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Layer KKR approach to Bloch-wave transmission and reflection:
Application to spin-dependent tunneling

J. M. MacLaren
Department of Physics, Tulane University, New Orleans, Louisiana 70118

X.-G. Zhang
Computational Physics and Engineering Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 3783

W. H. Butler and Xindong Wang
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6114

~Received 11 September 1997; revised manuscript received 30 September 1998!

Bloch waves may be reflected and transmitted by planar interfaces. In this paper, we show how the reflection
and transmission amplitudes for Bloch waves can be calculated within the layer Korringa-Kohn-Rostoker
formalism. The calculated transmission probability is used to calculate the spin-dependent tunneling conduc-
tance for magnetic tunnel junctions formed from ZnSe semiconducting layers sandwiched between two ferro-
magnetic Fe layers.@S0163-1829~99!01308-9#
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I. INTRODUCTION

When Bloch electrons encounter planar interfaces t
may be reflected and/or transmitted.1 In this paper, we de-
velop techniques for calculating these reflection and tra
mission amplitudes within the layer Korringa-Kohn
Rostoker~LKKR ! approach,2 a technique for first-principles
electronic structure calculations. The LKKR technique
particularly well adapted to layered systems because
computation time scales linearly in the number of differe
atomic layers. An additional advantage of the LKKR tec
nique is that it does not require periodicity in the directi
perpendicular to the layers. However, it does require that
two-dimensional Bravais lattice be the same for all atom
layers. The LKKR is also well adapted to calculating refle
tion and transmission amplitudes. In fact, the LKKR proc
dure works by calculating scattering matrices for each ato
layer in a partial wave representation, converting to a pla
wave basis and then propagating these plane waves thr
the system by means of transmission and reflection am
tudes.

There are many uses for Bloch wave transmission
reflection amplitudes and probabilities. They can be used
example, to generalize the free-electron theory of transpo
films and metallic multilayer3,4 so that it can be applied to
real materials.5 They can also be used to develop a fir
principles based theory of electron tunneling. We shall
the latter application in this paper as an illustration of t
utility of the Bloch wave transmission and reflection amp
tudes, and as a demonstration of our ability to calculate th
for relatively large systems using the LKKR technique.

The ability to calculate Bloch wave transmission and
flection amplitudes for general materials including transit
metals and for relatively large systems allows us to inve
gate new effects such as the spin-dependent tunne
effect6–10 in which the tunneling current between two ferr
magnetic electrodes separated by an insulator or semi
ductor depends upon the relative orientation of the magn
PRB 590163-1829/99/59~8!/5470~9!/$15.00
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moments in the electrodes. This effect has elicited consid
able interest recently because it may be applied to make
vices that can sense magnetic fields. Application of the ef
to information storage and retrieval devices is being inve
gated in several laboratories.

In Sec. II, we describe how the LKKR can be used
calculate Bloch states and their group velocities. In Sec.
we show how to transform from the transmission and refl
tion amplitudes of plane waves that the LKKR generates
solving the the electronic structure problem to the transm
sion and reflection amplitudes of the Bloch waves. In S
IV, we use the Landauer conductance formula to evaluate
tunneling conductance for a sandwich structure consistin
a ~100! layer of ZnSe~of various thicknesses! sandwiched
between Fe~100! electrodes.

II. LKKR THEORY OF BLOCH STATES
AND GROUP VELOCITIES

In this section, we shall briefly describe the LKK
method for computing the self-consistent electronic struct
of an interface. Since the details have already been publis
elsewhere, only a brief summary of the approach relevan
computing the tunneling conductance will be given. Aft
this brief introduction, a method for calculating the Bloc
states and thez component of the Bloch wave group veloci
will be presented. Finally, the derivation of the unitary sc
tering S matrix describing the scattering of the Bloch stat
by the interface will be given.

