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Bloch waves may be reflected and transmitted by planar interfaces. In this paper, we show how the reflection
and transmission amplitudes for Bloch waves can be calculated within the layer Korringa-Kohn-Rostoker
formalism. The calculated transmission probability is used to calculate the spin-dependent tunneling conduc-
tance for magnetic tunnel junctions formed from ZnSe semiconducting layers sandwiched between two ferro-
magnetic Fe layer§S0163-1829)01308-9

I. INTRODUCTION moments in the electrodes. This effect has elicited consider-
able interest recently because it may be applied to make de-

When Bloch electrons encounter planar interfaces theyices that can sense magnetic fields. Application of the effect
may be reflected and/or transmittedh this paper, we de- to information storage and retrieval devices is being investi-
velop techniques for calculating these reflection and transgated in several laboratories.
mission amplitudes within the layer Korringa-Kohn- In Sec. Il, we describe how the LKKR can be used to
Rostoker(LKKR ) approacHf, a technique for first-principles calculate Bloch states and their group velocities. In Sec. IlI,
electronic structure calculations. The LKKR technique iswe show how to transform from the transmission and reflec-
particularly well adapted to layered systems because théon amplitudes of plane waves that the LKKR generates in
computation time scales linearly in the number of differentsolving the the electronic structure problem to the transmis-
atomic layers. An additional advantage of the LKKR tech-sion and reflection amplitudes of the Bloch waves. In Sec.
nique is that it does not require periodicity in the direction!V, we use the Landauer conductance formula to evaluate the
perpendicular to the layers. However, it does require that théunneling conductance for a sandwich structure consisting of
two-dimensional Bravais lattice be the same for all atomica (100 layer of ZnSe(of various thicknessgssandwiched
layers. The LKKR is also well adapted to calculating reflec-between F&100 electrodes.
tion and transmission amplitudes. In fact, the LKKR proce-
dure works by calculating scattering matrices for each atomic
layer in a partial wave representation, converting to a plane-
wave basis and then propagating these plane waves through
the system by means of transmission and reflection ampli- In this section, we shall briefly describe the LKKR
tudes. method for computing the self-consistent electronic structure

There are many uses for Bloch wave transmission andf an interface. Since the details have already been published
reflection amplitudes and probabilities. They can be used, foglsewhere, only a brief summary of the approach relevant to
example, to generalize the free-electron theory of transport idomputing the tunneling conductance will be given. After
films and metallic multilaye¥* so that it can be applied to this brief introduction, a method for calculating the Bloch
real materialS. They can also be used to develop a first-states and the component of the Bloch wave group velocity
principles based theory of electron tunneling. We shall usevill be presented. Finally, the derivation of the unitary scat-
the latter application in this paper as an illustration of thetering S matrix describing the scattering of the Bloch states
utility of the Bloch wave transmission and reflection ampli- by the interface will be given.
tudes, and as a demonstration of our ability to calculate them
for relatively large systems using the LKKR technique.

The ability to calculate Bloch wave transmission and re-
flection amplitudes for general materials including transition The LKKR method is a self-consistent electronic structure
metals and for relatively large systems allows us to investimethod, based upon the local spin-density approximation, or
gate new effects such as the spin-dependent tunnelingpme other approximation to density-functional theory,
effecf~1%in which the tunneling current between two ferro- which can evaluate the electronic structure of a three-
magnetic electrodes separated by an insulator or semicowimensional solid without requiring the usual constraint of
ductor depends upon the relative orientation of the magnetithree-dimensional translational symmetry. The extended

Il. LKKR THEORY OF BLOCH STATES
AND GROUP VELOCITIES

A. The self-consistent solution
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solid is viewed as one composed of an infinite stack of2. The superscripts refer to the direction of travel of incident
planes of atoms, each of which has two-dimensional translaand outgoing plane waves, respectively.

tional symmetry. Thus, the method is ideally suited to the The connection between the Bloch wave amplitudes be-
problem at hand, namely a system formed of two semitween adjacent layers is given by

infinite stacks of layers, which form the leads, on either side
of the tunnel barrier. Magnetism is treated within the local
spin-density approximation, in which the spin-up and spin-
down densities are allowed to converge independently. In
this paper, the Perdew Zunger parametrized form of
exchange-correlation potential was usédhis approxima-
tion fits the correlation energy for paramagnetic, and a fully
spin polarized, homogeneous electron gas obtained from

