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Hyper molecular dynamics with a local bias potential
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We propose a local bias potential for the hyper molecular dynamics requiring no preknowledge of the saddle
points of system. This has little computational overload and is applicable to real systems. Speedups of one to
five orders of magnitude are found in the diffusion of a small cluster on a suffa0&63-18209)08901-§

Molecular dynamics simulationdviD), which have been will always oscillate at the potential minimum, except for the
widely used in chemistry and physics, can probe the naturaitoms in the cluster and occasionally its neighbors which
time evolution of classical many-body systems up to a timgmnay jump to other potential minimum. So only thasatoms
scale of~10"° sec. This time scale is adequate for studyingin the cluster and its neighbors need to have a bias potential.
the structural and dynamical properties, provided the relA potentialV, locally related to those atoms is,
evant fluctuations decay on a much shorter time scale. For
many dynamical phenomena, one can characterize the dy- V|(R;,R,, ... ,Rn)=2 V(rj), i=1,...n<N, (1)
namics as a sequence of infrequent transitions with a long J
ti_rr_le scale. If the potential surface is known in_ advance, tranwherer ; is the distance between atdrand atonj; R; is the
sition state theoryTST) can access the long time scale pro- coordinates of théth atom;N is the total number of moving
cesses for the infrequent events and actual dynamics neggloms andV is the interatomic potential, which should be
not be performed. To simulate such infrequent phenomengontinuous up to the third derivatives. The summation is
without any advance knowledge of the potential surface isver all the neighbors. As discussed by Sevick, Bell, and
prohibitively expensive and is thus beyond the actual reachrheodorol? the first order saddle points of the potenti4l

of the conventional MD. ~can be characterized as the set of points at whigthe
Recently, based on the TST theory, Voter has provided fwest eigenvaluese; of the Hessian matrixH {H;
method to accelerate the molecular dynamiiegper-MD), =2y, /4x;9x;} is negative, andii) the derivative of the po-

which opened a window to simulate atomic dynamics for &ential along the direction of the first eigenvector of Hessian
microsecond or longer. In Voter's scheritea bias potential matrix H is zero. To have a more conservative bias potential
raises the potential energy except for the saddle points of thghich is zero at the saddle points, our local bias potential at

potential energy surface. The dynamics on the biased potefheith MD step is nonzero only whes, is larger than zero:
tial surface leads to accelerated evolution from one potential

minimum to another. The key to implementation of the hy-
perdynamics is designing a computationally tractable bias
potentialAV(r) that does not require advance knowledge of
the potential surface. Although it is difficult to define a biaswhereh andc are tunable parameterg;is the standard step
potential which will not introduce any TST-violating corre- function; g, is the projection of potential gradient onto the
lation, in practice we just need a good approximation. Infirst eigenvector of Hessian matrid. Since AV(r(t;)) is
Voter's implementation of the bias potential, each hyper-MDonly dependent or; andg,,, the cost of constructing the
step required~30 times the computational work of a MD bias potentialV(r) is essentially confined to diagonalizing
step for the simulations with only fifty-five moving atoms. the small Hessian matriéd with only 3n dimension, where

The computational cost for the bias potential scaled as theould be an order of one. More importantly, the cost of cal-
square of the number of moving atoms, which prohibits theculating the bias potential is independent of the total number
application to large systems. of atoms in the simulation cell.

A simple scheme we propose uses a local potential, so the Figure 1 showsAV(r) for one-dimensional dimer inter-
construction of the local bias potential requires only diago-action with Lennard-Jones potential. TA&/(r) bias poten-
nalizing a small matrix. The computational cost of each timetial is nonzero in a small region of potential minimum
step is only a few percent longer than that of a MD step. Aaroundr =1.15, and has a smooth crossover at the inflection
significant speedup of £6 10 fold makes it possible to cal- point. Too smalh will just lead to an insignificant speed up,
culate diffusion constant at very low temperature. In a widewhile too largeh will significantly shift the potential energy
temperature range for an adatom and a dimer diffusion on at the minimum, causing a repulsive force which would
surface, our hyper-MD results are in good agreement witblock the motion from one potential minimum to another.
that of MD simulation. Our test calculations on f€t11) surface are for adatom

