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Critical properties of the topological Ginzburg-Landau model
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We consider a Ginzburg-Landau model for superconductivity with a Chern-Simons term added. The flow
diagram contains two charged fixed points corresponding to the tricritical and infrared stable fixed points. The
topological coupling controls the fixed-point structure and eventually the region of first-order transitions
disappears. We compute the critical exponents as a function of the topological coupling. We obtain that the
value of then exponent does not vary very much from theXY value, nXY50.67. This shows that the
Chern-Simons term does not affect considerably theXY scaling of superconductors. We discuss briefly the
possible phenomenological applications of this model.@S0163-1829~99!06901-5#
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I. INTRODUCTION

The Ginzburg-Landau model~GL! was introduced almos
half a century ago1 as a phenomenological model for supe
fluidity and superconductivity. In its one-component ord
parameter version it has been used with remarkable suc
as a statistical mechanics model for the critical phenom
of systems lying in the same universality class as the Is
model.2 In its N-component version coupled to Abelia
gauge fields it has been used as a model for supercondu
ity and liquid crystals.3 However, in this last situation thee
expansion, which works very well in the nongauged versi
seems to be insufficient to describe unambiguously the c
cal properties of the model.4,5 Only in the large-N limit does
the e expansion give consistent results.4 The trouble is the
absence of a second-order~infrared stable! fixed point in the
flow diagram. This result is physically correct only in th
extreme type-I regimeu/e2!1 ~hereu is the quartic scalar
self-coupling ande is the charge!, where we expect a wea
first-order phase transition. This regime is also well d
scribed by the fluctuation-corrected mean-field analysis
Halperin et al.4 The weak first-order transition has bee
probed experimentally in certain classes of liquid crysta
where essentially the same GL model holds.6 For the ex-
treme type-II region (u/e2@1), a second-order fixed point i
expected. Indeed, this result follows from numerical stud
performed in a lattice dual GL model.7 Therefore, the pre-
diction of a first-order transition even in the type-II regim
seems to be an artifact of thee expansion. More recen
works support also this point of view.8,10,11,9,15Also, it has
been shown that the renormalization group~RG! in a fixed
dimension approach is more appropriate.8,10,11The flow dia-
gram in theu2e2 plane exhibits in general four fixed point
Gaussian and superfluid~or XY), both uncharged, and th
PRB 590163-1829/99/59~1!/554~7!/$15.00
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tricritical and superconducting which are charged fix
points. The Gaussian fixed point is trivial and describes
mean-field critical behavior of an O~2! model~we shall work
with N52). The superfluid fixed point describes thel tran-
sition in He4 and lies in the same class of universality as t
XY model. The tricritical fixed point is over a line, calle
tricritical line, which separates the regions of first- a
second-order phase transition. This fixed point is attrac
along the tricritical line but repulsive in the direction near
parallel to theu axis. Finally, the superconducting fixed poi
is a charged infrared stable fixed point and describe
second-order superconducting phase transition. Berger
et al.10 obtained this flow diagram using Wilson’s RG~Ref.
12! in a nonperturbative version calledexact renormalization
group.13 They used the background field formalism to co
trol gauge invariance which is in principle violated due to t
presence of the cutoff~further discussions on this subtl
point in Wilson’s RG can be found in Ref. 14!. This flow
diagram has been also obtained by Herbut and Tesano11

using a simpler method. They performed a one-loop calcu
tion in a fixed dimension approach.

