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Interface magnetization effect in heterojunctions based on semimagnetic compounds
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The electronic states of stressed heterojunctions formed from narrow-gap semimagnetic semiconductors
showing antiferromagnetic ordering are studied. The model Hamiltonian is constructed in the framework of the
two-band envelope-function approximation including far-band corrections. Heterojunctions, both with normal
and inverted band arrangements in the initial semiconductors, are investigated. The interface Tamm-like states
have been shown recently to appear in these heterojunctions, and they are spin split with the magnetic axis
perpendicular to the interface plane. The effect of far-band corrections is shown to be conditioned by the
mutual movement of the constituent bands, resulting in changes and in some cases in the full disappearance of
the energy interval in which the interface state exists. The interface magnetization effect is expected when the
Fermi level lies in one of the spin-polarized interface bands. Using the appropriate parameters, the value of the
relative interface magnetization is calculatef0163-182609)03403-1

I. INTRODUCTION The simplest theoretical model for the narrow-gap I1V-VI
semiconductors is a two-band one. In the first approximation

Dilute magnetic (semimagnetic semiconductors are of the k-p perturbation theory, including only matrix ele-
formed by replacing a fraction of the cations in a host semiiments between near-band states, this model reduces to the
conductor alloy with transition-metal ions. The presence of &irac Hamiltonian. This approach was effectively used in
magnetic component introduces specific properties related ]BefS. 4-6, after the first investigations in Refs. 7 and 8. This
the strong coupling of the spins of the band electrons oRPproximation yields an analytical solution, giving an oppor-
holes of a semiconductor to localized magnetic moments duiinity to observe the genesis of the interface states, and in
to the d or f electrons of the transition metals. Quantumthis way to understand their nature. However, this approach
structures based on semimagnetic narrow-gap IV-VI or lI-vVIwas shown to be justified only at energies small compared to
semiconductors are currently of great interest because dhe gap energy. In the next approximation, the effects of
their interesting physical properties and technological impormore distant bands are well known to be treated in the
tance. It is now recognized that interfaces play the most imsecond-order perturbation theory. These effects proved to be
portant role in magnetic properties. The key to understandin§f most importance for heterojunctions with a normal band
the interface magnetization effects lies in the structure of thé@rrangementthat is, withEg,Eqp,>0). We call these struc-
interface plane, its imperfection, and the disposition of thetures normal, in contrast to the inverted structures with mu-
magnetic impurities across the interfdcand in the elec- tually inverted bands. It has been shown that the same inter-
tronic structure, especially the existence of the spin-polarizeéace states appear in the normal heterojunctféhis, in the
surface state$® A theoretical model of the interface magne- inverted contact, the states are located in the gap of the con-
tization effect starting from the magnetic properties of thestituent semiconductors, and there is a real energy region in
Tamm'’s interface states, arising in some narrow-gap stressachich the lowest ordek - p-perturbation theory is satisfied,
semimagnetic heterojunctions with antiferromagnetic orderthen in the normal heterojunction the situation is more com-
ing, was developed in previous papérsAs model materi- plicated. In this case the interface states were shown to be
als, the heterojunctions based on semimagnetic narrow-gagsually located inside either the conduction or valence bands
IV-VI semiconductors with mutually inverted banébat is,  of the constituent®® Then the far-band corrections have to
the constituent gaps are opposite in gigrere considered. be included in the Hamiltonian.

Interface spin-split states were shown to appear in these In this paper we discuss the effects of far-band corrections
structures. It is a semimagnetic constituent which is responen the interface states. However, in order to observe the
sible for antiferromagnetic ordering, which conditions thechange of the energy spectrum with the increasing sophisti-
nonzero average spin value bound to each interface state. ¢ation of the model, and so as not to complicate the analysis,
the Fermi level lies in one of the interface bands, magnetiave retain the other approximations used in Refs. 4 and 5.
ordering appears in the interface plane. In this context th&hus the aim of this work is to study the interface states in
interface magnetization effect was discussed in Refs. 4 anstressed heterojunctions, both with the normal and inverted
5. It is important to note that the existence of the spin-band arrangements, based on narrow-gap semiconductors
polarized states, present in antiferromagnetic coupled syshowing antiferromagnetic ordering, taking into account far-
tems, was also derived in Refs. 2 and 3 using a simple moddland corrections. Although our results are more generally
of a semi-infinite linear chain of atoms with one spin orbital applicable, we use heterojunctions based on semimagnetic
per site which was treated within the tight-binding frame-narrow-gap IV-VI semiconductors as model materials.

work. The paper is organized as follows. In Sec. Il we briefly
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describe the theoretical model. In Sec. |l we derive analyti'k. ﬁ_band model with spa“a”y Varying material paramefbrs_
cal results for the bulk and interface electronic states forrhe constituents of the heterojunctions are narrow-gap ma-
some special limiting cases. In Sec. IV a perturbation soluterials (E¢<0.5eV) with the two nearest bands forming a
tion, as well as corresponding numerical results for the interdirect band gap ak points of the Brillouin zone. The far
face states, are presented. Interface magnetization is studibends are remote by energies large compared to the gap en-
in Sec. V. This is followed by a brief summary at the end. ergy. It is usually sufficient to take into account coupling
between the doubly degenerate conduction and valence
Il. MODEL HAMILTONIAN bands exactly, while treating the far bands in perturbation up
to orderk?.1° Within the mirror symmetry band approxima-
The electronic properties of heterostructures composed afon, assuming the axizto be parallel to the trigondil11]
semiconductors which have a similar band structure can berystal axis, one obtains a Hamiltonian for the heterostruc-
described by an envelope-function formalism reduced to a ture with the axis along the sanzedirection in the form