Monte Carlo simulations performed by Ceperley and_ . . . .
Alder 2 Values for intermediate spin polarizations were ob-R IS the repeat vector between the identical layers forming

tained from an interpolation formula derived by Vosko € bulk crystal ank=(k k;). These equations represent a
et al13 generalized eigenvalue problem which can be solved using

The calculation for an interface proceeds as follows ﬁrststandard numerical routines such as those obtainable from

a bulk calculation is performed to find the self-consistent-APACK.*® By specifying values ok and the energy,
potentials for the two leads on layers far from the samplel@ken to be the Fermi energy in this application, we can solve
Since in a metallic system screening ensures that the ele2r the eigenvalues, and the corresponding eigenvectors.
tronic perturbations in the leads, due to the tunnel junction,US“a"y only a few values ok, are found to be real; these
will be localized spatially at the interface, atoms far from the€Orrespond to the Bloch states. _
barrier are assumed to have bulklike potentials whose values " @ddition to the band structure, it is essential to compute
are those obtained from the corresponding bulk calculationth®Z component of the group velocity so that the direction of
Then an interface containing the sample is set up, and thavel of each Bloch state can be determined, and conse-
spin-up and spin-down potentials on atomic layers within thuently whether the state belongs to the subspace of incident
sample and within the leads near the interface are allowed g Scattered channels. We have found a simple way of ex-
relax through the iterative procedure described above untff@cting this from the band structure without needing to re-
electrostatic self-consistency is achieved throughout the sy$Ort t0 numerical differentiation. The component of the
tem. We find that the self-consistently calculated potential@roup velocity is found by noting that the eigenvakegk) is
seldom differ significantly from those of the bulk if they are @n analytic function of the wave vectar Thus, if a small
more than three or four layers from the interface. A detailedMaginary partAE is given to the energy, the calculated
description of the self-consistent calculation of interfacialvalue ofk; will also have a small imaginary paftk,. The
electronic structures, which allows for layer-dependent magtwo are related by the velocity,
netism, can be found in previous publicatidré;**to which
we refer the reader. A self-consistent charge and spin density 1 0E 1 AE

is found in this manner. VS~ R (2.9
V4 Z

) ) t++ _t+— ) )
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1

0
X -+ t“)' (2.3

B. Computation of Bloch states and Bloch velocities

The Bloch states are derived from a transfer-matrix analy] € réal part ok, will be left unaltered, hence bot, and
sis. The approach is a straight-forward generalization of &z €an be found simultaneously. .
one-dimensional1D) theory. In essence, those planes of at- BECAUSEE is a periodic function ok, it follows that for
oms, which when repeated form the bulk periodic lead, aré 9iven value ok there will be exactly as many states with

grouped into a single layer. Between each layerth@loch ~ POSitivev; as with negative. The component of the Bloch
wave is expanded in terms of plane waves. state’s group velocity determines its direction of travel. Note

that this is different fromfik,/m. It is quite common to have
) ) a Fermi surface for whicffor givenk) there are two or four
$i=2 cyfexpliKy )+ ¢y expiKg r). (21  values ofk, that are greater than zero and none that are less
g g than zero. Ifk, were used to determine the direction of the

The wave vector& , in the plane waves exiK ; 1), are Bloch wave’s travel one would have the unphysical result

g

given by that electrons with that value & could only propagate in
one direction.
om Since the two leads may be different, calculatio_ns of the
K§=|k+g,i \ /_ZE_(k|+g)2]' (2.2 B_Ioch states are _done for both the left- and the rlg_ht-hand
) sides of the barrier. Each Bloch state at the Fermi energy

corresponds to a channel in the LandauettiRer formal-
ism. Those states traveling towards the barrier correspond to
incident channels while those traveling away from the barrier

where the vectorg are two-dimensional reciprocal lattice
vectors andk| is a wave vector in the first two-dimensional

Brillouin zone. Each layer is characterized;if thfiplane Wav%orrespond to the scatteréttansmitted or reflectdédchan-
representation, by four scattering matriceg%, , t

