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Interface magnetization effect in heterojunctions based on semimagnetic compounds
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and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
~Received 18 August 1998!

The electronic states of stressed heterojunctions formed from narrow-gap semimagnetic semiconductors
showing antiferromagnetic ordering are studied. The model Hamiltonian is constructed in the framework of the
two-band envelope-function approximation including far-band corrections. Heterojunctions, both with normal
and inverted band arrangements in the initial semiconductors, are investigated. The interface Tamm-like states
have been shown recently to appear in these heterojunctions, and they are spin split with the magnetic axis
perpendicular to the interface plane. The effect of far-band corrections is shown to be conditioned by the
mutual movement of the constituent bands, resulting in changes and in some cases in the full disappearance of
the energy interval in which the interface state exists. The interface magnetization effect is expected when the
Fermi level lies in one of the spin-polarized interface bands. Using the appropriate parameters, the value of the
relative interface magnetization is calculated.@S0163-1829~99!03403-7#
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I. INTRODUCTION

Dilute magnetic ~semimagnetic! semiconductors are
formed by replacing a fraction of the cations in a host se
conductor alloy with transition-metal ions. The presence o
magnetic component introduces specific properties relate
the strong coupling of the spins of the band electrons
holes of a semiconductor to localized magnetic moments
to the d or f electrons of the transition metals. Quantu
structures based on semimagnetic narrow-gap IV-VI or II-
semiconductors are currently of great interest because
their interesting physical properties and technological imp
tance. It is now recognized that interfaces play the most
portant role in magnetic properties. The key to understand
the interface magnetization effects lies in the structure of
interface plane, its imperfection, and the disposition of
magnetic impurities across the interface,1 and in the elec-
tronic structure, especially the existence of the spin-polari
surface states.2,3 A theoretical model of the interface magn
tization effect starting from the magnetic properties of t
Tamm’s interface states, arising in some narrow-gap stre
semimagnetic heterojunctions with antiferromagnetic ord
ing, was developed in previous papers.4,5 As model materi-
als, the heterojunctions based on semimagnetic narrow
IV-VI semiconductors with mutually inverted bands~that is,
the constituent gaps are opposite in sign! were considered
Interface spin-split states were shown to appear in th
structures. It is a semimagnetic constituent which is resp
sible for antiferromagnetic ordering, which conditions t
nonzero average spin value bound to each interface sta
the Fermi level lies in one of the interface bands, magn
ordering appears in the interface plane. In this context
interface magnetization effect was discussed in Refs. 4
5. It is important to note that the existence of the sp
polarized states, present in antiferromagnetic coupled
tems, was also derived in Refs. 2 and 3 using a simple m
of a semi-infinite linear chain of atoms with one spin orbi
per site which was treated within the tight-binding fram
work.
PRB 590163-1829/99/59~8!/5591~11!/$15.00
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The simplest theoretical model for the narrow-gap IV-
semiconductors is a two-band one. In the first approximat
of the k•p̂ perturbation theory, including only matrix ele
ments between near-band states, this model reduces to
Dirac Hamiltonian. This approach was effectively used
Refs. 4–6, after the first investigations in Refs. 7 and 8. T
approximation yields an analytical solution, giving an oppo
tunity to observe the genesis of the interface states, an
this way to understand their nature. However, this appro
was shown to be justified only at energies small compare
the gap energy. In the next approximation, the effects
more distant bands are well known to be treated in
second-order perturbation theory. These effects proved t
of most importance for heterojunctions with a normal ba
arrangement~that is, withEgaEgb.0!. We call these struc-
tures normal, in contrast to the inverted structures with m
tually inverted bands. It has been shown that the same in
face states appear in the normal heterojunctions.6,8 If, in the
inverted contact, the states are located in the gap of the
stituent semiconductors, and there is a real energy regio
which the lowest orderk•p̂-perturbation theory is satisfied
then in the normal heterojunction the situation is more co
plicated. In this case the interface states were shown to
usually located inside either the conduction or valence ba
of the constituents.6,8 Then the far-band corrections have
be included in the Hamiltonian.

In this paper we discuss the effects of far-band correcti
on the interface states. However, in order to observe
change of the energy spectrum with the increasing soph
cation of the model, and so as not to complicate the analy
we retain the other approximations used in Refs. 4 and
Thus the aim of this work is to study the interface states
stressed heterojunctions, both with the normal and inve
band arrangements, based on narrow-gap semicondu
showing antiferromagnetic ordering, taking into account f
band corrections. Although our results are more gener
applicable, we use heterojunctions based on semimagn
narrow-gap IV-VI semiconductors as model materials.

The paper is organized as follows. In Sec. II we brie
5591 ©1999 The American Physical Society
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describe the theoretical model. In Sec. III we derive anal
cal results for the bulk and interface electronic states
some special limiting cases. In Sec. IV a perturbation so
tion, as well as corresponding numerical results for the in
face states, are presented. Interface magnetization is stu
in Sec. V. This is followed by a brief summary at the end

II. MODEL HAMILTONIAN

The electronic properties of heterostructures compose
semiconductors which have a similar band structure can
described by an envelope-function formalism reduced to
-
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k•p̂-band model with spatially varying material parameter9

The constituents of the heterojunctions are narrow-gap
terials (Eg,0.5 eV) with the two nearest bands forming
direct band gap atL points of the Brillouin zone. The far
bands are remote by energies large compared to the gap
ergy. It is usually sufficient to take into account couplin
between the doubly degenerate conduction and vale
bands exactly, while treating the far bands in perturbation
to orderk2.10 Within the mirror symmetry band approxima
tion, assuming the axisz to be parallel to the trigonal@111#
crystal axis, one obtains a Hamiltonian for the heterostr
ture with the axis along the samez direction in the form
Ĥ005S D~z!1V~z!1
\2k'