A hk: w2 P
—— O’.
~ @)+V(@)+ 2m;  2m, 02% P
Hoo= A K T @
o-p —A(2)+V(z2)—- -

+ R —
2m, = 2m, dz°

Here A(2)=E4(2)/2, V(2) is a so-called work function de- along three directions. Taking into account the results of ex-
scribing the shift of the constituent gap middles, the momenperimental work:* we presume the polarization to He

tum operatomp for the structures under consideration is re-=(0,0F). . ) .
A . The second term describes the exchange interaction be-
duced top=—ifi(v,ky,v, k,,v,V,) (wherek, andk, are

h s of the t ; ‘ th thtween the magnetic impurity spin and electron spins. Assum-
€ components of the transverse momentum vector wi g the magnetic impurities to be localized at the interstitials,

lengthk, , andv, andu, are the interband matrix elements \yith the spins antiferromagnetically arranged along the
of the velocity operatdr and o= (oy,0y,0,) is the vector  yis we obtaif

with the components of the Pauli matrices, ,. Finally,

m, and m; are the far-band contributions to the effective N
masses which are taken equal to the same value for the con- Hex=
duction and valence bands within the mirror symmetry band

model. The dependence of the far-band masses on the co@fhereL is the matrix element of the exchange interaction
dinatez (far-band mass mismatgfs neglected here, and so constructed on wave functions with the symmetry of the ac-
the multiplier 1fm was taken out of Fhe dlfferent|a_1l m_the tual bands. Botih:lSt andl3|ex have been discussed in previous
operator ¢/9z)(14my)(9/6z) of the diagonal Hamiltonian work,* where some numerical values BfandL were given.
co¢ponents. t d to be included in the Hamiltoni Thus our model Hamiltonian for the stressed IV-VI semi-
Wo more terms need 1o be INcludea In the Hamitonian.qq,q,ctor heterojunction showing the antiferromagnetic or-

The first describes the polarization effect induced by thedering along the axis reads
strain?

()

0 -—iL
iL o)

H:H00+Hst+HEX' (4)

N 0 —iocE
Hst:(iaE 0 ) @

We see thatH commutes withW= o{p-n]+o,L (Wheren

is the unit vector along the ax3. Hence, making use of the
where the vectoE is determined by the mutual shifts of the eigenfunctions¥ as a basis, we can reduce the Sdimger
cation and anion sublattices of the initial semiconductorsequation to

A=V —ﬁZkE —ﬁz i f 0+W +E
YV om, 2m, 22 € Uiz T .
ot
+ :0 5
(X_) ©

hke h? 9P
+___
2m, ' 2m, 022 ©

J
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HereW.., and¢™ and x=, are the eigenvalues and eigen- the branches of the conductiai or valencee’, bands is
functions of the operatoW determined by the relations characterized by opposite directions of the spin, with the

W, =*fv, 24 K2 and average spin vector being
+ — L
! S - ()
ST =t——(ky,—k,0), 8
¢ (x)=e5(xo)| ky~ikx |, 6) VL2 +k?
C+wW. where the sign “+” is related to branches with the index
. . ) - “ +", and the sign “—" to branches with the index *".

wheregy andy, are normalized factors, arid=L/%v, . If a heterostructure with the axis alomds considered, the

We begin the study of Eq5) by choosing values oA parameters\, E, andV are functions depending on the co-
andE equal to some constants, and settig 0. Then the  ordinate z The Schrdinger equation(5) is a set of two
energy spectrum of the homogeneous semiconductor witgecond-order differential equations. There is no way of solv-
polarization and antiferromagnetic ordering is found to be ing this eigenvalue problem analytically in the general case.
12 By applying proper boundary conditions one can obtain a

21,2 21,2\ 2
€ =| (E+W.)2%+| A+ KL L)+ a2,2¢2 numerical solution. Before doing so, it is useful to consider
- - 2m; - 2my S some special cases having analytical solutions.
T PV A+ﬁ2ki 72k? 2+h2 22 vz lll. SIMPLE HETEROCONTACT
€+=— * o Uik o L . N .
2m, -~ 2m, Considering the “simple” heterocontact implies that in

() the Schrdinger equation(5) one should put.=0 andE
wherek; is the component of the momentum along the trigo-=0. This case was discussed in Ref. 8. However, we are
nal axis, and the indicesandv indicate the branches related interested in the same problem from another point of view.
to the conduction and valence bands, respectively. The po- WhenL=E=0 the transformation of the wave functions
larization and antiferromagnetic ordering have been showimto the formu*=¢*+ x*, v*=¢*— x~ reduces the ei-
to split the Kramers spin degenerdgtys a result, each of genvalue equatiofb) to

f2k% K2 52
Tho, k +V— L |+ +
+ho Kk, € |A(2)+ om,  2m, 972 +ip, (S+):O' ©)
HC iﬁULkL'f'V_E