9q’ t;g’ ' nels. These two subspaces will be used to define the scatter-
andtggf. Expressions for these matrices can be found in Refing S matrix.
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lll. SCATTERING THEORY FOR BLOCH WAVES - R R R R
=2 A b (N+ 2 Al (1)
In this section, we shall show how the reflection and ky L ky £
transmission coefficients for Bloch waves incident on the .
sample from one of the leads may be calculated from the => tggfe‘Kg"r, (3.5
plane-wave reflection and transmission coefficients ’
—

(tgg,, 99 tgg,, ) that are generated by the layer KKR | iy

method. We conS|der here systems that have two-

dimensional periodicity so that momentum parallel to the e R

interface is conserved. Our procedures have some similarities 2 Loy Ky - (3.9
to the techniques developed by Stiles and Haratthto
calculate the transmission of Bloch waves through interfaces, - . o
that used a variational procedure of Wachutka and B?3Ss A similar calculation can be performed for an incident

to join wave functions on opposite sides of an interface. Af- plane wave from the right. The formulas for the coefficients
ter this paper was submitted for publication, but before it wasA‘g K A k= can be simply obtained by swapping the super-
accepted, we learned of the recent work of van Bbafho SCI’IptSL and Rand “+” and “ —" on the plane-wave la-
calculated transmission probabilities using an embeddingels, i.e.,

method developed by Inglesfietd.

It is convenient to label the Bloch wave functions for the L L

bulk material that makes up the leads by a two-dimensional Ag—erZ L Loy K 3.7
wave vectork, and the value of the component of the g

wave vectokk,. Since thezcomponent of the group velocity

has also been computed, thésevalues will be labeled with AR = H k_+2 tggTMR,T(_ 3.9
superscript+ or — to indicate the direction of travel, i.e., oi; H 9

whetherv, is greater than zero or less than zero. For clarity

of notation, all of the subsequent formulas assume a fixed We have used superscriptsandR to allow for the the

k. Using this modified notation, Eq2.1) can be rewritten  possibility that the leads on the left and on the right may

as have different Bloch states. This superscript is also used to

imply appropriate values &, , since these too may be dif-

+ St - D — ferent in each lead.

_Eg Ckztgexng 'r)+zg Ckfgexng ") If we now view the whole process as scattering of the
(3.2 Bloch waves, then the amplitude of the outgoing Bloch wave

. L )
where the sum runs over ti, reciprocal lattice vectors that °" the left side of the sampld, - will be the sum of the

are needed to accurately represent the wave function. Coansmitted Bloch waves from the rlglﬁt T~ and the
versely, a plane wave can be expanded in terms of the Bloch
wave functions g, (r), reflected part of Bloch waves incident from the IAt[ LA

Thus,Agtkf is given by
Y= + + z
e =2 pge b (N2 pg-dic(n). (32
ks ’ ke ’ L +- R -

ZKZ Agtk£+Tk£+k;+§ Ago-Toicr (3.9

Note that this expansion includes all of the eigenvectors that g%k, : :

are solutions to Eq(2.3), not just those eigenfunctions that

correspond to traveling Bloch wavese., those with real whereT,,7, andT,,", are the reflection coefficients for
z z

values ofk,). The expansion coefficientg,, can be found z L z .
from the inverse of the matrix of eigenvector coefficieats Bloch waves incident from the left, and the transmission co-

We can expand the total wave function on the left-han fficients for Bloch waves incident from the right, respec-
side of the barrier due to an incident wave plane wave wnif'vew The right traveling Bloch waves on the right side of
wavevectorK* in terms of Bloch waves and obtain he sample are also a sum of reflected and transmitted Bloch

waves

L+ L L L L

P =2 Ak b (N+ 2 Ay b (1)
S o e g*k*_EA"k’*Tk/*k*JrEA*k’ Tk’ K
Z

(3.10

—eikg T4 > tgg,_eiK;"r, 3.3
o ka* and T k+ are the transmission coefficients for

where Bloch waves |nC|dent from the left-hand side of the barrier,

L and reflection coefficients for Bloch waves incident from the
Ag+k_ ,ugk D tgg, ,ug,k_ . (8.4  right-hand side of the barrier.
g The four equations represented [l§gs.(3.9) and(3.10]
To the right of the sample we have can be combined into a matrix form,
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L R R L Charge Redistribution in Fe|ZnSe|Fe
Ag*k; Ag*k; Ag*k: Ag*k; ( :D 0.6 . - T T T . T
S= 3.1
L R R L !
Ag*k; Ag*k; Ag,k; Ag*k; 3 04|
O
where theS matrix is defined as ‘a', 02 | |
s LATVANAANT N
which can then be solved faf**, T*~, T~ %, andT~ "~ in § 0.2 |
terms of the coefficientsA;f,i:. This formalism is not 5
z _ _ z 04
equivalent to a simple unitary transformation of ®enatrix
in a plane-wave basis since each Bloch state contains plane 06 , , , . , , .
waves traveling in both directions, or, equivalently a single 2 4 6 8 10 12 14 16 18
plane wave is composed of Bloch states traveling in both Layer Number

directions.

