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Non-Fermi-liquid regime of a doped Mott insulator
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We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnitude
and sign of the magnetic exchange. Two quite different doping regimesd,d* and d.d* are found, with
d* .J/t (J is the characteristic magnitude of the exchange, andt the hopping amplitude!. In the high-doping
regime, a~Brinkman-Rice! Fermi-liquid description applies with a coherence scale of orderdt. In the low-
doping regime, local magnetic correlations strongly affect the formation of quasiparticles, resulting in a very
low coherence scaleeF* .J(d/d* )2. Fermi-liquid behavior does apply beloweF* , but a ‘‘quantum-critical
regime’’ eF* ,T,J holds, in whichmarginal Fermi-liquidbehavior of several physical properties is found:
NMR relaxation time 1/T1;const, resistivityrdc(T)}T, optical lifetimetopt

21}v/ ln(v/eF* ) together withv/T

scaling of response functions, e.g.,J(qWx9(qW ,v)}tanh(v/2T). In contrast,single-electronproperties display
stronger deviations from Fermi-liquid theory in this regime with aAv dependence of the inverse single-
particle lifetime and a 1/Av decay of the photoemission intensity. On the basis of this model and of various
experimental results, it is argued that the proximity of a quantum-critical point separating a glassy Mott-
Anderson insulator from a metallic ground state is an important ingredient in the physics of the normal state of
cuprate superconductors. In this picture the corresponding quantum critical regime is a spin liquid with inco-
herent holes and a slow state of spins and holes with slow spin and charge dynamics responsible for the
anomalous properties of the normal state. This picture may be particularly relevant to Zn-doped materials.
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I. INTRODUCTION

How ~and whether! coherent quasiparticles form in
lightly doped Mott insulator is a key question in the phys
of strongly correlated electron systems. A satisfactory th
retical understanding of this issue has been achieved in
limit where magnetic correlations do not play a promine
role, starting with the work of Brinkman and Rice.1–3 In
cuprate superconductors, however, the undoped phase
antiferromagnetic insulator with a rather large exchange c
pling JAF ~on the scale of 100 meV!, so that we have to face
the problem of the interplay between local coherence
magnetic correlations.

Furthermore, there is ample experimental evidence
carrier localizationandmagnetic frustrationalso play a cru-
cial role in the low to intermediate doping regime. This
particularly clear in the La22xSrxCuO4 compound at con-
centrations just abovex50.02 ~the threshold for the disap
pearance of the antiferromagnetic long-range order!, for
which true spin-glass ordering of the copper moments
been demonstrated at very low temperature@with Tg.7 K
for x50.04~Ref. 4!#. Up to which doping concentration doe
this glassy regime persist when superconductivity is s
pressed is not known at this point, but carrier localization
indeed observed at low temperature up to optimal doping
both theab andc directions when a strong magnetic field
applied.5,6 It was actually predicted early on7 that hole dop-
ing induces strong frustration in the system when the ho
become localized, replacing locally an antiferromagne
Cu-Cu bond with an effectivelyferromagneticone, with a
strength larger than the originalJAF . We observe further-
more that the disappearance of antiferromagnetic long-ra
order is accompanied by the appearance of new low-en
PRB 590163-1829/99/59~8!/5341~20!/$15.00
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spin excitations, of a quite different nature than spin wav
as evidenced by inelastic neutron scattering experiments8–15

It is important to notice that the compounds with a glas
ground-state display, at sufficiently high temperature~above
the onset of localization!, the same distinctive transport prop
erties as in samples with higher doping, e.g., line
resistivity.8,10 It is thus tempting to view these low-energ
excitations as the source of anomalous scattering in the
mal state.

Anticipating some of the speculations made at the end
this paper, we shall argue that these low-energy excitati
are associated with a particular kind of spin state: the s
associated with the disordering of an insulating~possibly
glassy! ground state by hole motion, quantum fluctuation
and thermal effects. In this picture, many distincti
‘‘anomalous’’ properties of the normal state of the cupra
superconductors are associated with the quantum critica
gime corresponding to theT50 transition at which the insu
lating ~glassy! ground state melts into a metallic~Fermi-
liquid! ground state when doping is increased.