To see how the bias potential works, we consider, forand dimer diffusion. We employ the Lennard-Jones potential
instance, a small cluster diffusing on a surface. Most atomsonventionally using energy and lengtho,
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FIG. 1. Typical bias potentiaAV(r) (solid line) for Lennard- o
Jones potentiaV/(r) (dotted ling as a function of dimer separation 100 . . . . . "
r. The bias potential used in this paper is nonzero only where the ' ’ ’ ’ ’
second derivative o¥/(r) is greater than zero. This conservative 10 20 30 40 50 60
approach yields a small region when the biased poteMial) T

+AV(r) (long dash-short dagispeeds up the molecular dynamics.
Nonetheless we find significant speedugshe Lennard-Jones pa-
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FIG. 2. Hyper molecular dynamics and molecular dynamics
computation of the temperature-dependent diffusion confidot
adatom and ad-dimer on f¢@11) surface. Least-square fitted line
)6} yields activation energies 0.26 and 0.32 for adatom and dimer, re-

(3) spectively. Inset: over temperature range shown, boost factor
~exp(h/(2T)). Unfortunately increasing bias-potential paraméter

ij
wherea and 8 denote the atom A in the diméadator on increases the noise. The hyper molecular dynamisswere aver-
ages of the thre&’s with the error typically a factor of 2.

surface and the surface atom B, respectively. In all calcula-
tions, we assumegg=oag=1.0, andess= egg= €pg=1.0.

We use five layers of atoms to mimic the surface, each layer Aty(r (1)) — eBAV( (1) (4
contains 100 atoms. The atoms in the top three layers are Atyp '

allowed to move and atoms at the bottom two layers are kept . .
fixed. The simulation cell is periodic mandy direction and At & long time scale, one can define an average boost factor
free inz direction. The Langevin equation of motion is inte- BF for the boosted time over the direct molecular dynamics

grated by a modified Beeman proceduréth a time step  Simulation time inNi, steps:

V(rij):46aﬁ

Atyp=0.01, which is doubled at the low temperature. The Niot
Langevin damping was taken to be 1.0. > Aty(r(t)) N

Figure 2 shows how hyper-MD dramatically extends the i 1S savei)
temperature range T~ 20 for MD to 1/60 both for the ada- BF= NoAtvo _totE, e o ®)

tom and the dimerd,,=0.7) (Ref. 5 diffusion. The diffu-
sion constant shown in the figure is the average of resultEquation(5) shows thaBF depends only on the bias poten-
from three bias potentials h&0.25,0.30,0.35). The tial, so the success of hyper-MD will essentially depend on
hyper-MD results are in agreement with the MD results. Thethe choice of the bias potential. The inset of Fig. 2 shows the
least-square-root fitted to the Arrhenius relationship yielddemperature dependence of average boost factor for a dimer
the activation energy, 0.260.006 for the adatom on (oaa=0.7) with parameteih=0.25,0.30,0.35. From low to
fcc(111) surface and 0.320.007 for the dimer on fdd11) high temperature, the boost factors range from 1.
surface. For the adatom, we get boost factors very similar to that of
The computational simplicity of each hyper-MD step en-dimer (not shown in the figune We find that the slope for
sures a 19to 10 fold speed up of the average boost factor.log(BF) versus 1T is very close toh/2 for all cases, i.e.,
As shown by Voter, the integration time step in hyper-MD is BF~exp(/2T). Those large boost factors do not require us-
exponentially scaled by the bias potential, so that the instaning any preknowledge of the potential energy surface for
taneous boost factor is both the adatom and dimer.
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FIG. 3. Near identity of the mean-square displacement versus L 4 ¢
O O O O o

time computed by “average boost factor” approdéiied circles,
with that by instantaneous boost factor approdtine). The O 0 O 0 o0 O
average-boost-factor approach typically reduces computational ef-
fort of the diffusion constanb by a factor of thousand.