The S matrix of Eq.(3.11) has dimensions 12, 2N .
The submatrix ofS formed on the subspace of traveling
Bloch states &) is unitary (StSf= 1), provided the traveling _ _
Bloch states are normalized to unit flux. In computing theactly twice that of Fe, leading to modest lattice mismatches
flux of each Bloch state, the plane-wave basis set is used, arfd only about 1.4%. We chose to study ZnSe as the barrier
care must be taken to count correctly the contribution fromlayer since it has been suggested that this may be the easiest
both traveling and evanescent plane waves, since the expa@f the three possible semiconductor systems to grow epitaxi-
sion coefficients of the Bloch states are in general complex@lly as an interlayer between Fe electrodes. The lattice con-

stant of the whole system was fixed to that for bulk bcc Fe,

IV. CALCULATION OF THE TUNNELING causing a slight isotropic expansion of all the ZnSe layers.
CONDUCTANCE The calculation proceeded by first calculating self-
consistently the electronic structure for a periodic stack of

We have applied this technique to calculate the conducf100] Fe layers using the local spin density to density-
tance of a tunnel junction formed from sevefa00Q] layers  functional theory. The potentials generated were used both to
of ZnSe sandwiched between two semi-infinite stacks of Feompute the Bloch waves and to embed the Fe/ZnSe/Fe in-
[100] layers, which form the “leads.” Systems of this type terface. The atomic sphere, rather than the muffin tin, ap-
are interesting because it can be arranged that the momerjgoximation was adopted for both the potential and charge
of the two Fe layers are aligned antiparallel in the absence alensity. In the interface calculations, the potentials on four
an external magnetic field. The application of a small mag-atomic layers of Fe on either side of the ZnSe, and all of the
netic field may then cause alignment of the moments whictznSe layers were relaxed. The resulting redistribution of
in turn causes a significant change in the tunneling conduceharges is shown in Fig. 2.
tance. A dipole layer forms at the Fe/ZnSe interface as electrons

The structure of the interface between the bcc Fe and thare transferred from the Fe to the ZnSe in order to correctly
zinc-blende ZnSe structures is shown in Fig. 1. The usuabosition the Fermi energies of Fe and ZnSe. There is also
cubic cells for bce and zinc blende are rotated by 45° relativeeharge transfer within the ZnSe as electrons are transferred
to each other. The reader is asked to imagine that the atomftcom Se to Zn layers. Several calculations were performed
planes extend to infinity in the directions parallel to theusing between 5 and 33 atomic layers of Zn and Se. For the
planes and that the iron layers are repeated indefinitely to th@andwiches with more than 9 atomic layers of Zn and Se, the
left and to the right. The figure does not distinguish betweerinterior ZnSe potentials were not relaxed, but rather frozen at
the Zn and Se atoms, which occupy alternate atomic planegalues corresponding to the innermost ZnSe self-consistent
of the interlayer. It was assumed that Zn layers are adjacemiotentials calculated with 9 atomic layers of Zn and Se. The
to the Fe electrodes. present calculations neglect spin-orbit coupling, spin-flip

The lattice mismatch between [F200] and several dia- scattering and effects such as the spontaneous Hall effect that
mond and zinc-blende semiconductors is quite small. Thenight arise from the self-field of the iron electrodes.
lattice constant for bcc Fe is 2.87 A, while those of Ge, A preliminary description of the assumed physical struc-
GaAs, and ZnSe are 5.66, 5.65, and754 , respectively. ture and of the calculated electronic structure has already
The lattice constants of the semiconductors are almost exeen published® and so the results of that work will not be

repeated here. In summary, these calculations showed that a

£ significant density of states persists in the interior ZnSe lay-

o ers at the Fermi energy, especially for the minority channel.

