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We present an investigation of the plasmon excitations in a quasi-one-dimensional metal, the blue bronze
Ko3M00O;. The dispersion relation along the one-dimensional direction, as measured by electron energy-loss
spectroscopy in transmission, is quasilinear over a wide momentum range before it exhibits a negative curva-
ture. We show that the quasilinear part can be explained within an essentially three-dimensional model based
on the random-phase approximation. Band-structure effects are thereby considered through the Ehrenreich-
Cohen formula, tailor-made to the specific, strongly anisotropic material. From this analysis, we find no hint
for exceptional properties caused by one dimensionality as is currently discussed in the context of photoemis-
sion measurements. The genuine dependence of the plasmon modes on the propagation angle relative to the
one-dimensional axis is masked by interband transitions lying at about the same energy as the plasmon
excitations itself[ S0163-182@9)00508-]|

I. INTRODUCTION to deal with this Peierls instability is via the opening of a
Peierls gap if an adiabatical coupling of the electrons to the

The fundamental theory for the description of the low- phonons is taken into account. This approach results in the
lying excitations in an interacting many-electron system isoccurrence of a metal-insulator transition due to the forma-
the well-known concept of a normal Fermi liquiEiL).1 For  tion of a charge-density wa€DW) connected with a static
example, it elucidates why it is possible to explain the eleciattice distortion.
tronic properties of an ordinary metal essentially within a  Another possible approach is based on the consideration
one-particle picture despite the strong electron-electron Cowsf the electron-electron correlations alone while the electron-
lomb repulsion. The underlying idea consists in the one-tophonon interactions are neglected. This route is followed by
one correspondence between the bare electron states of ti® Tomonaga-Luttinger modelwhich can be solved
noninteracting and the dressed or quasiparticle states of thexactly,®® and the generalization thereof to other gapless
interacting system, which may thus be viewed as composetiD quantum systems characterized by the same universal
of independent particles with renormalized mass. This basitow-energy phenomenology led to the notion of a Luttinger
concept can be extended to cases where the systems in quéguid (LL).° A striking property of the LL as opposed to a
tion do not obey this definition and its implications in a strict FL is the occurrence of bosonic collective modes, involving
sense, such as for metals that become supercondddfing.  spin-charge  separation instead of the fermionic
then omits the epithet “normal” and simply speaks of a FL. quasiparticles®
On the other hand, the applicability of the FL theory to the Whereas the phonon-driven CDW phase transition out-
two-dimensional(2D) cuprate high-temperature supercon-lined above, as well as the resulting groundstate have been
ductors both in the normal and the superconducting state hastensively studied in various compounds and may be con-
been discussed controversially and is still an opersidered as essentially fully understoddrenewed interest
questior®® This illustrates that although the FL theory in from the viewpoint of the LL approach has been attracted by
general has turned out to be quite robust and flexible andrystalline realizations of 1D systems, such as the so-called
may be applied widely its applicability in each specific caseblue bronze i MoO; or (TaSa),l.**™*° From photoemis-
may be the subject of subtle considerations. Thus, the Flsion measurements of these systems, a suppression of spec-
theory can be regarded as setting a standard in condenstdl weight at the Fermi levedE. together with a redistribu-
matter physics by classifying both real and model systems aon of spectral weight to higher binding energies reaching
normal, i.e., showing FL, versus extraordinary, i.e., showingup to about 0.5 eV belovE was reported. This was di-
non-FL behavior. cussed as being a possible signature of LL behavior because

On the theoretical side, however, there is a paradigm fothis observation contradicts the expectation of a clear Fermi
which the failure of the FL picture is unambiguous, namelycutoff as is characteristic for metals in two or three dimen-
in the model system of interacting electrons, which are resions. Much effort has been spent both to confirm these ex-
stricted in their motion to only one dimension. The break-perimental findings also on other materi&is'®and to gain
down of the FL theory in one dimension originates from themore theoretical insight into this questiét>* Although the
logarithmic divergence of the particle-hole susceptibility atexperimental phenomenon as described above may be
the wave vector R (kg being the Fermi momentundue to  thought to be well established for various compounds, it is
the ideal nesting property of a 1D Fermi surfdc®ne way fair to say that there is a growing opinion that there exists no
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unique cause for this suppression of spectral weighHE@at plain the plasmon dispersion as measured nominally parallel
common to all these systems. However, the basic question te the 1D direction but failed in describing the experimental
how far the specific LL phenomenology persists at all in reafindings for a propagation angle of 48%32 These models
crystal systems where one necessarily deals with 1D chainsere both based on the RPA, one of which also included
coupled to each other via the Coulomb interaction and eleceorrections for exchang®.However, none of them properly
tron hopping, the latter of which, strictly speaking, makes thedescribed the interchain coupling since only the mutual Cou-
system a FL instead of a LL. As far as the one-particle speclomb interaction was considered in the calculations.

tral function is concerned, to which photoemission spectros- We do not dicuss here the results on ($K)rther since
copy (PES is suited to give direct access, this issue has beeone of the conclusions of this stufywas that this system
further explored. It was concluded that there should be ashould not be considered as 1D but rather as 2D or 3D. This
intermediate regime with respect to energy and momenturivas also concluded from other measurements and is mean-
where the universal features of a LL should persist and bgyhile generally accepteﬁ_ Instead, we refer to this study
observable with spectroscopic techniques such as *PESegarding the attempt made therein to derive the angular
HOWeV-er, Up to now, neither.the. qualitative Predictions SUCI’Uependence Of the p|asmon energy at zero momentum
as spinon and holon excitations reflecting the aboveyansfer from measurements of the optical reflectance
mentioned spin-charge separation, nor the quantitativiey eXs the mixed-valence platinum complex compound
ploitable_ones, ]ike_ the power-lav_v behavior of the sfPeCtrall(ZPt(CN)4Bro3O.3HzO (Ref. 34 and TTF-TCNGQ® In these
funct|(_)n in the vicinity of the Fermi levef could be verified reflectivity studies the real and imaginary part of the dielec-
experimentally beyond doubt. ftric function were derived by means of a Kramers-Kronig

Moreover, little attention has been paid in the course o . L .