A. The self-consistent solution

The LKKR method is a self-consistent electronic structu
method, based upon the local spin-density approximation
some other approximation to density-functional theo
which can evaluate the electronic structure of a thr
dimensional solid without requiring the usual constraint
three-dimensional translational symmetry. The extend
5470 ©1999 The American Physical Society
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solid is viewed as one composed of an infinite stack
planes of atoms, each of which has two-dimensional tran
tional symmetry. Thus, the method is ideally suited to
problem at hand, namely a system formed of two se
infinite stacks of layers, which form the leads, on either s
of the tunnel barrier. Magnetism is treated within the loc
spin-density approximation, in which the spin-up and sp
down densities are allowed to converge independently
this paper, the Perdew Zunger parametrized form
exchange-correlation potential was used.11 This approxima-
tion fits the correlation energy for paramagnetic, and a fu
spin polarized, homogeneous electron gas obtained f
Monte Carlo simulations performed by Ceperley a
Alder.12 Values for intermediate spin polarizations were o
tained from an interpolation formula derived by Vosk
et al.13

The calculation for an interface proceeds as follows, fi
a bulk calculation is performed to find the self-consiste
potentials for the two leads on layers far from the samp
Since in a metallic system screening ensures that the e
tronic perturbations in the leads, due to the tunnel juncti
will be localized spatially at the interface, atoms far from t
barrier are assumed to have bulklike potentials whose va
are those obtained from the corresponding bulk calculati

Then an interface containing the sample is set up, and
spin-up and spin-down potentials on atomic layers within
sample and within the leads near the interface are allowe
relax through the iterative procedure described above u
electrostatic self-consistency is achieved throughout the
tem. We find that the self-consistently calculated potent
seldom differ significantly from those of the bulk if they a
more than three or four layers from the interface. A detai
description of the self-consistent calculation of interfac
electronic structures, which allows for layer-dependent m
netism, can be found in previous publications,2,14,15to which
we refer the reader. A self-consistent charge and spin den
is found in this manner.

B. Computation of Bloch states and Bloch velocities

The Bloch states are derived from a transfer-matrix ana
sis. The approach is a straight-forward generalization o
one-dimensional~1D! theory. In essence, those planes of
oms, which when repeated form the bulk periodic lead,
grouped into a single layer. Between each layer thei th Bloch
wave is expanded in terms of plane waves.

f i5(
g

cg
i 1exp~ iKg

1
•r !1(

g
cg

i 2exp~ iKg
2
•r !. ~2.1!

The wave vectorsKg
6 , in the plane waves exp(iKg

6
•r ), are

given by

Kg
65H ki1g,6A2m

\2
E2~ki1g!2J , ~2.2!

where the vectorsg are two-dimensional reciprocal lattic
vectors andki is a wave vector in the first two-dimension
Brillouin zone. Each layer is characterized, in the plane w
representation, by four scattering matrices,tgg8

11, tgg8
12, tgg8

21,
andtgg8

22. Expressions for these matrices can be found in R
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2. The superscripts refer to the direction of travel of incide
and outgoing plane waves, respectively.

The connection between the Bloch wave amplitudes
tween adjacent layers is given by

~ci 1ci 2!S t11 2t12

0 1 D 5exp~ ik•R!~ci 1ci 2!

3S 1 0

2t21 t22D . ~2.3!

R is the repeat vector between the identical layers form
the bulk crystal andk5(ki ,kz). These equations represent
generalized eigenvalue problem which can be solved us
standard numerical routines such as those obtainable f
LAPACK.16 By specifying values ofki and the energyE,
taken to be the Fermi energy in this application, we can so
for the eigenvalueskz and the corresponding eigenvector
Usually only a few values ofkz are found to be real; thes
correspond to the Bloch states.