A large peak in the minority density of states is found at the
Fermi energy. The state is localized on the atoms close to the

FIG. 1. The system consists of a sample sandwiched betweeifiterface and corresponds to an interface resonance, which
two semi-infinite leads. The system is assumed to be periodic in theouples only weakly to the bulk Bloch states in the Fe leads.
directions parallel to the interfaces. This feature is present for different semiconducting barriers,

FIG. 2. Charges redistribute when ZnSe is embedded in Fe.
Here it is assumed that the Zn layers are adjacent to the Fe.

Left Lead Sample Right Lead
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Tunneling Conductance for Fe|ZnSe|Fe 1
1 T T T T T T T
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10 ¢ Minority —+— T
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g 1x10 L(')l 07t
8 1x1074 &
S < 06 f
T 1x10°%}
S 1x0°¢} 0.5
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Thickness of ZnSe (a.u.)

i d . d minori . FIG. 4. Magnetoresistance as a function of ZnSe thickness for
FIG. 3. Tunneling conductance for majority and minority spin Fe/ZnSe/Fe sandwich.

channels for the case of aligned moments in the iron layers and
tunneling conductance for one of the spin channels for the case of
antiferromagnetic alignment of the spin channels. The conductancef the barrier thicknesd with a length of decay that varies
is in units ofe?/h per two-dimensional unit cell. from approximately 4.6 A for the majority electrons to ap-
proximately 3.7 A for the minority electrons. Using the de-
and is a consequence of the interface between a barrier amdy length for the majority electrons gives an effective bar-
the Fe atoms. The impact of this state on the minority tunier height, AV=7%2/8m* |2, of 0.045 eV ifm* is assumed to
neling current will be discussed in this paper. be the free-electron mass. Although this is small compared to
We note that the barrier is not a classical barrier since théhe energy difference between the Fermi energy and the bot-
electron kinetic energy exceeds the potential energy in théeom of the conduction band in the ZnSe layers, the effective
semiconductor with the exception of a few positions. Rathebarrier height would be reasonable if the smaller effective
the barrier is formed as a result of interference, which premass of ZnSe were used in the estimation, as would be the
cludes propagating states at certain energies. In order tcase for states at the bottom of the conduction band in ZnSe.
make contact with traditional treatments of tunneling, whichwe have performed additional calculatiéhsn which the
envision the semiconducting region as a simple barrier wittbarrier was a constant repulsive potential. For such a repul-
parameters determined by the band gap in the bulk electroniive spatially constant barrier we found thst/8mli? was
structure, we used the potentials calculated for the central Zalmost exactly equal to the energy difference between the
and Se atomic layers to calculate the electronic structure dfermi energy and the bottom of the conduction band in the
bulk ZnSe. We found that it has a direct gap at the zondarrier.
center of 1.34 eV. The Fermi energy for the sandwich lies Figure 3 shows the variation in the tunneling current with
0.49 eV above the valence band and 0.85 eV below the conthickness for minority and majority spin channels for ferro-
duction band. In this traditional picture the semiconductormagnetic alignment of the Fe layers as well as that obtained
would be represented by a step barrier whose height is 0.8&hen the two Fe layers are aligned antiferromagmetically.
eV. We would like to point out that the calculated band gapThe thickness dependences of the majority channel conduc-
is only about half of the measured gap. It is well known thattance, of the minority channel conductance, and of the the
the local-density approximation to density-functional theorytunneling conductance for either spin channel for the case of
yields gaps that are too small for semiconducting systemsantiparallel alignment are significantly different. The more
Although there are simple techniques that could be used trapid decrease in the minority and antiparallel conductance
empirically adjust the bands to give the correct gap andcompared to the majority leads to a tunneling conductance at
Fermi-energy placement we prefer to present our initial redarge thicknesses that is dominated by the majority electrons.
sults without adjustments. This yields a magnetoresistance ratio that approaches unity
We calculated the tunneling conductance for this Felas shown in Fig. 4. This behavior is quite different from that
ZnSe/Fe sandwich composed(@D0) planes as a function of observed in calculations that we performed in which the bar-
the thickness of the ZnSe interlayer for majority and minor-rier was a constant potentid.For the case of a spatially
ity channels and for parallel and antiparallel alignment of theconstant barrier, the current in all channels decreases expo-
moments in the two Fe layers. The conductance was calcuentially with thickness at the same rate so that the magne-
lated from the transmission probability(k)) using the toresistance ratio is independent of thickness, a result consis-
relatior?* tent with Slonczewski® model calculations.
The tunneling currents as a function kof also vary con-
G 622 T(k @.1) siderably with spin channel and moment alignment as is
" h K (kp- ' shown in Figs. 5 and 6. For all thicknesses, the majority spin
current is peaked near the center of the two-dimensional
This result can also be obtained from the Landauetiar  zone while for thin semiconducting interlayeiig. 5), the
formula for the conductanc@-?’ minority spin current has peaks that seem to form part of a
The results, which are plotted in Fig. 3, show that thecircle centered at the origin of the zone. This structure cor-
conductance is approximately an exponential functof’ responds precisely to the localized resonance states seen at
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(a) Majority Conductance for Parallel Alignment (b) Minority Conductance for Parallel Alignment