. : , - analysis for the directions parallel and perpendicular to the

the current discussion to other spectroscopic methods, whic S ) .
directions. The zero crossing of the real part of the di-

probe other response functions. This applies, for example, t lectric functi th lculated in Ref. 28 funci
measurements of the dc conductivity where the experimenteﬁ ectric function was then calculated In Rel. 26 as a function

data for various compounds, among them also the blu@' the propagation angle according 4p cosi(6)+¢, sin’(6)
bronze, could be explained satisfactorily on the basis of thé=0 0 give the plasmon energy. A céslependence for the
quasiclassical Boltzmann equation utilizing solely the tem-Plasmon energy was thereby arrived at, as predicted from all
perature dependent pseudogap as a specific 1D feattfra. theoretical models neglecting the interchain coupling as far
further quantity of particular interest are the plasmon modesas mediated by a finite transverse electron-hopping
which can be measured as sharp peaks in the frequency apebbability322¢-3%Although this procedure may be regarded
momentum-dependent loss function. This in turn is related tas a reasonable attempt to extract some information from the
the two-particle Green’s functiofGF), whereas the spectral optical data, it is by no means a direct probe of the angular
function widely studied up to now is connected to the onedependence of the plasmon modes which, in any case, cannot
particle GF. The plasmon dispersion is known to be a senshe excited by transverse electromagnetic waves, i.e., in an
tiye prob_e of e_zlectr_on correlation effects, and is hence esP&sptical experiment.

cially suited in this context, since these effects are the 14 cjose the circle with respect to the present discussion
fundamental reason for the above-mentioned breakdown Qfgncerning possible LL behavior in quasi-one-dimensional
the FL picture in one dimension. Oiy:stems we note that also in a LL-based description the

M_easurer_nents _of the plasmqn dispersion in the context 0s(0) angular dependence of the plasmon energycfor0
guasi-one-dimensional conducting compounds have been r

s I a0dd g
ported up to now only for the organic charge-transfer salfIOIdS for a zero trans'ver.se hopping probabilfty: H.OW .
TTF-TCNQZ for polymeric (SN}, and recently for the ever, for plasmon excitations parallel to the 1D direction,

transition metal tetrachalco-halogenide (Tge2 For the ~ Under the inclusion of at least the Coulomb interaction as
latter compound, a quasilinear plasmon-dispersion relatioff°UP!iNg the 1D chains to each other, no calculations are
over a wide momentum range for the direction parallel to the?vailable to our knowledge. Omitting such a 3D coupling
1D axis was found. This behavior could be understood i€ads to an acoustical plasmon brafiti LL treatment in-
terms of band-structure effects, treated on the level of th&luding finitet, and for finite momentum transfers, however,
random-phase approximation, in agreement with existing?oses difficult problems and unfortunately remains to be car-
tight-binding (TB) band-structure calculations. In the case offied out. However, since a renormalization of the Fermi ve-
the TTF-TCNQ, the measurements suffered from the twinlocity is expected from theoretical consideratidhé! one

ning of the crystals by an angle of 90°. Only if one assumegan conceive of seeing manifestations thereof also on the
(unrealistically a vanishing transverse hopping probability energy scale of the plasmon excitations, and especially ex-
t, between neighboring chains, the plasmon energy for theressed in the plasmon dispersion.

direction perpendicular to the 1D direction would become Therefore, we present measurements of the plasmon dis-
zero and its spectral weight would vani&hOtherwise, the persion in the blue bronze, which is currently discussed as
only unique direction that could be measured for TTF-TCNQbeing outstanding in terms of possible LL behavior, using
is the direction with a plasmon propagation angle of 45°electron energy-loss spectroscofBELS) in transmission.
relative to the 1D direction. There, within the error bars, aWe have measured both along the chain direction and as a
more or less constant plasmon energy with increasing mdunction of the angle relative to the 1D direction and explain
mentum transfer was observed. Interestingly, theoreticadjuantitatively the quasilinear part of the plasmon dispersion
models, which were developed or adapted to account for thparallel to the 1D direction by developing out a model based
experimental data on TTF-TCNQ, could satisfactorily ex-on the well-established RPA. We find no evidence for any
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unique feature that would suggest the need for a treatmemtraband transitions were taken into account. The spatial

within the framework of a LL. inhomogeneity of the electron distribution along and perpen-
dicular to the chains, known as crystal local-field effects, was
Il EXPERIMENT incorporated in a simplified manner. Our attempts to explain