In addition to the band structure, it is essential to comp
thez component of the group velocity so that the direction
travel of each Bloch state can be determined, and con
quently whether the state belongs to the subspace of inci
or scattered channels. We have found a simple way of
tracting this from the band structure without needing to
sort to numerical differentiation. Thez component of the
group velocity is found by noting that the eigenvalueE(k) is
an analytic function of the wave vectork. Thus, if a small
imaginary partDE is given to the energy, the calculate
value ofkz will also have a small imaginary partDkz . The
two are related by the velocity,

vz5
1

\

]E

]kz
'

1

\

DE

Dkz
. ~2.4!

The real part ofkz will be left unaltered, hence bothkz and
vz can be found simultaneously.

BecauseE is a periodic function ofkz , it follows that for
a given value ofki there will be exactly as many states wi
positivevz as with negative. Thez component of the Bloch
state’s group velocity determines its direction of travel. No
that this is different from\kz /m. It is quite common to have
a Fermi surface for which~for givenki) there are two or four
values ofkz that are greater than zero and none that are
than zero. Ifkz were used to determine the direction of th
Bloch wave’s travel one would have the unphysical res
that electrons with that value ofki could only propagate in
one direction.

Since the two leads may be different, calculations of
Bloch states are done for both the left- and the right-ha
sides of the barrier. Each Bloch state at the Fermi ene
corresponds to a channel in the Landauer-Bu¨ttiker formal-
ism. Those states traveling towards the barrier correspon
incident channels while those traveling away from the bar
correspond to the scattered~transmitted or reflected! chan-
nels. These two subspaces will be used to define the sca
ing S matrix.
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III. SCATTERING THEORY FOR BLOCH WAVES

In this section, we shall show how the reflection a
transmission coefficients for Bloch waves incident on
sample from one of the leads may be calculated from
plane-wave reflection and transmission coefficie
(tgg8

11, tgg8
22, tgg8

12, tgg8
21) that are generated by the layer KK

method. We consider here systems that have t
dimensional periodicity so that momentum parallel to t
interface is conserved. Our procedures have some similar
to the techniques developed by Stiles and Hamann17,18 to
calculate the transmission of Bloch waves through interfac
that used a variational procedure of Wachutka and Bross19,20

to join wave functions on opposite sides of an interface.
ter this paper was submitted for publication, but before it w
accepted, we learned of the recent work of van Hoof21 who
calculated transmission probabilities using an embedd
method developed by Inglesfield.22

It is convenient to label the Bloch wave functions for t
bulk material that makes up the leads by a two-dimensio
wave vectorki , and the value of thez component of the
wave vectorkz . Since thez component of the group velocit
has also been computed, thesekz values will be labeled with
superscript1 or 2 to indicate the direction of travel, i.e
whethervz is greater than zero or less than zero. For cla
of notation, all of the subsequent formulas assume a fi
ki . Using this modified notation, Eq.~2.1! can be rewritten
as

fk
z
65(

g
ck

z
6g

1
exp~ iKg

1
•r !1(

g
ck

z
6g

2
exp~ iKg

2
•r !,

~3.1!

where the sum runs over theNg reciprocal lattice vectors tha
are needed to accurately represent the wave function. C
versely, a plane wave can be expanded in terms of the B
wave functions,fkz

(r ),

eiKg
6
•r5(

kz
1

mgk
z
1

6
fk

z
1~r !1(

kz
2

mgk
z
2

6
fk

z
2~r !. ~3.2!

Note that this expansion includes all of the eigenvectors
are solutions to Eq.~2.3!, not just those eigenfunctions tha
correspond to traveling Bloch waves~i.e., those with real
values ofkz). The expansion coefficients,m, can be found
from the inverse of the matrix of eigenvector coefficientsc.

We can expand the total wave function on the left-ha
side of the barrier due to an incident wave plane wave w
wavevectorKg

1 , in terms of Bloch waves and obtain

cg
L15(

kz
1

Ag1k
z
1

L
fk

z
1

L
~r !1(

kz
2

Ag1k
z
2

L
fk

z
2

L
~r !

