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Plasmon excitations in quasi-one-dimensional K0.3MoO3
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We present an investigation of the plasmon excitations in a quasi-one-dimensional metal, the blue bronze
K0.3MoO3 . The dispersion relation along the one-dimensional direction, as measured by electron energy-loss
spectroscopy in transmission, is quasilinear over a wide momentum range before it exhibits a negative curva-
ture. We show that the quasilinear part can be explained within an essentially three-dimensional model based
on the random-phase approximation. Band-structure effects are thereby considered through the Ehrenreich-
Cohen formula, tailor-made to the specific, strongly anisotropic material. From this analysis, we find no hint
for exceptional properties caused by one dimensionality as is currently discussed in the context of photoemis-
sion measurements. The genuine dependence of the plasmon modes on the propagation angle relative to the
one-dimensional axis is masked by interband transitions lying at about the same energy as the plasmon
excitations itself.@S0163-1829~99!00508-1#
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I. INTRODUCTION

The fundamental theory for the description of the lo
lying excitations in an interacting many-electron system
the well-known concept of a normal Fermi liquid~FL!.1 For
example, it elucidates why it is possible to explain the el
tronic properties of an ordinary metal essentially within
one-particle picture despite the strong electron-electron C
lomb repulsion. The underlying idea consists in the one
one correspondence between the bare electron states o
noninteracting and the dressed or quasiparticle states o
interacting system, which may thus be viewed as compo
of independent particles with renormalized mass. This ba
concept can be extended to cases where the systems in
tion do not obey this definition and its implications in a str
sense, such as for metals that become superconducting.2 One
then omits the epithet ‘‘normal’’ and simply speaks of a F
On the other hand, the applicability of the FL theory to t
two-dimensional~2D! cuprate high-temperature superco
ductors both in the normal and the superconducting state
been discussed controversially and is still an op
question.3,4 This illustrates that although the FL theory
general has turned out to be quite robust and flexible
may be applied widely its applicability in each specific ca
may be the subject of subtle considerations. Thus, the
theory can be regarded as setting a standard in conde
matter physics by classifying both real and model system
normal, i.e., showing FL, versus extraordinary, i.e., show
non-FL behavior.

On the theoretical side, however, there is a paradigm
which the failure of the FL picture is unambiguous, name
in the model system of interacting electrons, which are
stricted in their motion to only one dimension. The brea
down of the FL theory in one dimension originates from t
logarithmic divergence of the particle-hole susceptibility
the wave vector 2kF (kF being the Fermi momentum! due to
the ideal nesting property of a 1D Fermi surface.5 One way
PRB 590163-1829/99/59~8!/5414~12!/$15.00
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to deal with this Peierls instability is via the opening of
Peierls gap if an adiabatical coupling of the electrons to
phonons is taken into account. This approach results in
occurrence of a metal-insulator transition due to the form
tion of a charge-density wave~CDW! connected with a static
lattice distortion.

Another possible approach is based on the considera
of the electron-electron correlations alone while the electr
phonon interactions are neglected. This route is followed
the Tomonaga-Luttinger model~which can be solved
exactly!,6–8 and the generalization thereof to other gaple
1D quantum systems characterized by the same unive
low-energy phenomenology led to the notion of a Lutting
liquid ~LL !.9 A striking property of the LL as opposed to
FL is the occurrence of bosonic collective modes, involvi
spin-charge separation instead of the fermio
quasiparticles.10

Whereas the phonon-driven CDW phase transition o
lined above, as well as the resulting groundstate have b
intensively studied in various compounds and may be c
sidered as essentially fully understood,11 renewed interest
from the viewpoint of the LL approach has been attracted
crystalline realizations of 1D systems, such as the so-ca
blue bronze K0.3MoO3 or (TaSe4)2I. 12–15 From photoemis-
sion measurements of these systems, a suppression of
tral weight at the Fermi levelEF together with a redistribu-
tion of spectral weight to higher binding energies reach
up to about 0.5 eV belowEF was reported. This was di
cussed as being a possible signature of LL behavior bec
this observation contradicts the expectation of a clear Fe
cutoff as is characteristic for metals in two or three dime
sions. Much effort has been spent both to confirm these
perimental findings also on other materials,16–19 and to gain
more theoretical insight into this question.20–24Although the
experimental phenomenon as described above may
thought to be well established for various compounds, i
fair to say that there is a growing opinion that there exists
5414 ©1999 The American Physical Society
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PRB 59 5415PLASMON EXCITATIONS IN QUASI-ONE- . . .
unique cause for this suppression of spectral weight atEF

common to all these systems. However, the basic questio
how far the specific LL phenomenology persists at all in r
crystal systems where one necessarily deals with 1D ch
coupled to each other via the Coulomb interaction and e
tron hopping, the latter of which, strictly speaking, makes
system a FL instead of a LL. As far as the one-particle sp
tral function is concerned, to which photoemission spectr
copy ~PES! is suited to give direct access, this issue has b
further explored. It was concluded that there should be
intermediate regime with respect to energy and momen
where the universal features of a LL should persist and
observable with spectroscopic techniques such as PE24

However, up to now, neither the qualitative predictions su
as spinon and holon excitations reflecting the abo
mentioned spin-charge separation, nor the quantitativley
ploitable ones, like the power-law behavior of the spec
function in the vicinity of the Fermi level,24 could be verified
experimentally beyond doubt.

Moreover, little attention has been paid in the course
the current discussion to other spectroscopic methods, w
probe other response functions. This applies, for example
measurements of the dc conductivity where the experime
data for various compounds, among them also the b
bronze, could be explained satisfactorily on the basis of
quasiclassical Boltzmann equation utilizing solely the te
perature dependent pseudogap as a specific 1D feature.25,26A
further quantity of particular interest are the plasmon mod
which can be measured as sharp peaks in the frequency
momentum-dependent loss function. This in turn is related
the two-particle Green’s function~GF!, whereas the spectra
function widely studied up to now is connected to the on
particle GF. The plasmon dispersion is known to be a se
tive probe of electron correlation effects, and is hence es
cially suited in this context, since these effects are
fundamental reason for the above-mentioned breakdow
the FL picture in one dimension.