If the gap centers of the constituents are aligned throughoutyhere 24=|E4(+%)|=|E4(—)|, and| defines the het-

so thatV(z)=V is a constant, then there exists a solutionerojunction width. We assume a gradual continuous transi-
with u==0 or v==0, depending on the drift of thA(2) tion between two layers, so as to avoid matching conditions
function. For example, in the cadd +»)>A(—=), Eq.(9)  at the interface which arise when a steplike transition region
admits a solution withu™ = 0. The energy spectrum includes is considered. However, in doing so, it should be kept in

two branches with the linear dispersion mind that, in a graded heterojunction, in addition to the zero
mode of the interface states there appear excited statém
e =*hv, k +V, (100  zero mode has been sholumot to depend on the transition

region structure, and it was this state which has been studied
while the wave function satisfies the differential equation in previous works:® We confine our attention to the zero

mode.
n2Ke B2 PR 9 Applying the following transformations to E¢l1),
A(z)+ 2mL_2_mHF_ﬁU”E v-=0. (11
To simplify the analytical calculation we consider a gztam‘(l_»

symmetry-inverted heterojunction, that is, the heterojunction

in which Eg(+%)=—E4(—). (This assumption is of no

consequence on the final result, and generalization of this v(E=(E+DP(E-1)(X), (13
investigation for any heterojunction is trivialThe gap func-

tion can be taken in the form

x=12A1-¢),
A(z)=Aotam‘(|E), (12

where the parametepsandq are determined by the relations
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. m”UHI 1+ 1 2 ﬁZkf A 12
L= | me? om0
(14
gives the hypergeometric equation
x(x—=1)n"+[x(a+b+1)—c]n' +aby=0, (15
where
a=p+q+1,
b=p+aq,
myl

The index “*=" was dropped here for simplicity. Thus we
find that

v(§)=(&+1)P(E-1)YC,F[a,b,c; /21— §)]
+C,[1/21—&)]* °F[a—c+1b—cCc+1,2
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two-band Hamiltonian, is equal te=%/p=#uv,/Ay. Con-
sequently, the uncertainty relaticdpAx<# gives the fol-
lowing condition for the localized interface states:
k3
2m;

<A,.

In the first approximation of th&- p perturbation theory for
the inverted symmetry heterocontact, by virtue of the energy
spectrum symmetry, the energy uncertainty on the interface
plane is equal to zero along all values of the transverse mo-
mentum. That is why there are no restrictions on the energy
interval of the interface state existence.

The low limit in inequality(18) arises because there is no
evanescent mode going m- —« from the interface plane
under the condition

h2K?
2m;

2
my,
)

as p; », become imaginary. This restriction, however, takes
place just atAo—mHv||2/2> 0. For far-band masses as much
as mva/ZBAO, inequality (18) reduces to

h2k?
=

my

0=

Ag. (19

The solution for the interface states being looked for here, The disappearance of the interface mode at skjaltan

the boundary conditions for them are—~0 whené—=*1
(i.e. z— = ). Solution (17) meets the boundary conditions
when

myo
ﬁ 7

C,=0 and g>0, 0<p<

and when

mp,l

myo|

C:=0 and g<-

The parameterp andq being real, only the zero mode of the
interface states is of interest. Making use of Eigl), we find
that interface states occur when

B m”l}ﬁ hzki
° 2 "2m,

<Ay. (18

Inequality (18) is the condition for interface states to ap-

pear, and shows that the far-band corrections result in cutting
off the interface state energy spectrum both at large and

smallk, . It is easy to show that the poii!itzkEIZmL =Aqis

the intersection of one of the constituent bulk bands and the
interface energy branch. Consequently, there is no interface

state vanishing at— * o when ﬁzkf/Zmi>Ao. The iden-

tity hzkf/Zmion has a deeper physical meaning. The

valueﬁzkf/ZmL at smallk, can be considered as a half of

be understood in terms of another limiting case. When the
semiconductor gap increases comparing to the energy differ-
ence between the actual extremes and the other remote
bands, the single-band parabolic model of the electron en-
ergy spectrum is a good approximation. In the single-band
limit the conduction and valence bands are completely de-
coupled and the HamiltoniaH o, [Eq. (1)] becomes diago-
nal. As a result the eigenvalue problem for the interface
states reduces to the two independent equations.

( R R R ) B

A(Z)+m—75m5_é ¢(2)=0,

( 2 29 1 9 ) B 20
—A@)- 2m,(z) 2 9z m,(z) 0z € x(2)=0,

with spatially varying massem, and m;, which, in the
parabolic approximation, are determined by

1 v
A £ ( 02 at Z>O,
mi Ao My Loy
) (21)
1 UL Ao
B = - 2 at Z<O
my . Ao My Loy

Since the effective masses dependXqz), a solution of
Egs. (20) with a smooth gap function like Eq12) is very

the energy difference between two bulk branches of the inicomplicated. However, by studying only the zero mode of
tial semiconductors on both sides of the interface plane. Thuthe interface states we can confine ourselves to considering

this is an energy uncertaintyE for our interface problem,
which is related to the momentum uncertainty yp

the steplike heterojunction determined by the conditions
A(z)=A, atz>0 andA(z)= — Ay at z<O0. Interface states