5eiKg
1
•r1(

g8
tgg8

12eiK
g8
2
•r, ~3.3!

where

Ag1k
z
6

L
5mgk

z
6

L1
1(

g8
tgg8

12mg8k
z
6

L2
. ~3.4!

To the right of the sample we have
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R15(

kz
1

Ag1k
z
1

R
fk

z
1

R
~r !1(

kz
2

Ag1k
z
2

R
fk

z
2

R
~r !

5(
g8

tgg8
11eiK

g8
1
•r, ~3.5!

with

Ag1k
z
6

R
5(

g8
tgg8

11mg8k
z
6

R1
. ~3.6!

A similar calculation can be performed for an incide
plane wave from the right. The formulas for the coefficien
Ag2k

z
6

R
Ag2k

z
6

L
can be simply obtained by swapping the sup

scriptsL and R and ‘‘1’’ and ‘‘ 2 ’’ on the plane-wave la-
bels, i.e.,

Ag2k
z
6

L
5(

g8
tgg8

22mg8k
z
6

L2
, ~3.7!

Ag2k
z
6

R
5mgk

z
6

R2
1(

g8
tgg8

21mg8k
z
6

R1
. ~3.8!

We have used superscriptsL and R to allow for the the
possibility that the leads on the left and on the right m
have different Bloch states. This superscript is also use
imply appropriate values ofkz

6 , since these too may be dif
ferent in each lead.

If we now view the whole process as scattering of t
Bloch waves, then the amplitude of the outgoing Bloch wa
on the left side of the sampleAk

z
2

L
will be the sum of the

transmitted Bloch waves from the rightAk
z
2

R
T22 and the

reflected part of Bloch waves incident from the leftAk
z
1

L
T12.

Thus,Ag6k
z
2

L
is given by

Ag6k
z
2

L
5(

kz8
1

Ag6k
z8

1
L

Tk
z8

1k
z
2

12
1(

kz8
2

Ag6k
z8

2
R

Tk
z8

2k
z
2

22
, ~3.9!

whereTk
z8

1k
z
2

12
and Tk

z8
2k

z
2

22
are the reflection coefficients fo

Bloch waves incident from the left, and the transmission
efficients for Bloch waves incident from the right, respe
tively. The right traveling Bloch waves on the right side
the sample are also a sum of reflected and transmitted B
waves

Ag6k
z
1

R
5(

kz8
1

Ag6k
z8

1
L

Tk
z8

1k
z
1

11
1(

kz8
2

Ag6k
z8

2
R

Tk
z8

2k
z
1

21
.

~3.10!

Tk
z8

1k
z
1

11
and Tk

z8
2k

z
1

21
are the transmission coefficients fo

Bloch waves incident from the left-hand side of the barri
and reflection coefficients for Bloch waves incident from t
right-hand side of the barrier.

The four equations represented by@Eqs.~3.9! and~3.10!#
can be combined into a matrix form,
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S Ag1k
z
1

L
Ag1k

z
2

R

Ag2k
z
1

L
Ag2k

z
2

R D S5S Ag1k
z
1

R
Ag1k

z
2

L

Ag2k
z
1

R
Ag2k

z
2

L D , ~3.11!

where theS matrix is defined as

S5S T11 T12

T21 T22D , ~3.12!

which can then be solved forT11,T12,T21, andT22 in
terms of the coefficientsAg6k

z
6

L,R
. This formalism is not

equivalent to a simple unitary transformation of theSmatrix
in a plane-wave basis since each Bloch state contains p
waves traveling in both directions, or, equivalently a sin
plane wave is composed of Bloch states traveling in b
directions.

