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Piezo-optical coefficients of ZnSe and ZnTe above the fundamental gap
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The piezo-optical coefficient®,,— P, andP,, have been measured for ZnSe and ZnTe above the funda-
mental gap(in the energy ranges 2:66.5 eV and 2.6-5.5 eV, respectivelyby using reflectance difference
spectroscopy. The measured spectréPef— P, and P44 show good Kramers-Kronig consistency between
their real and imaginary parts. Values for the deformation potenlr);ils D3, and Dg for the E; and E;
+A; transitions were estimated by fitting the spectral dependend®, pf P,, and P4, to analytical line
shapes based on a one-electron approximaf®0163-182809)08707-X

I. INTRODUCTION result of spatial dispersicht=*3These two effects are several
orders of magnitude smaller than the stress-induced birefrin-
Wide band-gap semiconductors have been intensely stugence and we neglect them in the present investigétisey
ied during the last decade because of their potential use ire proportional togy/\) and (ag/\)?, respectively, where
e.g., short-wavelength lasers and electronics for higio iS the lattice constant andthe wavelength of the light
temperature$.The electronic and optical properties of epi- For ZnTe the piezo-optical coefficients have been mea-
taxial layers can be changed by built-in stress, a feature thguredbelow E t%)gemeans of p|ezp—b|refr|nge.n%i'eand Bril-
can be used to tailor these properficEhe measurement of louin scatter_|ng4. “*The hydrostatic deformation potential of
the piezo-optical properties of semiconductors is a powerful€ Eo transition has also been determirféd. _ _
technique to obtain information about the electronic structure " this paper, we report measurements of the piezo-optical
and the way it changes with stress or stiifrHence, the COefficientsPy;— P, and Py, of ZnSe and ZnTabove k.
piezo-optical properties of $Ref. 5 and Ge(Ref. 6 as well Ellipsometry an_d plezo-l_alrefrlng_ence hav_e_ been used previ-
as GaAs(Ref. 9 and InP(Refs. 10—12 have been exten- ously to determine the piezo-optical coefficients of elemental

sively investigated, not only in the transparent region belowA"d Ill-V' semiconductors abovg,. ZnSe and ZnTe are
the fundamental gafE, but also in the absorbing region MOre brittle than these materials. We therefore had to use

aboveE,. rgflectanqe differer_1c_e spectroscqﬂDS) to_ determine their

A review of the optical properties of cubic, unstressedpPi€zo-optical qoefﬁments. RDS is sometimes referred to as
ZnSe and ZnTe was given by Waldiin the last years sev- reflgctance anisotropy spectroscdRAS). Details of the ex-
eral reports of ellipsometric measurements of the opticaP€MMents are given elsewhere. . .
properties of ZnSéRefs. 14—17 and ZnTe(Refs. 182D Theoretical studies of plezo-optlcal properties of semicon-
above E, have appeared. The piezo-optical coefficients ofductors have been concerned with elemental and [1I-V com-

ZnSebelow E, have been measured by piezo-birefringence?Unds. Tight-binding calculations have been used to eluc-
techniques at room temperatthé® as well as at low date the piezo-optical coefficients of 8iGe and InP(Ref.

temperatur® and by an acousto-optical technique at room10) whereas pseudopotential calculations have been used for

+ 5,51 6
temperaturé* There are also data for the piezo-optical coef-Si~ Ge,’ and GaAs. To the best of our knowledge no

ficients belowE, derived from Brillouin scatterirfg and calculations of the piezo-optical coefficients of 1l-VI com-
piezo-optical coefficients measured on polycrystallinePUnds have been reporteth initio calculations of the de-
sample€®?” The change in refractive index with uniaxial formations potentials of theE, transitions of Ge, GaAs, InP,

; 7

stress has also been measured arobgdand Ej+ A, at ZnSe, and Zn'_l'e will b_e presented elsewhtere. .

room and low temperatur@&2® _The paper is qrganlzed as follows: The experiments are
Deformation potentials of th&, transition in ZnSe have brlefly described in Sec. Il. In Sec. lll, the 'pseudodlelec.tnc

been determined by fitting experimental data for the piezofunctionse(w) of ZnSe and ZnTe as obtained from ellip-

optical coefficients to analytical expressions based on a ong2Metry are presented. Standard analytical line shapes are
electron approximatiof252by performing photolumines- used to represent the; andE;+ A, transitions and deter-

cence measurements on strained epilaje@nd by two- mine line-shape parameters. The measured piezo-optical co-

photon spectroscopy under uniaxial str¥sghe change in efficients are presented in Sec. IV. In Sec. V, deforr_nation
Eo with hydrostatic stress has also been used to determirRPtentials of t,heEl an.d E1+A1_tr_an3|t|on§ are.determlned
the corresponding deformation potenfiaf® Several authors 1om those piezo-optical coefficients, using line-shape pa-
have also determine@, deformation potentials of ZnSe rameters from Sec. Ill. Section VI cpntams a discussion of
epilayers?®33-3The E,, transition of ZnSe has been studied (M€ results and Sec. ViI the conclusions.
using band-structure theory and the corresponding deforma-
tion potentials have been calculaf&d®-32