In this paper, we shall study a highly simplified model
such a state of spins and holes. Our starting point is the w
of Sachdev and Ye,16 who showed that in the large-M limit
of the fully connected random Heisenberg model ofSU(M )
spins, quantum fluctuations are strong enough to overco
the tendency to spin-glass ordering. Instead, a gapless s
liquid state is found down to zero temperature with a lar
density of low-energy spin excitations.17 Remarkably, these
excitations are characterized by a local dynamic spin sus
tibility that has precisely the form advocated by the ‘‘ma
ginal Fermi-liquid’’ phenomenological description18 of the
low-energy spin excitations in cuprates, namely,
5341 ©1999 The American Physical Society
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5342 PRB 59OLIVIER PARCOLLET AND ANTOINE GEORGES
x loc9 ~v,T50!5
p

2J
sgn~v!, x loc8 ~v,T50!5

Ap

2J
lnS J

uvu D .

~1!

This model is one of the few cases in which a respo
function having the marginal Fermi-liquid form could be d
rived explicitly ~see also Ref. 19!. The generalization of Eq
~1! to finite temperature will be given in Sec. III C@Eq. ~57!#
and displaysv/T scaling. The physical mechanism for th
gaplessness and the high density of spin excitations in
model is discussed in more detail at the beginning of Sec.
It has to do with the large number of transverse compone
of the spins in the large-M limit. In this respect, it might be
a reasonable picture for the disordering of the tw
dimensional quantum Heisenberg spin glass due to quan
fluctuations and low dimensionality.20

The main purpose of this paper is to determine whet
this marginal Fermi-liquid spectrum survives the introdu
tion of charge carriers and the associated insulator-to-m
transition. The physics of this problem is dominated by
interplay between two competing effects:~i! The formation
of coherent metallic quasiparticles, which can be viewed a
binding of spin and charge degrees of freedom. In the s
plest description of a doped Mott insulator withU5`, co-
herent quasiparticles form below a scale of orderTF0* ;eF0*
;dt ~whered is the doping andt the hopping amplitude!.
This is a ‘‘naive’’ estimate of the effective Fermi-energ
scale, since it ignores any effect coming from the magn
exchange~which will tend to suppress it!. ~ii ! The binding of
spin degrees of freedom on neighboring sites into single
triplet states, and the corresponding slow dynamics of
on-site local moment. This is the phenomenon leading to
formation of the spin-liquid state in the undoped pha
which involves a scale of orderJ ~the characteristic strengt
of the exchange!.

It is clear from comparing the scales above that whenJ is
larger than the naive coherence scaleeF0* , the magnetic ex-
change prevents the formation of coherent quasiparticle
that scale: in other words,eF0* cannot possibly be theactual
quasiparticle coherence scaleabove which free local mo
ments are recovered, since the exchange is still effectiv
energy scales betweeneF0* andJ. It is thus expected that th
actual coherence scale of the system,eF* will be much
smaller thaneF0* , and that a new metallic regime in whic
spin degrees of freedom form a spin-liquid-like state wh
charge degrees of freedom are incoherent will be found
the intermediate energy and temperature rangeeF* ,v, T
,J. From the above estimates, this will be the case at sm
doping:d,d* ;J/t, while a direct crossover from a cohe
ent metal to an incoherent high-temperature state is expe
for d.d* . These expectations are entirely borne out fro
our solution of the doped Sachdev-Ye model, as eviden
by Fig. 1, which summarizes the main crossovers found
our analysis.

It should be emphasized that this competition betwe
metallic coherence and magnetic exchange is also esse
to the physics of heavy fermion compounds.21 In this con-
text, the ‘‘naive’’ coherence scaleeF0* stands for the single
impurity Kondo scale@or rather, any estimate of the lattic
Kondo scale that ignores Ruderman-Kittel-Kasuya-Yos
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~RKKY ! interactions#, while J stands for the typical strengt
of the RKKY interaction. For this reason, the results of t
present paper may also have some relevance, with appr
ate changes, to the physics of the disordered rare-earth c
pounds near the quantum-critical transition into a spin-gl
ground state.22

II. MODEL

A. Disordered SU„M … t-J model

The effect of charge carriers on the Sachdev-Ye sp
liquid phase will be investigated by generalizing the mod
of Ref. 16 to at-J model, with randomness on the exchan
couplingsJi j between nearest-neighbor sites:

H52 (
^ i j &a

t i j Pcia
† cj aP1(̂

i j &
Ji j SW i•SW j . ~2!