the experimental plasmon dispersion in the one-dimensional

The K, sMoO; single crystals were grown from fused salt conductor i ;MoO; applying these model calculations were
mixtures of K,Mo00, and MoG, by electro crystallizatiof?>  unsuccessful, as we did not achieve a satisfactory agreement
Characterization and orientation of the crystals were carriefitting the theoretical plasmon curves for either of the ex-
out by means of x-ray diffraction and polarization-dependentreme cases to our experimental data. As in the case of
reflectance measurements in the UV/vis. Free-standing thifiTaSa),1?° we are, therefore, led to analyze the observed
films with a thickness of about 1000 A, as suitable for EELSplasmon dispersion in the blue bronze by accounting ad-
measurements, were cut using an ultramicrotome equippeghjuately for thereal electronic transitions, i.enormal and
with a diamond knife. Whilén situ electron diffraction spec- umklapp intra-/interbandransitions, while wanting to stay
tra along the 1D direction, i.e., the crystallograpbi@xis,  within the framework of the RPA. The RPA is well known to
showed only resolution-limited widths of the Bragg reflec-be applicable in three dimensions for the long-wavelength
tions (thus indicating that in this direction the crystallinity regime at high-electron densities, but a point that is less es-
was hardly affectedfor the direction perpendicular to it, i.e., tablished is that it is an even better approach in one dimen-
the crystallographi¢102]-direction?® some broadening and sion if one follows recent studié&*® Nevertheless, in one
mosaic spread could be observed, which is an expected codimension the RPA, being a prototypical example of a stan-
sequence of the folding of the film due to the cutting proce-dard FL-type electron gas theory, is in competition with a
dure with the knife edge aligned parallel to the chains. Thedescription based on a LL scenario. However, the latter has
degree of chain orientation, as determined by the full widthnot been treated theoretically up to now with respect to the
at half maximum of th€020) reflection as a function of the plasmon excitation modes for our case of a quasi-one-
polar and azimuthal angle, was typically about 2.5° anddimensional electron system represented by coupled 1D
3.5°, respectively. The crystal symmetry is side-centeregtrandsi®*®*'We deliberately desist from the inclusion of
monoclinic, space grou@2/m, with the lattice parameters both a proper treatment of the crystal local-field effects and
a=18.249 A b=7.561 A ,c=9.8%5 A, andB=117.54° at  of corrections for exchang@®"3¥°%51and correlatioff 152
300 K% To correlate the above-mentioned crystallo-to the RPA in order to bring into sharper focus the main
graphic directions, with the real structure of the blue bronzephysical processes controlling the observed plasmon disper-
we just note that the structure can be viewed as being asion in this compound.
arrangement of clusters, each of them built up of ten edge
sharing MoQ octahedra in such a way that these subunits
are joined by corners in two directions, and thus basically
form infinite sheets, which are separated by the K ions. How- The unit cell of the blue bronze contains 20 f.u., i.e., 86
ever, while in the 1D direction the number of common cor-atoms, which make it currently beyond the reach of full
ners between the subunits is four, there are only two in théand-structure calculations based on the local-density ap-
in-plane direction perpendicular to“f. This structural an- proximation within the density-functional theory. The exist-
isotropy is reflected, for instance, both by measurements dhg TB band-structure calculations by Travaglini and
the dc conductivity?”?® which give an anisotropy ratio of Wachte?® and Whangbo and Schneemeyehowever, dis-
1:10:100 for the direction perpendicular to the sheets, thagree with one another both in the form of the Fermi surface
in-plane direction perpendicular to the chain direction, andand in the conduction band width. For instance, according to
the 1D chain direction itself, respectively, and also by theRef. 53 the width of the conduction-band~sl eV, whereas
occurrence of a Peierls transition at 183°Knto a CDW it is only ~0.3 eV in Ref. 54.
ground state. The transmission EELS measurements were We favor the band-structure model of Travaglini and
performed at room temperature with a purpose-builtwachter—and hence base our considerations upon it—for
spectrometet! The loss spectra were recorded with an en-the following reasonsti) many quantities calculated on the
ergy and momentum resolution of 115 meV and 0.05'A  basis of this model, such as the optical effective mass, the

A. Electronic spectrum of K, ;M004

respectively. mean-field effective mass for the oscillatory motion of the
pinned CDW below the Peierls temperature, and the dc con-
IIl. THEORETICAL CONSIDERATIONS ductivity, as well as the conduction-band width itself agree

quite well with the available optic&l®® and dc electrical

Plasmon excitations in the context of organic and inor-transport® data. (i) X-ray photoemission spectroscopy
ganic quasi-one-dimensional metals have been considerethows a conduction band extending about 2 eV below the
quite comprehensively by Williams and Blo€hwithin the ~ Fermi level with strong Mo 4 characteP, which is in line
random-phase approximatidiRPA). They treated a square with the model of Travaglini and Wachter, particularly in
array of 1D chains, coupled to each other only by the Couconnection with (iii) recent results obtained by angle-
lomb interaction, assuming model electron spectrum for resolved photoemission spectroscGpy® where two
two extreme cases, namely the limits of free and of tightlyconduction-band features could be observed, which disperse
bound electrons constrained to a first-nearest-neighbor hofy about a factor of 2 and 5 more strongly than the bands
ping within the chains. Hence, in their calculations of thecalculated in Ref. 54(iv) The TB band structure of Trava-
dielectric function and the plasmon dispersion onlyrmal  glini and Wachter is also consistent with the results of core-
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FIG. 1. Band structure of §&Mo0Oj; according to Ref. 53. Wave number (A1) b

level excitation spectra recorded by means of x-ray absorp- F!G- 2. (8 Band structure of KMoOs; in the vicinity of the
tion spectrocopy, which probe the unoccupied part of thé:erml energyEg according to Ref. 53b) Model band structure for
electronic structu,rég the blue bronze according to E@) of this work. For details see the

The results of the TB calculation of Travaglini and text.

Wachter performed for a single cluster chain aof K005 Fig. 2(b) compared with the TB results in Fig(&. Obvi-

are shown in Fig. Isolid lineg. The conduction-band has ously, Egs(1) do not account for the small gap 6f0.1 eV

tzg character and is three-quarters filled by theelectrons 4t the edge of the BZ, but the influence of that gap on the
transferred from the K atoms. This gives a Fermi wave numyjasmon dispersion is negligibly small since the minimal
ber ke =(3/4)(b*/2), whereb* =2m/b is the primitive re-  njasmon energy of about 1.5 eV is significantly larger.
ciprocal lattice vector parallel to thedirection. Additionally Since the boundaries of the first BZ are situated at
to the spin degeneracy, the conduction band is doubly degen: px o= +0 42 A-! and the 1D Fermi wave number is
erate because there arise two bands due to the overlap qQF-: 0.31 A%, already forq,>0.1 A1 umklapp pro-
tween the degenerate My, and Mod, , orbitals. The upper  cesses play a role. Thus, the possible electronic transitions,
bandB results approximately from the back folding of the \ynich give rise to the plasmon spectrum #ienormal and
conduction band if one Qmits Fhe $ma|| gap of about 0.1 eVumkIapp intraband transitions— A and(ii) normal and um-