The S matrix of Eq. ~3.11! has dimensions 2Ng32Ng .
The submatrix ofS formed on the subspace of travelin
Bloch states (St) is unitary (StSt

†5I ), provided the traveling
Bloch states are normalized to unit flux. In computing t
flux of each Bloch state, the plane-wave basis set is used,
care must be taken to count correctly the contribution fr
both traveling and evanescent plane waves, since the ex
sion coefficients of the Bloch states are in general comp

IV. CALCULATION OF THE TUNNELING
CONDUCTANCE

We have applied this technique to calculate the cond
tance of a tunnel junction formed from several@100# layers
of ZnSe sandwiched between two semi-infinite stacks of
@100# layers, which form the ‘‘leads.’’ Systems of this typ
are interesting because it can be arranged that the mom
of the two Fe layers are aligned antiparallel in the absenc
an external magnetic field. The application of a small m
netic field may then cause alignment of the moments wh
in turn causes a significant change in the tunneling cond
tance.

The structure of the interface between the bcc Fe and
zinc-blende ZnSe structures is shown in Fig. 1. The us
cubic cells for bcc and zinc blende are rotated by 45° rela
to each other. The reader is asked to imagine that the ato
planes extend to infinity in the directions parallel to t
planes and that the iron layers are repeated indefinitely to
left and to the right. The figure does not distinguish betwe
the Zn and Se atoms, which occupy alternate atomic pla
of the interlayer. It was assumed that Zn layers are adja
to the Fe electrodes.

The lattice mismatch between Fe@100# and several dia-
mond and zinc-blende semiconductors is quite small. T
lattice constant for bcc Fe is 2.87 Å, while those of G
GaAs, and ZnSe are 5.66, 5.65, and 5.67 Å , respectively.
The lattice constants of the semiconductors are almost

FIG. 1. The system consists of a sample sandwiched betw
two semi-infinite leads. The system is assumed to be periodic in
directions parallel to the interfaces.
ne

h

nd

an-
x.

c-

e

nts
of
-
h
c-

e
al
e
ic

he
n
es
nt

e
,

x-

actly twice that of Fe, leading to modest lattice mismatch
of only about 1.4%. We chose to study ZnSe as the bar
layer since it has been suggested that this may be the ea
of the three possible semiconductor systems to grow epit
ally as an interlayer between Fe electrodes. The lattice c
stant of the whole system was fixed to that for bulk bcc F
causing a slight isotropic expansion of all the ZnSe layer

The calculation proceeded by first calculating se
consistently the electronic structure for a periodic stack
@100# Fe layers using the local spin density to densi
functional theory. The potentials generated were used bot
compute the Bloch waves and to embed the Fe/ZnSe/Fe
terface. The atomic sphere, rather than the muffin tin,
proximation was adopted for both the potential and cha
density. In the interface calculations, the potentials on f
atomic layers of Fe on either side of the ZnSe, and all of
ZnSe layers were relaxed. The resulting redistribution
charges is shown in Fig. 2.

A dipole layer forms at the Fe/ZnSe interface as electr
are transferred from the Fe to the ZnSe in order to corre
position the Fermi energies of Fe and ZnSe. There is a
charge transfer within the ZnSe as electrons are transfe
from Se to Zn layers. Several calculations were perform
using between 5 and 33 atomic layers of Zn and Se. For
sandwiches with more than 9 atomic layers of Zn and Se,
interior ZnSe potentials were not relaxed, but rather froze
values corresponding to the innermost ZnSe self-consis
potentials calculated with 9 atomic layers of Zn and Se. T
present calculations neglect spin-orbit coupling, spin-fl
scattering and effects such as the spontaneous Hall effect
might arise from the self-field of the iron electrodes.

A preliminary description of the assumed physical stru
ture and of the calculated electronic structure has alre
been published,23 and so the results of that work will not b
repeated here. In summary, these calculations showed th
significant density of states persists in the interior ZnSe l
ers at the Fermi energy, especially for the minority chann
A large peak in the minority density of states is found at t
Fermi energy. The state is localized on the atoms close to
interface and corresponds to an interface resonance, w
couples only weakly to the bulk Bloch states in the Fe lea
This feature is present for different semiconducting barrie

en
e

FIG. 2. Charges redistribute when ZnSe is embedded in
Here it is assumed that the Zn layers are adjacent to the Fe.
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and is a consequence of the interface between a barrier
the Fe atoms. The impact of this state on the minority t
neling current will be discussed in this paper.