ZnSe exhibits also stress-induced optical acti¥ify and We used undoped ZnSe and ZnTe single crystals. The
has been found to be naturally birefringent bel&y as a samples were cut in 282.8x 1.8-mnT pieces with the long-

Il. EXPERIMENT

0163-1829/99/5@)/5581(10)/$15.00 PRB 59 5581 ©1999 The American Physical Society



5582

est side parallel to thg001] and [111] crystal directions,
respectively, and oriented using Laue x-ray diffraction. For
these samples;(w) was determined by means of rotating
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. . ; .
oxide corrected

ZnSe

=== uncorrected

analyzer ellipsometry. RD&Ref. 8 was used to determine
the shear piezo-optical coefficients. In RDS the difference in
the complex Fresnel coefficientsAr/r=(g,—¢y)/
[Ve(e—1)] [Ar=r,—rp; r=(ra+r,)/2] between two or-
thogonal axesa and b is measured. Compressive uniaxial
stress was applied along tfi@01] and[111] crystal direc-
tions. The applied stress gives rise to a difference (»)
between the components parallel and perpendicular to the
stress. This stress-induced anisotropy was measured with
RDS. Stresses up to 0.05 GPa were u§Ad.a comparison,

for GaAs(Ref. 9 and InP(Ref. 10 stresses up t0 0.7 GPa  Fc 1. Real €,) and imaginary &) parts of the pseudo-
were used. The measurements were performed orlXR  dielectric function of unstressed ZnSe as measured by ellipsometry
surfaces, in air and at room temperature. The use of RDS fait room temperature. Data corrected and uncorrected for the pres-
determining piezo-optical coefficients and the experimentaénce of an oxide overlayer are given.

details have been discussed elsewlre.

3.5 4.5
Energy [eV]

The overlayer thickness was then found to be 26 A . Figure
1 displays data corrected as well as uncorrected for a surface
o . . overlayer.

When determining the deformation potentials of the In Fig. 2 the second derivatives with respect to energy of
and E;+ A, transitions fro'm the piezo-optical coefficients R ¢(w)] and Infe(w)], corrected for overlayer effects, are
one needs to know the line-shape parameters (@) al  given in the vicinity of theE, andE,+ A, transitions. We
these transitions. We use the standard analytical line gﬁapeuse excitonic line shapes, i.e= —1 in Eq.(2), to fit these
1) second derivatives. Such line shapes have previously been

found to best reproduce the experimental spectra ofgthe
whereA represents the strength of the critical poiit,the  and E;+A; transitions in ZnSé> The real and imaginary
transition energyl” the broadeningg an excitonic phase parts were fitted simultaneously. The fitted curves are given
angle, andhw the photon energy. For a one-dimensionalin Fig. 2 and the fitted line-shape parameters in Table I. For
critical pointn=—1/2, for a two-dimensional critical point comparison, we also used a two-dimensional line shape, i.e.,
n=0 [ie. e(w)~In(hw—E+il')], and for a three- n=0 in Eq.(2), to fit the second derivatives ef(w). The
dimensional critical poinin=1/2. Discrete excitons corre- fitting parameters are given in Table I.
spond ton=—1.

When determining the line-shape parameters from experi-
mental data we analyze the second derivative with respect to
energy, i.e., we use the line shapes

Ill. DIELECTRIC FUNCTION

e(w)=C—Ad®fw—E+il",

B. e(w) of ZnTe

In Fig. 3 e(w) of ZnTe, as measured by ellipsometry, is
displayed. Again, we used a three-phase model and data ob-
tained by ellipsometry for the ZnTe samfiland the native

2 _ _ i ¢ _F.LiT\n—2
ds(w) = ’7(” DAe (.ﬁw72E|+|F) » n#0 oxide of GaAs(Ref. 59 to correct for the surface overlayer.
dhw)? |A€¥(fiw—E+il)7? n=0. The second derivatives of Re(w)] and Infe(w)] (cor-
(2)  rected for a surface overlayewith respect to energy are

Equationg1) and(2) have been derived using a one-electron

approximation with parabolic bands and matrix elements in- 600 [ s T
dependent ok. Excitonic effects are taken into account only 400
through the phase angtg. It should be underlined that Egs. 9
(1) and (2) are only reliable for difference or differential %
2 D, 200
spectra K
18|
o 0
A. e(w) of ZnSe 5 L
The pseudodielectric functios(w) of ZnSe as measured &V 200
by ellipsometry at room temperature is shown in Fig. 1. El- © 1
lipsometric measurements are known to be sensitive to the —40040' — 4'5 — 5'0‘ ' 55
presence of oxide layers on the sample. Hence, the data were Energy [eV]

corrected using a three-phase mode(material-
overlayer-aif.>® The optical properties of the native oxide of  FiG. 2. Second derivative of the pseudodielectric function of
ZnSe are not known. We therefore used data for the nativense, as corrected for a surface overlayer, shown in Fig. 1 in the
oxide for GaAs;" which has been found to model remark- vicinity of the E; andE,+ A, transitions. The solid lines represent
ably well overlayer effects on ZnSé For the sample mate- fitted values obtained with the excitonic line shape of &). The

rial we used the data reported by Kim and Sivanantfian. corresponding fitted parameters are given in Table I.
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TABLE I. Critical point parameters of thE, andE;+ A, tran- 400
sitions in ZnSe and ZnTe, obtained by fitting ER) to the ellipso-
metric data shown in Figs. 2 and 4, respectively. Rows 1-5 are
parameters for two-dimensional critical pointa=0) and rows
7-11 correspond to exciton line shapes=(—1). Row 6 contain
theoretical values for the strengths of a two-dimensional critical o 0 & S