at the boundary of the first Brillouin zon®2). In between a5 interband transition&— B. In Fig. 3a) these different

the bandsA andB is situated a nondispersive ba@dwhich  ings of electron transitions are marked exemplarily by ar-
is derived from the Mad,, orbital. Ideally, this band does 45 within the repeated-zone scheme for the electronic
not couple for symmetry reasons to the baAdandB, and  girycture. In Appendix A, exploiting Bloch’s theorem, we
hence, from this point of view, does not give any contribu-ghoyy in detail that due to the folded structure of the bahds
tion to the dielectric function along tredirections(dz,®),  andB both normal interband transitiods— B and umklapp

in the range of the plasmon energy. The minimal energynapand transitioné— A are forbidder[dotted arrows in
separation of all other band®(E, andF) from the Fermi g 34)]. Since umklapp interband transitions appear as
energy is about 2.3 eV, and thus is sufficiently large cOM+y,5:mga) intraband transitions in the extended-zone scheme

pared to the maximal plasmon energy of about 1.9 eV, t9see Figs. @) and 3b)] it is possible, and actually more
mean that these other bands give only a small contribution tqyenient, to carry out the calculations in this representa-

the dielectric function, and therefore can be neglected in thigop considering only normal intraband transitions within a
context. Consequently, only the bandlsindB are important single band, denoted b, in Fig. 3b) (the allowed transi-

for our objectives. _ , tions are depicted by solid arrows in Fig). 3The zone
To proceed, we parametrize the conduction-bandnd  p,undaries then lie atb* = +0.84 A1

the bandB using the ansatz
B. Plasmon dispersion in ky ;MoO; for long wavelengths
EA=2t[1-cogk;b/2)], EB=2i[1+cogk,b/2)], persion in fo.MoOs for long 9
z z 1) The plasmon excitation is determined by the zero of the
real part of the dielectric function

which reflects well the main features of the electronic spec-
trum discussed above: i.e., the nearly identical symmetry of
the bandsA andB and the folded band structure. The agree-
ment is evident from the representation of these two bands in

i  4ne 2 o 2F(EQAE,
=euq0)~ex =7 (277)4 (hw)®—(AEyg)*’
2
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Hor i wherev is the Fermi velocity andNy=2/(acsinp) is the
, - number of cluster chains per surface unit of of ¥ag plane.
il I ] A detailed discussion of the physical origin @f anda, in
i A | 1 terms of quasiclassical electron dynamics is reserved for a

future publication in connection with the plasmon dispersion
in the alkali metal$! Here we merely summarize the main
results. The coefficienk, is connected with the deformation
FIG. 3. (a) BandsA and B in the repeated-zone scheme. The Potential and is always positive, irrespective of the band
possible electronic transitions are marked by arrows. Solid arrow$tructure, since the local changes of the density for finite
indicate allowed and dotted ones forbidden transiticiis. The ~ wavelength increase the restoring force on a single electron,
same bands as if@) plotted in the extended-zone scheme and nowand hence the frequency of the collective charge oscillation,
denoted as one barfg,. Only the respective allowed transitions are i.e., the plasmon. On the other hang, is determined by the
depicted as arrows. For details see the text. derivative of the reciprocal dynamic effective mass at the
Fermi energy. Evidently, this term vanishes for a free-

wheref is the Fermi distribution function andE, o=E,4 electron-like or parabolic band. That the contributiorgfis

—E, is the intraconduction-band excitation energy for a mo-0Y N0 means negligible, although it has been overlooked in
mentum transfeq. In Eq. (2) we use the 3D Ehrenreich- the literature so far, is strikingly demonstrated for the alkali

Cohen expressi&ﬂ for the dielectric function, but take into Toitil)?’tﬁspciﬂgll%tgga %Z’n\g?forﬁ] iesg'rt;bgﬂg fi Smlzggsev'a'
account the 1D nature of the conduction band. Contribution% P o

to the dielectric function from high-energy interband transi- 0 a negative dispersion as observed experimerftally.our

tions and core-level transitions are described by a back®?>® inserting the values determined below, the ratio

ground dielectric constart,,. As explained above, we in- a1/ az~—5, which again emphasizes the importance:gf
clude in the dielectric function only the normal intraband

transitions from the band to the defolded ban®. We are IV. RESULTS AND DISCUSSION

aware of the influence of the additional modulation of the A plasmon excitations parallel to the chain direction

electron density by the lattice. The lack of any ansatz for the ) )

wave functions underlying the above-cited band-structure M Fi9. 4 we show a series of energy-loss spectra recorded

calculations excludes a consistent treatment of these effecti.".ongf the c_)rnhe—d|men3|onal d|rect|?.n fgr dn‘fer;ant mombentum
However, this is a tolerable deficiency since a simple estimalfansfers. The curves are normalized to a feature between

tion gives a wave number af,<b*/2=/b=0.42 A~las @aPout5.5 and 7 eVnot shown whose intensity is indepen-
a limit below which these effects should be of little impor- 9€nt 0fq as is asserted by a correction of the intensities for
tance. the 142 dependence of the double differential cross section.
The long-wavelength plasmon dispersion is given by F_or the Iowest_mo_mentum trans_fer, i.e., 0.087A a con-
siderable contribution from the direct beam centered at zero-
energy loss is visible, which results from the finite momen-
3 tum resolution and its broadening due to quasielastic
o()=w,TAQ®, A= Pl (3)  scattering. This poses a lower boundary for the experimen-
tally accessible momentum transfers. In the energy region
shown, one clearly sees a dispersive peak, which is related to
where usually instead of the experimental dispersion coeffithe plasma oscillation of the free charge carriers located in
cient A the dimensionless quantity is introduced. In its the two degenerate bands crossing the Fermi level along the
definition the free-electron massis used to avoid confusion metallic 1D direction. Although the plasmon peak gets
due to the existence of different notions of effective masseshroader, even at the highest measured momentum transfer of
For the special 1D electron spectrii) considered here one 0.625 A~! one can still speak of a well-defined though
obtains (as developed in Appendix )Bin the long- strongly damped plasmon excitation. However, at such high
wavelength limit momentum transfers a reliable determination of the energy

