
PHYSICAL REVIEW B 15 FEBRUARY 1999-IIVOLUME 59, NUMBER 8
Piezo-optical coefficients of ZnSe and ZnTe above the fundamental gap

D. Rönnow, M. Cardona, and L. F. Lastras-Martı´nez
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

~Received 19 August 1998!

The piezo-optical coefficientsP112P12 andP44 have been measured for ZnSe and ZnTe above the funda-
mental gap~in the energy ranges 2.625.5 eV and 2.025.5 eV, respectively! by using reflectance difference
spectroscopy. The measured spectra ofP112P12 and P44 show good Kramers-Kronig consistency between
their real and imaginary parts. Values for the deformation potentialsD1

5 , D3
3 , and D3

5 for the E1 and E1

1D1 transitions were estimated by fitting the spectral dependence ofP112P12 and P44 to analytical line
shapes based on a one-electron approximation.@S0163-1829~99!08707-X#
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I. INTRODUCTION

Wide band-gap semiconductors have been intensely s
ied during the last decade because of their potential use
e.g., short-wavelength lasers and electronics for h
temperatures.1 The electronic and optical properties of ep
taxial layers can be changed by built-in stress, a feature
can be used to tailor these properties.2 The measurement o
the piezo-optical properties of semiconductors is a powe
technique to obtain information about the electronic struct
and the way it changes with stress or strain.3,4 Hence, the
piezo-optical properties of Si~Ref. 5! and Ge~Ref. 6! as well
as GaAs~Ref. 9! and InP~Refs. 10–12! have been exten
sively investigated, not only in the transparent region bel
the fundamental gapE0 but also in the absorbing regio
aboveE0 .

A review of the optical properties of cubic, unstress
ZnSe and ZnTe was given by Ward.13 In the last years sev
eral reports of ellipsometric measurements of the opt
properties of ZnSe~Refs. 14–17! and ZnTe~Refs. 18–20!
aboveE0 have appeared. The piezo-optical coefficients
ZnSebelow E0 have been measured by piezo-birefringen
techniques at room temperature21,22 as well as at low
temperature23 and by an acousto-optical technique at roo
temperature.24 There are also data for the piezo-optical co
ficients belowE0 derived from Brillouin scattering25 and
piezo-optical coefficients measured on polycrystall
samples.26,27 The change in refractive index with uniaxia
stress has also been measured aroundE0 and E01D0 at
room and low temperatures.28,29

Deformation potentials of theE0 transition in ZnSe have
been determined by fitting experimental data for the pie
optical coefficients to analytical expressions based on a o
electron approximation,24,25,21by performing photolumines
cence measurements on strained epilayers,30 and by two-
photon spectroscopy under uniaxial stress.31 The change in
E0 with hydrostatic stress has also been used to determ
the corresponding deformation potential.32,29 Several authors
have also determinedE0 deformation potentials of ZnS
epilayers.28,33–35The E0 transition of ZnSe has been studie
using band-structure theory and the corresponding defor
tion potentials have been calculated.32,36–38

ZnSe exhibits also stress-induced optical activity39,40 and
has been found to be naturally birefringent belowE0 as a
PRB 590163-1829/99/59~8!/5581~10!/$15.00
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result of spatial dispersion.41–43These two effects are sever
orders of magnitude smaller than the stress-induced bire
gence and we neglect them in the present investigation@they
are proportional to (a0 /l) and (a0 /l)2, respectively, where
a0 is the lattice constant andl the wavelength of the light#.44

For ZnTe the piezo-optical coefficients have been m
suredbelow E0 by means of piezo-birefringence21 and Bril-
louin scattering.45,46The hydrostatic deformation potential o
the E0 transition has also been determined.47

In this paper, we report measurements of the piezo-opt
coefficientsP112P12 andP44 of ZnSe and ZnTeabove E0 .
Ellipsometry and piezo-birefringence have been used pr
ously to determine the piezo-optical coefficients of elemen
and III-V semiconductors aboveE0 . ZnSe and ZnTe are
more brittle than these materials. We therefore had to
reflectance difference spectroscopy~RDS! to determine their
piezo-optical coefficients. RDS is sometimes referred to
reflectance anisotropy spectroscopy~RAS!. Details of the ex-
periments are given elsewhere.48

Theoretical studies of piezo-optical properties of semic
ductors have been concerned with elemental and III-V co
pounds. Tight-binding calculations have been used to el
date the piezo-optical coefficients of Si,49 Ge,50 and InP~Ref.
10! whereas pseudopotential calculations have been use
Si,5,51 Ge,6 and GaAs.9 To the best of our knowledge n
calculations of the piezo-optical coefficients of II-VI com
pounds have been reported.Ab initio calculations of the de-
formations potentials of theE1 transitions of Ge, GaAs, InP
ZnSe, and ZnTe will be presented elsewhere.7

The paper is organized as follows: The experiments
briefly described in Sec. II. In Sec. III, the pseudodielect
functions «(v) of ZnSe and ZnTe as obtained from ellip
sometry are presented. Standard analytical line shapes
used to represent theE1 and E11D1 transitions and deter
mine line-shape parameters. The measured piezo-optica
efficients are presented in Sec. IV. In Sec. V, deformat
potentials of theE1 and E11D1 transitions are determine
from those piezo-optical coefficients, using line-shape
rameters from Sec. III. Section VI contains a discussion
the results and Sec. VII the conclusions.

