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Critical properties of the topological Ginzburg-Landau model
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We consider a Ginzburg-Landau model for superconductivity with a Chern-Simons term added. The flow
diagram contains two charged fixed points corresponding to the tricritical and infrared stable fixed points. The
topological coupling controls the fixed-point structure and eventually the region of first-order transitions
disappears. We compute the critical exponents as a function of the topological coupling. We obtain that the
value of thev exponent does not vary very much from tey value, vyy=0.67. This shows that the
Chern-Simons term does not affect considerably Xiescaling of superconductors. We discuss briefly the
possible phenomenological applications of this mop®0163-182809)06901-3

[. INTRODUCTION tricritical and superconducting which are charged fixed
points. The Gaussian fixed point is trivial and describes the
The Ginzburg-Landau modéGL) was introduced almost mean-field critical behavior of an(@) model(we shall work
half a century agbas a phenomenological model for super-with N=2). The superfluid fixed point describes theran-
fluidity and superconductivity. In its one-component order-sition in He* and lies in the same class of universality as the
parameter version it has been used with remarkable succeXy model. The tricritical fixed point is over a line, called
as a statistical mechanics model for the critical phenomenaicritical line, which separates the regions of first- and
of systems lying in the same universality class as the Isingecond-order phase transition. This fixed point is attractive
model? In its N-component version coupled to Abelian along the tricritical line but repulsive in the direction nearly
gauge fields it has been used as a model for superconductigarallel to theu axis. Finally, the superconducting fixed point
ity and liquid crystals. However, in this last situation the  is a charged infrared stable fixed point and describes a
expansion, which works very well in the nongauged versionsecond-order superconducting phase transition. Bergerhoff
seems to be insufficient to describe unambiguously the critiet al1° obtained this flow diagram using Wilson's R®&ef.
cal properties of the modéf Only in the largeN limit does 12) in a nonperturbative version callegact renormalization
the e expansion give consistent resuit¥he trouble is the group®® They used the background field formalism to con-
absence of a second-ordénfrared stablefixed point in the  trol gauge invariance which is in principle violated due to the
flow diagram. This result is physically correct only in the presence of the cutoffurther discussions on this subtle
extreme type-l regime/e?<1 (hereu is the quartic scalar point in Wilson’s RG can be found in Ref. L4This flow
self-coupling ance is the chargg where we expect a weak diagram has been also obtained by Herbut and Tesaltovic
first-order phase transition. This regime is also well de-using a simpler method. They performed a one-loop calcula-
scribed by the fluctuation-corrected mean-field analysis ofion in a fixed dimension approach.
Halperin et al* The weak first-order transition has been Recently a flow diagram with qualitatively the same struc-
probed experimentally in certain classes of liquid crystalsture has been also obtained for a GL model with a topologi-
where essentially the same GL model hdidsor the ex- cal Chern-SimongCS) term by Malbouissoret al1® Their
treme type-ll region {/e?>1), a second-order fixed point is analysis was performed using Wilson's RG in perturbative
expected. Indeed, this result follows from numerical studiesorm, which is not manifestly gauge invariant due to the
performed in a lattice dual GL modeélTherefore, the pre- cutoff integrals. Due to the presence of a CS term, an intrin-
diction of a first-order transition even in the type-Il regime sically three-dimensional object, their calculations were per-
seems to be an artifact of the expansion. More recent formed ind=3 andN=2, resulting therefore in an uncon-
works support also this point of vie®'>!°5Also, it has  trolled approximation since there is no small parametet as
been shown that the renormalization grdG) in a fixed or 1N. The same type of model has been considered earlier
dimension approach is more appropri&t€! The flow dia- by Kleinert and Schak&l using a different scaling. They
gram in theu— e? plane exhibits in general four fixed points: performed a one-loop calculation of critical exponents. How-
Gaussian and superfluigr XY), both uncharged, and the ever, their scaling did not allow for a consistent zero CS
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certain critical value. In this case we obtain that all the criti-
cal exponents have respectable physical values. Moreover,
the v exponent as a function of the topological coupling does
not deviate very much fronXY scaling. Finally, in Sec. IV

we discuss our results and the possible applications.