0.0 . .
-2n/b  -n/b 0 nb  2n/b
Wave number (A1)
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transitions(where ther* states are formed by hybridization
of the Mo 4dt,, orbitals with the surrounding oxygen

q (A orbitals®) or, to remain in the picture of the TB band struc-
ture of Fig. 1, to transitions involving bard and to normal
interband transitiond— B which both, realistically, may not

0.08 be entirely forbiddenfor symmetry reasons as argued in the
01 context of the derivation of our model band struct(wdich
J\ disregards the small gap of about 0.1 eV at the zone bound-

02 ary of the first BZ in Sec. Il A, but only strongly sup-
pressed Due to the lower energy resolution in EELS, no

J\ 03 signature of these interband transitions is discernible in the
A loss function, apart from the need of an additional oscillator
A 04 for the fitting as mentioned above.

E/%/X//\\\: From this procedure, a region of a more or less constant

Loss function (arb. units)

05 width of about 0.73 eV in a momentum transfer interval
WO'G between 0.15 and 0.35 A' can be extracted. For higher
— T momentum transfers a steep continuous increase in the plas-
0 1 2 3 mon width is observed, while for the few values at momen-
Energy (eV) tum transfers lower than 0.15 & only a tendency towards

_ a slightly higher width can be seen. In a one-dimensional
FIG. 4. Normalized electron energy-loss spectra gg¥o0;  system the plasmon does not enter the continuum of excita-
for different momentum transfers along the 1D direction. The spactjgns of electron-hole pairs with increasing momentum trans-
ing in momentum transfer between the unlabeled curves iggor a5 is the case in two or three dimensiéhhis means
_1 o
0.025 A™%. that the plasmon damping mechanism, which is effective
" . . - bove a critical wave vector, known as Landau damping, is
position becomes increasingly difficult and—alslo because ofpqent. Hence, the plasmon decay in the blue bronze should
the reduced cross section—this value of 0.625" Anay be take place mainly through decay channels involving inter-

regarded as a reasonable upper boundary for the momentyf g yransitions, provided that the transverse interchain cou-
range measurable using EEL.S' ) pling resulting from the wave-function overlap is small.

A closer look at the behavior of the plasmon width as a5 4 quantitative explanation of the observed plasmon
funct|or_1 of momentum tr_ansfer 1S |_mparted by Fig. 5. Thedamping demands quite a detailed knowledge of these exci-
peak widths were determlned by fitting the shgpe _Of the plasgion processes, i.e., about the joint density of states and the
mon spectral feature with a model loss function incorporatyanition matrix elements, and hence is beyond the scope of
ing, besides the Drude part, also a contribution from a LOryig haner. Nevertheless, the slightly increased width of the
entz oscillator W_lth small osc_|llator stre_ngth, which 'S_plasmon feature for the lowest momentum transfers may be
necessary to ach|e_ve a good fit f_or the .hlghe_r energy tailyscribed to surface contributions, whose cross section scales
Such a model function, of course, is physically justified Onlywith 1/q3, or to stronger contributions from the direct beam,

for zero momentum transfer. However, basically any suitableboth of which would broaden the observed plasmon width at
fit function could be used instead, and our particular choic

is led by optical reflectivity measurements where a shoulder Thé discussion so far raises a crucial question that has to

IS Seen in the plasma edge, which may b‘i §SS|gned N Be clarified before one can continue with an analysis of the
simple molecular energy-level schemertd— 7* interband ¢, serimentally observed plasmon dispersion in terms of the
theoretical approach developed above. It is well known and
easily demonstrated within a simple Drude-Lorentz model
I ] that the (Drudejplasmon and a Lorentz-oscillator, which
1.8 . represents any other electronic excitation, may influence
I ] each other in a complex way in the loss function if they are
I ] not separated enough in energy. Simply put, they tend to
1.4 . repel each othél Thus, one has to make sure in a more

2.0 -

16} .

3t precise manner than provided by the argument given earlier
= ter ] that the oscillator strength of the* — #* interband transi-
1.0F g tions is such that their impact on the plasmon dispersion can
E} indeed be neglected, i.e., that they only lead to a broadening
08T EEEM} i of the observed plasmon signature as stated above. More-
o6k T o L over, only if these interband transitions are weak does it

00 041 02 03 054 05 06 07 make sense to introduce a background dielectric constant
q (A £, Which is truly not frequency dependent in the energy

region of interest, as is done in our theoretical approach. To

FIG. 5. Plasmon width(in eV) as a function of momentum address these points, we performed a Kramers-Kronig analy-
transfer(in A ~%) along the 1D direction as derived from the spec- Sis (KKA) to obtain the absolute value of the loss function
tra shown in Fig. 4. and the real and imaginary part of the dielectric function as
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10 T T T T T T T T

Im(-1/¢)

g +wp2/ (T%+0?)

6
i n 1 " 1 L 1 L 1 n
) 0 1 2 3 4 5
® 2 Energy (eV)
00 ' é ’ 1'0 ' 1'5 20 FIG. 7. The real part, of the dielectric function without the

Drude contribution, — % (I'?+ w?), for the 1D direction §

El V .
nergy (eV) =0.1 A~1). For details see the text.