=AE/v,. A coordinate uncertainty is determined by the demust be evanescent in nature. The envelope functigzy
Broglie wavelength which, in the first approximation for the and x(z) are localized at the interface, and decay exponen-
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tially in both directions* z, submitting the Bastard boundary whereA . =(A,*Ag)/2, the parameters with indeX or B
conditions which require tha¥’(z) and (1m)[ oV (z)/9z] being related to the initial semiconductors on the different
be continuous at the interfaeSuch wave functions can sides from the interface boundary 0 or z<0, respec-
meet the boundary conditions if only the effective mags tively. Then interface states with the linear spectrum along
changes sign at the interface due to the band reversal, that the transverse momentufd0) and with the wave function
at (17), by replacing#2k?/2m, —(A2k?/2m,)+A, and A,
A B —A_, appear in the interval
m;'m;<0. (22

The interface energy spectrum is then muvf _ hzkf
—Ag— <

2 2m;

<-Ag. (249)

€ ==x

-+
i —

m”vf 2Aq

AS ﬁzviki ( AO Ao (23)

+ .
mﬂfi mHUﬁ
. Thus for a simple heterocontact with aligned constituent gap

As 2foII0\./vs. from Eq.(21), condition (22) rrleans'thaﬂo centers, a condition of the inverting band arrangement of one
<mpuj. Itis interesting to note that wheky =0 this solu- ¢ yhe constituentgthat is, Az <0) is necessary but not suf-

tion tends to the result given in Ref. 13 where the interfacgcient, it also being necessary that the transverse momentum
states in the inverted HgTe-CdTe heterostructure were study)| into the above allowed interval.

ied.

Comparing the two solutions obtained for the two-band
a_nd single—.band moc_jels_, we can draw the following conclu- IV. STRESSED HETEROCONTACT
sion. In spite of their difference as obv_lous resulps of two WITH ANTIFERROMAGNETIC ORDERING
different approaches, both these solutions describe essen-
tially the same interface states. The solution for the single- In this section we start from E@5), assuming the param-
band model tends asymptotically to the one for the two-banetersA, E, andV to be spatially varying functions and the
model whenk, =0 atm;, m, —«. The vanishing of the antiferromagnetic ordering parameterto be identical in
states Wherﬁzkﬁ/Zml<Ao—m”vf/2 in the two-band model both constituents. The coordinate dependence of all these
is now related to their full disappearance in the single-bandunctions may again be presumed to be described by a single
model atA,>mv?/2, when the effective masses of the ini- functionf(z), such thatf(+)=+1. From a physical point

tial semiconductors have the same sign. For the two-ban@lf view this assumption is reasonable. Moreover, since the
model the interface state existence conditi@) is not so  zero mode of the interface states under consideration does

strong. not depend on the structure of the transition region, the form
Finally, a trivial generalization of the above results for the Of the functionf(z) near the zero point is of no consequence

case of nonsymmetrica' heterocontéhbth normal and in- in the final results. First of all a perturbative solution will be

verted, but with still aligned constituent gap centers, is to Obtained.

define the gap functio (z) by

A. Perturbative solution

z
A(z)=A++A_tan)‘(|—), By rotating the Hamiltonian in Eq5) we find

= [V, +A, cos ¥—(W.+E,)sin20 —Df(2)+A.sin20+(W.+E,)cos D+ip, -
H.c. V. +2V_f(z)—A,cos B+(W.+E,)sin26/’
[
where A, =A_+(#%k?/2m,)— (h%/2m))(5*9z?), D e =A,cos ¥—(W.+E,)sin20+V, . (26)

N VAT+ EZ—VZ, and the rotation angle is found from the The wave function is a solution of the differential equation
equation
[—Df(z)+A,sin 20+ (W.+E,)cos P+ip,le=(2)=0.

A_cos X—E_sin20+V_=0. )
These states are nondegenerate. Each of them is character-

Here the values oE, andV. are determined by the same ized by the average spin vaftie
relations asA .. .

When the far-band corrections equal zero, so tinaf P 2 ~
m, —o, one immediately obtains that the eigenvalue equa- Si=e (2 (ky, —kx,L),

) L= . L+ VK2 +L?

tion constructed on the Hamiltonidd has a solution with

x~=0. This is the zero mode of the interface states disbeing opposite directed along tlzeaxis for the stater* as
cussed in Ref. 4. It has an energy spectrum compared top .
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The normalization of these states results in cutting off ~ TABLE I. Model parameters of the bulk semiconductors.
their energy spectrum at a finite transverse momentum, se

that the statep™ exists only inside the interval = 2mg? mpf m,v?
(eV) (eV) vy vy (eV) (eV)
A tan2%—E, <hv, JK2+T2 PbTe 0.189 6.02 3.4 0.169  0.229
|cos | Pbse 0.146 3.6 135 0526 0505
<——=—A,tan2—-E, . . : ' .
lcos¥| ~F - Finally, after simple calculations we find that there is a real

27) region in the allowed transverse momentum interval deter-
mined by inequalitieg27) and (28), where condition(31)

while the statep™ exists inside the interval proves to be fulfilled. After comparing with the numerical
calculations, this trivial and simple approximation will be
B p— +A, tan B+E, <hv, /—kaFEZ shown to describe a real interface spectrum quite well.

B. Numerical solution

<m+A+tan 2+E, . Starting again from the Schidmger equatior(5), we are
looking for an interface solution in the form of the exponen-
(28)  tially decaying functions. For a step heterojunction with a

. . Ofﬁ . sharp change of all the band parameters at the interface, the
The positive definiteness ofk] +L" means, that, if the 1eft 1,4, ngary conditions need to be applied to the eigenvalue

sides of these inequalities are less than zero, then they shoullopiem to match the wave functions and their derivatives at

be replaced by zero. Moreover, the stagesor ¢~ appear  the interface boundary. The appropriate conditions are found

just in the event that the right sides of inequaliti@) and  from the traditional treatment of the step heterojunctin.