7 N II. MODEL AND RG RESULTS

Our starting point is the following action:

| |
\ 1 S= f d3x

. e uo
|(V —ieoAg) thol >+ 1 o| tho] >+ ?|Ir/fo|4

\ ’
> ~ - 7 A V2 Oox A
where the subindex O denotes bare quantities. The above
action is a standard GL model with a CS term addgg.is
the gauge fixing term which is given by
1 -
FIG. 1. Graph contributing to th& term in theg function foru. sgf:f d*x=—(V-Ap)?, 2
The dashed lines represent the gauge field propagator. 2aq

mass limit since Feynman graphs were evaluated at zero eWth 2o being the bare gauge fixing parameter. The bare

ternal momenta. The reason comes from the graph shown fropagator for the gauge field is given by

Fig. 1. When evaluated at zero external momenta this graph 4 KK Kk

gives zero due to the structure of the CS gauge field propa- D (k)= Z2THo) o L_go €ijk Rk

gator. On the other hand, in the same scaling this graph is . K2+g?l K2 k2

infrared divergent if no CS mass is included in the action.

Thus, it is not legitimate to perform the zero CS mass limit in ag gé kik;

the scaling considered in Ref. 17 as observed by the authors + A1 + F ? ' ©)

themselves. There are many other RG studies of bosonic CS

models in the literature but thE? term is almost always wheregy=4muqby.

absent® The presence of such a term is crucial in order to  Now we write the renormalized action as a sumSf

obtain the flow diagram of Ref. 16. Moreover, it is desirable+ S where S’ is the same as$ with the bare quantities

to recover the usual GL model in the limit of zero CS massreplaced by renormalized oné# our notation it corre-
In this paper we consider further the topological model ofsponds to drop the zergesS is the counterterm part which

Refs. 16,17, performing the calculation at the critical pdint. is given by

We consider two different approximations. In a first step

(Sec. I) we perform a one-loop calculation of the RG func- 55:f 43x

tions assuming that the same scale holds for both the order

parameter and the gauge field. In this context we find the

following main features(1) For the CS coupling smaller

than a certain critical value there are no charged fixed points;

(2) There exists a interval of CS couplings such that two 0 2 1

charged fixed points are found, corresponding, respectively, o AR R a” R\2

to the tricritical and second-ordgiinfrared stable fixed i 2(20 DA-(VXA)+ 2a (V-A7, @

points. In this interval it is possible to find respectable values ) ) ) ~ R

for the » exponent but not for the; exponent, eventually Where the renormalized fields are given Ay= VZaA and

violating the scaling relationsi3) For larger CS coupling, %o= \/Z,,z//. We shall perform our caIcuIat|o'ns at the critical

outside the interval mentioned in poif2), the region of Point and therefore=0. Also, we choose, in such away

first-order behavior is lost since the tricritical fixed point &S to cancel the tadpole graphs. The renormalization condi-

sists in improving upon the one-loop result of Sec. Il by

(Z,~D|(V—ieA) >+ (roZ,—1)|¢|?

u Z,—1 .
(7 _ 4, “p 2
+2(Zu Dyl +—87m (VXA)

distinguishi (k) le-0=0, ()
istinguishing the scales of the order parameter and the W k=0

gauge field. In this approximation we follow an idea of Her-

but and Tesanovic in order to relate both scales and obtain in &Fiﬁ K B

this way the RG flow. In this case we have the tricritical and k2 ( ”kz:pz_ 1, ©®

second-order fixed points even in the limit of zero CS cou-

pling, consistent with the fixed-point structure of the conven- 1 9 1

tional GL model. However, once again the tricritical fixed = —[PIK) T2 |2 p2= ——), 7
point becomes unphysical for the CS coupling larger than a 2 9k? ) P Amp
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19 . 1 where 7, is the anomalous dimension for the scalar field
> %[Pﬂ(k)rg}iukz:pz: - (8  defined by
dinz,
J (2) ny=P dp (18
ﬁ(eijkkkFA,ji(k)”kz:pz:_291 C)

while 7, is the anomalous dimension for the gauge field

which is defined b
T (kg ka ks ka)lsp=3Up, (10 Y
whereu is a dimensionless coupling and S.P. denotes the _dinZ, 19
symmetrical point which we take as being given by A= P dp (19)
_ p? w is a function ofg which will be written later, together with
Ka-Kp=(46ap— 1)1' (12) the explicit expressions of the corresponding anomalous di-