200

[eV~]

point, calculated with EqgAla) and(A1lb). Theoretical values for %
the strengths calculated using an excitonic model, E4§8a) and 5
(A2b), are given in row 12. Vi -200
Yo
ZnSe ZnSe ZnTe ZnTe 400 e .
Es Eitay Es Eit+Ay 3.0 3.5 4.0 45
Energy [eV
n 0 0 0 0 gy [eV]
E (ev) 4.75 5.07 3.60 4.18 FIG. 4. Second derivative of the pseudodielectric function of
' (ev) 0.15 0.12 0.14 0.18 ZnTe, as corrected for a surface overlayer, shown in Fig. 3 in the
¢ (deg) 89 89 136 136 vicinity of the E; andE,+ A, transitions. The solid lines represent
A 5.01 1.62 5.26 4.07 fitted values obtained with the excitonic line shapes of ). The
A 1.6 15 21 1.6 corresponding fitted parameters are given in Table I.
n -1 -1 -1 -1 . 48
E (eV) 4.79 510 3,60 418 shear stress df ;5 symmetry(i.e., along[111])
l(; E(ejV)) 5(;23 5(5)3.30 1(;.21 l;).26 5 5 A(SH_SL) -
€g 11~ F12= 3 o011y
A (eV) 1.09 1.24 1.62 1.50 A(x|[foo1))
Ay (eV) 0.45 0.40 0.26 0.22 and
INCIEFES
given in Fig. 4. For ZnTe in order to fit our data we use the P44:A(x||[111])’ 4

line shapes of a two-dimensional critical pojm=0 in Eq.

(2)], which have been found to give the best agreement witivherez! andz" are the respective components of the dielec-
experiment® Real and imaginary parts were fitted simulta- tric tensor parallel and perpendicular to the stre§4.001]
neously. The fitted curves are shown in Fig. 4 and the oband X||[111] denote the applied stresX, being parallel to
tained line-shape parameters are given in Table I. An excithe [001] and[111] crystal directions, respectively. We use
tonic line shapén=—1 in Eq.(2)] was also used to fit the the convention thaX<0 for a compressive stress. Employ-
second derivatives; the obtained line-shape parameters aiftd RDS one cannot obtain the piezo-optical coefficient cor-

given in Table I. responding to hydrostatic streBg,+2P4,. Therefore, it is
not possible to obtain the three independent coefficiept,
IV. PIEZO-OPTICAL COEFFICIENTS Pip, and P, which can be done when using

ellipsometry>®°1°When measuring () by means of ellip-

For cubic materials there are three independent compasometry, the obtained data are sensitive to the presence of
nents of the piezo-optical tensoR;;, Py, and Py,.>° overlayers, see Figs. 1 and 3. RDS is a differential method in
When using RDS one obtains the irreducible componentsvhich the overlayer effects largely cancel when measuring
P,,;—Py,, corresponding to an applied shear stresd'of sl—¢*; ie., the overlayer effects are the same orand
symmetry (i.e., along[001]), and P,,, corresponding to a &'.%® The changes in the dielectric function of the oxide

overlayer with stress can be neglected since there are no

20 — . ; . ; —] critical points in the experimental ran§e.
t ZnTe oxide corrected ] Since the piezo-optical coefficients correspond to linear-
15 === uncorrected __ - response functions, their real and imaginary parts are
} Kramers-Kronig(KK) conjugates. This feature gives a pos-
10 sibility to check the consistency of the data. In order to do
€ [ so, we calculafe
5r
2 ' Im[P”(w)] ,
0f RePjj(w)]=——P de +C, (9
5 L . 1 . 1 . I P . R
50 3.0 4.0 5.0 whereP denotes the principal value of the integral, abis

a constant that was used to fix the overall amplitide, a

background due to transitions other thBp and E;+A,).
FIG. 3. Real ¢,) and imaginary §;) parts of the pseudo- We did not extrapolatd®;; outside the experimental range.

dielectric function of unstressed ZnTe as measured by ellipsometryhe constanC should thus include the effect &; outside

at room temperature. Data corrected and uncorrected for an oxidéie experimental range, provided all critical points under

overlayer are given. consideration lie well within that range.