2

2m'

2
\2

2mi

]2

]z2 s•p

s• p̂ 2D~z!1V~z!2
\2k'

2

2m'

1
\2

2mi

]2

]z2

D . ~1!
ex-

be-
m-
ls,

on
ac-
s

i-
or-
Here D(z)5Eg(z)/2, V(z) is a so-called work function de
scribing the shift of the constituent gap middles, the mom
tum operatorp̂ for the structures under consideration is r
duced top̂52 i\(v'kx ,v'ky ,v i¹z) ~where kx and ky are
the components of the transverse momentum vector with
lengthk' , andv' andv i are the interband matrix elemen
of the velocity operator!, ands5(sx ,sy ,sz) is the vector
with the components of the Pauli matricessx,y,z . Finally,
m' and mi are the far-band contributions to the effecti
masses which are taken equal to the same value for the
duction and valence bands within the mirror symmetry ba
model. The dependence of the far-band masses on the c
dinatez ~far-band mass mismatch! is neglected here, and s
the multiplier 1/mi was taken out of the differential in th
operator (]/]z)(1/mi)(]/]z) of the diagonal Hamiltonian
components.

Two more terms need to be included in the Hamiltonia
The first describes the polarization effect induced by
strain,4

Ĥst5S 0
i s E

2 i s E
0 D , ~2!

where the vectorE is determined by the mutual shifts of th
cation and anion sublattices of the initial semiconduct
-
-

e

n-
d
or-

.
e

s

along three directions. Taking into account the results of
perimental work,11 we presume the polarization to beE
5(0,0,E).

The second term describes the exchange interaction
tween the magnetic impurity spin and electron spins. Assu
ing the magnetic impurities to be localized at the interstitia
with the spins antiferromagnetically arranged along thez
axis, we obtain4

Ĥex5S 0
iL

2 iL
0 D , ~3!

where L is the matrix element of the exchange interacti
constructed on wave functions with the symmetry of the
tual bands. BothĤst andĤex have been discussed in previou
work,4 where some numerical values ofE andL were given.

Thus our model Hamiltonian for the stressed IV-VI sem
conductor heterojunction showing the antiferromagnetic
dering along thez axis reads

Ĥ5Ĥ001Ĥst1Ĥex. ~4!

We see thatĤ commutes withŴ5s@ p̂•n#1szL ~wheren
is the unit vector along the axisz!. Hence, making use of the
eigenfunctionsŴ as a basis, we can reduce the Schro¨dinger
equation to
S D2V1
\2k'

2

2m'

2
\2

2mi

]2

]z22e \v i

]

]z
1W61E

2\v i

]

]z
1W61E 2D2V2

\2k'
2

2m'

1
\2

2mi

]2

]z22e
D S w6

x6 D50. ~5!
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Here W6 , andw6 and x6, are the eigenvalues and eige
functions of the operatorŴ determined by the relation

W656\v'
AL̃21k'

2 and

w6~x6!5w0
6~x0

6!S 1

ky2 ikx

L̃1W6

D , ~6!

wherew0
6 andx0

6 are normalized factors, andL̃5L/\v' .
We begin the study of Eq.~5! by choosing values ofD

and E equal to some constants, and settingV50. Then the
energy spectrum of the homogeneous semiconductor
polarization and antiferromagnetic ordering is found to b

e6
c 5F ~E1W6!21S D1

\2k'
2

2m'

1
\2ki

2

2mi
D 2

1\2v i
2ki

2G1/2

,

e6
v 52F ~E1W6!21S D1

\2k'
2

2m'

1
\2ki

2

2mi
D 2

1\2v i
2ki

2G1/2

,

~7!

whereki is the component of the momentum along the trig
nal axis, and the indicesc andv indicate the branches relate
to the conduction and valence bands, respectively. The
larization and antiferromagnetic ordering have been sho
to split the Kramers spin degeneracy.4 As a result, each of
ou
on

s

a
io

th
th

-

o-
n

the branches of the conductione6
c or valencee6

v bands is
characterized by opposite directions of the spin, with
average spin vector being

SW 656
1

AL̃21k'
2

~ky ,2kx,0!, ~8!

where the sign ‘‘1’’ is related to branches with the inde
‘‘ 1’’, and the sign ‘‘2’’ to branches with the index ‘‘2’’.

If a heterostructure with the axis alongz is considered, the
parametersD, E, andV are functions depending on the co
ordinate z. The Schro¨dinger equation~5! is a set of two
second-order differential equations. There is no way of so
ing this eigenvalue problem analytically in the general ca
By applying proper boundary conditions one can obtain
numerical solution. Before doing so, it is useful to consid
some special cases having analytical solutions.

III. SIMPLE HETEROCONTACT

Considering the ‘‘simple’’ heterocontact implies that
the Schro¨dinger equation~5! one should putL50 and E
50. This case was discussed in Ref. 8. However, we
interested in the same problem from another point of vie

WhenL5E50 the transformation of the wave function
into the formu65w61x6, v65w62x6 reduces the ei-
genvalue equation~5! to
S 7\v'k'1V2e S D~z!1
\2k'

2

2m'

2
\2

2mi

]2

]z2D 1 ipz

H.c. 6\v'k'1V2e
D S u6

v6 D50. ~9!
nsi-
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If the gap centers of the constituents are aligned through
so thatV(z)5V is a constant, then there exists a soluti
with u650 or v650, depending on the drift of theD(z)
function. For example, in the caseD(1`).D(2`), Eq.~9!
admits a solution withu650. The energy spectrum include
two branches with the linear dispersion

e i
656\v'k'1V, ~10!

while the wave function satisfies the differential equation

S D~z!1
\2k'

2

2m'

2
\2

2mi

]2

]z22\v i

]

]zD v650. ~11!