In this expression, theSU(2) spin symmetry of the electron
has been enlarged toSU(M ).2 SW i is the conduction electron
spin density on sitei and the spin indexa runs over
a51, . . . ,M . The projection operatorP enforces the local
constraint:

(
a

cia
† cia<

M

2
. ~3!

In this manner theM52 case exactly coincides with th
standardt-J model with the constraint of no double occu
pancy.

The exchange couplings are quenched random varia
with random sign and magnitude, distributed according t
Gaussian distribution with

Ji j 5
J

AzM
e i j , e i j 50, e i j

2 51 ~4!

~throughout this paper the bar will denote an average o
the disorder!. In the following, we shall consider this mode
on a lattice of connectivityz, with a nearest-neighbor hop
ping amplitude normalized as

FIG. 1. Crossover diagram as a function of temperature
doping. The coherence scaleeF* is indicated by a dashed line and
given by eF* .J(d/d* )2 for d,d* , eF* .dt for d.d* , with d*
5J/t. Below eF* , Fermi-liquid behavior holds. Ford,d* , an in-
termediate quantum-critical regime is found in the rangeeF* ,T
,J, in which charge transport is incoherent and spins have a m
ginal Fermi-liquid dynamics.
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t i j 5
2t

MAz
~5!

and we shall analyze the model in the following double lim
~i! z→`. In this limit of infinite connectivity, a dynamica
mean-field theory applies that reduces the model to the s
of a single-site self-consistent problem,3 as detailed in Sec
II B. However, this single-site model is still a complicate
interacting problem. For the sake of simplicity, the latti
will be taken to be a Bethe lattice~no essential physics is los
in this assumption!. ~ii ! M→`, in which the single-site
problem becomes tractable. In the absence of a random
change, this limit yields the familiar Brinkman-Rice descri
tion of a doped Mott insulator.1,2

The scaling inz andM in Eqs.~4! and~5! are chosen such
that this double limit gives nontrivial results. Alternativel
one could consider~as in Ref. 16! this model on a fully
connected lattice ofN sites, with random hopping ampli-
tudes:t i j 5(2t/MAN)j i j with j i j 50, j i j

2 51. This leads to
precisely the same equations for single-particle Gree
functions as thez5` Bethe lattice.3

We shall use a decomposition of the physical elect
operator into a spin-carrying fermionf and a slave bosonb:
cia

1 5 f ia
1 bi . The local constraint~3! becomes

(
a

f ia
† f ia1bi

†bi5
M

2
. ~6!

With this decomposition the Hamiltonian~2! can be rewrit-
ten as

H52
2t

MAz
(

^ i j &a
~ f ia

† bibj
†f j a1H.c.!

1
J

AMz
(̂
i j &

e i j (
ab

SiabSj ba ~7!

and theM221 components of theSU(M ) spin operators
SW i5(Si)

ab read

Siab5 f ia
1 f ib2

1

M
dab(

a
f ia

1 f ia . ~8!

B. Reduction to a single-site problem

In this section, we explain how the large connectiv
limit z→` reduces the problem to the study of a single-s
model supplemented by a self-consistency condition. F
we use a path integral representation of the partition func
Z and introduce a Lagrange multiplier fieldl i(t) on each
site in order to handle the constraint~6!. We then introducen
replicas of the fields (f i

a ,bi
a ,l i

a ,a51, . . . ,n) in order to ex-
pressZn and average over the disorder. The action associ
with Zn̄ reads
:

dy

x-

’s

n

e
st
n

ed

S5(
i ,a

S0@ f i
†a , f i

a ,bi
†a ,bi

a ,l i
a#

2
2t

AzM
(

^ i , j &,a
E

0

b

dt f ia
†a~t!bi

a~t!bj
†a~t! f j a

a ~t!

2
J2

2zME
0

bE
0

b

dtdt8

3(̂
i j &

(
1<a,b,g,d<M

(
1<a,b<n

3Siab
a ~t!Sj ba

a ~t!Sigd
b ~t8!Sj dg

b ~t8!, ~9!

where the actionS0 is defined by

S0@ f †, f ,b†,b,l#[E
0

b

dtS b†~t!]tb~t!1(
a

f a
†~t!

3~]t2m! f a~t! D 1 i E
0

b

dtl~t!

3S (
a

f a
†~t! f a~t!1b†~t!b~t!2

M

2 D .

~10!