FIG. 6. The loss function Im{1/e) and the real £;) and
imaginary part £,) of the dielectric function of I§3MOQ3 for a Thus, we now switch back to the comparison between
momentum transfer af=0.1 A~ along the 1D direction. theory and experiment and note that one cannot directly ap-

o = ply Egs. (4) and (5) because even the smallest measured
shown in Fig. 6 for a momentum transfer of 0.1"Aalong  omentum transfer is significantly far from the long-

the 1D direction. The original loss spectrum was measured i(havelength limit upon considering the Fermi wave number
a wide energy range between 0.2 and 95.2 eV to avoid inaquzo_?’l A-1. Therefore, we first fitted the experimental
curacy due to too severe assumptions concerning the ©¥fata(see Fig. 8in the interval 6=q,<0.3 A L with poly-
trapolation foro— < and was corrected for finite momentum : ; _ 2 4
resolution and multiple-scattering contributions. The contri-nPT]Ialstf fpurth ord_er, '-eX’(QZ)B ‘ZP“LCA%Z +_I$’1qz’ "I’md
bution of the direct beam was eliminated by fitting the pIas-S'Xt order, i.e.w(q,) = wp+Ad; +Bq;+Cq,. The values

: . . f the plasma frequency and the dispersion coeffickeab-
mon peak as described above, which thereby gives the low= . . X ,
energy tail to zero energy for the loss function. The scalin ained hardly differ between the fourth- and sixth-order fits.

: . hus, we achieved convergence tog andA with the poly-
for the loss function was achieved through Re(*0 for nomial of sixth order, giving values ab,=1.5 eV andA

w—0 from the condition for a metallic material. The legiti- "~ 5 . .
macy of the corrections made was checked by a comparisoiﬁ 3.6 eV A2, With these values and by using the theoretical

of the reflectance as calculated fremande, with that from ormulas(fl) and(S) gne can then obtain figure§ for the b.aCk'
our optical measurementsot shown. The onset of strong ground dielectric constant and the hopping integral, a4z

interband transitions can be seen fremto lie at about 2.7 :iﬁeaer;]det: Oigsi:/é If:rreomeonpctlcilf rffgesct:\r;cearrslef?)SLr;r;mer?tcsh
eV, which is far above the energy of the plasmon excitation”, P quency ' w und, wh
gives, by means of a decoupling procedure involving a KKA,
5 .
the relative oscillator strength of the weak — #* inter- an unscreened plasma f_requency_of 2.7 E\Comparing
band transitions we proceed as follows. Fregwe get the these two values, one arrives at a dielectric constant of about
' 4 in comparison to the value of 5.7 from the analysis of the

optical conductivity througlyr;(w) =eqwe,(w), where con- -~
trary to the loss function the Drude part and the contributionsEELS data above. Thus, the values«@f=1.5 eV ande..

of the Lorentz oscillators enter additively. We then fit the
optical conductivity using the Drude term and a large num-
ber of Lorentzians. We stress that we do not assign a specific
physical meaning to the individual Lorentz oscillators: they I
merely serve as reasonable fit functions fulfilling fheum 19
rule as a minimal physical side condition. Since the optical

2.1

2.0

conductivity is finite for zero energy, this gives a more ac- 3 18 y
curate fit of the Drude part than is the case #gr. If one ) I

transfers all the “dummy” parameters of the Lorentzians L“x:u’ 1'7_ T
into the analogous expression feg, omitting the Drude 16 |
term, one ends up with a function depicted in Fig. 7, which I

represents; withoutthe Drude part- w3/ (I'?+ w?), where 15 _
I" is the plasmon damping constant. One can now judge at a

glance that the oscillator strength of th& — 7* interband A o2 oz o6

transitions(marked by the arrow in Fig.)7s truly low and
derive a value for the background dielectric constant
=5.7, which has now turned out indeed to be a meaningful FIG. 8. Experimentaldoty and theoretica(line) plasmon dis-
guantity. persion along the 1D direction forg¢MoO;.

Momentum transfer (A1)
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=4.8 obtained from the plasmon dispersion fit in quite well.
The same holds for the conduction-band wiétfsee Fig. 2,
which comes out to betZ1 eV, which is in good compari-
son with the values reported for photoemission
measurements and with the TB calculations of Travaglini
and WachteP?

Finally, with the values fot ande., and by means of Eq.
(2), the theoretical plasmon dispersion can be deduced. The
results forw(q,) are plotted in Fig. &solid line) together
with the experimental data for the plasmon peak positions
(dotg derived from the same fits that were used to deduce
the plasmon widths. The agreement between theory and ex-
periment is excellent up to a momentum transfer ¢pf
~0.42 A~1, which covers the quasilinear part of the dis-
persion. However, there is a large deviation for
>0.42 A~1. This we assign mainly to the crystal local-field
effects according to the discussion in Sec. IlI B, but also

Loss function (arb. units)

6 =90°

q (A

0.1

0.15
0.25
0.35
0.45
0.55

other causes such as additional band-structure effects or an 0
enhanced damping may contribute to the bending down of
the dispersion curve at higher momentum transfers.

From the foregoing discussion the important message is
that a quantitative description of the quasilinear part of the
plasmon dispersion along the 1D axis can be achieved re-

2
Energy (eV)

3

FIG. 9. Normalized electron energy-loss spectra for different
momentum transfers perpendicular to the 1D direciioa., at 6
=90°). The dashed lines are intended as a guide to the eye.

maining in th_e framework of the .RPA' Not surprlsmgly, eV is only slightly below the value of 1.53 eV for the plas-
crystal local-field effects become important at higher MO~ on peak at the same momentum transferéer0° . which
mentum transfers leading to a bending down of the disper- P ’

. e . . s in contradiction to what one would expect from the exist-
sion curve. Modifications due to corrections going beyonc{

ng model calculations.
the RPA are expected to be small. If one traces the evolution of this single peak with in-

creasing momentum transfer one is led to identify the low-
energy structure, which continuously loses spectral weight
: . . with growing g, with one peak, while one recognizes a sec-
Before we discuss our experimental results regarding the . : ) .
. ond peak emerging with largey at higher energy. Looking
angular dependence of the plasmon excitations, we want to, . -y o9
, . t Fig. 10 where a similar splitting is observed one may

refresh the reader’'s memory regarding some remarks made

in the Introduction about the different theoretical predictionss'lt:s'ﬁr(% ;rggg :/Cﬁitcﬁtsvrgg? d:ﬁ;ﬁ% d 822;&” Jgﬂgf” iahgec
in this context. The central difference in the conclusions o ’ 9 y )

the various RPA-based theories concerns the energy of thlé/ A, throughout the whole angle range between 0° and 90°.