To simplify the analytical calculation we consider
symmetry-inverted heterojunction, that is, the heterojunct
in which Eg(1`)52Eg(2`). ~This assumption is of no
consequence on the final result, and generalization of
investigation for any heterojunction is trivial.! The gap func-
tion can be taken in the form

D~z!5D0tanhS z

l D , ~12!
t,

n

is

where 2D05uEg(1`)u5uEg(2`)u, and l defines the het-
erojunction width. We assume a gradual continuous tra
tion between two layers, so as to avoid matching conditio
at the interface which arise when a steplike transition reg
is considered. However, in doing so, it should be kept
mind that, in a graded heterojunction, in addition to the z
mode of the interface states there appear excited states.12 The
zero mode has been shown7 not to depend on the transitio
region structure, and it was this state which has been stu
in previous works.4,5 We confine our attention to the zer
mode.

Applying the following transformations to Eq.~11!,

j5tanhS z

l D ,

v~j!5~j11!p~j21!qh~x!, ~13!

x51/2~12j!,

where the parametersp andq are determined by the relation
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q1,252
miv il

2\ H 16F11
2

miv i
2 S \2k'

2

2m'

1D0D G1/2J ,

p1,252
miv il

2\ H 216F11
2

miv i
2 S \2k'

2

2m'

2D0D G1/2J
~14!

gives the hypergeometric equation

x~x21!h91@x~a1b11!2c#h81abh50, ~15!

where

a5p1q11,

b5p1q,

c52q111
mil

\
v i . ~16!

The index ‘‘6’’ was dropped here for simplicity. Thus w
find that

v~j!5~j11!p~j21!q$C1F@a,b,c;1/2~12j!#

1C2@1/2~12j!#12cF@a2c11,b2c11,2

2c;1/2~12j!#%. ~17!

The solution for the interface states being looked for he
the boundary conditions for them arev→0 when j→61
~i.e. z→6`!. Solution ~17! meets the boundary condition
when

C250 and q.0, 0,p,
miv il

\
,

and when

C150 and q,2
miv il

\
, 0,p,

miv il

\
.

The parametersp andq being real, only the zero mode of th
interface states is of interest. Making use of Eq.~14!, we find
that interface states occur when

D02
miv i

2

2
,

\2k'
2

2m'

,D0 . ~18!

Inequality ~18! is the condition for interface states to a
pear, and shows that the far-band corrections result in cut
off the interface state energy spectrum both at large
smallk' . It is easy to show that the point\2k'

2 /2m'5D0 is
the intersection of one of the constituent bulk bands and
interface energy branch. Consequently, there is no inter
state vanishing atz→6` when\2k'

2 /2m'.D0 . The iden-
tity \2k'

2 /2m'5D0 has a deeper physical meaning. T
value\2k'

2 /2m' at smallk' can be considered as a half
the energy difference between two bulk branches of the
tial semiconductors on both sides of the interface plane. T
this is an energy uncertaintyDE for our interface problem,
which is related to the momentum uncertainty byDp
5DE/v i . A coordinate uncertainty is determined by the
Broglie wavelength which, in the first approximation for th
,

g
d

e
ce

i-
us

two-band Hamiltonian, is equal tol5\/p5\v i /D0 . Con-
sequently, the uncertainty relationDpDx<\ gives the fol-
lowing condition for the localized interface states:

\2k'
2

2m'

<D0 .

In the first approximation of thek•p̂ perturbation theory for
the inverted symmetry heterocontact, by virtue of the ene
spectrum symmetry, the energy uncertainty on the interf
plane is equal to zero along all values of the transverse
mentum. That is why there are no restrictions on the ene
interval of the interface state existence.

The low limit in inequality~18! arises because there is n
evanescent mode going toz→2` from the interface plane
under the condition

\2k'
2

2m'

,D02
miv i

2

2

as p1,2 become imaginary. This restriction, however, tak
place just atD02miv i

2/2.0. For far-band masses as muc
asmiv i

2/2>D0 , inequality~18! reduces to

0<
\2k'

2

2m'

<D0 . ~19!

The disappearance of the interface mode at smallk' can
be understood in terms of another limiting case. When
semiconductor gap increases comparing to the energy di
ence between the actual extremes and the other rem
bands, the single-band parabolic model of the electron
ergy spectrum is a good approximation. In the single-ba
limit the conduction and valence bands are completely
coupled and the HamiltonianĤ00 @Eq. ~1!# becomes diago-
nal. As a result the eigenvalue problem for the interfa
states reduces to the two independent equations.

S D~z!1
\2k'

2

2m'~z!
2

\2

2

]

]z

1

mi~z!

]

]z
2e Dw~z!50,

~20!

S 2D~z!2
\2k'

2

2m'~z!
1

\2

2

]

]z

1

mi~z!

]

]z
2e Dx~z!50,

with spatially varying massesm' and mi , which, in the
parabolic approximation, are determined by

1

mi ,'
A 5

v i ,'
2

D0
S 11

D0

mi ,'v i ,'
2 D at z.0,

~21!
1

mi ,'
B 52

v i ,'
2

D0
S 12

D0

mi ,'v i ,'
2 D at z,0.