Recently a flow diagram with qualitatively the same stru
ture has been also obtained for a GL model with a topolo
cal Chern-Simons~CS! term by Malbouissonet al.16 Their
analysis was performed using Wilson’s RG in perturbat
form, which is not manifestly gauge invariant due to t
cutoff integrals. Due to the presence of a CS term, an int
sically three-dimensional object, their calculations were p
formed in d53 andN52, resulting therefore in an uncon
trolled approximation since there is no small parameter ae
or 1/N. The same type of model has been considered ea
by Kleinert and Schakel17 using a different scaling. They
performed a one-loop calculation of critical exponents. Ho
ever, their scaling did not allow for a consistent zero C
554 ©1999 The American Physical Society
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PRB 59 555CRITICAL PROPERTIES OF THE TOPOLOGICAL . . .
mass limit since Feynman graphs were evaluated at zero
ternal momenta. The reason comes from the graph show
Fig. 1. When evaluated at zero external momenta this gr
gives zero due to the structure of the CS gauge field pro
gator. On the other hand, in the same scaling this grap
infrared divergent if no CS mass is included in the actio
Thus, it is not legitimate to perform the zero CS mass limit
the scaling considered in Ref. 17 as observed by the aut
themselves. There are many other RG studies of bosonic
models in the literature but theF2 term is almost always
absent.18 The presence of such a term is crucial in order
obtain the flow diagram of Ref. 16. Moreover, it is desirab
to recover the usual GL model in the limit of zero CS ma

In this paper we consider further the topological model
Refs. 16,17, performing the calculation at the critical poin2

We consider two different approximations. In a first st
~Sec. II! we perform a one-loop calculation of the RG fun
tions assuming that the same scale holds for both the o
parameter and the gauge field. In this context we find
following main features:~1! For the CS coupling smalle
than a certain critical value there are no charged fixed poi
~2! There exists a interval of CS couplings such that t
charged fixed points are found, corresponding, respectiv
to the tricritical and second-order~infrared stable! fixed
points. In this interval it is possible to find respectable valu
for the n exponent but not for theh exponent, eventually
violating the scaling relations;~3! For larger CS coupling,
outside the interval mentioned in point~2!, the region of
first-order behavior is lost since the tricritical fixed poi
assumes an unphysical value. The second step~Sec. III! con-
sists in improving upon the one-loop result of Sec. II
distinguishing the scales of the order parameter and
gauge field. In this approximation we follow an idea of He
but and Tesanovic in order to relate both scales and obta
this way the RG flow. In this case we have the tricritical a
second-order fixed points even in the limit of zero CS co
pling, consistent with the fixed-point structure of the conve
tional GL model. However, once again the tricritical fixe
point becomes unphysical for the CS coupling larger tha

FIG. 1. Graph contributing to thef 2 term in theb function foru.
The dashed lines represent the gauge field propagator.
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certain critical value. In this case we obtain that all the cr
cal exponents have respectable physical values. Moreo
then exponent as a function of the topological coupling do
not deviate very much fromXY scaling. Finally, in Sec. IV
we discuss our results and the possible applications.

II. MODEL AND RG RESULTS

Our starting point is the following action:

S5E d3xF u~¹2 ie0AW 0!c0u21r 0uc0u21
u0

2
uc0u4

1
1

8pm0
~¹3AW 0!21 i

u0

2
AW 0•~¹3AW 0!G1Sg f , ~1!

where the subindex 0 denotes bare quantities. The ab
action is a standard GL model with a CS term added.Sg f is
the gauge fixing term which is given by

Sg f5E d3x
1

2a0
~¹•AW 0!2, ~2!

with a0 being the bare gauge fixing parameter. The b
propagator for the gauge field is given by

Di j ~k!5
4pm0

k21g0
2F d i j 2

kikj

k2
2g0

e i jkkk

k2

1
a0

4pm0
S 11

g0
2

k2D kikj

k2 G , ~3!

whereg054pm0u0 .
Now we write the renormalized action as a sum ofS8

1dS where S8 is the same asS with the bare quantities
replaced by renormalized ones~in our notation it corre-
sponds to drop the zeroes!. dS is the counterterm part which
is given by

dS5E d3xF ~Zc21!u~¹2 ieAW !cu21~r 0Zc2r !ucu2

1
u

2
~Zu21!ucu41

Zm21

8pm
~¹3AW !2

1 i
u

2
~Zu21!AW •~¹3AW !1

Za21

2a
~¹•AW !2G , ~4!

where the renormalized fields are given byAW 05AZAAW and
c05AZcc. We shall perform our calculations at the critic
point and thereforer 50. Also, we chooser 0 in such a way
as to cancel the tadpole graphs. The renormalization co
tions for the renormalized vertex functions are given by

Gc
~2!~k!uk25050, ~5!