- N mensions. Before doing this, let us discuss some important
P1(k) andP}' (k) are the transverse and longitudinal projec-points concerning the general structure of the above flow
tions given, respectively, byP}(k)=¢;—kik;/k® and equations. First, we note thai does not appear in the flow
P! (k)=k; K; /K?. Note that in the above renormalization con- equations for the couplings g, andu. This is because the
ditions the gauge coupling and the scalar coupling are fixeflow equation foru is given up to one-loop order by
at the same momentum scale.

The renormalized couplings will depend on the momen- du fu
tum scalep and theg functions are defined through deriva- pd_p == apt 16 (20)
tives of the couplings with respect ton Note that in order
to preserve the 2) symmetry of the four-point function, we Thus, the flow diagram is completely determined by the cou-
must consider the Feynman graphs with all the external moplingsf, g, andu. This means that we do not need to know
menta incoming at the vertices. If we proceed otherwise, thathe expression ofj, . Another important point concerns the
is, if we choose a convention which two external lines arerenormalization ofg. It is a known fact in topological field
incoming while the other two are outgoing, then the corre-theory that the CS mass does not renormalize at all orders in
sponding four-point function is not symmetric when using perturbation theory and for the model we are considering it
the above symmetrical point. This is easily seen by performean be verified by explicit calculation up to two lools.
ing a one-loop calculation in the uncharged model witNO  Thus,Z,=1 and#=2Z,6,, which implies Eq.(16).
symmetry. The resulting four-point functidr"n(a‘gws (the sub- The most important point concerning the above flow
indices are color indicgsis not proportional to the @N) equations is related to the gauge dependence. It can be
symmetric  tensor &,56,s5% 04,055+ 80505,)/3 if the  shown that thes function for the gauge couplings are gauge
graphs are not evaluated with the convention that all théndependent in a minimal subtraction sche%maowever,nw
external momenta are incoming. is gauge dependent. Wheyy, is evaluated at the fixed point
The Ward identities imply the exact relatiodsZ,=1, it gives then exponent. Note that exponents for the super-
e’=e3Z,, andag=aZ,, whereZ, is the charge renormal- conducting transition should be evaluated at the infrared
ization. Let us define the following dimensionless gauge coustable charged fixed point, if we assume that it exists. At the

plings, é2=e2/p, H= olp, f=47TMé2, andg=477,u3’. The superconducting fixed point we must havg=1. This

flow equations are given up to one-loop order by means that the fixed-point value of must bea=0, the
Landau gauge. Since at the neighborhood of the supercon-
df f2 ducting fixed pointe flows to the Landau gauge, critical
pd_p =—f+ 16’ (12 exponents are evaluated fer= 0 and we shall fix it from the
very beginning, as is customary in the literature.
dg f The explicit analytical expressions gf, andw are given
p—=|72"1]9, (13) by
dp \16
da B f|37r m 3mg? i3 3
Py =" T, (14) W dmlagz 2 4 9
~ 3 3g? 1—g2)
d&? ) (239
b= (7a—1)&, (15 (2 2 13 )ama'é 29 ) @
dp 9
do : 3 4 +8 t r( + 3 + 3 5)
= (pa— w=|—-———— arcta ——=
u 5 o rﬁl—gz) m 57 1
— = — —u24+ —1f2 X arcta — =+ = 22
Pgp = (27— Dut gui+ 2%, (17 29 | "2z 4 g 22
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FIG. 2. Flow diagram fog* =0.48.
FIG. 3. Plot ofv as a function ofg* for g*=0.42.
The functionw and the anomalous dimension have well
defined limits agg— 0, which correspond to the limit of the T (ke ko =k —ko) s p=1, (24)

conventional GL model. Ag—0, we find »— —f/4 while . . . —
©—3/2. The opposite limitg—os, leads to the expected which will determine the renormalization constant gy,