II. EXPERIMENT

We used undoped ZnSe and ZnTe single crystals.
samples were cut in 1832.831.8-mm3 pieces with the long-
5581 ©1999 The American Physical Society
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est side parallel to the@001# and @111# crystal directions,
respectively, and oriented using Laue x-ray diffraction. F
these samples,«(v) was determined by means of rotatin
analyzer ellipsometry. RDS~Ref. 8! was used to determin
the shear piezo-optical coefficients. In RDS the difference
the complex Fresnel coefficientsDr /r 5(«a2«b)/
@A«(«21)# @Dr 5r a2r b ; r 5(r a1r b)/2# between two or-
thogonal axesa and b is measured. Compressive uniaxi
stress was applied along the@001# and @111# crystal direc-
tions. The applied stress gives rise to a difference in«(v)
between the components parallel and perpendicular to
stress. This stress-induced anisotropy was measured
RDS. Stresses up to 0.05 GPa were used.@As a comparison,
for GaAs ~Ref. 9! and InP~Ref. 10! stresses up to 0.7 GP
were used.# The measurements were performed on (21̄1)
surfaces, in air and at room temperature. The use of RDS
determining piezo-optical coefficients and the experimen
details have been discussed elsewhere.48

III. DIELECTRIC FUNCTION

When determining the deformation potentials of theE1
and E11D1 transitions from the piezo-optical coefficien
one needs to know the line-shape parameters of«(v) at
these transitions. We use the standard analytical line sha52

«~v!5C2Aeif~\v2Ei1 iG!n, ~1!

whereA represents the strength of the critical point,Ei the
transition energy,G the broadening,f an excitonic phase
angle, and\v the photon energy. For a one-dimension
critical point n521/2, for a two-dimensional critical poin
n50 @i.e., «(v); ln(\v2E1 iG)#, and for a three-
dimensional critical pointn51/2. Discrete excitons corre
spond ton521.

When determining the line-shape parameters from exp
mental data we analyze the second derivative with respe
energy, i.e., we use the line shapes

d2«~v!

d~\v!2
5H 2n~n21!Aeif~\v2Ei1 iG!n22, nÞ0

Aeif~\v2Ei1 iG!22, n50.
~2!

Equations~1! and~2! have been derived using a one-electr
approximation with parabolic bands and matrix elements
dependent ofk. Excitonic effects are taken into account on
through the phase anglef. It should be underlined that Eqs
~1! and ~2! are only reliable for difference or differentia
spectra.52

A. «„v… of ZnSe

The pseudodielectric function«(v) of ZnSe as measure
by ellipsometry at room temperature is shown in Fig. 1.
lipsometric measurements are known to be sensitive to
presence of oxide layers on the sample. Hence, the data
corrected using a three-phase model~material-
overlayer-air!.53 The optical properties of the native oxide
ZnSe are not known. We therefore used data for the na
oxide for GaAs,54 which has been found to model remar
ably well overlayer effects on ZnSe.17 For the sample mate
rial we used the data reported by Kim and Sivanantha17
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The overlayer thickness was then found to be 26 Å . Fig
1 displays data corrected as well as uncorrected for a sur
overlayer.

In Fig. 2 the second derivatives with respect to energy
Re@«(v)# and Im@«(v)#, corrected for overlayer effects, ar
given in the vicinity of theE1 and E11D1 transitions. We
use excitonic line shapes, i.e.,n521 in Eq. ~2!, to fit these
second derivatives. Such line shapes have previously b
found to best reproduce the experimental spectra of theE1
and E11D1 transitions in ZnSe.15 The real and imaginary
parts were fitted simultaneously. The fitted curves are gi
in Fig. 2 and the fitted line-shape parameters in Table I.
comparison, we also used a two-dimensional line shape,
n50 in Eq. ~2!, to fit the second derivatives of«(v). The
fitting parameters are given in Table I.

B. «„v… of ZnTe

In Fig. 3 «(v) of ZnTe, as measured by ellipsometry,
displayed. Again, we used a three-phase model and data
tained by ellipsometry for the ZnTe sample20 and the native
oxide of GaAs~Ref. 54! to correct for the surface overlaye

The second derivatives of Re@«(v)# and Im@«(v)# ~cor-
rected for a surface overlayer! with respect to energy are

FIG. 1. Real (« r) and imaginary (« i) parts of the pseudo-
dielectric function of unstressed ZnSe as measured by ellipsom
at room temperature. Data corrected and uncorrected for the p
ence of an oxide overlayer are given.