Measurements of the plasmon dispersion in the contex
quasi-one-dimensional conducting compounds have bee
ported up to now only for the organic charge-transfer s
TTF-TCNQ,27 for polymeric (SN)x ,28 and recently for the
transition metal tetrachalco-halogenide (TaSe4)2I. 29 For the
latter compound, a quasilinear plasmon-dispersion rela
over a wide momentum range for the direction parallel to
1D axis was found. This behavior could be understood
terms of band-structure effects, treated on the level of
random-phase approximation, in agreement with exist
tight-binding~TB! band-structure calculations. In the case
the TTF-TCNQ, the measurements suffered from the tw
ning of the crystals by an angle of 90°. Only if one assum
~unrealistically! a vanishing transverse hopping probabil
t' between neighboring chains, the plasmon energy for
direction perpendicular to the 1D direction would becom
zero and its spectral weight would vanish.30 Otherwise, the
only unique direction that could be measured for TTF-TCN
is the direction with a plasmon propagation angle of 4
relative to the 1D direction. There, within the error bars
more or less constant plasmon energy with increasing
mentum transfer was observed. Interestingly, theoret
models, which were developed or adapted to account for
experimental data on TTF-TCNQ, could satisfactorily e
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plain the plasmon dispersion as measured nominally par
to the 1D direction but failed in describing the experimen
findings for a propagation angle of 45°.31,32 These models
were both based on the RPA, one of which also includ
corrections for exchange.32 However, none of them properly
described the interchain coupling since only the mutual C
lomb interaction was considered in the calculations.

We do not dicuss here the results on (SN)x further since
one of the conclusions of this study28 was that this system
should not be considered as 1D but rather as 2D or 3D. T
was also concluded from other measurements and is m
while generally accepted.33 Instead, we refer to this stud
regarding the attempt made therein to derive the ang
dependence of the plasmon energy at zero momen
transfer from measurements of the optical reflecta
of the mixed-valence platinum complex compou
K2Pt(CN)4Br0.30.3H2O ~Ref. 34! and TTF-TCNQ.35 In these
reflectivity studies the real and imaginary part of the diele
tric function were derived by means of a Kramers-Kron
analysis for the directions parallel and perpendicular to
1D directions. The zero crossing of the real part of the
electric function was then calculated in Ref. 28 as a funct
of the propagation angle according to« i cos2(u)1«' sin2(u)
50 to give the plasmon energy. A cosu dependence for the
plasmon energy was thereby arrived at, as predicted from
theoretical models neglecting the interchain coupling as
as mediated by a finite transverse electron-hopp

probability.32,36–39Although this procedure may be regarde
as a reasonable attempt to extract some information from
optical data, it is by no means a direct probe of the angu
dependence of the plasmon modes which, in any case, ca
be excited by transverse electromagnetic waves, i.e., in
optical experiment.

To close the circle with respect to the present discuss
concerning possible LL behavior in quasi-one-dimensio
systems we note that also in a LL-based description
cos(u) angular dependence of the plasmon energy forq→0
holds for a zero transverse hopping probability.10,40 How-
ever, for plasmon excitations parallel to the 1D directio
under the inclusion of at least the Coulomb interaction
coupling the 1D chains to each other, no calculations
available to our knowledge. Omitting such a 3D coupli
leads to an acoustical plasmon branch.41 A LL treatment in-
cluding finitet' and for finite momentum transfers, howeve
poses difficult problems and unfortunately remains to be c
ried out. However, since a renormalization of the Fermi v
locity is expected from theoretical considerations,10,41 one
can conceive of seeing manifestations thereof also on
energy scale of the plasmon excitations, and especially
pressed in the plasmon dispersion.

Therefore, we present measurements of the plasmon
persion in the blue bronze, which is currently discussed
being outstanding in terms of possible LL behavior, usi
electron energy-loss spectroscopy~EELS! in transmission.
We have measured both along the chain direction and
function of the angle relative to the 1D direction and expla
quantitatively the quasilinear part of the plasmon dispers
parallel to the 1D direction by developing out a model bas
on the well-established RPA. We find no evidence for a
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unique feature that would suggest the need for a treatm
within the framework of a LL.

II. EXPERIMENT

The K0.3MoO3 single crystals were grown from fused sa
mixtures of K2MoO4 and MoO3 by electro crystallization.42

Characterization and orientation of the crystals were car
out by means of x-ray diffraction and polarization-depend
reflectance measurements in the UV/vis. Free-standing
films with a thickness of about 1000 Å, as suitable for EE
measurements, were cut using an ultramicrotome equip
with a diamond knife. Whilein situ electron diffraction spec-
tra along the 1D direction, i.e., the crystallographicb axis,
showed only resolution-limited widths of the Bragg refle
tions ~thus indicating that in this direction the crystallinit
was hardly affected! for the direction perpendicular to it, i.e
the crystallographic@102#-direction,43 some broadening an
mosaic spread could be observed, which is an expected
sequence of the folding of the film due to the cutting pro
dure with the knife edge aligned parallel to the chains. T
degree of chain orientation, as determined by the full wi
at half maximum of the~020! reflection as a function of the
polar and azimuthal angle, was typically about 2.5° a
3.5°, respectively. The crystal symmetry is side-cente
monoclinic, space groupC2/m, with the lattice parameter
a518.249 Å ,b57.561 Å ,c59.856 Å , andb5117.54° at
300 K.43–45 To correlate the above-mentioned crystal
graphic directions, with the real structure of the blue bron
we just note that the structure can be viewed as being
arrangement of clusters, each of them built up of ten e
sharing MoO6 octahedra in such a way that these subun
are joined by corners in two directions, and thus basica
form infinite sheets, which are separated by the K ions. Ho
ever, while in the 1D direction the number of common co
ners between the subunits is four, there are only two in
in-plane direction perpendicular to it.43 This structural an-
isotropy is reflected, for instance, both by measurement
the dc conductivity,25,26 which give an anisotropy ratio o
1:10:100 for the direction perpendicular to the sheets,
in-plane direction perpendicular to the chain direction, a
the 1D chain direction itself, respectively, and also by
occurrence of a Peierls transition at 183 K46 into a CDW
ground state. The transmission EELS measurements w
performed at room temperature with a purpose-b
spectrometer.47 The loss spectra were recorded with an e
ergy and momentum resolution of 115 meV and 0.05 Å21,
respectively.