]Gc
~2!

]k2
~k!uk25p251, ~6!

1

2

]

]k2
@PT

i j ~k!GA, j i
~2! #uk25p25

1

4pm
, ~7!
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1

2

]

]k2
@PL

i j ~k!GA, j i
~2! #uk25p25

1

a
, ~8!

]

]k2
~e i jkkkGA, j i

~2! ~k!!uk25p2522u, ~9!

Gc
~4!~k1 ,k2 ,k3 ,k4!uS.P.53up, ~10!

where u is a dimensionless coupling and S.P. denotes
symmetrical point which we take as being given by

ka•kb5~4dab21!
p2

4
. ~11!

PT
i j (k) andPL

i j (k) are the transverse and longitudinal proje
tions given, respectively, byPT

i j (k)5d i j 2kikj /k2 and
PL

i j (k)5kikj /k2. Note that in the above renormalization co
ditions the gauge coupling and the scalar coupling are fi
at the same momentum scale.

The renormalized couplings will depend on the mome
tum scalep and theb functions are defined through deriva
tives of the couplings with respect to lnp. Note that in order
to preserve the O~2! symmetry of the four-point function, we
must consider the Feynman graphs with all the external
menta incoming at the vertices. If we proceed otherwise,
is, if we choose a convention which two external lines a
incoming while the other two are outgoing, then the cor
sponding four-point function is not symmetric when usi
the above symmetrical point. This is easily seen by perfo
ing a one-loop calculation in the uncharged model with O~N!
symmetry. The resulting four-point functionGabgd

(4) ~the sub-
indices are color indices! is not proportional to the O~N!
symmetric tensor (dabdgd1dagdbd1daddbg)/3 if the
graphs are not evaluated with the convention that all
external momenta are incoming.

The Ward identities imply the exact relationsZeZA51,
e25e0

2ZA , anda05aZA , whereZe is the charge renormal
ization. Let us define the following dimensionless gauge c
plings, ê25e2/p, û5u/p, f 54pmê2, andg54pmû. The
flow equations are given up to one-loop order by

p
d f

dp
52 f 1

f 2

16
, ~12!

p
dg

dp
5S f

16
21Dg, ~13!

p
da

dp
52hAa, ~14!

p
dê2

dp
5~hA21!ê2, ~15!

p
dû

dp
5~hA21!û, ~16!

p
du

dp
5~2hc21!u1

5

8
u21

v

4p
f 2, ~17!
e

-

d

-

o-
at
e
-

-

e

-

where hc is the anomalous dimension for the scalar fie
defined by

hc5p
d ln Zc

dp
, ~18!

while hA is the anomalous dimension for the gauge fie
which is defined by

hA5p
d ln ZA

dp
. ~19!

v is a function ofg which will be written later, together with
the explicit expressions of the corresponding anomalous
mensions. Before doing this, let us discuss some impor
points concerning the general structure of the above fl
equations. First, we note thathA does not appear in the flow
equations for the couplingsf, g, andu. This is because the
flow equation form is given up to one-loop order by

p
dm

dp
52hAm1

f m

16
. ~20!

Thus, the flow diagram is completely determined by the c
plings f, g, andu. This means that we do not need to kno
the expression ofhA . Another important point concerns th
renormalization ofu. It is a known fact in topological field
theory that the CS mass does not renormalize at all order
perturbation theory and for the model we are considerin
can be verified by explicit calculation up to two loops.18

Thus,Zu51 andu5ZAu0 , which implies Eq.~16!.
The most important point concerning the above flo

equations is related to the gauge dependence. It can
shown that theb function for the gauge couplings are gau
independent in a minimal subtraction scheme.2 However,hc
is gauge dependent. Whenhc is evaluated at the fixed poin
it gives theh exponent. Note that exponents for the sup
conducting transition should be evaluated at the infra
stable charged fixed point, if we assume that it exists. At
superconducting fixed point we must havehA51. This
means that the fixed-point value ofa must bea50, the
Landau gauge. Since at the neighborhood of the super
ducting fixed pointa flows to the Landau gauge, critica
exponents are evaluated fora50 and we shall fix it from the
very beginning, as is customary in the literature.