(2) i ;
decoupling of the gauge and scalar degrees of freedom smcrdl?ndmed byZl,,l Asf lasualz tk;e v exporéerfnt |sdgt|)ven by the
both  and  tend to zero in this limit. The? term in Eq.  Xed-point value of the RG function,, defined by

(17) comes from the graph shown in Fig. 1. As mentioned in 1 d 7(2)
the introduction, this graph is zero wher-0. In the scaling =24 p—In( ) (25)
considered in this paper this graph survives sipee0 and Py dp 1 Z,
we can recover thg—0 limit. We find
The charged fixed points are given by =16, g* arbi-
trary and 2_ dIn zP
7]1/; :p dp
4 \/ , 160
—§|:1_27]i (277_1) _?0) y (23) u (3_492)(3+4g2) \/K
=——— arctar{ —)
where = 7,(f*,g*) andw* = w(g*). We have that? is 4 A4m 8A¥2
real only forg*>gcl~0 42, which corresponds to the con- 34 402 3-4 3— 402
dition for the existence of charged fixed points in our model. + 9 arctar( J ) J
The flow diagram is shown in Fig. 2 fa* =0.48. The left 24/3g° 4439 4\/592
charged fixed point, corresponding td , is the so-called 2 2
tricritical fixed point. The tricritical fixed point is attractive + (3-409)(3+40%) (26)
over a line intercepting the origin called the tricritical line. 8gA ’
The tricritical line separates the regions of first- and second- h
order phase transitions. The right charged fixed point, correl/Nere
sponding tau? , is infrared attractive and describes the phys- g2
ics of second-order phase transitions in superconductors. A= g4+—+—. (27)

Note also in the flow diagram the Gaussian andXfefixed 16

points. Another interesting point is that there exists anotheat one-loop order we obtain

critical value ofg*, g§2~0.81, such that f0|g*>g:§2 the

tricritical fixed point is in the region of the planef defined v~ E( 1— E 7@+ E 7 ) (28)
by u<0. In this region the tricritical fixed point lost its vo2 27 2

physical meaning. It results that the only charged fixed po'”hgure 3 shows a plot of the exponenas a function ofy* .

is the infrared one. Consequently, fgf >g, only second-  Note that the plot is made f@* =g} which corresponds to

order behavior seems to be possible. the region where charged fixed pomts should exist. We ob-
Let us evaluate the critical exponents for the SUPErcongq e that ag* increases the value oftends asymptotically
ducting transition in function og* >gcl. It is sufficientto o 6, which corresponds approximately to ¥ value for
evaluaten andv since the other exponents are obtained fromthe pure scalar model in the one-loop approximation at fixed
these ones via scaling relationg.is given simply by evalu- dimension. This is an expected result since gor the
ating n,, at the fixed point. The evaluation of however, is gauge modes decouple from the scalar modes. This result
more involved. In the cr|t|cal theory this exponent is evalu-can be verified directly from the above RG functions by ex-
ated by considering &'y insertion in the two-point func- panding forg large.
tion. Thus, we must compute the one-particle irreducible In recent years it has been established thattesponent
function Ffbl'z) subjected to the renormalization condition:  for the (nontopologicgl superconducting transition is given
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by v=ryy~0.671°89 Thus, we are tempted to search for g i % R Yy
what value ofg* we havev=vyy. One obtains that Vyb b b s
* e * | A S s
~0.67 forg*~0.776. This is smaller thag? and we have VR R | | /7 e
. . i o2 . osf VMNNNNANDNYV L S S e
still the region of first-order transition in the flow diagram. ] VAYNNNNNNY [ e
Unfortunately, a pathological behavior arises for this value p ARRRRRRANNE TS
of g*. The trouble comes from the exponent. Indeed, we u 7 ///’//////T\\\N
have thatp~ —2.47<—1 while we know from the scaling [ 7L N S
. ops . . A [ —
relations that the conditioy>—1 must be fulfilled. This 0.3 ; ?;;;;;;; ; % Qit\\\\N
result is probably an artifact of our one-loop perturbation 117777777 7 [ 8 NN S
theory. Another related problem is that the above results fail K ; ?;;;?; ; ; ; % QEE:::::
in describing a flow diagram with charged fixed points in the 77777777 7 N N N
o A . SIS N
limit g—0. In this limit our flow diagram resembles to that g 0 AANC NS
one obtained by Halperiat al. in the 19709Ref. 4 and, as v O 1 FE) 3 R 5