Since the effective masses depend onD(z), a solution of
Eqs. ~20! with a smooth gap function like Eq.~12! is very
complicated. However, by studying only the zero mode
the interface states we can confine ourselves to conside
the steplike heterojunction determined by the conditio
D(z)5D0 at z.0 andD(z)52D0 at z,0. Interface states
must be evanescent in nature. The envelope functionsw(z)
andx(z) are localized at the interface, and decay expon
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tially in both directions6z, submitting the Bastard boundar
conditions which require thatC(z) and (1/m)@]C(z)/]z#
be continuous at the interface.9 Such wave functions can
meet the boundary conditions if only the effective massmi

changes sign at the interface due to the band reversal, th
at

mi
Ami

B,0. ~22!

The interface energy spectrum is then

e i
656

D0
2

miv i
2 6

\2v'
2 k'

2

2D0
S D0

m'v'
2 1

D0

miv i
2D . ~23!

As follows from Eq.~21!, condition ~22! means thatD0

,miv i
2. It is interesting to note that whenk'50 this solu-

tion tends to the result given in Ref. 13 where the interfa
states in the inverted HgTe-CdTe heterostructure were s
ied.

Comparing the two solutions obtained for the two-ba
and single-band models, we can draw the following conc
sion. In spite of their difference as obvious results of tw
different approaches, both these solutions describe es
tially the same interface states. The solution for the sing
band model tends asymptotically to the one for the two-b
model whenk'50 at mi , m'→`. The vanishing of the
states when\2k'

2 /2m',D02miv i
2/2 in the two-band mode

is now related to their full disappearance in the single-ba
model atD0.miv i

2/2, when the effective masses of the in
tial semiconductors have the same sign. For the two-b
model the interface state existence condition~18! is not so
strong.

Finally, a trivial generalization of the above results for t
case of nonsymmetrical heterocontact~both normal and in-
verted!, but with still aligned constituent gap centers, is
define the gap functionD(z) by

D~z!5D11D2tanhS z

l D ,
e

e

ua

is
is,

e
d-

-

en-
-
d

d

d

whereD65(DA6DB)/2, the parameters with indexA or B
being related to the initial semiconductors on the differe
sides from the interface boundary atz.0 or z,0, respec-
tively. Then interface states with the linear spectrum alo
the transverse momentum~10! and with the wave function
~17!, by replacing\2k'

2 /2m'→(\2k'
2 /2m')1D1 and D0

→D2 , appear in the interval

2DB2
miv i

2

2
<

\2k'
2

2m'

<2DB . ~24!

Thus for a simple heterocontact with aligned constituent g
centers, a condition of the inverting band arrangement of
of the constituents~that is,DB,0! is necessary but not suf
ficient, it also being necessary that the transverse momen
fall into the above allowed interval.

IV. STRESSED HETEROCONTACT
WITH ANTIFERROMAGNETIC ORDERING

In this section we start from Eq.~5!, assuming the param
etersD, E, andV to be spatially varying functions and th
antiferromagnetic ordering parameterL to be identical in
both constituents. The coordinate dependence of all th
functions may again be presumed to be described by a si
function f (z), such thatf (6`)561. From a physical point
of view this assumption is reasonable. Moreover, since
zero mode of the interface states under consideration d
not depend on the structure of the transition region, the fo
of the functionf (z) near the zero point is of no consequen
in the final results. First of all a perturbative solution will b
obtained.

A. Perturbative solution

By rotating the Hamiltonian in Eq.~5! we find
H̃̂5S V11D̃1cos 2u2~W61E1!sin 2u
H.c.

2D f ~z!1D̃1sin 2u1~W61E1!cos 2u1 ipz

V112V2 f ~z!2D̃1cos 2u1~W61E1!sin 2u
D , ~25!
n

cter-
where D̃15D11(\2k'
2 /2m')2(\2/2mi)(]2/]z2), D

5AD2
2 1E2

2 2V2
2 , and the rotation angle is found from th

equation

D2cos 2u2E2sin 2u1V250.

Here the values ofE6 andV6 are determined by the sam
relations asD6 .

When the far-band corrections equal zero, so thatmi ,
m'→`, one immediately obtains that the eigenvalue eq

tion constructed on the HamiltonianH̃̂ has a solution with
x650. This is the zero mode of the interface states d
cussed in Ref. 4. It has an energy spectrum
-

-

e i
65D1cos 2u2~W61E1!sin 2u1V1 . ~26!

The wave function is a solution of the differential equatio

@2D f ~z!1D1sin 2u1~W61E1!cos 2u1 ipz#w
6~z!50.

These states are nondegenerate. Each of them is chara
ized by the average spin value4

S i
65w6~z!

2

L̃6Ak'
2 1L̃2

~ky ,2kx ,L̃ !,

being opposite directed along thez axis for the statew1 as
compared tow2.
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The normalization of these states results in cutting
their energy spectrum at a finite transverse momentum
that the statew1 exists only inside the interval

2
D

ucos 2uu
2D1tan 2u2E1,\v'

Ak'
2 1L̃2

,
D

ucos 2uu
2D1tan 2u2E1 ,

~27!

while the statew2 exists inside the interval

2
D

ucos 2uu
1D1tan 2u1E1,\v'

Ak'
2 1L̃2

,
D

ucos 2uu
1D1tan 2u1E1 .

~28!

The positive definiteness ofAk'
2 1L̃2 means, that, if the left

sides of these inequalities are less than zero, then they sh
be replaced by zero. Moreover, the statesw1 or w2 appear
just in the event that the right sides of inequalities~27! and
~28! are greater thanL.