III. THEORETICAL CONSIDERATIONS

Plasmon excitations in the context of organic and in
ganic quasi-one-dimensional metals have been consid
quite comprehensively by Williams and Bloch36 within the
random-phase approximation~RPA!. They treated a squar
array of 1D chains, coupled to each other only by the C
lomb interaction, assuming amodel electron spectrum for
two extreme cases, namely the limits of free and of tigh
bound electrons constrained to a first-nearest-neighbor
ping within the chains. Hence, in their calculations of t
dielectric function and the plasmon dispersion onlynormal
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intraband transitions were taken into account. The spat
inhomogeneity of the electron distribution along and perp
dicular to the chains, known as crystal local-field effects, w
incorporated in a simplified manner. Our attempts to expl
the experimental plasmon dispersion in the one-dimensio
conductor K0.3MoO3 applying these model calculations we
unsuccessful, as we did not achieve a satisfactory agreem
fitting the theoretical plasmon curves for either of the e
treme cases to our experimental data. As in the case
(TaSe4)2I29 we are, therefore, led to analyze the observ
plasmon dispersion in the blue bronze by accounting
equately for thereal electronic transitions, i.e.,normal and
umklapp intra-/interbandtransitions, while wanting to stay
within the framework of the RPA. The RPA is well known t
be applicable in three dimensions for the long-wavelen
regime at high-electron densities, but a point that is less
tablished is that it is an even better approach in one dim
sion if one follows recent studies.48,49 Nevertheless, in one
dimension the RPA, being a prototypical example of a st
dard FL-type electron gas theory, is in competition with
description based on a LL scenario. However, the latter
not been treated theoretically up to now with respect to
plasmon excitation modes for our case of a quasi-o
dimensional electron system represented by coupled
strands.10,40,41 We deliberately desist from the inclusion o
both a proper treatment of the crystal local-field effects a
of corrections for exchange32,37,38,50,51and correlation37,51,52

to the RPA in order to bring into sharper focus the ma
physical processes controlling the observed plasmon dis
sion in this compound.

A. Electronic spectrum of K0.3MoO3

The unit cell of the blue bronze contains 20 f.u., i.e.,
atoms, which make it currently beyond the reach of f
band-structure calculations based on the local-density
proximation within the density-functional theory. The exis
ing TB band-structure calculations by Travaglini an
Wachter53 and Whangbo and Schneemeyer,54 however, dis-
agree with one another both in the form of the Fermi surfa
and in the conduction band width. For instance, according
Ref. 53 the width of the conduction-band is'1 eV, whereas
it is only '0.3 eV in Ref. 54.

We favor the band-structure model of Travaglini a
Wachter—and hence base our considerations upon it—
the following reasons:~i! many quantities calculated on th
basis of this model, such as the optical effective mass,
mean-field effective mass for the oscillatory motion of t
pinned CDW below the Peierls temperature, and the dc c
ductivity, as well as the conduction-band width itself agr
quite well with the available optical55,56 and dc electrical
transport25 data. ~ii ! X-ray photoemission spectroscop
shows a conduction band extending about 2 eV below
Fermi level with strong Mo 4d character,57 which is in line
with the model of Travaglini and Wachter, particularly
connection with ~iii ! recent results obtained by angle
resolved photoemission spectroscopy,57,58 where two
conduction-band features could be observed, which disp
by about a factor of 2 and 5 more strongly than the ba
calculated in Ref. 54.~iv! The TB band structure of Trava
glini and Wachter is also consistent with the results of co
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PRB 59 5417PLASMON EXCITATIONS IN QUASI-ONE- . . .
level excitation spectra recorded by means of x-ray abs
tion spectrocopy, which probe the unoccupied part of
electronic structure.59

The results of the TB calculation of Travaglini an
Wachter performed for a single cluster chain of K0.3MoO3
are shown in Fig. 1~solid lines!. The conduction-bandA has
t2g character and is three-quarters filled by the 4s electrons
transferred from the K atoms. This gives a Fermi wave nu
ber kF5(3/4)(b* /2), whereb* 52p/b is the primitive re-
ciprocal lattice vector parallel to thez direction. Additionally
to the spin degeneracy, the conduction band is doubly de
erate because there arise two bands due to the overlap
tween the degenerate Modxz and Modyz orbitals. The upper
bandB results approximately from the back folding of th
conduction band if one omits the small gap of about 0.1
at the boundary of the first Brillouin zone~BZ!. In between
the bandsA andB is situated a nondispersive bandC, which
is derived from the Modxy orbital. Ideally, this band doe
not couple for symmetry reasons to the bandsA andB, and
hence, from this point of view, does not give any contrib
tion to the dielectric function along thez direction«(qz ,v),
in the range of the plasmon energy. The minimal ene
separation of all other bands (D,E, andF) from the Fermi
energy is about 2.3 eV, and thus is sufficiently large co
pared to the maximal plasmon energy of about 1.9 eV
mean that these other bands give only a small contributio
the dielectric function, and therefore can be neglected in
context. Consequently, only the bandsA andB are important
for our objectives.