FIG. 2. Second derivative of the pseudodielectric function
ZnSe, as corrected for a surface overlayer, shown in Fig. 1 in
vicinity of the E1 andE11D1 transitions. The solid lines represen
fitted values obtained with the excitonic line shape of Eq.~2!. The
corresponding fitted parameters are given in Table I.
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PRB 59 5583PIEZO-OPTICAL COEFFICIENTS OF ZnSe AND ZnTe . . .
given in Fig. 4. For ZnTe in order to fit our data we use t
line shapes of a two-dimensional critical point@n50 in Eq.
~2!#, which have been found to give the best agreement w
experiment.18 Real and imaginary parts were fitted simult
neously. The fitted curves are shown in Fig. 4 and the
tained line-shape parameters are given in Table I. An e
tonic line shape@n521 in Eq. ~2!# was also used to fit the
second derivatives; the obtained line-shape parameters
given in Table I.

IV. PIEZO-OPTICAL COEFFICIENTS

For cubic materials there are three independent com
nents of the piezo-optical tensor,P11, P12, and P44.55

When using RDS one obtains the irreducible compone
P112P12, corresponding to an applied shear stress ofG12
symmetry ~i.e., along@001#!, and P44, corresponding to a

TABLE I. Critical point parameters of theE1 andE11D1 tran-
sitions in ZnSe and ZnTe, obtained by fitting Eq.~2! to the ellipso-
metric data shown in Figs. 2 and 4, respectively. Rows 1–5
parameters for two-dimensional critical points (n50) and rows
7–11 correspond to exciton line shapes (n521). Row 6 contain
theoretical values for the strengths of a two-dimensional crit
point, calculated with Eqs.~A1a! and~A1b!. Theoretical values for
the strengths calculated using an excitonic model, Eqs.~A2a! and
~A2b!, are given in row 12.

ZnSe ZnSe ZnTe ZnTe
E1 E11D1 E1 E11D1

n 0 0 0 0
E (eV) 4.75 5.07 3.60 4.18
G (eV) 0.15 0.12 0.14 0.18
f (deg) 89 89 136 136
A 5.01 1.62 5.26 4.07
Ath 1.6 1.5 2.1 1.6
n 21 21 21 21
E (eV) 4.79 5.10 3.60 4.18
G (eV) 0.23 0.30 0.21 0.26
f (deg) 58 58 17 17
A (eV) 1.09 1.24 1.62 1.50
Ath (eV) 0.45 0.40 0.26 0.22

FIG. 3. Real (« r) and imaginary (« i) parts of the pseudo
dielectric function of unstressed ZnTe as measured by ellipsom
at room temperature. Data corrected and uncorrected for an o
overlayer are given.
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shear stress ofG15 symmetry~i.e., along@111#!48

P112P125
D~« i2«'!

D~Xuu@001# !
~3!

and

P445
D~« i2«'!

D~Xuu@111# !
, ~4!

where« i and«' are the respective components of the diele
tric tensor parallel and perpendicular to the stress.Xuu@001#
and Xuu@111# denote the applied stress,X, being parallel to
the @001# and @111# crystal directions, respectively. We us
the convention thatX,0 for a compressive stress. Emplo
ing RDS one cannot obtain the piezo-optical coefficient c
responding to hydrostatic stressP1112P12. Therefore, it is
not possible to obtain the three independent coefficient,P11,
P12, and P44, which can be done when usin
ellipsometry.5,6,9,10When measuring«(v) by means of ellip-
sometry, the obtained data are sensitive to the presenc
overlayers, see Figs. 1 and 3. RDS is a differential metho
which the overlayer effects largely cancel when measur
« i2«'; i.e., the overlayer effects are the same for« i and
«'.48 The changes in the dielectric function of the oxid
overlayer with stress can be neglected since there are
critical points in the experimental range.6

Since the piezo-optical coefficients correspond to line
response functions, their real and imaginary parts
Kramers-Kronig~KK ! conjugates. This feature gives a po
sibility to check the consistency of the data. In order to
so, we calculate6

Re@Pi j ~v!#52
2

p
PE v8 Im@Pi j ~v!#

v822v2
dv81C, ~5!

whereP denotes the principal value of the integral, andC is
a constant that was used to fix the overall amplitude~i.e., a
background due to transitions other thanE1 and E11D1).
We did not extrapolatePi j outside the experimental range
The constantC should thus include the effect ofPi j outside
the experimental range, provided all critical points und
consideration lie well within that range.
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FIG. 4. Second derivative of the pseudodielectric function
ZnTe, as corrected for a surface overlayer, shown in Fig. 3 in
vicinity of the E1 andE11D1 transitions. The solid lines represen
fitted values obtained with the excitonic line shapes of Eq.~2!. The
corresponding fitted parameters are given in Table I.
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A. P112P12 and P44 of ZnSe

In Fig. 5, the real and imaginary components of the pie
optical coefficientP112P12 of ZnSe are shown vs photo
energy. They have a pronounced structure around theE1 and
E11D1 energies. Figure 6 depicts similar data forP44 of
ZnSe. AlsoP44 has its main structure aroundE1 and E1