It is worth noting that these inequalities have a sim
interpretation. Their limit points determine the intersectio
between one of the interface branches and the correspon
bulk band with the same spin direction. It is easy to sh
that inequalities~27! and ~28! admit limiting transitions to
particular cases discussed in Refs. 6 and 4. For exampl
the case of the symmetry-unstressed inverted contact u
the conditionsV650, E650 andD150, we have cos 2u
50, and so there is no cutoff of the statesw6 in the trans-
verse momentum region. In the case of the symme
stressed heterocontact atD150 andE150, both states are
cut off at just the same values of the transverse momen
as shown in the previous work.4 Inequalities~27! and ~28!
also show that in non-symmetry-stressed heterocontac
D1Þ0 or/andE1Þ0, the allowed interface intervals for th
statesw1 andw2 are rather different. Then it follows that, i
the caseD2

2 .V2
2 , giving a finite overlap of the gaps in th

two constituents, the statesw1 and w2 both appear when
DADB,0 ~i.e., the inverted contact!. But in the case of the
normal contact, whenDADB.0, only one of statesw1 or w2

is allowed by these conditions.
We may turn now to the full eigenvalue Schro¨dinger

equation~25!, taking into account all the far-band corre
tions. A solution withx650 is not available now. However
as a first approximation in Eq.~25!, one can neglect]2w/]z2

compared to]w/]z. Then one obtains the formal solutio
Eq. ~26! by replacingD1→D11(\2k'

2 /2m'). The allowed
transverse momentum interval is again described by the
equalities like Eqs.~27! and ~28! with the above replace
ment. This approximation is reliable under the condition

\

2miv i U ]2w

]z2

]w

]z

U<1. ~29!
f
so

uld

s
ing

in
er

-

m

at

n-

Finally, after simple calculations we find that there is a re
region in the allowed transverse momentum interval de
mined by inequalities~27! and ~28!, where condition~31!
proves to be fulfilled. After comparing with the numeric
calculations, this trivial and simple approximation will b
shown to describe a real interface spectrum quite well.

B. Numerical solution

Starting again from the Schro¨dinger equation~5!, we are
looking for an interface solution in the form of the expone
tially decaying functions. For a step heterojunction with
sharp change of all the band parameters at the interface
boundary conditions need to be applied to the eigenva
problem to match the wave functions and their derivatives
the interface boundary. The appropriate conditions are fo
from the traditional treatment of the step heterojunction14

Assuming the wave function to be continuous at the interf
and integrating the Schro¨dinger equation~5! across the inter-
face boundary, we find the boundary conditions to be
duced to

w6~z!u205w6~z!u10 , w68~z!u205w68~z!u10 ,
~30!

x6~z!u205x6~z!u10 , x68~z!u205x68~z!u10 .

Here the multiplies 1/mi
A and 1/mi

B in the boundary condi-
tions for the derivatives of the wave functions are cance
due to our assumption thatmi

A5mi
B .

After solving the boundary-value problem for the set
the second-order differential equations, one can write the
persion relation for the interface states. A numerical solut
of this transcendental equation results in the energy spec
of the interface states, since then the wave functions
found.

To define this numerical calculation completely, the v
ues of the model parameters now have to be determined.
problem of a general description of the energy spectrum
beyond this work. Instead we choose, as model band par
eters, values characteristic of the semiconductors PbTe
PbSe. In doing so, we take into account that far-band cor
tions for semimagnetic semiconductors with a small cont
of magnetic ions can be assumed15 to be identical to those in
nonmagnetic host materials. The band parameters, inclu
the far-band masses, are taken from Ref. 15, and are give
Table I. However, since the mirror symmetry band mode
used, the far-band corrections are taken as an average
tween the values for the conduction and valence bands. M
ing use of the estimations obtained in Ref. 4, we give
parameterE, determining the stressed induced polarizati
effect, a value between 10 and 100 meV. The parameteL,
describing the antiferromagnetic ordering, is taken equa
20 meV for any semiconductor heterojunctions showing
tiferromagnetic ordering.

TABLE I. Model parameters of the bulk semiconductors.

Eg

~eV!
2m0v'

2

~eV! v' /v i

miv i
2

~eV!
m'v'

2

~eV!

PbTe 0.189 6.02 3.4 0.169 0.229
PbSe 0.146 3.6 1.35 0.526 0.505
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We first consider the simplest symmetry-inverted hete
contact. It is supposed thatDA52DB , EA5EB50, L50,
and VA5VB50. Figure 1 shows the interface energy spe
trum ~thin lines! and the energy bands of the constitue
~bold lines!, without far-band corrections in Fig. 1~a! and
with them in Fig. 1~b!. Band parameters characteristic
PbTe~Table I! are used. If far-band terms are not includ
@Fig. 1~a!#, the constituent bulk bands on both sides of t
interface boundary go in the same way without intersect
the interface branches, coinciding perfectly with the theo
ical curve@Eq. ~10!#.

Far-band corrections are included in Fig. 1~b!. Whenk'

increases the constituent bulk bands part, the conduc
band of the semiconductor on the left side (z,0, EgB,0!
going down, while the one on the right side (z.0, EgA.0!
going up. This effect is stronger for small far-band mass
causing, in the end when\2k'max

2 /2m'5D0 , an intersection
between the bulk conductione6

c,B or valencee6
v,B bands and

the corresponding interface branchese i
6 . Figure 1~b! also

shows that the interface states disappear atuk'u,k'min . This
is in full agreement with the analytical solution for th
simple heterocontact. The disappearance of the inter
states was shown to be related to the peculiarities of
constituent band structures whenD0.miv i

2. It is worth not-
ing that for a symmetry-inverted heterocontact with para
eters characteristic of PbSe, the interface energy bran
exist in the whole interval 0,\2k'

2 /2m',D0 without disap-
pearing near the pointk';0, becauseD0,miv i

2 ~see
Table I!.

