentioned above in high magnetic fields the sym-
P H P metry v—1—v, e« h takes place at the Landau level and
In result we obtain the expression for sound velocity withunoccupied states on Landau levels for spatially separated
magnetic massy, instead ofM (compare Ref. 18 electrons and holes can bind to form *“antiexcitons” and
superfluidity of “antiexcitons” can take place. The
Kosterlitz-Thouless temperature for superfluidity of antiexci-
tons as function oH, D is symmetrical to that for excitons.
Hence, in expressions for temperatures of phase transitions

Using the relatiorw=277rﬁ|n we have in Egs.(48), and(51) we can usev(1—v) instead ofv.

_n&,u

2
co=— —.
S my dn

(44)
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We can see that the temperature of the Kosterlitzrected electric currents in each layer. The interlayer
Thouless transition to the superfluid state at fixed densityunneling in anequilibrium spatially separated electron-hole
decrease with rise of magnetic field Bis ® (for the rare  system leads to interesting Josephson phenomena in the sys-
system a#l ~Y2—see above T, decreases also vs interlayer tem: to a transverse Josephson current, inhomogeneous
separation. At values d greater than some critical ofi,,  (many sin-Gordon solitoriongitudinal current§,diamagne-
the dense superfluid system of magnetoexitons must trantism in a magnetic fieltH parallel to the junctioiwhenH is
form into the system of two incompressible liquidsThe less than some critical valug,;, depending on the tunnel-
dense excitonic system is stable kD (H) and T=0  ing coefficien}, and a mixed state with Josephson vortices
when the Hartree-Fock energy is larger than the sum of ador H>H¢; (Ref. 19 (in addition, taking tunneling into ac-
tivation energiesE, =ke?/er, for incompressible Laughlin  count leads to a loss of symmetry of the order parameter and
liquids of electrons or holet is consistent with the results to a change in the character of the phase trangition
for rare system—see above

XI. CONCLUSIONS
IX. MAGNETOEXCITONS IN UNBALANCED

TWO-LAYER ELECTRON SYSTEM We have shown that at fixed exciton density, the

Kosterlitz-Thouless temperatufie for the onset of superflu-

The system of indirect magnetoexcitons can appear alsility of magnetoexcitons decreases as a function of magnetic
in unbalanced two-layeelectronsystem in CQW in strong field asH Y2 (at D=<r ). But the maximal  (correspond-
magnetic fields near the filling facter= 1. An external elec- ing to the maximal magnetoexciton densiligscreases with
tric voltage between quantum wells change the filling, so say in high magnetic fields a3T*{H,D)~ VH (at D=<r).
in the first quantum well the filling factor will bee;=Av  This fact needs to be compared in detail with the results of
<3 and in another one it will be/,=1—Av. Unbalanced experimental studies of the collective properties of magne-
filling factors v,=1+Av, v,=1—Av is also possible. toexcitons. The excitonic phase is more stable than the
Thus, in the first quantum welfQW) there are rare electrons Laughlin states of electrons and holes at a given Landau
on the second Landau level, and in the second QW there afiling v if D<D,=ry(1/2Z—2k), wherek is the coeffi-
rare empty place§‘holes”) on the first Landau level. “Ex- cient in the Laughlin activation energy. Below the Kosterlitz-
cess” electrons in the first QW and “holes” in the second Thouless temperature one can observe the appearance of per-
QW can bound to indirect magnetoexcitons with the densitysistent currents in separate quantum wells. We have shown,
Nex=€eHAv/27r. Superfluidity in a two-layee-e system in  that in extremely high magnetic fields the system of indirect
high magnetic fields in the cases mentioned is analogous tmagnetoexcitons at fixe@l has the statistical properties of
the superfluidity of two-layee-h system. almost ideal gas. At small interlayer distandessr,, the

The expressions for critical values,, D, for temperature of the Kosterlitz-Thouless transition to the su-
Kosterlitz-Thouless temperatuiie, calculated above are ap- perfluid state in the dense system decreases with rise of mag-
plicable also for two-layer electron system under considernetic field asH ™ due to rise of the magnetic mass of
ation. So, in this approximation the phase diagram for unbalindirect magnetoexcitoff. We discuss also the quantum
anced two-layer electron system is analogous to the twotransition to the incompressible liquid state. We calculated
layer electron-hole system. In condition for the stability ofthe characteristic temperature of insulator-metal transition
superfluid magnetoexciton liquid relating to quantum transi-and established that it rises with magnetic field and decreases
tion to two incompressible Laughlin liquidsee Sec. VIl with interlayer separation. Note that in some region of Lan-
one must usélv instead ofv. Due to Jain’s mapping of dau filling inside (Oy.,) (see abovecrystal phase of indirect
fractional Landau-level fillings to integer Landau-level magnetoexcitons must exi&ee Ref. 2. Note that its melt-
fillings?® analogous results take place also for slightly unbaling curve is analogous to one for electron crystal near metal

anced fractional fillings. gate because due to image forces effective interaction in the
system is also dipole-dipole interactf§i° (the difference in
X. POSSIBLE EXPERIMENTAL MANIFESTATIONS results for these two systems is due to their different statis-
OF MAGNETOEXCITON SUPERFLUIDITY tics).

The appearance of local superfluid density abdyecan
be manifested, for example, in observations of temperature
dependence of the exciton diffusion on intermediate dis- Yu.E.L. is grateful to J.K. Jain, A. MacDonald, and G.
tances(with the help of local measurements of exciton pho-Vignale for interesting discussions. The work was supported
toluminescence at two points using optical fibers or pinholeby the Russian Foundation of Basic Research, INTAS, and
in experiments like those in Ref).1 Program “Physics of Solid Nanostructures.” O.L.B. was

The superfluid state af<T. can manifest itself in the supported by the ICFPMInternational Center for Funda-
existence of persistert'superconducting’) oppositely di- mental Physics in Moscow
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