(28) are greater thah. _ y _ Assuming the wave function to be continuous at the interface
It is worth noting that these inequalities have a simplegng integrating the Schdinger equatior5) across the inter-

interpretation. Their limit points determine the intersectionsice boundary, we find the boundary conditions to be re-
between one of the interface branches and the correspondipgced to

bulk band with the same spin direction. It is easy to show

that inequalitie27) and (28) admit limiting transitions to  o=(2)|_,=0™(2)|,0, ¢~ (2)|_0=¢" (2)|+0,

particular cases discussed in Refs. 6 and 4. For example, in (30)

the case of the symmetry-unstressed inverted contact under *(z =vi(z (5 =yt'(z

the conditionsV.=0, E.=0 andA_ =0, we have cos@ X )|_0_ X ( )|ZO' X (B).LO X* @lso. _

=0, and so there is no cutoff of the staig$ in the trans- Here the multiplies Ih* and 1fn} in the boundary condi-

verse momentum region. In the case of the symmetrytions for the derivatives of the wave functions are canceled

stressed heterocontact &t =0 andE, =0, both states are due to our assumption thmfsz.

cut off at just the same values of the transverse momentum After solving the boundary-value problem for the set of

as shown in the previous wofklnequalities(27) and (28) the second-order differential equations, one can write the dis-

also show that in non-symmetry-stressed heterocontact gersion relation for the interface states. A numerical solution

A, #0 or/andE, # 0, the allowed interface intervals for the of this transcendental equation results in the energy spectrum

statesp™ ande ™ are rather different. Then it follows that, in of the interface states, since then the wave functions are

the caseA? >V?2, giving a finite overlap of the gaps in the found.

two constituents, the states™ and ¢~ both appear when To define this numerical calculation completely, the val-

ApAR<O (i.e., the inverted contakctBut in the case of the ues of the model parameters now have to be determined. The

normal contact, whe ,Ag>>0, only one of stateg ™ or ¢~ problem of a general description of the energy spectrum is

is allowed by these conditions. beyond this work. Instead we choose, as model band param-
We may turn now to the full eigenvalue Schioger  €ters, values characteristic of the semiconductors PbTe and

equation(25), taking into account all the far-band correc- PbSe. In doing so, we take into account that far-band correc-

tions. A solution withy. =0 is not available now. However, tions for semimagnetic semiconductors with a small content

as a first approximatioﬁ in Eq25), one can neglea?p/dz2  Of magnetic ions can be assumetb be identical to those in

compared tode/dz. Then one obtains the formal solution Nonmagnetic host materials. The band parameters, including

Eq. (26) by replacingA , — A, +(42k?/2m, ). The allowed the far-band masses, are taken from Ref. 15, and are given in

transverse momentum interval is again described by the inl@bPle I. However, since the mirror symmetry band model is

equalities like Eqs(27) and (28) with the above replace- used, the far-band corrections are taken as an average be-
ment. This approximation is reliable under the condition tween the values for the conduction and valence bands. Mak-

ing use of the estimations obtained in Ref. 4, we give the

52 parameterE, determining the stressed induced polarization

A 52 effect, a value between 10 and 100 meV. The paranigter
— | <1, (29) describing the antiferromagnetic ordering, is taken equal to
2mp | d¢ 20 meV for any semiconductor heterojunctions showing an-

Jz tiferromagnetic ordering.
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FIG. 1. Interface energy spectrurtthin lines and energy FIG. 2. Probability density function for the interface states of

branches of the constituenigotted lines for semiconductéx and  the symmetry-inverted heterocontact without far-band corrections
bold lines for semiconductaB) in the symmetry-inverted hetero- (a) and with them(b) at Av, k;, =0.09 eV (1), 0.015 eV(2), and
contact without far-band correctior(s®) and with them(b). The  0.22 eV(3).
arrows show the spin direction for the interface states.
discussion are examined with the help of the probability den-

We first consider the simplest symmetry-inverted heterosity function, that is, the square of the envelope wave func-
contact. It is supposed that,=—Ag, Ex=Eg=0, L=0, tion of the interface states normalized on the whole volume
andV,=Vz=0. Figure 1 shows the interface energy spec-of the structure versus the coordinaewhich is shown in
trum (thin lines and the energy bands of the constituentsFig. 2 for the above two cases. The interface wave function
(bold lineg, without far-band corrections in Fig.(d and for the heterojunction without far-band correctiofiSig.
with them in Fig. 1b). Band parameters characteristic of 2(a)] is quite symmetrical, being strongly localized near the
PbTe(Table | are used. If far-band terms are not includedinterface. Its form depends weakly én , the decay length
[Fig. 1(a)], the constituent bulk bands on both sides of thebeing determined by the value Af_/%v in agreement with
interface boundary go in the same way without intersectinghe analytical results.
the interface branches, coinciding perfectly with the theoret- When far-band corrections are included, the probability
ical curve[Eq. (10)]. density function takes the form shown in Figh® at the