mentioned in the Introduction, their result is an artifact of the _ _
€ expansion. Therefore, we should improve our perturbation FIG. 4. Flow diagram for the nontopological model.

theory in order to bypass all these difficulties. {11

point - We choose the tricritical fixed point because there
are good numerical estimates ofavailable?®?! If ;. de-
Il IMPROVED RG RESULTS notes the value ok at the tricritical fixed point we obtain

thatc is determined by the following equation:
As we have said in the last section, tBdunctions for the

topological GL model have a well-defingd- 0 limit. How- , CH+8— Jc?+16c—176
ever, we have seen that in this limit no charged fixed points Kirie ™ 40 : (32)

exist. Moreover, they exponent could attain unphysical val- o )
ues which violate the scaling relations. The trouble is thatVe take xyc~0.424/2 which is the value obtained from
there are in fact two fundamental length scales in this probMonte Carlo calculation® Thus, Eq.(31) gives c~27.78.
lem, namely, the correlation lengthand the magnetic-field For this value ot we have the flow diagram shown in Fig. 4
penetration depthy. The ¢ is related to the scaling of the for the nontopological model. Figure 5 shows the detail of
scalar field whileX is related to the scaling of the gauge the region near the tricritical line which is not easily seen in
field. Thus, in principle, the renormalization conditions for Fig. 4 ) . o

the gauge coupling should be fixed at a different point of the The RG functionw, in the g—0 limit is given by

scalar coupling. Since there is a relation between the lengths 1 U f(1 2+43

& and A, we must have also a relation between the corre- v~ 14+ —— _<__ L
sponding renormalization points. We develop this more gen- vo2 2 3

eral point of view by using a simple method suggested reye have the following result for the critical exponents:
cently by Herbut and Tesanowvit.It consists in fixing the

. (32

renormalization condition Eq6) at the point given byk? v~0.676, (33
=p?/c?, ¢ giving in this way the ratio between the two
scales of the problem. If we use the same reasoning here we n~—0.14, (34

obtain the followingg functions in theg—0 limit: a result in good agreement with the expec¥d behavior.

df 2 In Ref. 11 the valuer~0.53 was obtained by using @
p-—=—f+ C_' (299  corresponding tacyic= 0.8//2 which is determined from the
dp 16 lattice dual modef! However, they obtained~0.62 for
kuic=0.42A/2. It is possible to improve this value obtained
pg_gz(zm_ 1u+ §u2+ gfz’ (30) in Ref. 11 by using directly Eq25) without expanding it, to
1-:///////////////// 7/
where 7, =—f/4. Note that we have not exactly the sapie B A A Y VN
functions as in Ref. 11. This is due to the fac_:t that'we used Z::j;‘iji;j???? ? 5 / { { < {
the _conventlon that aII_externaI mome_nta are incoming at_ the I Y < ] { NN
vertices. Our choice is more usual in the field theoretical I A
. . B I A e e
literature and has the advantage that corresponding crossed ‘¢ ~
graphs have the same value at the symmetrical point. How- ¢ ::::’;t?‘1\> ;jjjjj::‘j:::
ever, these differences in the conventions do not change ap- jh~~N\\ 1/ /7~ oo o
preciably the physical results like the values of the critical :\'Qk } } A
exponents. NS e
The value ofc can be fixed by demanding that, if charged Ay Y L
fixed points do exist, they should happen at the same critical ) } [
scale. At one-loop this is equivalent to demanding that the . W S 3 53 o5