Energy [eV]
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L ZnSe £l |Esa] 5o | ZnTe E¢ lE1+A1
25 |- 1 1 1 — |— Re(P,-P.,)
—_ — Re(P,,-P,,) T 30 F Im(P,,~P,,)-5 - -
T o m&}(ﬁ'ﬁs» T S [— - KK(M(P,;-P;))
a 15r ne /\/ B O 10+ E0+A0l B
e Eq+ho| N S ol = e
N | Lo [F
. ST ‘r . o~ 80T A
o -5 r -+ cme "/_‘[ 7] _50 I ey,
i o 1 1.0 20 30 40 50 6.0
_15 s | 1 t n | L
2.0 3.0 4.0 5.0 6.0 Energy [eV]
Energy [eV] FIG. 7. Real and imaginary parts of the piezo-optical coefficient

FIG. 5. Real and imaginary parts of the piezo-optical coefficient’ 11~ P12 Of ZnTe above the fundamental gap, measured at room

P~ Py, of ZnSe above the fundamental gap. Also shown is thetemperature. Also shown is the Kramers-Kronig transform of the

Kramers-Kronig transform of the imaginary part, calculated by us-ling gcl;r::)aa;yl F\),?;il Zzl&:;ljat;d tﬁzl?r%aEcﬁ])érForaﬁltar%éacaﬁj f;s;eé@c:f
ing Eq. (5). For clarity, an offset of-5 GPa ! was added to the ginary part.

imaginary part. The value fdE,+ A, was taken from Ref. 17. Ao andE, were taken from Ref. 20.

B. Pll_ P12 and P44 Of ZnTe

A. Pu=P1zand Py, of ZnSe The piezo-optical coefficier®?,;— P,, of ZnTe is shown

In Fig. 5, the real and imaginary components of the piezo-" Fig. 7 and that o4 in Fig. 8. BothPy;— Py, and Pu

. i have pronounced structures arobdandE;+ A, and also
optical coefficientP,;— P, of ZnSe are shown vs photon
at E,. The structure ofP,,—P,, and P, aroundE; and
energy. They have a pronounceq struptqre arounéthand E;+ A, will be analyzed in detail below. As in the case of
Ei+A; energies. F'Q“re 6_ depicts similar data #j, of ZnSe,Eqy+ A, cannot be distinguished in the piezo-optical
ZnSe. AlsoPy, has its main structure arourl, and E;  cqefficients. In factEy+ A, of ZnTe has just recently been
+A;. The data forPy;— Py, and Py, in the vicinity of the  gpserved ins(w) measured by ellipsomet®).As in the case
E; andE; +A, transitions will be analyzed in detail below. of znSe the estimated errors are large due to the fact that
With the present technique we cannot detect any structurgnTe is brittle and only low stresses could be applied.
around theEg+ A, transitions inPy;— Py, and Pyy. The The E, structure originates from transitions over a large
Eo+ A transition is weak and difficult to detect alsod(w)  part of the Brillouin zone. It cannot be modeled by simple
measured by ellipsometfy. The estimated errors are rela- analytical expressions, lik€; andE;+ A, but requires full
tively large since only low stresses could be appfféd. band-structure calculatio$:®
The KK conjugates oP,;,— P, and P44, calculated ac- The KK consistency of the real and imaginary parts of
cording to Eq.(5), are shown in Figs. 5 and 6, respectively. P;;,— P4, and P,, of ZnTe is good. Since th&; and E;
For ZnSe,E, andE;+ A; are close to the upper limit of the + A, transitions are not close to the experimental limits, the
experimental frequency range. The piezo-optical coefficientproblems that appeared for ZnSe are not present for ZnTe.
are strongly dispersive in this region and the errors due to the
finite limits used in Eq(5) are expected to become relatively V. DEFORMATION POTENTIALS
large. The line shapes are, however, well reproduced by us-
ing Eq.(5), which indicates that they are essentially correct. The change in gap energies per unit strain is described by
deformation potentials. By applying stress along different
crystal directions the deformation potentials corresponding

10— =
ZnSe EwP 1A 15 ————— ——
—— Re(P,) \:: - ZnTe lE1+A1
s 5L IM(P,)+2 S N 10 | — Rer,)  E, i
"o E o, [Km(E.)) 4 1 — Im(P)+2 |E
a | Eg+ QL ; IR T g [ T KKImPL l ]
S T i N ‘Eo"'Aol ol
o —- = ; =
L - | D_g 3 s . P W
5 | A+ VAR N N
-5 ) 1 . I . 1 \ s :[

2.0 3.0 4.0 5.0 6.0 ol
Energy [eV] 1.0 20 30 40 50 6.0

Energy [eV]
FIG. 6. Real and imaginary parts of the piezo-optical coefficient
P4, of ZnSe above the fundamental gap, measured at room tem- FIG. 8. Real and imaginary part of the piezo-optical coefficient
perature. Also shown is the Kramers-Kronig transform of the imagi-P,, of ZnTe above the fundamental gap, measured at room tem-
nary part, calculated by using E¢5). For clarity, an offset of perature. Also shown is the Kramers-Kronig transform of the imagi-
+2 GPa! was added to the imaginary part. The value By nary part, calculated with Eq(5). For clarity, an offset of
+ A, was taken from Ref. 17. +2 GPa ! was added to the imaginary part.
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to different symmetries can be obtained. The piezo-optical As seen in Eqs6) and(7), P,;— P, andP4, both have a
coefficients determined in this work are related to the changeontribution proportional to £V —gE1t40)/A; . These

in electronic structure produced by the applied shear compaerms arise from stress-induced changes in the matrix
nents of the stress. Thus, one can derive expressions, basgidments’>® We denote £V —¢(F1740)/A, the D3, D3