The explicit analytical expressions ofhc andv are given
by

hc52
f

4pF 3p

4g2
1

p

2
2

3pg2

4
13g2

3

g

2S 3

2g2
211

3g2

2 D arctanS 12g2

2g D G , ~21!

v5S 2
3

2g4
2

4

g2
18D arctanS 1

2gD1S 3

2g4
1

3

g2
2

5

2D
3arctanS 12g2

2g D1
p

2g2
2

5p

4
1

1

g
. ~22!
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The functionv and the anomalous dimensionh have well
defined limits asg→0, which correspond to the limit of the
conventional GL model. Asg→0, we findh→2 f /4 while
v→3p/2. The opposite limit,g→`, leads to the expecte
decoupling of the gauge and scalar degrees of freedom s
both h andv tend to zero in this limit. Thef 2 term in Eq.
~17! comes from the graph shown in Fig. 1. As mentioned
the introduction, this graph is zero whenp50. In the scaling
considered in this paper this graph survives sincepÞ0 and
we can recover theg→0 limit.

The charged fixed points are given byf * 516, g* arbi-
trary and

u6* 5
4

5F122h6A~2h21!22
160

p
v* G , ~23!

whereh5hc( f * ,g* ) andv* 5v(g* ). We have thatu6* is
real only forg* >gc1

* '0.42, which corresponds to the co

dition for the existence of charged fixed points in our mod
The flow diagram is shown in Fig. 2 forg* 50.48. The left
charged fixed point, corresponding tou2* , is the so-called
tricritical fixed point. The tricritical fixed point is attractive
over a line intercepting the origin called the tricritical lin
The tricritical line separates the regions of first- and seco
order phase transitions. The right charged fixed point, co
sponding tou1* , is infrared attractive and describes the phy
ics of second-order phase transitions in superconduc
Note also in the flow diagram the Gaussian and theXY fixed
points. Another interesting point is that there exists anot
critical value of g* , gc2

* '0.81, such that forg* .gc2
* the

tricritical fixed point is in the region of the planeu f defined
by u,0. In this region the tricritical fixed point lost its
physical meaning. It results that the only charged fixed po
is the infrared one. Consequently, forg* .gc2

* only second-

order behavior seems to be possible.
Let us evaluate the critical exponents for the superc

ducting transition in function ofg* .gc1
* . It is sufficient to

evaluateh andn since the other exponents are obtained fr
these ones via scaling relations.h is given simply by evalu-
atinghc at the fixed point. The evaluation ofn, however, is
more involved. In the critical theory this exponent is eva
ated by considering ac†c insertion in the two-point func-
tion. Thus, we must compute the one-particle irreduci
function Gc

(1,2) subjected to the renormalization condition:

FIG. 2. Flow diagram forg* 50.48.
ce
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Gc
~1,2!~k1 ,k2 ;2k12k2!uS.P.51, ~24!

which will determine the renormalization constant ofc†c,
denoted byZc

(2) . As usual,2 the n exponent is given by the
fixed-point value of the RG functionnc defined by

1

nc
521p

d

dp
lnS Zc

~2!

Zc
D . ~25!

We find

hc
~2![p

d ln Zc
~2!

dp

52
u

4
2

f

4pF ~324g2!~314g2!

8D3/2
arctanSAD

g D
1

314g2

2A3g2
arctanS 324g2

4A3g
D 2p

324g2

4A3g2

1
~324g2!~314g2!

8gD G , ~26!

where

D5g41
g2

2
1

9

16
. ~27!

At one-loop order we obtain

nc'
1

2S 12
1

2
hc

~2!1
1

2
hcD . ~28!