plasmon excitations perpendicular to the chains, and origi-
nates solely from the level at which they treat the coupling
between the 1D chains. If besides the interchain Coulomb
interaction an additional coupling through a transverse elec-
tron hoppingt, is forbidden, an angular dependence given
by cos@) is expected in the long-wavelength linift6—2°
whereas fort, #0 the plasmon energy remains finite even
for =90°.3° This statement holds irrespective of any cor-
rections for exchange and/or correlation. Also, in a LL-based

B. Angular dependence of the plasmon excitations

q=0.35A"

90°

description the co#fj angular dependence of the plasmon
energy forg—0 is valid in the case of a zero transverse
hopping probability:®>“°A LL treatment extended to finite
and finite momentum transfers, however, is nontrivial and
has still to be done.

The angular dependence of the plasmon excitations is il-

Loss function (arb. units)

84°
78°
73°
66°
60°

lustrated for the two most instructive examples in Figs. 9 and 4
10. Here the loss functions, normalized in the same way as 0°
described earlier, are shown as a function of momentum é é
transfer for a fixed anglé=90° (Fig. 9) and, vice versa, as

Energy (eV)

a function of the angle relative to the 1D direction for a fixed

momentum transfeg=0.35 A___l (Fig. 10. Going to higher  F|G. 10. Normalized electron energy-loss spectra for a fixed
momentum transfers, the striking feature in Fig. 9 is a splitmomentum transfer aj=0.35 A ! recorded at different angles

ting of the single peak, situated at 1.35 eV far relative to the 1D direction. The dashed lines are intended as a
=0.1 A1, We point out that this energy position of 1.35 guide to the eye.
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o6fF ~ © T~ T T T 7 mutual repulsion of the energetically close-lyitigharge-

I 1 carrien plasmon and the interband transitions but also to a
I ] change of the character of the plasmon mode itself, making
0.2} - the identification of the observed structures in the loss func-

I 1 tion with a particular type of excitation impossible. This fact
explains the above-mentioned discrepancy with the theoreti-
cal predictions.

Finally, to build a bridge to the discussion in Sec. Il A,
we note that the splitting of the plasmon-related peak in the
loss function can qualitatively also be understood from the
fact that for momentum transfers with compones#t® not
only in the z direction, transitions involving ban@ are not
longer forbidden due to symmetry. This means that there are
then two types of electronic transitions contributing to the
dielectric function in the same energy region, which may

0 I 1 1

0 5 10 15 20 lead to two plasmon branches depending on the subtleties of
Energy (eV) the behavior of the relevant matrix elements as a function of
FIG. 11. The loss function Im{1/¢) and the real £,) and
imaginary part £,) of the dielectric function of KsMoO; for a V. SUMMARY
momentum transfer af=0.1 A ! perpendicular to the 1D direc-
tion. We have shown that in the blue bronzg #1005 the

quasilinear part of the plasmon dispersion along the 1D axis

Doing this one arrives at an assignment of the h|gher energyan be described exceIIentIy within the framework of the
structure to the plasmon excitation. Since the splitting occur&PA using the Ehrenreich-Cohen formula. In the momentum
in an angle range where the component of the momenturfange up tog~0.42 A~ we isolate as the leading contri-
transfer perpendicular to the 1D axis hardly changes, an efutions to the dispersion coefficient a proper treatment of the
fect due to a dimensional crossover can be excluded. Turninggal electronic transitions and the inclusion of the effects
back to Fig. 9 one then has to ascribe the low-energy struc@riginating from the variation of the reciprocal dynamic ef-
ture to the 7* —* interband transitions and the high- fective mass. For larger momentum transferg
energy structure to the plasmon mode, which is no longe?0.42 A~ in particular, the crystal local-field effects be-
discernible for smallq and =90°. This interpretation is come important and the theoretically determined plasmon-
supported by the reflectance measurements where with tifispersion curve no longer describes the experimental one.
polarization vector perpendicular to the chain direction aNevertheless, at no stage is there a hint for the need of cor-
semiconducting rather than a metallic behavior is observedections due to exchange and correlation, or for a Luttinger
A KKA of the EELS data for¢=90° andq=0.1 A~'re- liquid-based description. Our combined experimental and
veals the situation more clearfgee Fig. 11 Besides the theoretical investigation rather corroborates previous band-
usual corrections and precautions as addressed above, tpigucture calculations by Travaglini and Wachter. Unfortu-
elastic line was eliminated simply so as to achieve goodiately, the experimental results gained by varying the plas-
agreement with the reflectance from the optical measuremon propagation angle relative to the chain axis give a
ments. The scaling condition;(w=0)=11.5 was used as distorted picture owing to interband transitions. The latter are
derived from the reflectance through (0)=n(0)2=[(1  strong for propagation directions away from the 1D axis, and

+R(0))/(1-yR(0))]? for a nonmetallic, nonmagnetic hence strongly affect the plasmon modes in these directions.
solid. In e, a strong oscillator is found at 1.5 eV, which is Thus, a comparison with the existing theories is not possible.

consistent with the assumption of a strongly increased

strength of ther* — #* interband transitions compared to ACKNOWLEDGMENTS
the chain direction. The oscillator strength is even high
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APPENDIX A: ALLOWED AND FORBIDDEN

_ -1 i
(Ton?e”tg.m t{.a”Sfeq.;ho'lt A b.etwe‘?” the t"‘.’]? petrpe” . ELECTRONIC TRANSITIONS FOR THE K o4M0Os
ICular directions without any sign or a signiticant pea MODEL SPECTRUM

broadening or splittingalso for intermediate angles that are

not shown suggests a more subtle picture. The complex in- In the following we give proof that normal interband tran-
terplay between the intraband amd — 7* interband tran-  sitions A—B and umklapp intraband transitiods— A are
sitions, which strongly depends on the momentum trartgfer forbidden for the model spectrum established in Efjsbe-

i.e., from both its modulus and its angle, leads not only to acause of its folded structure. On the other hand, we will see