Following the ‘‘cavity method’’~reviewed in Ref. 3!, a site
of the lattice is singled out, and a trace is performed over
degrees of freedom at the other sites~concentrating on
phases without translational symmetry breaking, so that
sites are equivalent!. In the z→` limit, this can be per-
formed explicitly, and the problem reduces to a single-s
effective action that reads

Se f f5(
a

S0@ f †a, f a,b†a,ba,la#

2
J2

2M (
a,b,a,b,g,d

E
0

bE
0

b

dtdt8Sab
a ~t!Rbadg

ab ~t2t8!

3Sgd
b ~t8!1S 2t

M D 2

(
a,a

E
0

bE
0

b

dtdt8 f a
†a~t!

3ba~t!Caa
aa ~t2t8!b†a~t8! f a

a~t8!. ~11!

This effective action is supplemented by a self-consiste
condition that constrainsC(t2t8) andR(t2t8) to coincide
with the local electron Green’s function and spin-correlati
function, respectively:

Caa
aa ~t,t8!52^Tcia

a ~t!cia
†a~t8!&S

52^T~ f a
ab†a!~t!~ f a

†aba!~t8!&Seff
,

Rabgd
ab ~t,t8!5^Siab

a ~t!Sigd
b ~t8!&S5^Sab

a ~t!Sgd
b ~t8!&Seff

.

~12!

In each of these equations, the last equality expresses the
that local correlation functions can be calculated using
single-site actionSeff itself. The limit n→0 must eventually
be taken in these equations.
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C. Saddle-point equations in the large-M limit
and slave-boson condensation

We shall study the above self-consistent single-site pr
lem in the largeM limit, focusing on the paramagnetic pha
of the model. In this case, all the above correlators beco
replica diagonal (Caa5C, Dab5Ddab).

Furthermore, we shall look for solutions in which th
slave boson undergoes a Bose condensation.~Solutions with
an uncondensed boson when the bosons carry an addit
channel index have been investigated by Horbach
Ruckenstein23!. The solutions considered here can be fou
as a saddle point ofSeff by setting:b(t)5AM /2f(t) and
looking for solutions in which bothf(t) and the Lagrange
multiplier l(t) become static at the saddle point:

bsp~t!5AM

2
Ad, ilsp~t!5l0 . ~13!

From the constraint of Eq.~6!, the total number of electron
will be related tod through(a^ f a

† f a&5(M /2)(12d) so that
d measures the number of holes doped into the system.

The saddle-point equations then reduce to a nonlinea
tegral equation for the fermion Green’s functio
2^T fa(t) f b

†(t8)&[dabGf(t2t8), which reads@with vn

5(2n11)p/b the Matsubara frequencies#

Gf
21~ ivn!5 ivn1m2l02~ td!2Gf~ ivn!2S f~ ivn!,

~14a!

S f~t![2J2Gf
2~t!Gf~2t!, ~14b!

and to the following relations, which determine the Lagran
multiplier l0 and the chemical potentialm for given values
of the dopingd and the temperature~given the couplingsJ
and t):

Gf~t502!5
12d

2
, ~14c!

l0Ad522t2d3/2E
0

b

dtGf~t!Gf~2t!. ~14d!

The derivation of these saddle-point equations fromSeff is
detailed in Appendix A.

The local spin-spin-correlation function is directly relate
to Gf in the M→` limit, as

R~t![
1

M2(
ab

^Siab~t!Siba~0!&52Gf~t!Gf~2t!

~15!

In the following, we shall often consider the spectral fun
tions associated with the single-particle Green’s function
the local spin-spin correlation:

r f~v![2
1

p
ImGf~v1 i01!, x loc9 ~v![Im R~v1 i01!

~16!
-

e

nal
d

d

n-

e

-
d

III. PHYSICAL PROPERTIES OF THE METALLIC STATE

In this section, we study the nature of the metallic state
a function of the doping leveld. Let us first recall some of
the properties of the spin-liquid insulating state found ford
50, as obtained by Sachdev and Ye.16 In this case, our Eqs
~14a!–~14c! coincide with those of Ref. 16. Note that Eq
~14d! decouples, being automatically satisfied atd50, and
that particle-hole symmetry imposesm2l05S f8( i0

1)50.
A low-frequency analysis of the integral equation reve
that theT50 Green’s function and spectral density have
1/Av singularity for uvu→0. More precisely,24 in the com-
plex frequency plane asz→0,

Gf~z!5S p

4J2D 1/4~12 i !