The localization properties of the interface states un

FIG. 1. Interface energy spectrum~thin lines! and energy
branches of the constituents~dotted lines for semiconductorA and
bold lines for semiconductorB! in the symmetry-inverted hetero
contact without far-band corrections~a! and with them~b!. The
arrows show the spin direction for the interface states.
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discussion are examined with the help of the probability d
sity function, that is, the square of the envelope wave fu
tion of the interface states normalized on the whole volu
of the structure versus the coordinatez, which is shown in
Fig. 2 for the above two cases. The interface wave funct
for the heterojunction without far-band corrections@Fig.
2~a!# is quite symmetrical, being strongly localized near t
interface. Its form depends weakly onk' , the decay length
being determined by the value ofD2 /\v i in agreement with
the analytical results.

When far-band corrections are included, the probabi
density function takes the form shown in Fig. 2~b! at the
beginning, middle, and end points of the allowed transve
momentum interval~lines 1, 2, and 3 in the Fig. 2, respe
tively!. The form of the functionuC i

6(z)u2 depends strongly
on k' , being asymmetrical relative to the interface plan
Approaching the limit valuek'max, the interface state energ
goes up to the bulk bandse6

c,B ande6
v,B , leading to a greater

smearing of the functionsuC i
6(z)u2 @line 3 in Fig. 2~b!# on

the side of the semiconductor referred to asB(z,0), while
their amplitudes do not change greatly. It is interesting
note that, at the limiting pointk'max, the energy uncertainty
DEi

6 of the interface mode, determined by the decay leng
becomes comparable with the energy difference between
corresponding bulk bandsDE6

c 5ue6
c,A2e6

c,Bu or DE6
v

5ue6
v,A2e6

v,Bu on the different sides of the interface boun
ary. As discussed in Sec. III, localized states meet the un
tainty principle just under the conditionDEi

6,DE6
c,v ,

which is fulfilled inside the allowed interface interval, whil
it is broken at the limit points.

These results provide a good background for studying

FIG. 2. Probability density function for the interface states
the symmetry-inverted heterocontact without far-band correcti
~a! and with them~b! at \v'k'50.09 eV ~1!, 0.015 eV~2!, and
0.22 eV~3!.
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5598 PRB 59N. MALKOVA
interface energy spectrum of stressed heterojunctions b
on semimagnetic semiconductors with antiferromagnetic
dering along the structure axis. In contrast to the simple h
erojunction, all the constituent bulk bands are now spin s
@see Eq.~7!#, the bandse1

c,v ande2
c,v being characterized by

opposite spin directions@Eq. ~8!#. Being generated by bulk
bands and, moreover, by bands with corresponding spin
rections, the interface statese i

1 or e i
2 with spin-up or spin-

down relative to thez axis are bound up with all changes
the corresponding bulk energy spectrum caused by far-b
corrections.

At first the stressed symmetry-inverted heterocontact w
antiferromagnetic ordering is considered~Fig. 3!. Band pa-
rameters characteristic of PbSe~see Table I! are now used.
The other model parameters are taken asDA52DB , EA5
2EB50.04 eV, L50.02 eV, andVA5VB50. Figure 3~a!
shows the energy bands for this heterocontact when far-b
corrections are neglected. The interface spectrum consis
two branchese i

1 and e i
2 , which exist just inside the re

stricted transverse momentum interval in full agreement w
conditions~27! and ~28!. It is worth emphasizing that it is
this heterocontact which was analytically considered in R
4. Full coincidence between the analytical and numerical
sults makes us sure of the correctness of the numerical
culations.

Far-band corrections are included in Fig. 3~b!. Constituent
bulk bands with spin-up and -down do not change in
same way as before. Instead, there is an increase of th
lowed momentum interval for the statee i

2 and a decrease o

FIG. 3. Interface energy spectrum~thin lines! and energy
branches of the constituents~dotted lines for semiconductorA and
bold lines for semiconductorB! in the stressed symmetry-inverte
heterocontact with antiferromagnetic ordering without far-band c
rections~a! and with them~b!. The arrows show the average sp
direction.
ed
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the one for the statee i
1 . We will see that this is the cas

when the interface magnetization effect is manifested m
strongly after including far-band corrections, because e
for fully completed interface bands the magnetization of o
interface band is not compensated by the others with
opposite spin direction.

The interface probability density function for the case
Fig. 3~b! is shown in Fig. 4, again at the beginning, midd
and end points of the allowed transverse momentum inte
~lines 1, 2, and 3 in the Fig. 4, respectively!. Near the point
k';0 ~line 1! the wave function for both states with spin-u
and -down is nearly symmetrical. When the transverse m
mentumk' approaches the limit points in line 3~which are
different for the statese i

1 and e i
2!, the interface statee i

1

(e i
2) goes up to the conduction bulk bande1

c,B ~down to the
valence bande2

v,A!, smearing at a greater distance on the s
of the semiconductorB, that is, atz,0 @Fig. 4~a!# „on the
side of semiconductorA at z.0 @Fig. 4~b!#….

Figure 5 gives an example of a normal stressed het
junction with aligned constituent gap centers and show
antiferromagnetic ordering, which is determined by the p
rameters DA50.1 eV, DB50.02 eV, EA50.04 eV, EB
50.008 eV,L50.02 eV, andVA5VB50. Far-band param-
eters characteristic of PbSe~Table I! are used. In this case
only the interface statee i

2 exists in full agreement with in-
equalities~27! and ~28!. The interface states of the norm
heterocontact was shown4 to appear inside either the condu
tion or valence bands of the constituents. In Fig. 5 one
see the interface energy branch with the determined spin
rection touching the bulk bands of both constituents with
same spin direction in the limit points of the allowed m

r-

FIG. 4. Interface probability density function corresponding
the case shown in Fig. 3~b! for the state with spin up~a! at
\v'k'50 ~1!, 0.07 eV~2!, and 0.13 eV~3! and for the state with
spin down~b! at \v'k'50 ~1!, 0.07 eV~2!, and 0.26 eV~3!.
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PRB 59 5599INTERFACE MAGNETIZATION EFFECT IN . . .
mentum interval. It follows that a requirement on the inte
section of the corresponding constituent bulk bands sho
be a necessary condition for appearing the interface sta
There is a trivial justification for a possibility of finding th
interface states in the normal heterocontact coming from
geometrical disposition of the constituent bulk bands.