on a one-electron approximation, that relate the piezo-opticakrm. P,, has an additional contribution proportional to
coefficients to the deformation potentials for both Eyeand  de/dE;. This term is due to changes in the gap energy with
the E, transitions® For E, it has been established that defor- strese%57 We shall call it theD? term. The analytic expres-
mation potentials can be determined from the piezo-opticaion for the linear combinatioR,,+ 2P;,, which describes
coefficients, by fitting analytical line shapes with the defor-the effect of a hydrostatic stress, contains onlgledE,
mation potentials as fitting parametérs:****For the E;  term since hydrostatic strain does not mix bands of different
andE;+ A, transitions deformation potentials have in mostsymmetry>® Equations(6) and (7) were derived within an
cases been obtained from the directly measured change Hfective-mass approximation. It was assumed that the rel-
transition energy with applied stress. There are, howevelyant kinetic energiegand the excitonic binding energjes
analytical expressions for the relations between the piezogre small in comparison to the spin-orbit splittidg . The

optical coefficients and the deformation potentfalshich  geformation potentials were assumed to be independet of
can be used to determine the laftém the case of the brittle ¢ thel point and along thé direction in the Brillouin zone.

ZnSe and ZnTe we were not able to apply the high stressegne termse(EY andsE1t20 represented by Ed1), were
which are requwgd V\'/hen' using glhpsomgtry to determinesssumed to be equal except for the energy shift Exci-
stress-induced shifts in critical point energies. We thereforg,nic effects are. to some extent. taken into account in the
determine the deformation potentials of the andE;+ A line shapes used farEY and (140,

transjtions by fitting analytipal Iing shap(a\&'ith parameters We will now use Eqs(6) and(7) to determine the defor-
obtained from the pseudodielectric function at zero sjress mation potentials D; Di, and Dg. For the terms

the experimentally determind@l;;— P, andPy4,. For ZnTe £ED. £E1+2) andde/dE, we use the line shapes in Eq.

we were also able to measure the piezo-optical coefficienta) with the parameters in Table I. Since the hydrostatic

around theE, andE,+ A, transitions. These transitions ex- piezo-optical coefficien®,,+ 2P, could not be measured

H H - 11 12 ’
tend over a large part of the Brl_lloum Zone. _There are th_erewe were not able to determine the hydrostatic deformation
fore no simple physically meaningful analytical expressions otentialD
that can be used to represesifw) or the piezo-optical P 1

coefficients>®°

The quantityP,;—Py,, which describes the effects of A. D3, D3, and D of ZnSe
strains ofl'1, symmetry, is related t®3, the deformation  we now use Eq(1) with the parameters for an excitonic
potential describing f001] shear strairtalso ofl';, symme-  jine shape in Table I, to determine thg, D3 andD® terms
try) by the expressioh in Egs. (6) and (7). The obtained line shapes are shown in
(6 ana (7) we vsed values for he sompliaee coefigents
P—P=6D3—)S—S +Copr- we used valu ' i
11~ P1z= 6 3( A, (S117 512+ Coor taken from the literature: S;;=21.1 TPa?l, S;,=
(6) —7.8 TPal, andS,,=24.69 TPa!.%8

Here, €0 ande(E1+42 are the contributions of thE; and The deformation potentiaDg was determined by fitting

E,+A, transitions tos(w), respectivelyA, the spin-orbit  Ed- (6) 10 P11— P%Z' The fitted curves are shown in Fig.
splitting of the corresponding valence-band states &nd ~ 9(P)- Except forD3, the background constafly, was the

and S;, are elastic compliance coefficients. The constanPnly fitting parameter; the parameter values obtained from

Cooz has been added to account for the contributions fronth€ fit are given in Table II. The value &y is low in

other transitions not resonant around EyeandE,+A, en-  comparison with the amplitude &f,,—P,,. Hence, the con-

ergies. tribution to the piezo-optical coefficients from other nonreso-
P,., which corresponds to strains Bfs symmetry, can nant transitions is small.

be written as a function of the deformation potentafsand The line shapes dP,, andPy,— '2}2 are similar. This line
DS: the former represents the intervalley effect of1d1] ~ Shape is also similar to that of tii#;, D3 term displayed in

shear strain on th&, andE;+ A, gaps whereas the latter Fig. 9@. TheDj term has a different line shape that exhibits

describes the intravalley effect within the valence bands tvv50 peaks(corresponding tdE; and E;+A;). For Py, the
D3 term turns out to be the dominant one. Equati@nwas

1 de fitted to theP ,, spectrum withD3, D3, andC,,; as param-
P““:_[_D?E eters. The values of these parameters resulting from the fit
4\3 1 are given in Table Il and the fitted curves in FidcP The

contribution from theD3 term can hardly be distinguished in
S+ Chas- (7) P44, a fact that is reflected in the error bars of the listed
value forD3. The contribution from other nonresonant tran-
de/dE, is the derivative ok = &5+ £(F121) with respect ~ sitions is also small, as indicated by the relatively low value
to the transition energ§; and S,, an elastic compliance 0f Cyy;.
coefficient. Also here a constart,;,;, has been added to The estimated error bars b3, D}, and D3 were ob-
account for the contribution from other transitions. tained from the values for which the fitted curves are within

S(El)— 8(E1+A1)
e 25
1
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O ————T 77 1 it was not possible to fit Eq$6) and(7) to the experimental
(a) el e 1 data. This lends support to the use of an excitonic line shape
T Im(D, ~sorm) ] for theE, andE; + A, transitions in ZnSe. Equatiori6) and

30 —_- —Re(Df, Das-term) —
L — - -Im(D,", D,’-term)

(7) contain only differences or derivatives ofw) to the first
order in energy. Hence, we also determined the line-shape
parameters by analyzing the first derivative effw), with
respect to photon energy. Using these values the experimen-
tal lineshapes were not as well reproduced as in Figs. 9,
although the deformation potentials obtained by fitting Eqgs.

de/dE [eV]

- (b)  OReP.-Pu) 1 (6) and(7) to the experimental spectra were not significantly
20 - _ OfFu-Pal © . different from those in Table II.