Az
1•••, Im z.0. ~17!

This yields the following behavior of the local dynamic
susceptibility forv→0:

x loc9 ~v!5
p3/2

4J
sgn~v!1•••. ~18!

Figure 2 displays a numerical calculation ofr f(v) and
x loc9 (v) at zero doping~in agreement with the one in Re
16!. These results display the above low-frequency beha
@but we note that significant corrections to Eq.~18! are al-
ready sizeable at rather low values ofv/J.]

Hence the insulator atd50 is a gapless quantum para
magnet ~spin liquid!, with a rather large density of low
energy spin excitations. Remarkably, Eq.~18! is of the same
form as the ‘‘marginal Fermi-liquid’’ susceptibility propose
on phenomenological grounds by Varmaet al.18 for the nor-
mal state of the cuprate superconductors. In the present
text, the physical nature of these low-energy excitations
intimately connected to the fact that the exchange coupli
Ji j are random in sign. In constructing the ground state of
insulator, let us imagine that we first try to satisfy the bon
with the larger exchange constants. When such a bon
antiferromagnetic, the two spins connected by it will form
nondegenerate singlet. For a ferromagnetic bond, howe
the two spins will pair into a state of maximal possible sp
@the generalization toSU(M ) of a triplet state#. This state

FIG. 2. Local dynamical susceptibilityx loc9 (v,T50) of the un-
doped spin liquid. Inset: spectral function.
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PRB 59 5345NON-FERMI-LIQUID REGIME OF A DOPED MOTT INSULATOR
has a degeneracy, which actually becomes very large~expo-
nential inM ) asM becomes large. Continuing the process
order to accommodate bonds with smaller strengths will t
to remove part of this degeneracy,25 but leaves behind a ver
large density of low-energy spin excitations. These effe
are clearly favored by the~fermionic! large-M limit consid-
ered here, because of the high degeneracies of the ‘‘trip
state and because the strength of quantum fluctuations in
limit precludes the appearance of long-range order~e.g., spin
glass!, which would remove degeneracies in a different ma
ner. We believe, however, that this physics is not anartifact
of the large-M limit. Indeed, preliminary theoretical studies26

suggest that the local spin correlations near the quant
critical point associated with theT50 transition into a me-
tallic spin-glass phase could be similar to Eq.~18!, with re-
lated physics.

Finally, we note that the single-site action to which t
model reduces at zero doping@i.e., Eq.~11! with t50] has
some similarities with the multichannel Kondo effect in t
overscreenedcase. In the present context, however, t
‘‘bath’’ seen by the spin is not due to an electronic condu
tion band, but generated by all the other spins in the latt
The spin correlations of both the bath and the spin adjus
the self-consistent long-time behavior:^S(0)S(t)&;R(t)
;1/t similar to that of theSU(M ) Kondo model withK
5M channels27 @two-channel model in theSU(2) case#.

A. Low-frequency analysis and the
Fermi-liquid coherence scale

The first question we would like to address is whether
marginal Fermi-liquid spin dynamics survives the introdu
tion of charge carriers. As we shall demonstrate, this depe
on the temperature range considered~Fig. 1!. At low tem-
perature, below some—possibly very low—coherence sc
eF* , it turns out that a Fermi liquid is recovered.

This is easily seen from a low-frequency analysis of
integral equation forGf at zero temperature. At zero dopin
the Green’s function and self-energy behave at low f
quency asGf(v);1/AJv, S f(v);AJv. When inserted in
Eq. ~14a!, this controls the leading low-frequency behavi
of both the right- and left-hand side of the equation taken
d50, which match each other. However, fordÞ0, the term
(td)2Gf(v) would introduce a 1/Av singularity and preven
this matching from taking place: this indicates that the lo
frequency behavior of the zero-temperature Green’s func
for arbitrary small doping is no longer 1/Av. In this respect,
an infinitesimal doping is asingular perturbationof the
above equations. This observation directly yields an estim
of the coherence scaleeF* such thatGf(v);1/Av is recov-
ered foreF* ,v!J. Indeed, the term (td)2Gf(v) becomes
comparable toS f(v) in this regime~thus providing a cutoff
to the singular behavior! when v.(dt)2/J. Hence, in the
low-doping regime,

eF* 5
~dt !2

J
, ~d!d* !, ~19!

with d* defined below.@In the following we shall take Eq
~19! as definingeF* in the low-doping regime, with no addi
tional prefactors.#
d

ts

t’’
his

-

-

e
-
e.
to

e
-
ds

le

e

-

t

-
n

te

In the high-doping regime, on the other hand~or whent
@J), one should consider first the limit of a vanishing ma
netic exchangeJ50. In this limit, the usual slave-boso
~large-M ) description of a doped Mott insulator i
recovered.2 SettingJ5S f50 in the equations above yields
semicircular spectral density:

r f
J505

1

d
DS v1m2l0

d D , ~20!

whereD is given by

D~e!5
1

pt
A12S e

2t D
2

. ~21!