We note that the barrier is not a classical barrier since
electron kinetic energy exceeds the potential energy in
semiconductor with the exception of a few positions. Rat
the barrier is formed as a result of interference, which p
cludes propagating states at certain energies. In orde
make contact with traditional treatments of tunneling, wh
envision the semiconducting region as a simple barrier w
parameters determined by the band gap in the bulk electr
structure, we used the potentials calculated for the centra
and Se atomic layers to calculate the electronic structur
bulk ZnSe. We found that it has a direct gap at the zo
center of 1.34 eV. The Fermi energy for the sandwich l
0.49 eV above the valence band and 0.85 eV below the c
duction band. In this traditional picture the semiconduc
would be represented by a step barrier whose height is
eV. We would like to point out that the calculated band g
is only about half of the measured gap. It is well known th
the local-density approximation to density-functional theo
yields gaps that are too small for semiconducting syste
Although there are simple techniques that could be use
empirically adjust the bands to give the correct gap a
Fermi-energy placement we prefer to present our initial
sults without adjustments.

We calculated the tunneling conductance for this
ZnSe/Fe sandwich composed of~100! planes as a function o
the thickness of the ZnSe interlayer for majority and min
ity channels and for parallel and antiparallel alignment of
moments in the two Fe layers. The conductance was ca
lated from the transmission probabilityT(ki) using the
relation24

G5
e2

h (
ki

T~ki!. ~4.1!

This result can also be obtained from the Landauer-Bu¨ttiker
formula for the conductance.25–27

The results, which are plotted in Fig. 3, show that t
conductance is approximately an exponential functione2d/ l

FIG. 3. Tunneling conductance for majority and minority sp
channels for the case of aligned moments in the iron layers
tunneling conductance for one of the spin channels for the cas
antiferromagnetic alignment of the spin channels. The conducta
is in units ofe2/h per two-dimensional unit cell.
nd
-

e
e
r
-
to

h
ic
n

of
e
s
n-
r
85
p
t

s.
to
d
-

/

-
e
u-

of the barrier thicknessd with a length of decayl that varies
from approximately 4.6 Å for the majority electrons to a
proximately 3.7 Å for the minority electrons. Using the d
cay length for the majority electrons gives an effective b
rier height,DV5\2/8m* l 2, of 0.045 eV ifm* is assumed to
be the free-electron mass. Although this is small compare
the energy difference between the Fermi energy and the
tom of the conduction band in the ZnSe layers, the effect
barrier height would be reasonable if the smaller effect
mass of ZnSe were used in the estimation, as would be
case for states at the bottom of the conduction band in Zn
We have performed additional calculations28 in which the
barrier was a constant repulsive potential. For such a re
sive spatially constant barrier we found that\2/8ml2 was
almost exactly equal to the energy difference between
Fermi energy and the bottom of the conduction band in
barrier.

Figure 3 shows the variation in the tunneling current w
thickness for minority and majority spin channels for ferr
magnetic alignment of the Fe layers as well as that obtai
when the two Fe layers are aligned antiferromagmetica
The thickness dependences of the majority channel con
tance, of the minority channel conductance, and of the
tunneling conductance for either spin channel for the cas
antiparallel alignment are significantly different. The mo
rapid decrease in the minority and antiparallel conducta
compared to the majority leads to a tunneling conductanc
large thicknesses that is dominated by the majority electro
This yields a magnetoresistance ratio that approaches u
as shown in Fig. 4. This behavior is quite different from th
observed in calculations that we performed in which the b
rier was a constant potential.28 For the case of a spatially
constant barrier, the current in all channels decreases e
nentially with thickness at the same rate so that the mag
toresistance ratio is independent of thickness, a result con
tent with Slonczewski’s29 model calculations.