1D1 . The data forP112P12 and P44 in the vicinity of the
E1 andE11D1 transitions will be analyzed in detail below
With the present technique we cannot detect any struc
around theE01D0 transitions inP112P12 and P44. The
E01D0 transition is weak and difficult to detect also in«(v)
measured by ellipsometry.15 The estimated errors are rela
tively large since only low stresses could be applied.48

The KK conjugates ofP112P12 and P44, calculated ac-
cording to Eq.~5!, are shown in Figs. 5 and 6, respective
For ZnSe,E1 andE11D1 are close to the upper limit of th
experimental frequency range. The piezo-optical coefficie
are strongly dispersive in this region and the errors due to
finite limits used in Eq.~5! are expected to become relative
large. The line shapes are, however, well reproduced by
ing Eq. ~5!, which indicates that they are essentially corre

FIG. 5. Real and imaginary parts of the piezo-optical coeffici
P112P12 of ZnSe above the fundamental gap. Also shown is
Kramers-Kronig transform of the imaginary part, calculated by
ing Eq. ~5!. For clarity, an offset of25 GPa21 was added to the
imaginary part. The value forE01D0 was taken from Ref. 17.

FIG. 6. Real and imaginary parts of the piezo-optical coeffici
P44 of ZnSe above the fundamental gap, measured at room
perature. Also shown is the Kramers-Kronig transform of the ima
nary part, calculated by using Eq.~5!. For clarity, an offset of
12 GPa21 was added to the imaginary part. The value forE0

1D0 was taken from Ref. 17.
-
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B. P112P12 and P44 of ZnTe

The piezo-optical coefficientP112P12 of ZnTe is shown
in Fig. 7 and that ofP44 in Fig. 8. BothP112P12 and P44
have pronounced structures aroundE1 andE11D1 and also
at E2 . The structure ofP112P12 and P44 aroundE1 and
E11D1 will be analyzed in detail below. As in the case
ZnSe,E01D0 cannot be distinguished in the piezo-optic
coefficients. In fact,E01D0 of ZnTe has just recently bee
observed in«(v) measured by ellipsometry.20 As in the case
of ZnSe the estimated errors are large due to the fact
ZnTe is brittle and only low stresses could be applied.

The E2 structure originates from transitions over a lar
part of the Brillouin zone. It cannot be modeled by simp
analytical expressions, likeE1 andE11D1 , but requires full
band-structure calculations.5,6,9

The KK consistency of the real and imaginary parts
P112P12 and P44 of ZnTe is good. Since theE1 and E1
1D1 transitions are not close to the experimental limits, t
problems that appeared for ZnSe are not present for ZnT

V. DEFORMATION POTENTIALS

The change in gap energies per unit strain is described
deformation potentials. By applying stress along differe
crystal directions the deformation potentials correspond

t
e
-

t
-

i-

FIG. 7. Real and imaginary parts of the piezo-optical coeffici
P112P12 of ZnTe above the fundamental gap, measured at ro
temperature. Also shown is the Kramers-Kronig transform of
imaginary part, calculated using Eq.~5!. For clarity, an offset of
25 GPa21 was added to the imaginary part. The values forE0

1D0 andE2 were taken from Ref. 20.

FIG. 8. Real and imaginary part of the piezo-optical coefficie
P44 of ZnTe above the fundamental gap, measured at room t
perature. Also shown is the Kramers-Kronig transform of the ima
nary part, calculated with Eq.~5!. For clarity, an offset of
12 GPa21 was added to the imaginary part.
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to different symmetries can be obtained. The piezo-opt
coefficients determined in this work are related to the cha
in electronic structure produced by the applied shear com
nents of the stress. Thus, one can derive expressions, b
on a one-electron approximation, that relate the piezo-opt
coefficients to the deformation potentials for both theE0 and
theE1 transitions.3 For E0 it has been established that defo
mation potentials can be determined from the piezo-opt
coefficients, by fitting analytical line shapes with the defo
mation potentials as fitting parameters.3,21,24,45 For the E1
andE11D1 transitions deformation potentials have in mo
cases been obtained from the directly measured chang
transition energy with applied stress. There are, howe
analytical expressions for the relations between the pie
optical coefficients and the deformation potentials,3 which
can be used to determine the latter.56 In the case of the brittle
ZnSe and ZnTe we were not able to apply the high stres
which are required when using ellipsometry to determ
stress-induced shifts in critical point energies. We theref
determine the deformation potentials of theE1 andE11D1
transitions by fitting analytical line shapes~with parameters
obtained from the pseudodielectric function at zero stress! to
the experimentally determinedP112P12 andP44. For ZnTe
we were also able to measure the piezo-optical coefficie
around theE2 andE21D2 transitions. These transitions ex
tend over a large part of the Brillouin zone. There are the
fore no simple physically meaningful analytical expressio
that can be used to represent«(v) or the piezo-optical
coefficients.5,6,9

The quantityP112P12, which describes the effects o
strains ofG12 symmetry, is related toD3

3 , the deformation
potential describing a@001# shear strain~also ofG12 symme-
try! by the expression3

P112P125A6D3
3S «~E1!2«~E11D1!