The original bandwidth 4t of the noninteracting case ha
been reduced by a factord, and the usual Brinkman-Rice
result for the coherence scale is recovered:

eF* 5td, ~d@d* !. ~22!

Turning onJ as a perturbation from this starting point do
not affect the leading low-frequency behavior of the se
energy, but does lead to a scattering rate ImS f
}v2J2/(dt)31••• characteristic of a Fermi liquid~in con-
trast, theJ50 model has infinite quasiparticle lifetime in th
large-M limit !. From Eqs.~22,19!, it is clear that when the
magnetic scattering is strong (J@t), regime~19! always ap-
plies, while for weaker scattering (J,t) a crossover between
the two regimes is found at a characteristic doping:

d* ;minS J

t
,1D . ~23!

We thus observe that below some characteristic doping
low-energy coherence scale is strongly affected by the m
netic scattering. When the exchange is large or for dop
smaller thatd* .J/t, the actual coherence scaleeF* is much
smaller than the naive coherence scaleeF0* ~which holds in
the absence of magnetic correlations!. Here we findeF0*
.dt andeF* /eF0* .d/d* . This is one of the crucial physica
conclusions of this paper.

A numerical solution of the saddle-point equations p
vides clear evidence for these two regimes. The numer
procedure that we have used is explained in Appendix
Figure 3 displays theT50 spectral functionr f(v) for three
values ofJ. When J is very small, the spectral function i
very close to the semicircular shape~20!, while for a largerJ
the 1/Av divergence is observed over a large-frequen
rangeeF* ,v,J but is cutoff for v,eF* so thatr f(0) is
finite. Anticipating the results of Sec. III B, we observe th
the value ofr f(v50, T50) is actually independent ofJ as
a consequence of the Luttinger theorem. Indeed, the foll
ing relation can be established at zero temperature:

m2l02S f~ i01!→dm0~d! as T→0, ~24!

wherem0(d) is the noninteracting value of the chemical p
tential for the tight-binding model on thez5` Bethe lattice.
This impliesr f(0,T50)51/(ptd) for all values ofJ.

At very small doping, a scaling analysis of the sadd
point equations can be performed in order to characte
more precisely the crossover between the low-frequency
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high-frequency regimes atT50. As we now show, the spec
tral function~and the Green’s function itself! obeys a scaling
form

r f~v!5
1

td
f fS v

eF*
D for v!J,t, d!d* 5

J

t
. ~25!

In order to derive the integral equation satisfied by the s
ing function f f , we rewrite Eq.~14a! at T50 @using Eq.
~24!# as

Gf
21~v!5v1dm0~d!2~ td!2Gf~v!2@S f~v!2S f~0!#.

~26!

At low doping and low frequencyGf is of order 1/d andm0
is of orderd. Hence, rescaling frequencies by the cohere
scale eF* 5(dt)2/J, we see that the first two terms in th
right-hand side~r.h.s.! of Eq. ~26! can be neglected. Analyti
cally continuing toreal time t and frequencyv, and denoting
by GF the real-frequencyT50 Green’s function~with the
usual Feynman prescription!, we define a scaling functiongf

F

associated withGf
F by the Hilbert transform:

gf
F~v!5E

2`

`

de
f f~e!

v2e1 i sgnv
. ~27!

We finally obtain from Eq.~26! an integral equation satisfie
by gf ~and thus byf f) that no longer contains dimension
parameters:

@gf
F~v!#2152gf

F~v!2@sF~v!2sF~0!#,
~28!

sF~ t !5@gf
F~ t !#2gf

F~2t !