To proceed, we parametrize the conduction-bandA and
the bandB using the ansatz

Ekz

A 52t@12cos~kzb/2!#, Ekz

B 52t@11cos~kzb/2!#,

~1!

which reflects well the main features of the electronic sp
trum discussed above: i.e., the nearly identical symmetry
the bandsA andB and the folded band structure. The agre
ment is evident from the representation of these two band

FIG. 1. Band structure of K0.3MoO3 according to Ref. 53.
p-
e

-

n-
be-

V

-

y

-
o
to
is

-
of
-
in

Fig. 2~b! compared with the TB results in Fig. 2~a!. Obvi-
ously, Eqs.~1! do not account for the small gap of;0.1 eV
at the edge of the BZ, but the influence of that gap on
plasmon dispersion is negligibly small since the minim
plasmon energy of about 1.5 eV is significantly larger.

Since the boundaries of the first BZ are situated
6b* /2560.42 Å21 and the 1D Fermi wave number i
kF50.31 Å21, already for qz.0.1 Å 21 umklapp pro-
cesses play a role. Thus, the possible electronic transiti
which give rise to the plasmon spectrum are~i! normal and
umklapp intraband transitionsA→A and~ii ! normal and um-
klapp interband transitionsA→B. In Fig. 3~a! these different
kinds of electron transitions are marked exemplarily by
rows within the repeated-zone scheme for the electro
structure. In Appendix A, exploiting Bloch’s theorem, w
show in detail that due to the folded structure of the bandA
andB both normal interband transitionsA→B and umklapp
intraband transitionsA→A are forbidden@dotted arrows in
Fig. 3~a!#. Since umklapp interband transitions appear
normal intraband transitions in the extended-zone sche
@see Figs. 3~a! and 3~b!# it is possible, and actually more
convenient, to carry out the calculations in this represen
tion considering only normal intraband transitions within
single band, denoted byA0 in Fig. 3~b! ~the allowed transi-
tions are depicted by solid arrows in Fig. 3!. The zone
boundaries then lie at6b* 560.84 Å21.

B. Plasmon dispersion in K0.3MoO3 for long wavelengths

The plasmon excitation is determined by the zero of
real part of the dielectric function

05«1~q,v!'«`2
4pe2

q2

2

~2p!3E d3k
2 f ~Ek!DEk,q

~\v!22~DEk,q!2
,

~2!

FIG. 2. ~a! Band structure of K0.3MoO3 in the vicinity of the
Fermi energyEF according to Ref. 53.~b! Model band structure for
the blue bronze according to Eq.~1! of this work. For details see the
text.



o
-

on
si
c

-
nd

he
th
ur
ec

r-

f

e
e

r a
ion
in
n
nd
ite

ron,
ion,

the
e-

in
ali
via-

atio

ded
m
een
-
for
on.

ro-
n-

stic
en-
ion
d to
in
the
ts

er of
h
igh
rgy

he
ow

ow
re

5418 PRB 59M. SING et al.
wheref is the Fermi distribution function andDEk,q5Ek1q
2Ek is the intraconduction-band excitation energy for a m
mentum transferq. In Eq. ~2! we use the 3D Ehrenreich
Cohen expression60 for the dielectric function, but take into
account the 1D nature of the conduction band. Contributi
to the dielectric function from high-energy interband tran
tions and core-level transitions are described by a ba
ground dielectric constant«` . As explained above, we in
clude in the dielectric function only the normal intraba
transitions from the bandA to the defolded bandB. We are
aware of the influence of the additional modulation of t
electron density by the lattice. The lack of any ansatz for
wave functions underlying the above-cited band-struct
calculations excludes a consistent treatment of these eff
However, this is a tolerable deficiency since a simple estim
tion gives a wave number ofqz,b* /25p/b50.42 Å21 as
a limit below which these effects should be of little impo
tance.

The long-wavelength plasmon dispersion is given by

v~q!5vp1Aq2, A5
\

m
a, ~3!

where usually instead of the experimental dispersion coe
cient A the dimensionless quantitya is introduced. In its
definition the free-electron massm is used to avoid confusion
due to the existence of different notions of effective mass
For the special 1D electron spectrum~1! considered here on
obtains ~as developed in Appendix B! in the long-
wavelength limit

FIG. 3. ~a! BandsA and B in the repeated-zone scheme. T
possible electronic transitions are marked by arrows. Solid arr
indicate allowed and dotted ones forbidden transitions.~b! The
same bands as in~a! plotted in the extended-zone scheme and n
denoted as one bandA0 . Only the respective allowed transitions a
depicted as arrows. For details see the text.
-
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e
e
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s.

vp
25

16e2N0uvFu
«`\

, ~4!

a5a11a2 with a15
mvF

2

2\vp

and

a252
me2N0b2vF

6\2«`vp

, ~5!

vF5
1

\
S ]Ekz

]kz
D

kF

5
bt

\
sinS kFb

2 D , ~6!

wherevF is the Fermi velocity andN052/(ac sinb) is the
number of cluster chains per surface unit of of thex-y plane.
A detailed discussion of the physical origin ofa1 anda2 in
terms of quasiclassical electron dynamics is reserved fo
future publication in connection with the plasmon dispers
in the alkali metals.61 Here we merely summarize the ma
results. The coefficienta1 is connected with the deformatio
potential and is always positive, irrespective of the ba
structure, since the local changes of the density for fin
wavelength increase the restoring force on a single elect
and hence the frequency of the collective charge oscillat
i.e., the plasmon. On the other hand,a2 is determined by the
derivative of the reciprocal dynamic effective mass at
Fermi energy. Evidently, this term vanishes for a fre
electron-like or parabolic band. That the contribution ofa2 is
by no means negligible, although it has been overlooked
the literature so far, is strikingly demonstrated for the alk
metals, especially for Cs, where despite only a small de
tion of the conduction band from a parabolic forma2 leads
to a negative dispersion as observed experimentally.62 In our
case, inserting the values determined below, the r
a1 /a2'25, which again emphasizes the importance ofa2 .