D1
D ~S112S12!1C001.

~6!

Here,« (E1) and« (E11D1) are the contributions of theE1 and
E11D1 transitions to«(v), respectively,D1 the spin-orbit
splitting of the corresponding valence-band states andS11
and S12 are elastic compliance coefficients. The const
C001 has been added to account for the contributions fr
other transitions not resonant around theE1 andE11D1 en-
ergies.

P44, which corresponds to strains ofG15 symmetry, can
be written as a function of the deformation potentialsD1

5 and
D3

5 ; the former represents the intervalley effect of a@111#
shear strain on theE1 and E11D1 gaps whereas the latte
describes the intravalley effect within the valence bands3

P445
1

4A3
F2D1

5 d«

dE1

14A2D3
5S «~E1!2«~E11D1!

D1
D GS441C111. ~7!

d«/dE1 is the derivative of«5« (E1)1« (E11D1) with respect
to the transition energyE1 and S44 an elastic compliance
coefficient. Also here a constant,C111, has been added t
account for the contribution from other transitions.
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As seen in Eqs.~6! and~7!, P112P12 andP44 both have a
contribution proportional to (« (E1)2« (E11D1))/D1 . These
terms arise from stress-induced changes in the ma
elements.57,56 We denote (« (E1)2« (E11D1))/D1 the D3

3 , D3
5

term. P44 has an additional contribution proportional
d«/dE1 . This term is due to changes in the gap energy w
stress.56,57 We shall call it theD1

5 term. The analytic expres
sion for the linear combinationP1112P12, which describes
the effect of a hydrostatic stress, contains only ad«/dE1
term since hydrostatic strain does not mix bands of differ
symmetry.56 Equations~6! and ~7! were derived within an
effective-mass approximation. It was assumed that the
evant kinetic energies~and the excitonic binding energies!
are small in comparison to the spin-orbit splittingD1 . The
deformation potentials were assumed to be independentk
at theL point and along theL direction in the Brillouin zone.
The terms« (E1) and« (E11D1), represented by Eq.~1!, were
assumed to be equal except for the energy shiftD1 . Exci-
tonic effects are, to some extent, taken into account in
line shapes used for« (E1) and« (E11D1).

We will now use Eqs.~6! and~7! to determine the defor-
mation potentials D3

3 , D1
5 , and D3

5 . For the terms
« (E1), « (E11D1) and d«/dE1 we use the line shapes in Eq
~1! with the parameters in Table I. Since the hydrosta
piezo-optical coefficientP1112P12 could not be measured
we were not able to determine the hydrostatic deformat
potentialD1

1 .

A. D3
3 , D1

5 , and D3
5 of ZnSe

We now use Eq.~1! with the parameters for an excitoni
line shape in Table I, to determine theD3

3 , D3
5 andD1

5 terms
in Eqs. ~6! and ~7!. The obtained line shapes are shown
Fig. 9~a!. In order to calculateP112P12 and P44 from Eqs.
~6! and ~7! we used values for the compliance coefficien
taken from the literature: S11521.1 TPa21, S125
27.8 TPa21, andS44524.69 TPa21.58

The deformation potentialD3
3 was determined by fitting

Eq. ~6! to P112P12. The fitted curves are shown in Fig
9~b!. Except forD3

3 , the background constantC001 was the
only fitting parameter; the parameter values obtained fr
the fit are given in Table II. The value ofC001 is low in
comparison with the amplitude ofP112P12. Hence, the con-
tribution to the piezo-optical coefficients from other nonres
nant transitions is small.

The line shapes ofP44 andP112P12 are similar. This line
shape is also similar to that of theD3

3 , D3
5 term displayed in

Fig. 9~a!. TheD1
5 term has a different line shape that exhib

two peaks~corresponding toE1 and E11D1). For P44 the
D3

5 term turns out to be the dominant one. Equation~7! was
fitted to theP44 spectrum withD1

5 , D3
5 , andC111 as param-

eters. The values of these parameters resulting from th
are given in Table II and the fitted curves in Fig. 9~c!. The
contribution from theD1

5 term can hardly be distinguished i
P44, a fact that is reflected in the error bars of the list
value forD1

5 . The contribution from other nonresonant tra
sitions is also small, as indicated by the relatively low val
of C111.

The estimated error bars inD3
3 , D1

5 , and D3
5 were ob-

tained from the values for which the fitted curves are with
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the error bars, which are given with the experimental data
Figs. 5 and 6. These error bars are relatively large since
errors inP112P12 andP44 are large. Errors in the line-shap
parameters for« (E1), « (E11D1), andd«/dE1 and in the com-
pliancesS11, S12, andS44 are not included.