~as explained in Appendix. C, a sign change occurs in
expression of the self-energy atT50)

The universal scaling functionf f can be obtained by
solving numerically Eq.~28!, and the result is displayed i
Fig. 4. The asymptotic behaviors off f(v̄) for large and
small v̄5v/eF* can be obtained analytically and read

FIG. 3. The spectral function of the auxiliary fermion as a fun
tion of frequency for a dopingd50.1 and three values ofJ
50.01,0.3,1.
l-

e

e

f f~v̄ !5
1

p
2c1v̄21••• for v̄→0,

f f~v̄ !5
c2

Av̄
1••• for v̄→1`, ~29!

wherec1 and c2 are two constants. The low-frequency b
havior reflects the Fermi-liquid nature of the low-energy e
citation spectrum, while the 1/Av behavior characteristic o
the undoped spin liquid is recovered forv.eF* .

B. Single-electron properties atT50: quasiparticle residue,
effective mass, Luttinger theorem, and photoemission

In this section, we focus on the one-particle Green’s fu
tion for the physical electron, which is related to that of t
auxiliary fermion by

Gc~k,ivn!52^Tckacka
† &52^Tbk

†f ka f ka
† bk&

5
Md

2
Gf~k,ivn!, ~30!

hence

Md

2
Gc~k,ivn!215 ivn1m2l02S f~ ivn!2dek .

~31!

In this expression,ek stands for the single-particle energie
of a noninteracting tight-binding model on the Bethe latti
with hoppingt/Az between nearest-neighbor sites.28 The dis-
tribution of these single-particle energies is the semicircu
density of statesD(e) defined in Eq.~21!.

From the large-frequency behavior of Eq.~31!, we see
that the physical electron spectral density in theM→` limit
is normalized as*2`

1`rc5Md/2 ~in contrast to*2`
1`r f51).

This is expected from the fact that the constraint~6! on the
Hilbert space yields a normalization~for arbitrary M ) of
*2`

1`rc5^$c,c†%&5Md/21(12d)/2 @note that this yields
(11d)/2 for M52, as expected for theU5` Hubbard
model#.

-

FIG. 4. T50 scaling function associated with the spectral de
sity r f(v)5(1/td)f f(v/eF* ) in the low-doping regime.
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Since our normalization of the hopping ist i j

52t/(MAz), the noninteracting conduction electron Green
function reads

Gc~k,ivn! free
215 ivn1m2

2

M
ek . ~32!

Thus, the physical electron self-energy reads

Sc~ ivn!5 ivn1m2
2

Md
@ ivn1m2l02S f~ ivn!#.

~33!

We observe that it depends solely on frequency, as is ge
ally the case in the limit of large dimensionality.3

We first consider the location of the Fermi surface
both the noninteracting and interacting problems, i.e., lo
for the poles of the electron Green’s function. In the non
teracting case, we relate the chemical potential atT50 to the
number of particleŝna&5(12d)/2 and find

m free5
2

M
m0~d!, ~34!

where the functionm0(d) is defined by the relation

E
2`

m0~d!

deD~e!5
12d

2
. ~35!

Hence the noninteracting Fermi surface corresponding
doping d is defined byek5m0(d). In the interacting case
we see from Eq.~31! that the Fermi surface is located atek
5@m(T50)2l0(T50)2S f(v50, T50)]/d. In the ab-
sence of magnetic scattering (J50), it can be shown by an
explicit calculation2 from the saddle-point equations that th
r.h.s of this equation is justm0(d) and thus that the Ferm
surface is unchanged in the presence of the constraint. W
JÞ0, such an explicit calculation is not possible, since
saddle-point equations are coupled nonlinear integral eq
tions. However, a proof of Luttinger theorem can still
given using the fact that a Luttinger-Ward functional exi
for this problem and is known in explicit form in the large-M
limit, as detailed in Appendix B. The conclusion of th
analysis is that the volume of the Fermi surface correspo
to (12d)/2 particles per spin flavor and that the zer
temperature, zero-frequency self-energy must obey

m~T50!2l0~T50!2S f~v50, T50!5dm0~d!
~36!

We now consider the weight and dispersion of the qua
particles, which can be read off from Eqs.~31,33! by ex-
panding around the Fermi surface. We define a renorma
tion factor for the auxiliary fermions as

Zf5S 12
]S f

]v D 21U
v50

~37!

so that the physical electron quasiparticle residue reads

Zc5
M

2
dZf . ~38!
er-

r
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a-

From the low-frequency analysis of the preceding sect
and the corresponding estimates of the coherence scale
expectZc to be of ordereF* /t and thus

Zc;
t

J
d2;

d2

d*
~d!d* !, Zc;d~d@d* !. ~39!