Far-band corrections are included in Figbjl Whenk beginning, middle, and end points of the allowed transverse
increases the constituent bulk bands part, the conductiomomentum intervallines 1, 2, and 3 in the Fig. 2, respec-
band of the semiconductor on the left side<(0, E,z<0) tively). The form of the functioj¥;"(z)|* depends strongly
going down, while the one on the right sidex0, E;,>0)  on k., being asymmetrical relative to the interface plane.
going up. This effect is stronger for small far-band massesApproaching the limit valud, s, the interface state energy
causing, in the end whek?k? .. /2m, =A,, an intersection goes up to the bulk band$:® and€®, leading to a greater
between the bulk conductiosf,® or valencee’® bands and smearing of the functiong¥;"(z)|? [line 3 in Fig. 2b)] on
the corresponding interface branches. Figure 1b) also  the side of the semiconductor referred toB{g<0), while
shows that the interface states disappedk gt<k, i,. This  their amplitudes do not change greatly. It is interesting to
is in full agreement with the analytical solution for the note that, at the limiting poirk, ., the energy uncertainty
simple heterocontact. The disappearance of the interfac8E;" of the interface mode, determined by the decay length,
states was shown to be related to the peculiarities of theecomes comparable with the energy difference between two
constituent band structures whag>mv?. It is worth not-  corresponding bulk bandsAES =|e5*— €8] or AEY
ing that for a symmetry-inverted heterocontact with param-=|e’gA— e”t'B| on the different sides of the interface bound-
eters characteristic of PbSe, the interface energy branchesy. As discussed in Sec. Ill, localized states meet the uncer-
exist in the whole interval €72k?/2m, <A, without disap-  tainty principle just under the conditiom E;"<AES%Y,
pearing near the poink, ~0, becauseA0<mva (see  which is fulfilled inside the allowed interface interval, while
Table ). it is broken at the limit points.

The localization properties of the interface states under These results provide a good background for studying the
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FIG. 3. Interface energy spectrurtihin lines and energy FIG. 4. Interface probability density function corresponding to

branches of the constituentdotted lines for semiconductéx and  the case shown in Fig.(B8) for the state with spin upga) at
bold lines for semiconductdB) in the stressed symmetry-inverted 7y k, =0 (1), 0.07 eV(2), and 0.13 eM3) and for the state with
heterocontact with antiferromagnetic ordering without far-band corspin down(b) at%v, k, =0 (1), 0.07 eV(2), and 0.26 e\ 3).
rections(a) and with them(b). The arrows show the average spin

direction. the one for the state;” . We will see that this is the case

when the interface magnetization effect is manifested more

interface energy spectrum of stressed heterojunctions basstrongly after including far-band corrections, because even
on semimagnetic semiconductors with antiferromagnetic orfor fully completed interface bands the magnetization of one
dering along the structure axis. In contrast to the simple hetinterface band is not compensated by the others with the
erojunction, all the constituent bulk bands are now spin spliopposite spin direction.
[see Eq(7)], the bands$" and >’ being characterized by The interface probability density function for the case in
opposite spin directionfEq. (8)]. Being generated by bulk Fig. 3(b) is shown in Fig. 4, again at the beginning, middle,
bands and, moreover, by bands with corresponding spin d&nd end points of the allowed transverse momentum interval
rections, the interface states or e, with spin-up or spin-  (lines 1, 2, and 3 in the Fig. 4, respectiveliear the point
down relative to the axis are bound up with all changes in K.~ 0 (line 1) the wave function for both states with spin-up
the corresponding bulk energy spectrum caused by far-bar@d -down is nearly symmetrical. When the transverse mo-
corrections. mentumk, approaches the limit points in line @vhich are

At first the stressed symmetry-inverted heterocontact wittflifferent for the states;” and ¢), the interface state;"
antiferromagnetic ordering is consideré€ig. 3. Band pa- (€ ) goes up to the conduction bulk bae@® (down to the
rameters characteristic of PbGgee Table ) are now used. valence ban@”*), smearing at a greater distance on the side
The other model parameters are takemdas= —Ag, Epx= of the semiconductoB, that is, atz<0 [Fig. 4a)] (on the
—Eg=0.04eV, L=0.02 eV, andV,=Vg=0. Figure 3a)  side of semiconductoh at z>0 [Fig. 4(b)]).
shows the energy bands for this heterocontact when far-band Figure 5 gives an example of a normal stressed hetero-
corrections are neglected. The interface spectrum consists pfnction with aligned constituent gap centers and showing
two branchese;” and €, which exist just inside the re- antiferromagnetic ordering, which is determined by the pa-
stricted transverse momentum interval in full agreement witirameters A,=0.1eV, Ag=0.02eV, E,=0.04¢eV, Ep
conditions(27) and (28). It is worth emphasizing that it is =0.008 eV,L=0.02 eV, andV,=Vz=0. Far-band param-
this heterocontact which was analytically considered in Refeters characteristic of PbS&able |) are used. In this case
4. Full coincidence between the analytical and numerical reenly the interface state; exists in full agreement with in-
sults makes us sure of the correctness of the numerical cag¢qualities(27) and (28). The interface states of the normal
culations. heterocontact was sholto appear inside either the conduc-