IV. RESULTS AND DISCUSSION

A. Plasmon excitations parallel to the chain direction

In Fig. 4 we show a series of energy-loss spectra recor
along the one-dimensional direction for different momentu
transfers. The curves are normalized to a feature betw
about 5.5 and 7 eV~not shown! whose intensity is indepen
dent ofq as is asserted by a correction of the intensities
the 1/q2 dependence of the double differential cross secti
For the lowest momentum transfer, i.e., 0.08 Å21, a con-
siderable contribution from the direct beam centered at ze
energy loss is visible, which results from the finite mome
tum resolution and its broadening due to quasiela
scattering. This poses a lower boundary for the experim
tally accessible momentum transfers. In the energy reg
shown, one clearly sees a dispersive peak, which is relate
the plasma oscillation of the free charge carriers located
the two degenerate bands crossing the Fermi level along
metallic 1D direction. Although the plasmon peak ge
broader, even at the highest measured momentum transf
0.625 Å21 one can still speak of a well-defined thoug
strongly damped plasmon excitation. However, at such h
momentum transfers a reliable determination of the ene

s
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position becomes increasingly difficult and—also becaus
the reduced cross section—this value of 0.625 Å21 may be
regarded as a reasonable upper boundary for the mome
range measurable using EELS.

A closer look at the behavior of the plasmon width as
function of momentum transfer is imparted by Fig. 5. T
peak widths were determined by fitting the shape of the p
mon spectral feature with a model loss function incorpor
ing, besides the Drude part, also a contribution from a L
entz oscillator with small oscillator strength, which
necessary to achieve a good fit for the higher energy
Such a model function, of course, is physically justified on
for zero momentum transfer. However, basically any suita
fit function could be used instead, and our particular cho
is led by optical reflectivity measurements where a shou
is seen in the plasma edge, which may be assigned
simple molecular energy-level scheme top*→p* interband

FIG. 4. Normalized electron energy-loss spectra of K0.3MoO3

for different momentum transfers along the 1D direction. The sp
ing in momentum transfer between the unlabeled curves
0.025 Å21.

FIG. 5. Plasmon width~in eV! as a function of momentum
transfer~in Å 21) along the 1D direction as derived from the spe
tra shown in Fig. 4.
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transitions~where thep* states are formed by hybridizatio
of the Mo 4dt2g orbitals with the surrounding oxyge
orbitals56! or, to remain in the picture of the TB band stru
ture of Fig. 1, to transitions involving bandC and to normal
interband transitionsA→B which both, realistically, may no
be entirely forbiddenfor symmetry reasons as argued in t
context of the derivation of our model band structure~which
disregards the small gap of about 0.1 eV at the zone bou
ary of the first BZ! in Sec. III A, but only strongly sup-
pressed. Due to the lower energy resolution in EELS, n
signature of these interband transitions is discernible in
loss function, apart from the need of an additional oscilla
for the fitting as mentioned above.

From this procedure, a region of a more or less cons
width of about 0.73 eV in a momentum transfer interv
between 0.15 and 0.35 Å21 can be extracted. For highe
momentum transfers a steep continuous increase in the
mon width is observed, while for the few values at mome
tum transfers lower than 0.15 Å21 only a tendency towards
a slightly higher width can be seen. In a one-dimensio
system the plasmon does not enter the continuum of exc
tions of electron-hole pairs with increasing momentum tra
fer as is the case in two or three dimensions.49 This means
that the plasmon damping mechanism, which is effect
above a critical wave vector, known as Landau damping
absent. Hence, the plasmon decay in the blue bronze sh
take place mainly through decay channels involving int
band transitions, provided that the transverse interchain c
pling resulting from the wave-function overlap is sma
Thus, a quantitative explanation of the observed plasm
damping demands quite a detailed knowledge of these e
tation processes, i.e., about the joint density of states and
transition matrix elements, and hence is beyond the scop
this paper. Nevertheless, the slightly increased width of
plasmon feature for the lowest momentum transfers may
ascribed to surface contributions, whose cross section sc
with 1/q3, or to stronger contributions from the direct bea
both of which would broaden the observed plasmon width
low q.

The discussion so far raises a crucial question that ha
be clarified before one can continue with an analysis of
experimentally observed plasmon dispersion in terms of
theoretical approach developed above. It is well known a
easily demonstrated within a simple Drude-Lorentz mo
that the ~Drude-!plasmon and a Lorentz-oscillator, whic
represents any other electronic excitation, may influe
each other in a complex way in the loss function if they a
not separated enough in energy. Simply put, they tend
repel each other.47 Thus, one has to make sure in a mo
precise manner than provided by the argument given ea
that the oscillator strength of thep*→p* interband transi-
tions is such that their impact on the plasmon dispersion
indeed be neglected, i.e., that they only lead to a broade
of the observed plasmon signature as stated above. M
over, only if these interband transitions are weak does
make sense to introduce a background dielectric cons
«` , which is truly not frequency dependent in the ener
region of interest, as is done in our theoretical approach.
address these points, we performed a Kramers-Kronig an
sis ~KKA ! to obtain the absolute value of the loss functi
and the real and imaginary part of the dielectric function