Ginzburg parametek=u/2f should be invariant along the
RG trajectory connecting the origin and the tricritical fixed FIG. 5. Detail of Fig. 4 in the region near the tricritical line.
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FIG. 6. Flow diagram for the topological model with improved

. FIG. 8. Plot of the exponent as a function ofy*.
one-loop calculations fog* =0.48. P o

obtain the better value~0.67, in close agreement with our The main difference is that the vertical scale is compressed

result?? This XY value has also been obtained in Ref. 8. It isand the most remarkable feature is the fact thas now

worth mentioning that nonperturbative RG calculations bymuc.h 'Iess sensible to thg value@, showing only a small
Bergerhoffet al 2 gives »~0.53 in a certain approximation deviation frgT theXY scal_lng. For instance, the exponents
corresponding to a truncation of the average actiba Leg- and for g* =0.48 are given by

endre transform of the Wilsonian effective acticat ||*.
Truncation af |2 gives the improved resuli~0.58.

Let us come back now to the case of nonvanishing v=0.628, (36
Since theg coupling is associated to the gauge degrees of
freedom its momentum scale should be rescaled.3hus, p~—011 37

in addition to Eqs(17) and(29) we have

Of course, we have still the samge—o limit with exponents
p%=g< 1+ C_f> (35) n=0 andv=0.6, corresponding to the decoupled situation.
dp 16/°
IV. DISCUSSION

We keep the same value oin order to preserve the features  The main aim of this paper is to initiate a careful study of
of the g— 0 limit. Now we have charged fixed points even 3 topological GL model from the point of view of critical
wheng=0 and therefore there is rgf . On the other hand, phenomena. For this reason we have concentrated the efforts
we have stillg’gz, We verified thag’gz is the same as before, on the RG flow and the evaluation of critical exponents. The
that is, 9’52”0-81- This means that fog*>0.81 we have results show that the topological coupling is a good control

. , . parameter with respect to the fixed point structure. For in-
only second-order behavior. In Fig. 6 we show the flow diagiance, we have seen that the region of first-order transition
gram for g* =0.48 with the detail of the ftricritical region

- : is crunched as the topological coupling is increased and
shown n Fig. 7. In Fig. 8 we plot the exponents a func-  gyentyally the type-I behavior is lost. An interesting point is
tion of g* in the improved one-loop calculation. Note that hat the; exponent does not fluctuate very much around the
the shape of the plot is qualitatively the same as in Fig. 3y v yalue.

Besides superconductivity, the topological GL model may

WSS L L] ( / be useful in other physical contexts. For example, it can be
S A R R R R R applied in the study of soft materials like the chiral liquid
B A ? / { { i NAAN crystals?® In this case the gauge field should be thought as a
B Ty AN | { ARANENENCRCNCIN director field and the CS term is used in order to introduce

p St/ R SN the chirality for the constituting molecules.
0 Another interesting problem is the physics of the chiral
N RN }?;ﬁj:j,»,»,»,ﬁﬁ., spin state. This state arises when one considers the Hamil-
oSNNS tonian for the Heisenberg antiferromagnet whose spins inter-
k? } [AAssttiariatareraaa act not only through nearest-neighbors interaction, but also
NVl through a next-nearest-neighbor interactiof The next-
o } Y nearest-neighbor interaction frustrates théeNstate and
;ﬁﬁjﬁjﬁj’)/“’“”"”’”’”“””"" generates a mean-field solution corresponding to a disor-
v S R N B o dered spin state. The most stable configuration corresponds

FIG. 7. Detail of Fig. 6 in the region near the tricritical line.

to the so-called chiral spin state. The continuum effective
theory is obtained by computing the fluctuations around such
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