Far-band corrections are included in Figh3 Constituent tion or valence bands of the constituents. In Fig. 5 one can
bulk bands with spin-up and -down do not change in thesee the interface energy branch with the determined spin di-
same way as before. Instead, there is an increase of the akction touching the bulk bands of both constituents with the
lowed momentum interval for the sta¢eé and a decrease of same spin direction in the limit points of the allowed mo-
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FIG. 6. The same as in Fig. 3, but for the nonsymmetry normal
heterocontact. The case with far-band corrections is shown.

state existence. In the end, when the far-band masses ap-
proach the real values characteristic of PlySable |), there
is no intersection of these bands. However, Figp) Shows
that an interface state still exists while conditi(@1) is ful-
filled, just overlapping with the banet"®. On increasing the
far-band corrections even furth@up to the values character-
R istic of PbTe, the bandse"” and €”'® part at a greater dis-
0 005 01 %15 k 02 025 03 035 tance. As a result the interface state disappears.
v ki (eV) . : .
Thus the interface states are bound up with the constituent
FIG. 5. The same as in Fig. 3, but for the normal heterocontactbulk bands, and their appearance or disappearance is affected
by the model band parameters. The change of the parameter
mentum interval. It follows that a requirement on the inter-Vg=0 to Vg=—0.05 eV, meaning the change of the band
section of the corresponding constituent bulk bands shouldffset, causes a displacement of the constituent bulk bands.
be a necessary condition for appearing the interface state8s a result, in contrast to the cagg=Vz=0, where there is
There is a trivial justification for a possibility of finding the no interface state at the far-band corrections characteristic of
interface states in the normal heterocontact coming from th®bTe, there appears an interface stteshown in Fig. 6.
geometrical disposition of the constituent bulk bands. A structure, in which the gap parametk(z) depends on
The physical interpretation of this fact can be understoodhe coordinate in the opposite way to the polarization po-
in the following way. The energy of any localized state tentialE(z), is now considered. The following model param-
should be negative with respect to the characteristic potereters are usedA,=0.1eV, Az=0.01¢eV, E,=0.008 eV,
tials of the problem, the localization radius being determinedc;=0.04 eV, L=0.02 eV, V,=0, and Vz=0.05eV. We
by the decay length of the wave function, which is of thenote that the only difference in this heterojunction from the
order of the de Broglie wavelength of the systfhWhen  above example is the interchang& «—Eg and Vg—
studying interface states of Tamm type, we begin with con—V, . This is reasonable, and implies that the constituent
stituent bulk bands. Thus if there is a differek®d between with the smaller gap is affected by the polarization field
the energies of the bulk bandsamely, the bands with the more than the one with the greater gap. Figure 7 shows that
similar space and spin symmefrgn different sides of the there are interface branches with both spin-up and -down in

interface boundary, then an interface state like exf®)  this case. Since these branches are located near kmall-
(wherex is a decay lengthhas a chance of appearing only

under the condition 0.2

12 K?

2m

>AU. (30

This condition is certainly necessary but is not sufficient. eV
Thus when two constituent bulk bands, intersecting in some
point, part at the distanakU >#%2«2/2m, , the interface state
generated by these bands disappears.

In the case including far-band correctidisg. 5b)], the
bulk bands of the constituents change quite differently, the

.1 0.15 0.2

energy spectrum of the semiconductor being more greatly 0 0.05 b V)
affected by these corrections the greater the value of the gap. vike
As aresult, when decreasing the far-band maébas means FIG. 7. The same as in Fig. 3, but for the nonsymmetry normal

inCAreaSing tBhe full far-band correctionghe \_/alence_ bands heterocontact, in which the gap paramefez) depends on the
€”"™ and €’ move toward each other, leading at first to ancoordinatez in the opposite way from the polarization potential
increase of the allowed momentum interval for the interfaceE(z).
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values, far-band corrections are of little consequence for théhe Fermi level lies in one of the interface bands so that its
energy spectrum. That is why the interface energy spectruraverage spin is not compensated by the average spin of the
without far-band corrections is not shown here. This heteroether interface band, then the interface magnetization effect
junction is of interest because both interface branches appeaan be observed. In any single case, the interface magnetiza-
in spite of being normal structure. tion is determined by the relation between the val(®§)

All these numerical calculations are in very good qualita—and<si—>, depending on the mutual displacement of the in-
tive agreement with the perturbative analytical solutionsierface bands, and the Fermi level that, in its turn, depends
Moreover, the coincidence between the analytical and nuon the material parameters.

merical results is so good that they are nearly shown as over- |t proved to be useful to calculate the so-called relative

lapping in the figures. interface magnetization, i.e., the value of the interface mag-
netization relative to the magnetization determined by the
V. INTERFACE MAGNETIZATION EFFECT bulk bands[see Eq.(8)]. After integrating(S™) over the

8ccupied states up to the Fermi level and assuntircg,

The interface magnetization effect has been shown to b i
gne obtains, ax=0,

related to the spin polarization of the interface state along th
antiferromagnetic vector of the heterostructure discussed.