We also tried to use the line-shape parameters reporte
Ref. 15 for «(v) around theE1 and E11D1 transitions in
Eqs.~6! and ~7! but they did not lead to significantly differ
ent lineshapes or deformation potentials. Using the par
eters obtained for the line shape of a two-dimensional crit
point ~given in Table I! in Eqs.~6! and~7! the experimental
line shapes forP112P12 andP44 were not well reproduced

FIG. 9. Fitted line shapes ofP112P12 and P44 around theE1

andE11D1 critical points of ZnSe.~a! The contribution from the
D3

3 , D3
5 , andD1

5 terms in Eqs.~6! and ~7!. The minus sign of the
D3

3 andD3
5 deformation potentials has been included in theD3

3 , D3
5

term in order to have an easy comparison between curves~a!, ~b!,
and~c!. ~b! Experimental and fitted values forP112P12, and~c! for
P44. The fitted curves were obtained with Eqs.~6! and~7!, respec-
tively, with the values for the deformation potentials given in Ta
II. Equation~1! was used to model« with the parameters given in
Table I.
in
he

in

-
l

it was not possible to fit Eqs.~6! and~7! to the experimental
data. This lends support to the use of an excitonic line sh
for theE1 andE11D1 transitions in ZnSe. Equations~6! and
~7! contain only differences or derivatives of«(v) to the first
order in energy. Hence, we also determined the line-sh
parameters by analyzing the first derivative of«(v), with
respect to photon energy. Using these values the experim
tal lineshapes were not as well reproduced as in Figs
although the deformation potentials obtained by fitting E
~6! and~7! to the experimental spectra were not significan
different from those in Table II.

B. D3
3 , D1

5 , and D3
5 of ZnTe

TheD3
3 , D3

5 andD1
5 terms of ZnTe as calculated from Eq

~1!, using the parameters for two-dimensional critical poin
given in Table I, are displayed in Fig. 10~a!. Using D3

3 and
C001 as fitting parameters, Eq.~6! was fitted to the experi-
mental spectra of P112P12. The compliances S11
521.81 TPa21, S125210.87 TPa21 were taken from the
literature.58 The experimental and fitted curves are shown
Fig. 10~b!, while the values of the fitted parameters are giv
in Table II. C001 is not negligible in this case, a fact tha
probably is due to the influence of theE2 transitions, cf. Fig.
7.

In Fig. 10~c! the spectra of the real and imaginary parts
P44 are shown. A comparison with Fig. 10~a! reveals that
there is a significant contribution toP44 from the D1

5 term;
P44 has a line shape different fromP112P12, which would
not be the case if theD1

5 term were negligible. This is typica
for materials with large spin-orbit splittings.59 The values of
D1

5 , D3
5 , and C111 obtained by fitting Eq.~7! to P44 ~with

S44532.05 TPa21)58 are given in Table II. The error bars i
D3

3 , D1
5 , andD3

5 were estimated in the same way as those
ZnSe and therefore include only the experimental errors
P112P12 and P44 ~see Figs. 7 and 8!, but not any errors in
the line-shape parameters or compliances.

The line shapes ofP112P12 andP44, calculated with the
line-shape parameters for theE1 andE11D1 transition given
in Ref. 18 were found to be similar to those in Fig. 10 a
the fitted values of the deformation potentials were, with
our estimated errors, in agreement with those of Table
This is also the case if we use the parameters of the excit
line shape in Table I. Thus, fitting Eqs.~6! and~7! to experi-
mental data forP112P12 and P44 does not give any infor-
mation as to whether the excitonic or the two-dimensio
critical point line shapes are to be preferred when dea
with the E1 and E11D1 transitions of ZnTe, a fact which
reflects the ‘‘robustness’’ of the procedure used to extract
deformation potentials. As in the case of ZnSe, using li
s

TABLE II. The deformation potentialsD1
5 , D3

3 , andD3
5 of the E1 andE11D1 transitions in ZnSe and

ZnTe. Equations~6! and~7! were used to fit the experimental data ofP112P12 andP44. The fitted curves are
shown in Figs. 9 and 10, respectively. The dielectric function was modeled with Eq.~1! and the parameters
given in Table I. Also given are the complex constantC001 andC111, which are the constant background
used in Eqs.~6! and ~7!, respectively.

D1
5 (eV) D3

3 (eV) D3
5 (eV) C001 (GPa21) C111 (GPa21)

ZnSe 30630 21765 22769 1.72 i1.2 21.62 i0.9
ZnTe 40620 22968 21565 28.91 i6.6 0.21 i1.1
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shape parameters obtained by fitting the first derivative
«(v) with respect to energy did not give different values f
the deformation potentials, but lead to a worse line shap
P112P12 and P44 calculated with Eqs.~6! and ~7!, respec-
tively.