PRB 59 PLASMON EXCITATIONS IN QUASI-ONE . .. 5423

that umklapp interband transitiods— B and normal intra- and the periodic properties of the Bloch amplitude of the
band transitionsA—A are allowed. These facts are illus- pandA,, ukAO(zi b/2):uC°(z).

trated in Fig. 8a), where the band& andB are drawn within : .
the repeated-zone scheme. The first and the second BZ's aAe_‘I}'gegﬁ/r;ilﬁﬁgurzsicl)tn&deratlon for the umklapp processes
depicted. Allowed and forbidden transitions are marked ex-

emplarily by solid and dotted arrows, respectively. Figure
3(b) shows the same band structure within the extended-zone
scheme. It is easily seen that the bakh the first and the
bandB in the second BZ from Fig. (@) coincide with the
bandA, in Fig. 3(b). We will distinguish two regions in the
first BZ, the region “I” with —7/b=<k,<<0, and the region

“II" with 0 <k,<m/b. If the energy-momentum relation for

bandA is denoted byE , the dispersion relation for barki USingUEZ+qZ(Z):UC°+q (2). In this case the integral does not
z z

B H H 1 ” A 1 . . . . .
E\ can be expressed E$Z+b* inregion “1”andE, _« in vanisha priori and its value depends on the symmetrical

region “2” or expressed in terms of the Bloch amplitudes of properties of the Bloch amplitudaﬁo(z). Equation (A6)
the bandsA andB z

b/2
=2 Vadul L 1

b/2
=2 fo A4, (21U (), (AB)

shows that umklapp interband procesfes B appear in the
extended band scheme as normal intraband procesges

A
U, 1px(2) for  —m/b=k,<0 —Ay. One can similarly check that umklapp intraband pro-

U (D=1 A (AD) A A are forbidd I
2 Ut .(2) for O=k,<m/b. cesseA—A are forbidden as well.
z To summarize the above discussion, in order to account
If one combines Eq(A1) with for all the real electronic transitions one can carry out the
calculations simply in the extended zone scheme with the
ue(r)=e€'®"u,,q(r), (A2)  zone boundaries at2b*==+0.84 A~ One thereby has

hich | ol ¢ Bloch's th L to consider only normal intraband electronic transitions
which is a simple consequence of Bloch’s theorekikies in | i the bandA,,

the first BZ andG is a reciprocal lattice vector—Ed@A1l)
becomes

A
N Ev,=E°=2t[ 1~ cogk,b/2)]. (A7)
g ib Zu{jz(z) for —m/b<k,<O0
UE(Z): +ib*z A (A3)

z e ukz(z) for O=k,<m/b. APPENDIX B: LONG-WAVELENGTH EXPANSION

OF THE PLASMON DISPERSION AND RESULTS

The typical integral in the dielectric function, which de- FOR Ko 3M0O3
fﬁé‘?ﬁfﬂ#@e intensity of the interband transitighs:B is of In the following we give a brief outline of the reasoning

leading from the Ehrenreich-Cohen formula for the dielectric
b function (2) to the expression&4) and (5), which apply to
I”:f dz[uE+q o (D TFUR (2). (A4)  the blue bronze and enter the general Bj.for the long-
0 e z wavelength expansion of the plasmon dispersion.
The tensorial] expansion of the integrand in E@) up to
the fourth order and integration by parts exploiting inversion
symmetry yields to an integral expression, which can be
transformed into an integral over the Fermi surface according
to fd3ka/dk=4$dS. This gives, withe., included, the long-

wavelength expansion for the dielectric function as stated by
.54

In Eqg. (Ad4) both k, and k,+q,+nb* lie in the first BZ.
Thus, forn=0 one has normal processes andrfiefr0 um-
klapp processes. For simplicity we will assumg>0 and,
additionally, for umklapp processes= — 1.

First we consider normal process@s-B. Replacing in
the integrand of(A4) the Bloch amplitude of the banB y
according to(A3) one obtains after a simple transformation NUckeret a

2

b/2 ipk Ae
|0=f0 dze"™ uf ., (2)]*uf.(2) £1(00) =5~ g
b 4 2
ib* 1 J
+ | dze" P up ,, (2)]*uR(z P A CP S 2
o (Ui +q, (D ]" Ui (2) X {vg)+a ST 5\ val &5 ) va) ||

b2 Fib*bi2)ptib* zp | A A (BY)
= | dAL+eT e U L (2)]F U (2) =0,
whereuv, is the projection of the quasiclassical velocity onto
(A5)  the plasmon propagation direction according to

which states that the normal interband transitidns B are
forbidden sincek,+q, lies in the second BZ. In obtaining 1 9k

(A5) we used thatif (2) = uz%(2) in the first BZ of Fig. 3a) vg=eV, e=alq, V=g 5o, (B2)
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and the brackets denote a Fermi-surface integral defined as

_ 2 3 ’
<H>_(ZT)3J d°k[ — ' (Ex) H(k,q)

2

(2m)®

J‘ ds
E—EcP|V]

where —f'(E,)=— (df(Ey)/JEy) = 8(Eg—E,). Equation

H(k,a), (B3)

(2), which determines approximately the plasmon dispersion,

yields with the expansio(B1) a biquadratic equation for the
plasmon frequency. The solution up 48 gives the disper-
sion relation within the long-wavelength limit as

M. SING et al.
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) # , 4me® n
o(q)=w,+Ad", A=Ea, Wp= .
o op
w2 (B4)
=(v ,
Mopt a

with the free-electron mags. The optical effective mass is
defined by the third equation. The dispersion coefficient
takes the form

(

a 2
e%) Uq } =atas.
(B5)

<v3> N 1 4me?
(vy) 12
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