Being nondegenerate, each interface state of the stressed het- , _ (S7(9)
erocontact with antiferromagnetic ordering can be character- (S%)
ized by an interface spin determined as an average value of 533
the spin operator constructed on the full interface wave func- hovkj 1
tions ¥,"(2) (Ref. 4, - :
(7 (Ret. 9 PVt (L2 207K ) (L 202K )

S @=(¢f (@1*+]xi @1 : (ky, =Ky, L) (39

! ' ' T+ /Ez+kf yrooeen Herefiv k, can be considered as the average interface state

(32  energy,x; being a decay parameter. The value is cer-

) ) tain to be the Fermi energy. Thus, in agreement with the
After integrating over the transverse momentum space, taksrevious result, the relation of the interface magnetization to
ing into account a normalization of the wave function, weihe pand magnetization is conditioned by the ratio between
can write the average spin as a vector alongzhgis as the energies of the occupied interface and band states. It is

very important to note that the value of the antiferromagnetic

. 1 = (ma , [P parametet. is of little consequence for the relative interface
(Si (2))== (0,0L) T izati i i
[ (27)2 R e magnetization. Moreover, this effect should be manifested
mn Lo+ke for a rather small value df. Now, if making use of param-

(33 eters characteristic of the structures considered tereex-

Lo . ~ ~ i1 ~
wherek, min andk, may are the limiting points of the allowed ample, 7iv;~0.2eV nm, x~0.5 nm~,  €~0.1 eV,
transverse momentum interval, an®;"(2)|?=|¢; (2)|? _ﬁvlklmmfvo, and-hv%kLmapO.l eV), we find the relative
+|x(2)|2. Thus the interface states ande are charac- interface magnetization to b ~5. This result proves the

terized by the average spin valué&’), oppositely directed correctness of previous estimatibnmade neglecting far-

. . . : band corrections. Therefore, we conclude that the interface
along thez axis, being a function centered near the interface

2 = A . magnetization may be a real effect for these structures. The
boundary and de.caymg m bOtih directions, according to effect of far-band corrections is not so simple, but it can be
the spatially varying function?; (z).

: " determined from the change of the bulk energy spectrum of
In order to estimate the valy& ), the dependence of the

- the constituents.
functions¥; (z) on the transverse momentukm should be
taken into account. Since there is no analytical solution of
the interface problem in the general case, one has to make
use of numerical calculations for the interface wave function Interface states bound to the interface boundary in
form. On the basis of this calculation, by putting the origin of stressed heterocontacts made of semimagnetic semiconduc-
the transverse momentum at the middle of the allowed intertors both with normal and inverted band spectra, and show-

VI. SUMMARY

val, one can assume this function to be ing antiferromagnetic ordering, have been investigated in de-
5 3 tail. The two-band envelope-function approximation, which

2 VK| takes into account the twofold degeneracy of the conduction

Vi (2)] :m’ (349 and valence bands explicitly, and far-band contributions in

the second-order perturbative theory have been used as a
wherea is a function depending om being at a minimum  model for Hamiltonian of these semiconductor structures. In
near the poinz=0 and going up at— in such way as to this work we did not aim to describe the energy spectrum
describe the coordinate dependence of the funcligr(z). exactly (constructing a model Hamiltonian within some ap-
After putting Eq.(34) into Eg. (33), the interface average proximations discussed abgy&ut sought the genesis of the
spin can easily be obtained. interface effect and an understanding of its change under the

Now taking into account the Fermi-level location, we caninfluence of far-band corrections. Moreover, any correlation
draw conclusions about the interface magnetization effect. I&ffects were beyond this consideration. This one-electron ap-
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proximation can be supported by the specific physical propappears. However, if the potentid$z) andA(z) depend on
erties of the semiconductor structures, resulting in a stronthe coordinatez in the opposite way(that is, for example,
screening of the electromagnetic fiefeisHowever, we keep Ap>Ag but EA<Eg), then there is the possibility of both
in mind that, in the case of overlapping between interfacdnterface branches appearing, being located inside the con-
and band constituent states, a self-consistent approach, tregtituent gaps. Making use of characteristic estimates of the
ing the coupling effects, needs to be developed. This intermodel parameters, one could find the value of the relative
esting problem will be studied in a subsequent publication. interface magnetization. _ o
Perturbative analytical consideration has been confirmed Experimental support for the interface magnetization can

by numerical calculations, treating the solution of theP€ found in the magnetic resonance investigatiah EuTe/

boundary-value problem with the Bastard boundary condiPPTe antiferromagnetic superlattices, which show a specific

tions. Both the energy spectrum and the envelope wave fun@€havior in the quasi-two-dimensional magnetic ordering,

tion of the interface states have been obtained. When increa@d in other magnetic effecfSin the same superlattices. Itis

ing far-band corrections from infinite far-band masses up tgmPortant to note that, in an application to nonmagnetic sys-

their real values, the change of the interface state spectruf§Mm$: the same Tamm-like states have been shown to play a
has been studied. crucial role in forming the energy spectrum of the interface

The conclusions arrived at from these calculations are a&/0-dimensional states in HgTe/CdTe semiconductor hetero-

follows. Being of Tamm type, the interface states are generstrucl:ltukr]es basedl on in\lierted semi%ondlﬁdf)rs. . _
ated from the constituent bulk energy spectrum. Therefore, Al these results make us sure that the interface magneti-

the effect of far-band corrections on them is bound up withzation generated from the spin polarization of Tamm-type

the mutual movement of the bulk bands, resulting in an ininterface states may be a real effect in the structures consid-

crease or decreasm some cases even a full disappearanceerefj' The guthor_ be!ieves that thi$ wo_rk .Wi" stimulate ex-
of the allowed transverse momentum interval for the interP€rimental investigations to deal with this interface problem,
face state existence. In the inverted heterocontact the intef!VINg rse to great interest.
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