Figure 3 shows a plot of the exponentn as a function ofg* .
Note that the plot is made forg* >gc1

* which corresponds to

the region where charged fixed points should exist. We
serve that asg* increases the value ofn tends asymptotically
to 0.6, which corresponds approximately to theXY value for
the pure scalar model in the one-loop approximation at fix
dimension. This is an expected result since forg→` the
gauge modes decouple from the scalar modes. This re
can be verified directly from the above RG functions by e
panding forg large.

In recent years it has been established that then exponent
for the ~nontopological! superconducting transition is give

FIG. 3. Plot ofn as a function ofg* for g* >0.42.
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by n5nXY'0.67.19,8,9 Thus, we are tempted to search f
what value ofg* we haven5nXY . One obtains thatn
'0.67 forg* '0.776. This is smaller thangc2

* and we have

still the region of first-order transition in the flow diagram
Unfortunately, a pathological behavior arises for this va
of g* . The trouble comes from theh exponent. Indeed, we
have thath'22.47,21 while we know from the scaling
relations that the conditionh.21 must be fulfilled. This
result is probably an artifact of our one-loop perturbati
theory. Another related problem is that the above results
in describing a flow diagram with charged fixed points in t
limit g→0. In this limit our flow diagram resembles to th
one obtained by Halperinet al. in the 1970s~Ref. 4! and, as
mentioned in the Introduction, their result is an artifact of t
e expansion. Therefore, we should improve our perturba
theory in order to bypass all these difficulties.

III. IMPROVED RG RESULTS

As we have said in the last section, theb functions for the
topological GL model have a well-definedg→0 limit. How-
ever, we have seen that in this limit no charged fixed po
exist. Moreover, theh exponent could attain unphysical va
ues which violate the scaling relations. The trouble is t
there are in fact two fundamental length scales in this pr
lem, namely, the correlation lengthj and the magnetic-field
penetration depth,l. The j is related to the scaling of th
scalar field whilel is related to the scaling of the gaug
field. Thus, in principle, the renormalization conditions f
the gauge coupling should be fixed at a different point of
scalar coupling. Since there is a relation between the len
j and l, we must have also a relation between the cor
sponding renormalization points. We develop this more g
eral point of view by using a simple method suggested
cently by Herbut and Tesanovic.11 It consists in fixing the
renormalization condition Eq.~6! at the point given byk2

5p2/c2, c giving in this way the ratio between the tw
scales of the problem. If we use the same reasoning her
obtain the followingb functions in theg→0 limit:

p
d f

dp
52 f 1

c f2

16
, ~29!

p
du

dp
5~2hc21!u1

5

8
u21

3

8
f 2, ~30!

wherehc52 f /4. Note that we have not exactly the sameb
functions as in Ref. 11. This is due to the fact that we u
the convention that all external momenta are incoming at
vertices. Our choice is more usual in the field theoreti
literature and has the advantage that corresponding cro
graphs have the same value at the symmetrical point. H
ever, these differences in the conventions do not change
preciably the physical results like the values of the criti
exponents.

The value ofc can be fixed by demanding that, if charge
fixed points do exist, they should happen at the same crit
scale. At one-loop this is equivalent to demanding that
Ginzburg parameterk5u/2f should be invariant along th
RG trajectory connecting the origin and the tricritical fixe
e

il

n

ts

t
-

e
hs
-
-
-

we

d
e
l
ed
-
p-
l

al
e

point.11 We choose the tricritical fixed point because the
are good numerical estimates ofk available.20,21 If k tric de-
notes the value ofk at the tricritical fixed point we obtain
that c is determined by the following equation:

k tric
2 5

c182Ac2116c2176

40
. ~31!

We take k tric'0.42/A2 which is the value obtained from
Monte Carlo calculations.20 Thus, Eq.~31! gives c'27.78.
For this value ofc we have the flow diagram shown in Fig.
for the nontopological model. Figure 5 shows the detail
the region near the tricritical line which is not easily seen
Fig. 4.