The tunneling currents as a function ofki also vary con-
siderably with spin channel and moment alignment as
shown in Figs. 5 and 6. For all thicknesses, the majority s
current is peaked near the center of the two-dimensio
zone while for thin semiconducting interlayers~Fig. 5!, the
minority spin current has peaks that seem to form part o
circle centered at the origin of the zone. This structure c
responds precisely to the localized resonance states se

d
of
ce

FIG. 4. Magnetoresistance as a function of ZnSe thickness
Fe/ZnSe/Fe sandwich.
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FIG. 5. Tunneling conductance through 20-a.u.-thick ZnSe barrier as a function ofki in the two-dimensional Brillouin zone for~a!
majority spin channel~moments aligned!, ~b! minority spin channel~moments aligned!, ~c! conductance for either channel for antiparal
alignment of the moments. Conductance per two-dimensional cell is expressed in units ofe2/h. The two-dimensional cell contains two iro
atoms or one atom of either Zn or Se.

FIG. 6. Tunneling conductance through 90-a.u.-thick ZnSe barrier as a function ofki in the two-dimensional Brillouin zone for~a!
majority spin channel~moments aligned!, ~b! minority spin channel~moments aligned!, ~c! conductance of either spin channel for antipa
allel alignment of the moments. Conductance per two-dimensional cell is expressed in units ofe2/h. The two-dimensional cell contains tw
iron atoms or one atom of either Zn or Se.
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the interface in the minority spin channel. As the semico
ducting layer becomes thicker~Fig. 6!, the currents at large
values ofki are suppressed and the currentnear ki50 be-
comes relatively larger, but the pointki50 remains a local
minimum for the minority channel.

The localized states that dominate the conductance in
minority channel at small thicknesses do not contribute
the semiconductor barrier layer thickness is increased.
current for the antialigned case has features of both the
jority and minority currents for the aligned case. These
sults are quite different from those obtained28 for tunneling
through a simple step barrier that showed a current distr
tion that is peaked around theG point (ki50). For this
simple barrier, this is simply a consequence of the fact t
the decay of states in the barrier region increases aski in-
creases.

In the case of a barrier formed from ZnSe, in addition
the decay in the barrier region, the coupling between st
inside and outside the semiconductor is important. Thus,
peak in the conductance no longer need occur at the z
center. In the case of the majority electrons the decay wi
the barrier dominates, since the states close toG are able to
couple efficiently with decaying states inside the barri
Thus, the conductance is peaked around the zone cente
the case of the minority electrons states away from the z
center rather than those atki50 are able to tunnel more
easily into the semiconductor layers. Thus, although th
states would decay more rapidly than those at the zone
ter, they make the dominant contribution to the minority co
ductance. This net result is a very different current distrib
tion compared to the majority conductance.

The differences in the decay rates seen in the conduct
for majority and minority electrons, as well that seen for t
antiparallel magnetic alignment, which are shown in Fig
can be traced back to the symmetry of the Bloch states a
Fermi energy, and the correspondingly different sp
injection/extraction efficiency for these bands between the
and the semiconductor. In Figs. 7, 8, and 9, the decay of
various Bloch states into the barrier are shown. The ba
are labeled by the usual symmetry labels. There are four s
bands for both spin channels, a doubly degenerateD5 band
~compatible withp andd symmetry!, aD28 ~compatible with
d symmetry! is seen for both majority and minority spin