FIG. 4. The biased trajectorffilled dot9 on fcc (111 surface

Figure 3 demonstrates that the mean-square displacemeff an adatontupper panelI'=0.0166BF~8000 and for a dimer
computed with instantaneous boost factor is nearly identicalower panel,T=0.03338F~87). The open circles represent the
to that computed with the average boost factor, the |atte§urface atoms. To make the figure clear, the trajectory for one atom
approach leading to a significant speed up in the caIcuIatio' the dimer is shifted by two atomic distances along the horizontal
of the mean-square displacement. Comparing to the identic f’rection in the plot. The conservative local bias potential defined

. . . . - . . y Eq.(2) has never boosted the region near the line connecting two
|nteg_rat|on time step_ln the conventlon_al MD simulation, thenearest neighbor atoms, where the saddle points are supposed to be
position-dependent time stekty(r (t;)) in hyper-MD com- o o gitcision of an adatom and a dimer.

plicates the calculation of the mean-square-displacement for
diffusion constant, about 2% of the total number of time steps. This suggests
that, without the biased potential, the crossover near the

N
) 1 9 ) saddle points would use only 2.5 steps per million.
([R(t+1o) —R(to)]%) = -1 IE 21 [Rj(t+1to) — Rj(to)] Recently, Steineet al. have proposed an alternative local
fofo 17 bias potential scheme requiring even less computational ef-
=4Dt, (6) fortateachtime stepSince it does not determine the saddle

point, the preknowledge of potential surface is hecessary and
whereNto is the number of initial configurations used in the it must estimate a correction for the boost through the saddle
average. We compute the timen Eg. (6) in the following points. The two approaches have not been compared for the
two ways: In the first method, the intergration time is same problem; where each will prove most useful is an open
summed up with the instantaneous time step, ite., duestion.
=3 Aty(r(t;)). In the second method, we scale each time In S“"(;‘mary’ we h?vle shown thhat the hygerr;MD. SCTeme
step by the average boost factor, ies,BFZAt,,;. These proposed Is a poweriul approach to extend the simulation

A . time up to microsecond and even longer. For constructing
two methods give indistinguishable results. A typical COM-,q hias potential, we have devised a scheme, which does not
parison for an adatoml(=0.02BF=1732) is shown in Fig.

© ] require preknowledge of the potential surface. In contrast to
3. However, the first method, using instantaneous boost faGyoter’s method, the present scheme costs very little compu-
tor, requires an average over maqyllnltlal configurations tational work in constructing the bias potential, a typical run
(~10%), and the computational cost is"t010° more expen-  for 4 dimer on fc€L11) shows that the CPU time for each
sive than in the second method which usually requires ame step increased only by a few percent. With the current
average over- 107 of initial configurations. scheme, we can easily obtainlyBF as large as ¥3-1C,
Figure 4 demonstrates the validity of the local boostyhich makes possible to study the diffusion behavior down
approach— scaled motion occurs only at the deep minimurg, yery jow temperature. The obtained hyper MD results are

of the total potential. The region close to the saddle points i§, good agreement with MD simulations. This provides a
never boosted. In the figure, we showly the biasedtrajec-  practical method to simulate the real large system.
tory of an adatom and a dimer moving on (ttl) surface,

at the temperature 0.01666 and 0.0333, respectively. We find X.G.G. thanks A. Voter for useful discussions. X.G.G.

that at this specific temperature, even with a bias potentialvas partially supported by Chinese National Science Foun-
the adatom spends about 98% of the total steps moving idation and the Panden project of China. J.W.W. was sup-
the biased potential minimum. The crossover near the saddsorted by U.S. DOE Basic Energy Sciences, Division of Ma-
points from one potential minimum to another uses onlyterials Sciences.
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