The physical interpretation of this fact can be understo
in the following way. The energy of any localized sta
should be negative with respect to the characteristic po
tials of the problem, the localization radius being determin
by the decay length of the wave function, which is of t
order of the de Broglie wavelength of the system.16 When
studying interface states of Tamm type, we begin with c
stituent bulk bands. Thus if there is a differenceDU between
the energies of the bulk bands~namely, the bands with the
similar space and spin symmetry! on different sides of the
interface boundary, then an interface state like exp(6kz)
~wherek is a decay length! has a chance of appearing on
under the condition

\2k2

2mi
.DU. ~31!

This condition is certainly necessary but is not sufficie
Thus when two constituent bulk bands, intersecting in so
point, part at the distanceDU.\2k2/2mi , the interface state
generated by these bands disappears.

In the case including far-band corrections@Fig. 5~b!#, the
bulk bands of the constituents change quite differently,
energy spectrum of the semiconductor being more gre
affected by these corrections the greater the value of the
As a result, when decreasing the far-band masses~that means
increasing the full far-band corrections!, the valence bands
e2

v,A ande2
v,B move toward each other, leading at first to

increase of the allowed momentum interval for the interfa

FIG. 5. The same as in Fig. 3, but for the normal heterocont
-
ld
es.

e

d

n-
d

-

.
e

e
ly
p.

e

state existence. In the end, when the far-band masses
proach the real values characteristic of PbSe~Table I!, there
is no intersection of these bands. However, Fig. 5~b! shows
that an interface state still exists while condition~31! is ful-
filled, just overlapping with the bande2

v,B . On increasing the
far-band corrections even further~up to the values character
istic of PbTe!, the bandse2

v,A ande2
v,B part at a greater dis

tance. As a result the interface state disappears.
Thus the interface states are bound up with the constitu

bulk bands, and their appearance or disappearance is affe
by the model band parameters. The change of the param
VB50 to VB520.05 eV, meaning the change of the ba
offset, causes a displacement of the constituent bulk ba
As a result, in contrast to the caseVA5VB50, where there is
no interface state at the far-band corrections characterist
PbTe, there appears an interface statee i

2 shown in Fig. 6.
A structure, in which the gap parameterD(z) depends on

the coordinatez in the opposite way to the polarization po
tentialE(z), is now considered. The following model param
eters are used:DA50.1 eV, DB50.01 eV, EA50.008 eV,
EB50.04 eV, L50.02 eV, VA50, and VB50.05 eV. We
note that the only difference in this heterojunction from t
above example is the interchangesEA↔EB and VB→
2VB . This is reasonable, and implies that the constitu
with the smaller gap is affected by the polarization fie
more than the one with the greater gap. Figure 7 shows
there are interface branches with both spin-up and -dow
this case. Since these branches are located near smak'

t.

FIG. 6. The same as in Fig. 3, but for the nonsymmetry norm
heterocontact. The case with far-band corrections is shown.

FIG. 7. The same as in Fig. 3, but for the nonsymmetry norm
heterocontact, in which the gap parameterD(z) depends on the
coordinatez in the opposite way from the polarization potenti
E(z).
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5600 PRB 59N. MALKOVA
values, far-band corrections are of little consequence for
energy spectrum. That is why the interface energy spect
without far-band corrections is not shown here. This hete
junction is of interest because both interface branches ap
in spite of being normal structure.

All these numerical calculations are in very good quali
tive agreement with the perturbative analytical solutio
Moreover, the coincidence between the analytical and
merical results is so good that they are nearly shown as o
lapping in the figures.

V. INTERFACE MAGNETIZATION EFFECT

The interface magnetization effect has been shown to
related to the spin polarization of the interface state along
antiferromagnetic vector of the heterostructure discuss
Being nondegenerate, each interface state of the stresse
erocontact with antiferromagnetic ordering can be charac
ized by an interface spin determined as an average valu
the spin operator constructed on the full interface wave fu
tions C i

6(z) ~Ref. 4!,

S i
6~z!5~ uw i

6~z!u21ux i
6~z!u2!

2

L̃6AL̃21k'
2

~ky ,2kx ,L̃ !.

~32!

After integrating over the transverse momentum space,
ing into account a normalization of the wave function, w
can write the average spin as a vector along thez axis as

^S i
6~z!&56

1

~2p!2 ~0,0,L̃ !E
k'min

k'max
dk'

2
uC i

6~z!u2

AL̃21k'
2

,

~33!

wherek'min andk'max are the limiting points of the allowed
transverse momentum interval, anduC i

6(z)u25uw i
6(z)u2

1ux i
6(z)u2. Thus the interface statese i

1 ande i
2 are charac-

terized by the average spin values^Si
6&, oppositely directed

along thez axis, being a function centered near the interfa
boundary and decaying in both directions6z, according to
the spatially varying functionC i

6(z).
In order to estimate the value^Si

6&, the dependence of th
functionsC i

6(z) on the transverse momentumk' should be
taken into account. Since there is no analytical solution
the interface problem in the general case, one has to m
use of numerical calculations for the interface wave funct
form. On the basis of this calculation, by putting the origin
the transverse momentum at the middle of the allowed in
val, one can assume this function to be

uC i
6~z!u25

v i
2k i

3

v'
2 ~a21k'

2 !
, ~34!

wherea is a function depending onz, being at a minimum
near the pointz50 and going up atz→` in such way as to
describe the coordinate dependence of the functionC i

6(z).
After putting Eq. ~34! into Eq. ~33!, the interface average
spin can easily be obtained.