c-
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shown in Fig. 6 for a momentum transfer of 0.1 Å21 along
the 1D direction. The original loss spectrum was measure
a wide energy range between 0.2 and 95.2 eV to avoid in
curacy due to too severe assumptions concerning the
trapolation forv→` and was corrected for finite momentu
resolution and multiple-scattering contributions. The con
bution of the direct beam was eliminated by fitting the pla
mon peak as described above, which thereby gives the
energy tail to zero energy for the loss function. The scal
for the loss function was achieved through Re(1/«)50 for
v→0 from the condition for a metallic material. The legit
macy of the corrections made was checked by a compar
of the reflectance as calculated from«1 and«2 with that from
our optical measurements~not shown!. The onset of strong
interband transitions can be seen from«2 to lie at about 2.7
eV, which is far above the energy of the plasmon excitat
so that we do not need to consider them further. To rev
the relative oscillator strength of the weakp*→p* inter-
band transitions we proceed as follows. From«2 we get the
optical conductivity throughs1(v)5«0v«2(v), where con-
trary to the loss function the Drude part and the contributio
of the Lorentz oscillators enter additively. We then fit t
optical conductivity using the Drude term and a large nu
ber of Lorentzians. We stress that we do not assign a spe
physical meaning to the individual Lorentz oscillators: th
merely serve as reasonable fit functions fulfilling thef-sum
rule as a minimal physical side condition. Since the opti
conductivity is finite for zero energy, this gives a more a
curate fit of the Drude part than is the case for«2 . If one
transfers all the ‘‘dummy’’ parameters of the Lorentzia
into the analogous expression for«1 , omitting the Drude
term, one ends up with a function depicted in Fig. 7, wh
represents«1 without the Drude part2vp

2/(G21v2), where
G is the plasmon damping constant. One can now judge
glance that the oscillator strength of thep*→p* interband
transitions~marked by the arrow in Fig. 7! is truly low and
derive a value for the background dielectric constant«`

55.7, which has now turned out indeed to be a meaning
quantity.

FIG. 6. The loss function Im(21/«) and the real («1) and
imaginary part («2) of the dielectric function of K0.3MoO3 for a
momentum transfer ofq50.1 Å 21 along the 1D direction.
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Thus, we now switch back to the comparison betwe
theory and experiment and note that one cannot directly
ply Eqs. ~4! and ~5! because even the smallest measu
momentum transfer is significantly far from the lon
wavelength limit upon considering the Fermi wave numb
kF50.31 Å21. Therefore, we first fitted the experiment
data~see Fig. 8! in the interval 0<qz<0.3 Å 21 with poly-
nomials of fourth order, i.e.,v(qz)5vp1Aqz

21Bqz
4 , and

sixth order, i.e.,v(qz)5vp1Aqz
21Bqz

41Cqz
6 . The values

of the plasma frequency and the dispersion coefficientA ob-
tained hardly differ between the fourth- and sixth-order fi
Thus, we achieved convergence forvp andA with the poly-
nomial of sixth order, giving values ofvp51.5 eV andA
53.6 eV Å2. With these values and by using the theoretic
formulas~4! and~5! one can then obtain figures for the bac
ground dielectric constant and the hopping integral, viz«`

54.8 andt50.5 eV. From optical reflectance measureme
a screened plasma frequency of 1.35 eV was found, wh
gives, by means of a decoupling procedure involving a KK
an unscreened plasma frequency of 2.7 eV.56 Comparing
these two values, one arrives at a dielectric constant of ab
4 in comparison to the value of 5.7 from the analysis of t
EELS data above. Thus, the values ofvp51.5 eV and«`

FIG. 7. The real part«1 of the dielectric function without the
Drude contribution, 2vp

2/(G21v2), for the 1D direction (q
50.1 Å 21). For details see the text.

FIG. 8. Experimental~dots! and theoretical~line! plasmon dis-
persion along the 1D direction for K0.3MoO3 .
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54.8 obtained from the plasmon dispersion fit in quite we
The same holds for the conduction-band widthA ~see Fig. 2!,
which comes out to be 2t51 eV, which is in good compari-
son with the values reported for photoemissi
measurements58 and with the TB calculations of Travaglin
and Wachter.53

Finally, with the values fort and«` and by means of Eq
~2!, the theoretical plasmon dispersion can be deduced.
results forv(qz) are plotted in Fig. 8~solid line! together
with the experimental data for the plasmon peak positi
~dots! derived from the same fits that were used to ded
the plasmon widths. The agreement between theory and
periment is excellent up to a momentum transfer ofq
'0.42 Å21, which covers the quasilinear part of the di
persion. However, there is a large deviation forqz
.0.42 Å21. This we assign mainly to the crystal local-fie
effects according to the discussion in Sec. III B, but a
other causes such as additional band-structure effects o
enhanced damping may contribute to the bending down
the dispersion curve at higher momentum transfers.

From the foregoing discussion the important messag
that a quantitative description of the quasilinear part of
plasmon dispersion along the 1D axis can be achieved
maining in the framework of the RPA. Not surprisingl
crystal local-field effects become important at higher m
mentum transfers leading to a bending down of the disp
sion curve. Modifications due to corrections going beyo
the RPA are expected to be small.

B. Angular dependence of the plasmon excitations

Before we discuss our experimental results regarding
angular dependence of the plasmon excitations, we wan
refresh the reader’s memory regarding some remarks m
in the Introduction about the different theoretical predictio
in this context. The central difference in the conclusions
the various RPA-based theories concerns the energy o
plasmon excitations perpendicular to the chains, and or
nates solely from the level at which they treat the coupl
between the 1D chains. If besides the interchain Coulo
interaction an additional coupling through a transverse e
tron hoppingt' is forbidden, an angular dependence giv
by cos(u) is expected in the long-wavelength limit,32,36–39

whereas fort'Þ0 the plasmon energy remains finite ev
for u590°.30 This statement holds irrespective of any co
rections for exchange and/or correlation. Also, in a LL-bas
description the cos(u) angular dependence of the plasm
energy forq→0 is valid in the case of a zero transver
hopping probability.10,40A LL treatment extended to finitet'
and finite momentum transfers, however, is nontrivial a
has still to be done.