FIG. 7. Density of states for each of the majority Bloch states
kuu50, for parallel alignment of the Fe moments.
-

he
s

he
a-
-

u-

at

es
e

ne
in

.
In
e

e
n-
-
-

ce

he

e
e

ds
ch

There is also a majorityD1 band~compatible withs, p, andd
symmetry! and a minority band withD2 symmetry~compat-
ible with d symmetry!. As can be seen in these figures, the
are three decay rates, which are associated with the ang
momentum character of the bandswithin the semiconductor
barrier. The rate of decay is slowest for bands withs char-
acter and most rapid for those with onlyd character. In ad-
dition, to the different decay rates, the ease of injection a
extraction is band dependent and depends upon the char
of the band in the lead. In the majority channel, theD1 band,
because of thes character couples efficiently with a decayin
sp state in the semiconductor, and thus, this band domin
the conductance. TheD28 majority band, because it is a pur
d band in the bulk cannot couple efficiently with thesp state
in the semiconductor. Thus we see that while the band
cays slowly in the semiconductor, the coupling across
interface is weak. The doubly degenerateD5 band couples to
a pd decaying state in the semiconductor and as a con
quence decays more rapidly in the barrier. In the case of
minority channel, similar arguments apply. The mu
smaller tunneling conductance seen is a direct result of th
being noD1 band present at the Fermi energy.

Based upon these results, certain general statements
be made. The expected spin dependence of the tunne

t FIG. 8. Density of states for each of the minority Bloch states
kuu50, for parallel alignment of the Fe moments.

FIG. 9. Density of states for each of the Bloch states atkuu50,
for antiparallel alignment of the Fe moments. The left-hand side
the junction is spin up, while the right-hand side is spin down.
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current can be deduced from the symmetry of the lead Bl
states at the Fermi energy. Those bands withs character are
expected to be able to couple across the interface, and d
most slowly in the barrier. While bands withouts character
can also couple to decaying states withs character in the
barrier, which then decay slowly, the poor coupling acro
the interface limits their contribution to the overall condu
tance. Thus, differences in the tunneling conductance
depend on both the substrate crystal face and the materia
the case of Fe, for example, an examination of the b
structure shows that for@100#, @111#, and@110# directions all
have majority bands withs character present, and for all bu
the @100# direction, a band with this symmetry also cross
the Fermi energy for the minority channel. Spin-polariz
band structures for bcc Fe, fcc Ni, and fcc Co can be fou
in Ref. 30. Thus, based upon symmetry grounds, the@100#
direction should exhibit the largest assymetry in tunnel c
ductance. Further, as a result of this we anticipate that o

TABLE I. Type and symmetry of the Bloch states withki50
for Fe, Co, and Ni for three different crystal faces. The symmetry
these bands is as follows:D1 , S1 , andL1 (s,p,d); D5 , andS2 (p
andd); andD2 , D28 , S4 , andL3(d).

100 110 111

Fe↑ D1 ,D28 ,D5 S1 ,S3 L1

Fe↓ D2 ,D28 ,D5 S1 ,S3 L1

Co↑ D1 S1

Co↓ D1 ,D5 S2 ,S4

Ni↑ D1 S1 ,S3

Ni↓ D1 ,D2 ,D5 S1 ,S2 L3
nd

s.

y

r,

a,
h

ay

s
-
ill
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d

s

d

-
ly

Fe @100# based tunnel junctions would have an magneto
sistance~MR! that would increase with increasing barri
thickness. In the other growth directions, and in a polycr
talline film, the presence of states withs character for both
spin directions would lead to states that decay at the s
rate in barrier region, leading to an MR that would be thic
ness independent. The type and symmetry of the Bloch st
with ki50 for Fe, Co, and Ni are listed in Table I.

For Fe, Co, and Ni, the majority states at the Fermi ene
are expected to have mores character than the minority
states, which tend to be mainlyd. Thus, the majority conduc
tance is expected to be greater than the minority cond
tance. This is consistent with experimental data that also s
gests this in the cases where it can be measured.31 This is
even the case for Ni where the minority density of sta
exceeds that at the Fermi energy by a factor of 10. E
though most of the tunnel junctions currently being stud
are made from amorphous Al2O3 , since the tunneling con
ductance is to a large part controlled by the symmetry of
lead Bloch states, we expect that these qualitative con
sions will be valid.
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