Now taking into account the Fermi-level location, we c
draw conclusions about the interface magnetization effec
e
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e

f
ke
n
f
r-

If

the Fermi level lies in one of the interface bands so that
average spin is not compensated by the average spin o
other interface band, then the interface magnetization ef
can be observed. In any single case, the interface magne
tion is determined by the relation between the values^S i

1&
and ^S i

2&, depending on the mutual displacement of the
terface bands, and the Fermi level that, in its turn, depe
on the material parameters.

It proved to be useful to calculate the so-called relat
interface magnetization, i.e., the value of the interface m
netization relative to the magnetization determined by
bulk bands@see Eq.~8!#. After integrating ^S6& over the
occupied states up to the Fermi level and assumingL̃,a,
one obtains, atz50,

M5
^Si

6~0!&

^S6&

;
\3v i

3k i
3

pFv i

1

A~L21\2v'
2 k'min

2 !~L21\2v'
2 k'max

2 !
.

~35!

Here\v ik i can be considered as the average interface s
energy,k i being a decay parameter. The valuepFv i is cer-
tain to be the Fermi energy. Thus, in agreement with
previous result, the relation of the interface magnetization
the band magnetization is conditioned by the ratio betw
the energies of the occupied interface and band states.
very important to note that the value of the antiferromagne
parameterL is of little consequence for the relative interfac
magnetization. Moreover, this effect should be manifes
for a rather small value ofL. Now, if making use of param-
eters characteristic of the structures considered here~for ex-
ample, \v i;0.2 eV nm, k i;0.5 nm21, eF;0.1 eV,
\v'k'min;0, and\v'k'max;0.1 eV!, we find the relative
interface magnetization to beM;5. This result proves the
correctness of previous estimations4 made neglecting far-
band corrections. Therefore, we conclude that the interf
magnetization may be a real effect for these structures.
effect of far-band corrections is not so simple, but it can
determined from the change of the bulk energy spectrum
the constituents.

VI. SUMMARY

Interface states bound to the interface boundary
stressed heterocontacts made of semimagnetic semicon
tors both with normal and inverted band spectra, and sh
ing antiferromagnetic ordering, have been investigated in
tail. The two-band envelope-function approximation, whi
takes into account the twofold degeneracy of the conduc
and valence bands explicitly, and far-band contributions
the second-order perturbative theory have been used
model for Hamiltonian of these semiconductor structures
this work we did not aim to describe the energy spectr
exactly ~constructing a model Hamiltonian within some a
proximations discussed above!, but sought the genesis of th
interface effect and an understanding of its change under
influence of far-band corrections. Moreover, any correlat
effects were beyond this consideration. This one-electron
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proximation can be supported by the specific physical pr
erties of the semiconductor structures, resulting in a str
screening of the electromagnetic fields.4,5 However, we keep
in mind that, in the case of overlapping between interfa
and band constituent states, a self-consistent approach, t
ing the coupling effects, needs to be developed. This in
esting problem will be studied in a subsequent publicatio

Perturbative analytical consideration has been confirm
by numerical calculations, treating the solution of th
boundary-value problem with the Bastard boundary con
tions. Both the energy spectrum and the envelope wave fu
tion of the interface states have been obtained. When incr
ing far-band corrections from infinite far-band masses up
their real values, the change of the interface state spect
has been studied.

The conclusions arrived at from these calculations are
follows. Being of Tamm type, the interface states are gen
ated from the constituent bulk energy spectrum. Therefo
the effect of far-band corrections on them is bound up w
the mutual movement of the bulk bands, resulting in an
crease or decrease~in some cases even a full disappearan!
of the allowed transverse momentum interval for the int
face state existence. In the inverted heterocontact the in
face branches with spin-up and spin-down do not chang
the same way under far-band corrections. This can lead t
increasing interface magnetization in some special cases
for the normal heterocontact, the conclusion drawn in Re
concerning the existence of only an interface branch is
adequate. If the polarization potentialE(z) and the gap pa-
rameterD(z) of the structure under consideration depend
the coordinatez in the same way~that is, for example,DA
.DB andEA.EB!, then it is the only interface branch tha
.

c

y

-
g

e
at-
r-
.
d

i-
c-
s-

o
m

s
r-
e,
h
-

-
r-

in
an
As
6
ot

n

appears. However, if the potentialsE(z) andD(z) depend on
the coordinatez in the opposite way~that is, for example,
DA.DB but EA,EB!, then there is the possibility of both
interface branches appearing, being located inside the
stituent gaps. Making use of characteristic estimates of
model parameters, one could find the value of the rela
interface magnetization.

Experimental support for the interface magnetization c
be found in the magnetic resonance investigation17 of EuTe/
PbTe antiferromagnetic superlattices, which show a spec
behavior in the quasi-two-dimensional magnetic orderi
and in other magnetic effects18 in the same superlattices. It i
important to note that, in an application to nonmagnetic s
tems, the same Tamm-like states have been shown to p
crucial role in forming the energy spectrum of the interfa
two-dimensional states in HgTe/CdTe semiconductor hete
structures based on inverted semiconductors.19

All these results make us sure that the interface magn
zation generated from the spin polarization of Tamm-ty
interface states may be a real effect in the structures con
ered. The author believes that this work will stimulate e
perimental investigations to deal with this interface proble
giving rise to great interest.
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