The angular dependence of the plasmon excitations i
lustrated for the two most instructive examples in Figs. 9 a
10. Here the loss functions, normalized in the same way
described earlier, are shown as a function of momen
transfer for a fixed angleu590° ~Fig. 9! and, vice versa, as
a function of the angle relative to the 1D direction for a fix
momentum transferq50.35 Å21 ~Fig. 10!. Going to higher
momentum transfers, the striking feature in Fig. 9 is a sp
ting of the single peak, situated at 1.35 eV forq
50.1 Å 21. We point out that this energy position of 1.3
.
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eV is only slightly below the value of 1.53 eV for the pla
mon peak at the same momentum transfer foru50°, which
is in contradiction to what one would expect from the exi
ing model calculations.

If one traces the evolution of this single peak with i
creasing momentum transfer one is led to identify the lo
energy structure, which continuously loses spectral wei
with growing q, with one peak, while one recognizes a se
ond peak emerging with largerq at higher energy. Looking
at Fig. 10 where a similar splitting is observed one m
similarly argue that starting atu50° one can follow the
plasmon mode, which was identified unambiguously in S
IV A, throughout the whole angle range between 0° and 9

FIG. 9. Normalized electron energy-loss spectra for differ
momentum transfers perpendicular to the 1D direction~i.e., at u
590°). The dashed lines are intended as a guide to the eye.

FIG. 10. Normalized electron energy-loss spectra for a fix
momentum transfer ofq50.35 Å21 recorded at different anglesu
relative to the 1D direction. The dashed lines are intended a
guide to the eye.
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Doing this one arrives at an assignment of the higher ene
structure to the plasmon excitation. Since the splitting occ
in an angle range where the component of the momen
transfer perpendicular to the 1D axis hardly changes, an
fect due to a dimensional crossover can be excluded. Tur
back to Fig. 9 one then has to ascribe the low-energy st
ture to the p*→p* interband transitions and the high
energy structure to the plasmon mode, which is no lon
discernible for smallq and u590°. This interpretation is
supported by the reflectance measurements where with
polarization vector perpendicular to the chain direction
semiconducting rather than a metallic behavior is observ
A KKA of the EELS data foru590° andq50.1 Å 21 re-
veals the situation more clearly~see Fig. 11!. Besides the
usual corrections and precautions as addressed above
elastic line was eliminated simply so as to achieve go
agreement with the reflectance from the optical meas
ments. The scaling condition«1(v50)511.5 was used as
derived from the reflectance through«1(0)5n(0)25@„1
1AR(0)…/„12AR(0)…#2 for a nonmetallic, nonmagneti
solid. In «2 a strong oscillator is found at 1.5 eV, which
consistent with the assumption of a strongly increa
strength of thep*→p* interband transitions compared
the chain direction. The oscillator strength is even h
enough such that a zero crossing occurs in«1 , giving rise to
a peak in the loss function, which is therefore called anin-
terbandplasmon. Similar to the case of the 1D direction, t
onset of the next higher interband transitions, as is clear f
«2 , is far above this interband plasmon energy of about
eV, and hence need not be considered further. However
fact that the character of the plasmon excitation alters fo
momentum transferq50.1 Å 21 between the two perpen
dicular directions without any sign of a significant pe
broadening or splitting~also for intermediate angles that a
not shown! suggests a more subtle picture. The complex
terplay between the intraband andp*→p* interband tran-
sitions, which strongly depends on the momentum transfeq,
i.e., from both its modulus and its angle, leads not only t

FIG. 11. The loss function Im(21/«) and the real («1) and
imaginary part («2) of the dielectric function of K0.3MoO3 for a
momentum transfer ofq50.1 Å 21 perpendicular to the 1D direc
tion.
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mutual repulsion of the energetically close-lying~charge-
carrier! plasmon and the interband transitions but also t
change of the character of the plasmon mode itself, mak
the identification of the observed structures in the loss fu
tion with a particular type of excitation impossible. This fa
explains the above-mentioned discrepancy with the theo
cal predictions.

Finally, to build a bridge to the discussion in Sec. III A
we note that the splitting of the plasmon-related peak in
loss function can qualitatively also be understood from
fact that for momentum transfers with componentsÞ0 not
only in thez direction, transitions involving bandC are not
longer forbidden due to symmetry. This means that there
then two types of electronic transitions contributing to t
dielectric function in the same energy region, which m
lead to two plasmon branches depending on the subtletie
the behavior of the relevant matrix elements as a function
q.

V. SUMMARY

We have shown that in the blue bronze K0.3MoO3 the
quasilinear part of the plasmon dispersion along the 1D a
can be described excellently within the framework of t
RPA using the Ehrenreich-Cohen formula. In the moment
range up toq'0.42 Å21 we isolate as the leading contr
butions to the dispersion coefficient a proper treatment of
real electronic transitions and the inclusion of the effe
originating from the variation of the reciprocal dynamic e
fective mass. For larger momentum transfersq
.0.42 Å21, in particular, the crystal local-field effects be
come important and the theoretically determined plasm
dispersion curve no longer describes the experimental o
Nevertheless, at no stage is there a hint for the need of
rections due to exchange and correlation, or for a Luttin
liquid-based description. Our combined experimental a
theoretical investigation rather corroborates previous ba
structure calculations by Travaglini and Wachter. Unfor
nately, the experimental results gained by varying the p
mon propagation angle relative to the chain axis give
distorted picture owing to interband transitions. The latter
strong for propagation directions away from the 1D axis, a
hence strongly affect the plasmon modes in these directi
Thus, a comparison with the existing theories is not possi
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APPENDIX A: ALLOWED AND FORBIDDEN
ELECTRONIC TRANSITIONS FOR THE K 0.3MoO3