B. D3, D3, and D} of ZnTe

S TheD3, D3 andD3 terms of ZnTe as calculated from Eq.
00 : (1), using the parameters for two-dimensional critical points
10 b A S given in Table |, are displayed in Fig. @). Using Dg and
L Cooz as fitting parameters, E@6) was fitted to the experi-
1 mental spectra of P;;—Pj,. The compliances S;;
] =21.81 TPa?l, S;,=—10.87 TPa! were taken from the
literature®® The experimental and fitted curves are shown in
Fig. 1Qb), while the values of the fitted parameters are given
in Table Il. Cyg; is not negligible in this case, a fact that
probably is due to the influence of tlig transitions, cf. Fig.
4.2 4.6 5.0 5.4 In Fig. 10(c) the spectra of the real and imaginary parts of
Energy [eV] P,, are shown. A comparison with Fig. () reveals that
there is a significant contribution #®,, from the Df term;
P44 has a line shape different frol,,— P,,, which would
not be the case if th? term were negligible. This is typical

P,-P,, [GPa™]

P,, [GPa™]

FIG. 9. Fitted line shapes d?,;— P4, and P,, around thek;

andE;+ A, critical points of ZnSe(a) The contribution from the

3 % 5 ) ) .
B?aggbggi%rrgtgi 'Soltzeqnii(;)sir;i(&;hiicﬂggz ;'%%OE? © foEr) makt_)eriaIS with large spin-orbit ;sphttmg?.The values of
term in order to have an easy comparison between cug)eso), D7, D3, and C{lll gsbtalneq by_ fitting Eq(7) to P4, (with .
and(c). (b) Experimental and fitted values fé%;— P;,, and(c) for ~ S44=32.05 TPa")>" are givenin Table II. The error bars in
P... The fitted curves were obtained with E¢8) and(7), respec- D3, D3, andD3 were estimated in the same way as those for
tively, with the values for the deformation potentials given in TableZnSe and therefore include only the experimental errors in
Il. Equation(1) was used to moded with the parameters given in P1,— P4, and P, (see Figs. 7 and)8but not any errors in
Table 1. the line-shape parameters or compliances.

The line shapes d?P,,— P, andP,,, calculated with the
the error bars, which are given with the experimental data inine-shape parameters for thg andE; + A, transition given
Figs. 5 and 6. These error bars are relatively large since thig Ref. 18 were found to be similar to those in Fig. 10 and
errors inP;,— P4, andP 4, are large. Errors in the line-shape the fitted values of the deformation potentials were, within
parameters foeEV, ¢(E1741) andde/dE; and in the com- our estimated errors, in agreement with those of Table L.
pliancesS;;, S;,, andS,, are not included. This is also the case if we use the parameters of the excitonic

We also tried to use the line-shape parameters reported iine shape in Table I. Thus, fitting Eq$) and(7) to experi-
Ref. 15 fore(w) around theE; andE;+A; transitions in  mental data foiP,;— P, and P,, does not give any infor-
Egs.(6) and(7) but they did not lead to significantly differ- mation as to whether the excitonic or the two-dimensional
ent lineshapes or deformation potentials. Using the paraneritical point line shapes are to be preferred when dealing
eters obtained for the line shape of a two-dimensional criticalvith the E; and E;+ A, transitions of ZnTe, a fact which
point (given in Table } in Egs.(6) and(7) the experimental reflects the “robustness” of the procedure used to extract the
line shapes foP,,— P, and P, were not well reproduced; deformation potentials. As in the case of ZnSe, using line-

TABLE II. The deformation potential®3, D3, andD3 of the E; andE,+ A, transitions in ZnSe and
ZnTe. Equation$6) and(7) were used to fit the experimental dataRyf,— P,, andP,,. The fitted curves are
shown in Figs. 9 and 10, respectively. The dielectric function was modeled wittlEgnd the parameters
given in Table I. Also given are the complex constégh, and C11, Wwhich are the constant backgrounds
used in Eqs(6) and(7), respectively.

D} (eV) D3 (eV) D3 (eV) Coor (GPa'?) Ciyy (GPa'l)

ZnSe 3G-30 —17£5 —27%9 1.7-i1.2 —1.6-i0.9
ZnTe 40+ 20 —29+8 —15£5 —8.9+i6.6 0.2+il1.1
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T rate for derivative or differential spectra. This should pose no

L
60 ~ — Re(D,*- = . . j
C(@) ,"i(o‘s_:::n:) 1 problem in the present work since in Eq6) and (7) only

40 i — - -Re(D?, D ~term) 7 derivatives and differences ef w) occur. As mentioned, we

20 F — - =Im(D;’, D "term) . tried also other line shapes for both ZnSe and ZnTe, but the
L e B

obtained deformation potentials were the same within the
estimated errors.