VI. DISCUSSION

The deformation potentials of theE1 andE11D1 transi-
tions of ZnSe and ZnTe have been determined by fitt
analytical expressions to the measured spectral depend
of the piezo-optical coefficients. For elemental5,6 and III-V
semiconductors9,10 the change in transition energy with a
plied stress has allowed a more direct determination of
corresponding deformation potentials. The advantage of
procedure is that the critical point energies of«(v) can be
determined more accurately than the piezo-optical coe
cients. The use of Eqs.~6! and~7! for determiningD3

3 , D3
5 ,

andD1
5 from experimental spectra has to rely heavily on t

assumptions made for the line shapes.
It is not obvious what line shape one should use to fit

critical points of «(v) in the E1 and E11D1 region. We
used the standard line shape in Eq.~1!, which is only accu-

FIG. 10. Fitted line shapes ofP112P12 and P44 around theE1

and critical pointsE11D1 of ZnTe. ~a! The contribution from the
D3

3 , D3
5 , andD1

5 terms in Eqs.~6! and ~7!. The minus sign of the
D3

3 andD3
5 deformation potentials has been included in theD3

3 , D3
5

term in order to have an easy comparison between curves~a!, ~b!,
and~c!. ~b! Experimental and fitted values forP112P12, and~c! for
P44. The fitted curves were obtained with Eqs.~6! and~7!, respec-
tively, with the values for the deformation potentials given in Ta
II. Equation~1! was used to model«(v) with the parameters given
in Table I.
f

of

g
nce

e
is

-

e

rate for derivative or differential spectra. This should pose
problem in the present work since in Eqs.~6! and ~7! only
derivatives and differences of«(v) occur. As mentioned, we
tried also other line shapes for both ZnSe and ZnTe, but
obtained deformation potentials were the same within
estimated errors.

For theE0 transitions of most semiconductors measur
so far the deformation potentials are found to be typica
between 1 and 10 eV.60 The values determined experime
tally for the deformation of theE1 andE11D1 transitions in
elemental5,6 and III-V ~Refs. 9 and 10! semiconductors are in
most cases in this range too. Therefore, the values we
for ZnSe and ZnTe are high in comparison to those found
many other materials. However, II-VI semiconductors a
not as well understood as their group IV and II-VI counte
parts, in particular the details of theirE1 andE11D1 transi-
tions. Furthermore, we had to fit analytical expressions to
piezo-optical coefficients, while for the elemental and III-
semiconductors, stress-induced changes of the transition
ergies were used. It is worth mentioning that the signs of
deformation potentials in Table II are the same as th
found for the corresponding deformation potentials in Ga
~Ref. 9! and InP.10

The relatively low values ofC001 andC111 ~see Table II!
indicate that the contributions from transitions other thanE1
andE11D1 are small. This is in contrast to theE0 transition
of both ZnSe~Refs. 21 and 24! and ZnTe,21,45 which have
relatively large constant backgrounds from higher transitio
~e.g., theE1 and E11D1 transitions discussed here!. The
influence from theE2 transitions on the piezo-optical coeffi
cients at lower energies has sometimes been modeled
harmonic oscillator61,62 instead of a constant. With such
model, which involves more parameters, a better fit to
perimental data can be achieved. In our case, a slightly be
fit to P112P12 andP44 of ZnTe at the higher energies in Fig
10 could be obtained; the values of the determined defor
tion potentials were, however, not different from those
Table II within the estimated error bars, a fact which aga
corroborates the ‘‘robustness’’ of the deformation potenti
obtained here.

In Eqs.~6! and~7!, « (E1) and« (E11D1) are assumed to be
equal except for the energy differenceD1 . In Figs. 2 and 4
and also in Table I one sees that this is not the case. H
ever, it is not too bad an approximation; the strengthsA are
the same to within 25% for both ZnSe and ZnTe~for the
excitonic and two-dimensional critical point line shapes,
spectively, which were used to model the respective pie
optical coefficients!. In InP the strength of theE11D1 tran-
sition is only;1/3 of that of theE1 counterpart and it was
found that Eqs.~6! and ~7! could be fitted to experimenta
data if their strengths were set equal.10 A similar effect has
been seen in the Raman polarizability of Ge.63

Equations~6! and ~7! implicitly assume that the exciton
binding energies are small in comparison withD1 . For E1
and E11D1 of ZnSe and ZnTe this assumption may intr
duce errors. For ZnTe values for the binding energies of
E1 , E11D1 exciton of 0.11 eV~Ref. 64! and 0.19 eV
~Refs. 18 and 19! have been reported; they are smaller th
D150.58 eV~Table I!, but not by a large factor. For ZnSe
has been estimated that the excitonic binding energies ar
the same order asD1 .14,64 If the excitonic binding energies
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cannot be neglected in comparison withD1 , the excitons of
the E1 and E11D1 transitions will mix due to exchang
interaction. In this case, the effect of strain on«(v) should
be smaller than if excitons were neglected~see Table V in
Ref. 65!.