conductance

conductance

(c) Conductance for Anti-Parallel Alignment

conductance

FIG. 5. Tunneling conductance through 20-a.u.-thick ZnSe barrier as a functibpinfthe two-dimensional Brillouin zone fofa)
majority spin channe{moments aligned (b) minority spin channe(moments aligned (c) conductance for either channel for antiparallel

alignment of the moments. Conductance per two-dimensional cell is expressed in wfits.ofhe two-dimensional cell contains two iron
atoms or one atom of either Zn or Se.

(a) Majority Conductance for Parallel Alignment (b) Minority Conductance for Parallel Alignment

conductance conductance

4x1071°
3x10710
2x10710
1x10-10

(c) Conductance for Anti-Parallel Alignment

conductance

FIG. 6. Tunneling conductance through 90-a.u.-thick ZnSe barrier as a functibpinfthe two-dimensional Brillouin zone fofa)
majority spin channefmoments aligned (b) minority spin channe{moments alignex (c) conductance of either spin channel for antipar-

allel alignment of the moments. Conductance per two-dimensional cell is expressed in @sits. ofhe two-dimensional cell contains two
iron atoms or one atom of either Zn or Se.
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DOS for Majority Incident from Left for Aligned Moments DOS for Minority Incident from Left for Aligned Moments
1 a 1L Vg
0.01 | AW TR o 0.01 | ]
1x1074} 1x1074 1
8 -6 o) 6 V s
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As —+— As —+—
-0 Ay E— -10 ArB—
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1x10712¢ 1 1x10712}+
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Layer Number Layer Number

FIG. 7. Density of states for each of the majority Bloch states at FIG. 8. Density of states for each of the minority Bloch states at
k=0, for parallel alignment of the Fe moments. k=0, for parallel alignment of the Fe moments.

the interface in the minority spin channel. As the semicon~rpare is also a majoritg ;
ducting layer becomes thickéFig. 6), the currents at larger
values ofk are suppressed and the curreetr k=0 be-

comes relatively larger, but the poik{=0 remains a local

band(compatible withs, p, andd
symmetry and a minority band withA , symmetry(compat-

ible with d symmetry. As can be seen in these figures, there
are three decay rates, which are associated with the angular

ml?ﬂqeulrgcf;:ztgg sr?;?gsrl%gthgggeirl{ate the conductance in thmomentum character of the banaiéhin the semiconductor
Sarrier. The rate of decay is slowest for bands vdtbhar-

minority channel at small thicknesses do not contribute a3 .. "~ most rapid for those with ordycharacter. In ad-

the semiconductor barrier layer thickness is increased. Th&ition to the different decay rates, the ease of injection and

current for the a_nt|aI|gned case has f_eatures of both the M&xtraction is band dependent and depends upon the character
jority and minority currents for the aligned case. These r

e- . p
sults are quite different from those obtaiR@ébr tunneling of the band in the lead. In the majority channel, theband,

. : .= . because of the character couples efficiently with a decaying
through a simple step barrier that showed a current d|str|bu§ state in the semiconductor, and thus, this band dominates
tion that is peaked around thé point (kj=0). For this P : X