For theE, transitions of most semiconductors measured
LN so far the deformation potentials are found to be typically
60 b i T ] between 1 and 10 e The values determined experimen-

[ (D) She e ] tally for the deformation of th&; andE,+ A, transitions in
40 U e o elemental® and 111-V (Refs. 9 and 10semiconductors are in

S 1 most cases in this range too. Therefore, the values we find
for ZnSe and ZnTe are high in comparison to those found for
many other materials. However, II-VI semiconductors are
not as well understood as their group 1V and II-VI counter-
parts, in particular the details of thdi; andE;+ A, transi-
tions. Furthermore, we had to fit analytical expressions to the
piezo-optical coefficients, while for the elemental and IlI-V
semiconductors, stress-induced changes of the transition en-
ergies were used. It is worth mentioning that the signs of the
deformation potentials in Table Il are the same as those
found for the corresponding deformation potentials in GaAs
(Ref. 9 and InP*°

The relatively low values o€y, andC;44 (See Table I

e —— VU indicate that the contributions from transitions other tBgn
2.8 3.3 3.8 4.3 4.8 L ..

Energy [eV] andE;+A; are small. This is in contrast to tH&, transition

of both ZnSe(Refs. 21 and 24and ZnTe?1* which have

FIG. 10. Fitted line shapes d&¥;;— P;, andP,, around theE, relatively large constant backgrounds from higher transitions
and critical pointsE; + A, of ZnTe. (a) The contribution from the (e.g., theE; and E;+A; transitions discussed héreThe
D2, D3, andD? terms in Eqs(6) and (7). The minus sign of the influence from theE, transitions on the piezo-optical coeffi-

D3 andD3 deformation potentials has been included infiie D3~ cients at lower energies has sometimes been modeled by a
term in order to have an easy comparison between cugjegb), harmonic oscillatdi*®? instead of a constant. With such a
and(c). (b) Experimental and fitted values fér,— P,,, and(c) for model, which involves more parameters, a better fit to ex-
P44 The fitted curves were obtained with E¢6) and(7), respec-  perimental data can be achieved. In our case, a slightly better
tively, with the values for the deformation potentials given in Tablefit to P,,— P,, andP,, of ZnTe at the higher energies in Fig.

Il. Equation(1) was used to model(w) with the parameters given 10 could be obtained; the values of the determined deforma-
in Table . tion potentials were, however, not different from those in
Table Il within the estimated error bars, a fact which again

shape parameters obtained by fitting the first derivative otorroborates the “robustness” of the deformation potentials
e(w) with respect to energy did not give different values for ghtained here.

the deformation potentials, but lead to a worse line shape of |n Egs.(6) and(7), £(5Y) and&(F1*21) are assumed to be

P11~ P31, and Py, calculated with Eqs(6) and (7), respec-  equal except for the energy differenag. In Figs. 2 and 4
tively. and also in Table | one sees that this is not the case. How-
ever, it is not too bad an approximation; the strengthere
VI. DISCUSSION the same to within 25% for both ZnSe and Zn{ffer the
excitonic and two-dimensional critical point line shapes, re-
The deformation potentials of tHe; andE;+A; transi-  spectively, which were used to model the respective piezo-
tions of ZnSe and ZnTe have been determined by fittingoptical coefficients In InP the strength of th&, + A tran-
analytical expressions to the measured spectral dependensigon is only ~1/3 of that of theE; counterpart and it was
of the piezo-optical coefficients. For elemeffaand 11l-V  found that Eqs(6) and (7) could be fitted to experimental
semiconductors'® the change in transition energy with ap- data if their strengths were set eqd®A similar effect has
plied stress has allowed a more direct determination of theen seen in the Raman polarizability of Be.
corresponding deformation potentials. The advantage of this Equations(6) and (7) implicitly assume that the exciton
procedure is that the critical point energiesediw) can be  binding energies are small in comparison with. For E;
determined more accurately than the piezo-optical coeffiand E;+A; of ZnSe and ZnTe this assumption may intro-
cients. The use of Eq$6) and(7) for determiningD3, D3, duce errors. For ZnTe values for the binding energies of the
andDi from experimental spectra has to rely heavily on theE;, E;+A; exciton of 0.11 eV(Ref. 64 and 0.19 eV
assumptions made for the line shapes. (Refs. 18 and 1Phave been reported; they are smaller than
It is not obvious what line shape one should use to fit theA;=0.58 eV(Table |), but not by a large factor. For ZnSe it
critical points ofe(w) in the E; and E;+A; region. We  has been estimated that the excitonic binding energies are of
used the standard line shape in Et), which is only accu- the same order a&,;.'*%4If the excitonic binding energies

de/dE [eV™]

P,~P,, [GPa™|

P, [GPa™]
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cannot be neglected in comparison with, the excitons of VIl. CONCLUSIONS
the E; and E;+A; transitions will mix due to exchange
interaction. In this case, the effect of strain ofw) should
be smaller than if excitons were neglectesge Table V in