The RG functionnc in the g→0 limit is given by

nc'
1

2F11
u

8
2

f

4S 1

2
2

21A3

3 D G . ~32!

We have the following result for the critical exponents:

n'0.676, ~33!

h'20.14, ~34!

a result in good agreement with the expectedXY behavior.
In Ref. 11 the valuen'0.53 was obtained by using ac
corresponding tok tric50.8/A2 which is determined from the
lattice dual model.21 However, they obtainedn'0.62 for
k tric50.42/A2. It is possible to improve this value obtaine
in Ref. 11 by using directly Eq.~25! without expanding it, to

FIG. 4. Flow diagram for the nontopological model.

FIG. 5. Detail of Fig. 4 in the region near the tricritical line.
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obtain the better valuen'0.67, in close agreement with ou
result.22 This XY value has also been obtained in Ref. 8. It
worth mentioning that nonperturbative RG calculations
Bergerhoffet al.10 givesn'0.53 in a certain approximation
corresponding to a truncation of the average action~the Leg-
endre transform of the Wilsonian effective action! at ucu4.
Truncation atucu8 gives the improved resultn'0.58.

Let us come back now to the case of nonvanishingg.
Since theg coupling is associated to the gauge degrees
freedom its momentum scale should be rescaled byc. Thus,
in addition to Eqs.~17! and ~29! we have

p
dg

dp
5gS 211

c f

16D . ~35!

We keep the same value ofc in order to preserve the feature
of the g→0 limit. Now we have charged fixed points eve
wheng50 and therefore there is nogc1

* . On the other hand

we have stillgc2
* . We verified thatgc2

* is the same as before

that is, gc2
* '0.81. This means that forg* .0.81 we have

only second-order behavior. In Fig. 6 we show the flow d
gram for g* 50.48 with the detail of the tricritical region
shown in Fig. 7. In Fig. 8 we plot the exponentn as a func-
tion of g* in the improved one-loop calculation. Note th
the shape of the plot is qualitatively the same as in Fig

FIG. 6. Flow diagram for the topological model with improve
one-loop calculations forg* 50.48.

FIG. 7. Detail of Fig. 6 in the region near the tricritical line
y

f

-

.

The main difference is that the vertical scale is compres
and the most remarkable feature is the fact thatn is now
much less sensible to the value ofg* , showing only a small
deviation from theXY scaling. For instance, the exponentsn
andh for g* 50.48 are given by

n'0.628, ~36!

h'20.11. ~37!

Of course, we have still the sameg→` limit with exponents
h50 andn50.6, corresponding to the decoupled situatio

IV. DISCUSSION

The main aim of this paper is to initiate a careful study
a topological GL model from the point of view of critica
phenomena. For this reason we have concentrated the ef
on the RG flow and the evaluation of critical exponents. T
results show that the topological coupling is a good con
parameter with respect to the fixed point structure. For
stance, we have seen that the region of first-order transi
is crunched as the topological coupling is increased
eventually the type-I behavior is lost. An interesting point
that then exponent does not fluctuate very much around
XY value.

Besides superconductivity, the topological GL model m
be useful in other physical contexts. For example, it can
applied in the study of soft materials like the chiral liqu
crystals.23 In this case the gauge field should be thought a
director field and the CS term is used in order to introdu
the chirality for the constituting molecules.

Another interesting problem is the physics of the chi
spin state. This state arises when one considers the Ha
tonian for the Heisenberg antiferromagnet whose spins in
act not only through nearest-neighbors interaction, but a
through a next-nearest-neighbor interaction.24,25 The next-
nearest-neighbor interaction frustrates the Ne´el state and
generates a mean-field solution corresponding to a di
dered spin state. The most stable configuration correspo
to the so-called chiral spin state. The continuum effect
theory is obtained by computing the fluctuations around s

FIG. 8. Plot of the exponentn as a function ofg* .
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a mean-field ground state and it contains a dynamically g
erated gauge field. The gauge sector of the effective actio
identical to that one of the topological GL model. In this ca
the gauge couplings are given in terms of mean-field par
eters of the original model~for details, see Ref. 25!. Finally,
we hope that this work will contribute to improving the u
derstanding of GL models.
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