MODEL SPECTRUM

In the following we give proof that normal interband tra
sitions A→B and umklapp intraband transitionsA→A are
forbidden for the model spectrum established in Eqs.~1! be-
cause of its folded structure. On the other hand, we will
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that umklapp interband transitionsA→B and normal intra-
band transitionsA→A are allowed. These facts are illus
trated in Fig. 3~a!, where the bandsA andB are drawn within
the repeated-zone scheme. The first and the second BZ’
depicted. Allowed and forbidden transitions are marked
emplarily by solid and dotted arrows, respectively. Figu
3~b! shows the same band structure within the extended-z
scheme. It is easily seen that the bandA in the first and the
bandB in the second BZ from Fig. 3~a! coincide with the
bandA0 in Fig. 3~b!. We will distinguish two regions in the
first BZ, the region ‘‘I’’ with 2p/b<kz,0, and the region
‘‘II’’ with 0 <kz,p/b. If the energy-momentum relation fo
bandA is denoted byEkz

A , the dispersion relation for bandB

Ekz

B can be expressed asEkz1b*
A in region ‘‘1’’ and Ekz2b*

A in

region ‘‘2’’ or expressed in terms of the Bloch amplitudes
the bandsA andB

ukz

B ~z!5H ukz1b*
A

~z! for 2p/b<kz,0

ukz2b*
A

~z! for 0<kz,p/b.
~A1!

If one combines Eq.~A1! with

uk~r !5eiGruk1G~r !, ~A2!

which is a simple consequence of Bloch’s theorem—k lies in
the first BZ andG is a reciprocal lattice vector—Eq.~A1!
becomes

ukz

B ~z!5H e2 ib* zukz

A ~z! for 2p/b<kz,0

e1 ib* zukz

A ~z! for 0<kz,p/b.
~A3!

The typical integral in the dielectric function, which de
scribes the intensity of the interband transitionsA→B is of
the form63

I n5E
0

b

dz@ukz1qz1nb*
B

~z!#* ukz

A ~z!. ~A4!

In Eq. ~A4! both kz and kz1qz1nb* lie in the first BZ.
Thus, forn50 one has normal processes and fornÞ0 um-
klapp processes. For simplicity we will assumeqz.0 and,
additionally, for umklapp processesn521.

First we consider normal processesA→B. Replacing in
the integrand of~A4! the Bloch amplitude of the bandB
according to~A3! one obtains after a simple transformatio

I 05E
0

b/2

dze6 ib* z@ukz1qz

A ~z!#* ukz

A ~z!

1E
b/2

b

dze6 ib* z@ukz1qz

A ~z!#* ukz

A ~z!

5E
0

b/2

dz@11e7 ib* b/2#e6 ib* z@ukz1qz

A ~z!#* ukz

A ~z!50,

~A5!

which states that the normal interband transitionsA→B are
forbidden sincekz1qz lies in the second BZ. In obtaining
~A5! we used thatukz

A (z)5ukz

A0(z) in the first BZ of Fig. 3~a!
are
-

ne

and the periodic properties of the Bloch amplitude of t
bandA0 , ukz

A0(z6b/2)5ukz

A0(z).

The analogous consideration for the umklapp proces
A→B gives the result

I 2152E
0

b/2

dz@ukz1qz

B ~z!#* ukz

A ~z!

52E
0

b/2

dz@ukz1qz

A0 ~z!#* ukz

A0~z!, ~A6!

usingukz1qz

B (z)5ukz1qz

A0 (z). In this case the integral does no

vanish a priori and its value depends on the symmetric
properties of the Bloch amplitudeukz

A0(z). Equation ~A6!

shows that umklapp interband processesA→B appear in the
extended band scheme as normal intraband processeA0
→A0 . One can similarly check that umklapp intraband pr
cessesA→A are forbidden as well.

To summarize the above discussion, in order to acco
for all the real electronic transitions one can carry out
calculations simply in the extended zone scheme with
zone boundaries at62b* 560.84 Å21. One thereby has
to consider only normal intraband electronic transitio
within the bandA0 ,

Ekz
ªEkz

A052t@12cos~kzb/2!#. ~A7!

APPENDIX B: LONG-WAVELENGTH EXPANSION
OF THE PLASMON DISPERSION AND RESULTS

FOR K0.3MoO3

In the following we give a brief outline of the reasonin
leading from the Ehrenreich-Cohen formula for the dielect
function ~2! to the expressions~4! and ~5!, which apply to
the blue bronze and enter the general Eq.~3! for the long-
wavelength expansion of the plasmon dispersion.

The tensorialq expansion of the integrand in Eq.~2! up to
the fourth order and integration by parts exploiting inversi
symmetry yields to an integral expression, which can
transformed into an integral over the Fermi surface accord
to *d3k]/]k5rdS. This gives, with«` included, the long-
wavelength expansion for the dielectric function as stated
Nücker et al.:64

«1~q,v!5«`2
4pe2

v2

3H ^vq
2&1q2F ^vq

4&
v2 1

1

12K vqS e
]

]kD 2

vqL G J ,

~B1!

wherevq is the projection of the quasiclassical velocity on
the plasmon propagation direction according to

vq5e•v, e5q/q, v5
1

\

]Ek

]k
, ~B2!
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and the brackets denote a Fermi-surface integral defined

^H&5
2

~2p!3E d3k@2 f 8~Ek!#H~k,q!

5
2

~2p!3E
Ek5EF

dS

\uvu
H~k,q!, ~B3!

where 2 f 8(Ek)52 (] f (Ek)/]Ek) 5d(EF2Ek). Equation
~2!, which determines approximately the plasmon dispers
yields with the expansion~B1! a biquadratic equation for th
plasmon frequency. The solution up toq2 gives the disper-
sion relation within the long-wavelength limit as
s

,

v~q!5vp1Aq2, A5
\

m
a, vp

25
4pe2

«`

n

mopt
,

n

mopt
5^vq

2&, ~B4!

with the free-electron massm. The optical effective mass i
defined by the third equation. The dispersion coeffici
takes the form

a5
m

2\

1

vp
H ^vq

4&

^vq
2&

1
1

12

4pe2

«`
K vqS e

]

]kD 2

vqL J [a11a2 .

~B5!
B
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