Ref. 65. ) ) . andE;+ A, transitions. This was also found for ZnTe, but in
Local-field effects are not included in Eq) and (7). this case we could also see the corresponding effects of the
We do not know what influence they would have on theg, transition. For ZnSe some problems were encountered
piezo-optical coefficients, though it is obvious that in a crys-yith the Kramers-Kronig consistency of the data. They seem
tal under uniaxial stress, the local fields will be differentig pe due to the fact that tHe, andE, + A, transitions are
from those in the unstrained crystal, since the positions of thglose to the limit of the experimental interval. The spectra of
atoms have changed and the symmetry has been lowereghe real and imaginary parts &f;;— P;, and P4, of ZnTe
Local-field effects have been found to introduce anisotropiegshow excellent Kramers-Kronig consistency.
in the dielectric function of interfaces, in which case the The deformation potential®3, D3, and D3 were deter-
symmetry is changed due to the interf88dn ZnSe and mined by fitting analytical expressions to the experimentally
ZnTe, which have relatively small infrared dielectric con- determined spectra ¢,,— P, andP,,. This way of deter-
stants, local-field effects are likely to be larger than those irmining deformation potentials of the; andE;+ A; transi-
the elemental and IlI-V semiconductors. We have not foundions is not as well established as the corresponding one for
in the literature any theoretical calculations of piezo-opticalthe Eq transition. The values determined for the deformation
effects including local-field effects. Calculations of the di- potentials are high in comparison with those found for el-
electric function including both excitonic and local-field ef- emental and Ill-V semiconductors, obtained from the mea-
fects have been made for silicBh®® For the E; transition — surement of the change in transition energy with applied
these calculations revealed that local-field and excitonic efStress. The reason for these high values may be the large
fects give contributions te(w) with opposite sign&’ Since ~ €xcitonic binding energies, which may lead to a break down
excitonic effects would give smaller values for the deforma-Cf the one-electron approximation, and hence introduce er-
tion potentials than the one-electron approximation used if°'S in the expressions fd?;;— Py, and Pyy. Another rea-
Eqs. (6) and (7), local-field effects could be the reason for son coulq be that local-field effects cannot be neglected in
the possible inadequacy of the one-electron approximatiof{™V! Semiconductors.
for the calculation of piezo-optical coefficients. Since the
analytical expressions used in the determination of the defor- APPENDIX
mation potential{Egs. (6) and (7)] are based on the one-
electron approximation, the values in Table Il should be use
with care. It would be of interest to investigate theoretically
the effects of local fields and excitons not only ofw), but

We have measured the piezo-optical coefficieRtg
—Py, andPy, of ZnSe and ZnTe abovig, using RDS. For
ZnSeP,,— P4, andP4, have strong structures around the

For a two-dimensional critical point, the strengths of the
1 andE;+ A, transitions are, within the one-electron ap-
proximation, given by

also on _the pie_zo—opt_iqal coefficients, part.icularly $ince the 16\/5 (E;+A,/3)
change in atomic positions and symmetry in a strained crys- AED = T (Ala)
tal should affect the local fields. Furthermore, it would be of 9 aok]
interest to investigate theoretically the dependence of these
effects on the ionicity of the compound since there are ex- 16\3 (E1+2A4/3)
_ . AE1t41) = (Alb)
perimental data for elemental, IlI-V, and 1I-VI semiconduc- 9 ag(E A )2’
tors. Band-structure calculations of the deformation poten- RN
tials D3, D3, andD3 are not available for 11-VI compounds. wherea, is the lattice constant.
They would contribute to clarify the origin of the large val-  In the case of excitonic transitions, the strengths are given
ues found in the present investigation. by®®
In order to round off this discussion we present in the
Appendix a calculation of the strengtéFy and A(F14) . 643 ad 5
of a two-dimensional critical point, based on the one-electron Ev= P F(Eﬁ A4/3)%, (A23)
band structure. For ZnTe the calculated values are a factor of T E18s
2.5 smaller than the ones obtained from the fits to ellipso- 5
metric data performed with E@2). For ZnSe, for which the " 64\3 ag 3
i - o L AE1TA1) = (E1+2A4/3)3,
two-dimensional critical point line shape appears to be less 81m? (E;+A,)%3
accurate, the calculated values are a factor &%) and 1 1o s (A2b)

(AE1*A1)) times the experimental ones, respectively. A cal-

culation based on a hydrogenic exciton is also presented. Whereeg is the static dielectric constant.
leads to values oA(FY and A(F1*21) three times smaller ~ To calculate the strengtha(®2 and A(F1*40 py Egs.
than those fitted for ZnSe. For ZnTe the values calculated fofA1l) and(A2) we take the values fax, (aq=5.669 A, for
an exciton are six times smaller than the experimental oneZnSe anda,=6.100 A for ZnTe*®® and e, (s=5.8 at\
The missing oscillator strength also suggests local-field con=10 wm for ZnSe ands,=7.0 atA=10 um for ZnTe'®
tributions, which may be more sensitive to strain than thefrom the literature. FOE; andE;+ A, we use the values in
one-electron treatment used here to determine the deforma@able I. In Table | strengths calculated with E§81) and
tion potentials. (A2) are given.
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