) . AR Ehe conductance. Th&,, majority band, because it is a pure
simple barrier, this IS simply a consequence of the f‘tiCt thad band in the bulk cannot couple efficiently with thp state
the decay of states in the barrier region increasek as-

in the semiconductor. Thus we see that while the band de-
creases. cays slowly in the semiconductor, the coupling across the
In the case of a barrier formed from ZnSe, in addition to. y y ’ piing

the decay in the barrier region, the coupling between state'smencace is weak. The doubly degeneraigband couples to

inside and outside the semiconductor is important. Thus, th Pd decaying state in the s_em|condu<_:tor and as a conse-
peak in the conductance no longer need occur at the zona ence decays more ra_pldly in the barrier. In the case of the
center. In the case of the majority electrons the decay withirﬁmnorlty chaqnel, similar arguments apply. The much
the barrier dominates. since the states closE fre able to sm_aller tunneling conductance seen is a direct result of there
couple efficiently with decaying states inside the barrier.belng noA, band present at the Fefm' energy.

Thus, the conductance is peaked around the zone center. In Based upon these result;, certain general statements can
the case of the minority electrons states away from the zonBe made. The expected spin dependence of the tunneling
center rather than those &f=0 are able to tunnel more

S . DOS for Majority Incident from Left and Anti-Aligned Moments
easily into the semiconductor layers. Thus, although these J, e T ™

states would decay more rapidly than those at the zone cen- 1 TR S m
ter, they make the dominant contribution to the minority con- AW B ¢
ductance. This net result is a very different current distribu- 0.01 ¢ T¥R eesgeeeee\ ]
tion compared to the majority conductance. 1104 | ¥R
1

The differences in the decay rates seen in the conductance ¢,
for majority and minority electrons, as well that seen for the & 1x107°¢
antiparallel magnetic alignment, which are shown in Fig. 4
can be traced back to the symmetry of the Bloch states at the
Fermi energy, and the correspondingly different spin 1x10710} NI Znse
injection/extraction efficiency for these bands between the Fe

As —+—

. : 1x10712
and the semiconductor. In Figs. 7, 8, and 9, the decay of the X - - - - — - -
various Bloch states into the barrier are shown. The bands 5 10 15L 20 25 30 35 40
ayer Number
are labeled by the usual symmetry labels. There are four such
bands for both spin channels, a doubly degenetatédand FIG. 9. Density of states for each of the Bloch statekat0,

(compatible withp andd symmetry, aA,, (compatible with  for antiparallel alignment of the Fe moments. The left-hand side of
d symmetry is seen for both majority and minority spins. the junction is spin up, while the right-hand side is spin down.
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TABLE I. Type and symmetry of the Bloch states with=0  Fe [100] based tunnel junctions would have an magnetore-
for Fe, Co, and Ni for three different crystal faces. The symmetry ofsistance(MR) that would increase with increasing barrier
these bands is as followay , %, andA; (s,p,d); As, andX, (p  thickness. In the other growth directions, and in a polycrys-

andd); andA;, Ay, X4, andA;(d). talline film, the presence of states wishcharacter for both

spin directions would lead to states that decay at the same
100 110 111 rate in barrier region, leading to an MR that would be thick-

Fel A, Ay Ag 3.3 Ay ness independent. The type gnd sy.mmeFry of the Bloch states
with ky=0 for Fe, Co, and Ni are listed in Table I.

Fel Aj,Ay,As 21,23 Ay I . L .

Col A, s, For Fe, Co, and Ni, the majority states at the Fermi energy
are expected to have morecharacter than the minority

Co| Aq,Ag 35,24 . - L

NiT A, S8, states, which tend to be maindly Thus, the majority conduc-

tance is expected to be greater than the minority conduc-
tance. This is consistent with experimental data that also sug-
gests this in the cases where it can be measthathis is
even the case for Ni where the minority density of states
exceeds that at the Fermi energy by a factor of 10. Even
current can be deduced from the symmetry of the lead Blocthough most of the tunnel junctions currently being studied
states at the Fermi energy. Those bands witharacter are are made from amorphous Ab;, since the tunneling con-
expected to be able to couple across the interface, and decdyictance is to a large part controlled by the symmetry of the
most slowly in the barrier. While bands withosicharacter lead Bloch states, we expect that these qualitative conclu-
can also couple to decaying states witftharacter in the sions will be valid.

barrier, which then decay slowly, the poor coupling across

the interface limits their contribution to the overall conduc-

tance. Thus, differences in the tunneling conductance.will ACKNOWLEDGMENTS
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