Local-field effects are not included in Eqs.~6! and ~7!.
We do not know what influence they would have on t
piezo-optical coefficients, though it is obvious that in a cry
tal under uniaxial stress, the local fields will be differe
from those in the unstrained crystal, since the positions of
atoms have changed and the symmetry has been lowe
Local-field effects have been found to introduce anisotrop
in the dielectric function of interfaces, in which case t
symmetry is changed due to the interface.66 In ZnSe and
ZnTe, which have relatively small infrared dielectric co
stants, local-field effects are likely to be larger than those
the elemental and III-V semiconductors. We have not fou
in the literature any theoretical calculations of piezo-opti
effects including local-field effects. Calculations of the d
electric function including both excitonic and local-field e
fects have been made for silicon.67,68 For theE1 transition
these calculations revealed that local-field and excitonic
fects give contributions to«(v) with opposite signs.67 Since
excitonic effects would give smaller values for the deform
tion potentials than the one-electron approximation used
Eqs. ~6! and ~7!, local-field effects could be the reason f
the possible inadequacy of the one-electron approxima
for the calculation of piezo-optical coefficients. Since t
analytical expressions used in the determination of the de
mation potentials@Eqs. ~6! and ~7!# are based on the one
electron approximation, the values in Table II should be u
with care. It would be of interest to investigate theoretica
the effects of local fields and excitons not only on«(v), but
also on the piezo-optical coefficients, particularly since
change in atomic positions and symmetry in a strained c
tal should affect the local fields. Furthermore, it would be
interest to investigate theoretically the dependence of th
effects on the ionicity of the compound since there are
perimental data for elemental, III-V, and II-VI semicondu
tors. Band-structure calculations of the deformation pot
tials D1

5 , D3
3 , andD3

5 are not available for II-VI compounds
They would contribute to clarify the origin of the large va
ues found in the present investigation.

In order to round off this discussion we present in t
Appendix a calculation of the strengthsA(E1) and A(E11D1)

of a two-dimensional critical point, based on the one-elect
band structure. For ZnTe the calculated values are a facto
2.5 smaller than the ones obtained from the fits to ellip
metric data performed with Eq.~2!. For ZnSe, for which the
two-dimensional critical point line shape appears to be l
accurate, the calculated values are a factor of 3 (A(E1)) and 1
(A(E11D1)) times the experimental ones, respectively. A c
culation based on a hydrogenic exciton is also presente
leads to values ofA(E1) and A(E11D1) three times smaller
than those fitted for ZnSe. For ZnTe the values calculated
an exciton are six times smaller than the experimental o
The missing oscillator strength also suggests local-field c
tributions, which may be more sensitive to strain than
one-electron treatment used here to determine the defo
tion potentials.
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VII. CONCLUSIONS

We have measured the piezo-optical coefficientsP11
2P12 andP44 of ZnSe and ZnTe aboveE0 using RDS. For
ZnSeP112P12 andP44 have strong structures around theE1
andE11D1 transitions. This was also found for ZnTe, but
this case we could also see the corresponding effects o
E2 transition. For ZnSe some problems were encounte
with the Kramers-Kronig consistency of the data. They se
to be due to the fact that theE1 andE11D1 transitions are
close to the limit of the experimental interval. The spectra
the real and imaginary parts ofP112P12 and P44 of ZnTe
show excellent Kramers-Kronig consistency.

The deformation potentialsD3
5 , D3

3 , andD1
5 were deter-

mined by fitting analytical expressions to the experimenta
determined spectra ofP112P12 andP44. This way of deter-
mining deformation potentials of theE1 andE11D1 transi-
tions is not as well established as the corresponding one
theE0 transition. The values determined for the deformati
potentials are high in comparison with those found for
emental and III-V semiconductors, obtained from the m
surement of the change in transition energy with appl
stress. The reason for these high values may be the l
excitonic binding energies, which may lead to a break do
of the one-electron approximation, and hence introduce
rors in the expressions forP112P12 and P44. Another rea-
son could be that local-field effects cannot be neglected
II-VI semiconductors.

APPENDIX

For a two-dimensional critical point, the strengths of t
E1 and E11D1 transitions are, within the one-electron a
proximation, given by3

A~E1!5
16A3

9

~E11D1/3!

a0E1
2

, ~A1a!

A~E11D1!5
16A3

9

~E112D1/3!

a0~E11D1!2
, ~A1b!

wherea0 is the lattice constant.
In the case of excitonic transitions, the strengths are gi

by69

A~E1!5
64A3

81p4

a0
3

E1
2«s

3 ~E11D1/3!3, ~A2a!

A~E11D1!5
64A3

81p4

a0
3

~E11D1!2«s
3 ~E112D1/3!3,

~A2b!

where«s is the static dielectric constant.
To calculate the strengthsA(E1) and A(E11D1) by Eqs.

~A1! and~A2! we take the values fora0 (a055.669 Å , for
ZnSe anda056.100 Å for ZnTe!58 and «s («s55.8 at l
510 mm for ZnSe and«s57.0 atl510 mm for ZnTe!13

from the literature. ForE1 andE11D1 we use the values in
Table I. In Table I strengths calculated with Eqs.~A1! and
~A2! are given.
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64Y. Pétroff and M. Balkanski, Phys. Rev. B3, 3299~1971!.
65H. R. Chandrasekhar, P. Fisher, A. K. Ramdas, and S. Rodrig

Phys. Rev. B8, 3836~1973!.
66W. L. Mochan and R. G. Barrera, Phys. Rev. Lett.55, 1192

~1985!.
z,

67W. Hanke and L. J. Sham, Phys. Rev. Lett.43, 387 ~1979!.
68S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. R

Lett. 80, 4510~1998!.
69P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardo

Phys. Rev. B35, 9174~1987!.