In Fig. 5, we display the result of a numerical calculati
of Zc as a function of doping, for three values ofJ/t. These
results entirely confirm the above expectations. We h
checked that at small dopingZc /d* scales proportionally to
(d/d* )2 with a universal prefactor.

From Eq.~31!, we see that the quasiparticles have a d
persion characterized by an effective hoppingteff /t
5dZf @m* /m51/Zc}1/(dZf)#. Hence the effective mas
diverges as the Mott insulator is reached~as 1/d2). The rea-
son for this divergence is the large~extensive25! entropy of
the insulating spin-liquid ground state. This entropy must
released at a temperature of the order of the coherence
eF* in the doped system. Hence, integrating the specific h
ratio C/T5g betweenT50 and T5eF* leads togeF* ;1,
which is the result found above. This divergence ofg as d
→0 is clearly an artifact of the large-M and large-d limits.
The residual ground-state entropy of the spin-liquid ph
should not survive a more realistic treatment of this ph
@whether this happens while preservingx9(v);const in this
phase is an open problem at this moment#. Furthermore, our
model does not include a uniform antiferromagnetic e
change constant superimposed on the random part. Inclu
this coupling will help in locking the spins into singlets an
cut off the divergence of the effective mass~for a large-M
treatment of this point, see, e.g., Ref. 2!.

Finally, we discuss the shape of the conduction elect
spectral densityr(ek ,v) for a fixedvalue of the energyek as
a function of frequency, as relevant for photoemission
periments:

FIG. 5. Physical electron quasiparticle residueZc vs doping for
J50.3,1,2.5~the proportionality factor 2/M has been set equal t
1).
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rc~ek ,v!52
1

p
Gc9~ek ,v!

52
Md

2p

S f9~v!

„v1m2l02S f8~v!2dek…
21S f9~v!2

.

~40!

Numerical results for this quantity are displayed in Fig.
This function is peaked at a frequencyvpeak.Zc(ek2ekF

)

with a height of order 1/vpeak
2 ~at T50). Moving away from

this quasiparticle peak,rc(ek ,v) has the characteristic 1/v2

decay of a Fermi liquid only in the limited frequency ran
uvpeaku,uvu,eF* , followed ~for d,d* ) by a much slower
1/Av tail corresponding to the spin-liquid regime in the fr
quency rangeeF* ,uvu,J. ~We note that this non-Fermi
liquid tail is absent in the high-doping regime!. These two
regimes are clearly apparent in Fig. 6. If the resolution o
photoemission experiment is not significantly smaller th
eF* , the peak will be smeared into a broad feature, and
measured signal will be dominated by the slowly decay
tail. Furthermore, as shown in the next section, tempera
has a large effect on the peak, the height of which decre
as 1/AT in the temperature rangeeF* ,T,J.

C. Finite-temperature crossovers

The metal-insulator transition atT50 asd→0 is a quan-
tum critical point. The associated crossover regimes at fi
temperature can be easily deduced by comparing the co
ence scaleeF* to the magnetic exchangeJ and to the tem-
perature. This analysis yields three regimes, as depicte
Fig. 1:

~i! For T,eF* , the doped holes form a Fermi liquid. Th
low-energy degrees of freedom are the fermionic quasipa
cles described by the auxiliary fermionsf a , which behave in
a coherent manner since their inverse lifetime vanishe
low-frequency as ImS f}v2 in this regime.

FIG. 6. Conduction electron spectral densityr(ek ,v) for d
50.04,T/t51/300, andJ/t50.3 and for two values of the energ
ek . The arrow indicates the crossover between the Fermi-liq
regime and the spin-liquid regime, as explained in the text.
.
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~ii ! At low doping d,d* , an intermediate temperatur
regime exists, defined byeF* ,T,J. In this regime, coheren
quasiparticles no longer exist~as shown below, ImS f

}Av), but the spin degrees of freedom are not free lo
moments since the temperature is smaller than the magn
exchange. Hence, the spins behave in this regime as in a
liquid, with a marginal Fermi-liquid form for the local spin
response function. As shown below, this regime correspon
to the so-called quantum-critical regime associated with
quantum-critical point atT5d50. In this regime, the low-
energy scaleeF* drops out from response functions, whic
obey universal scaling properties as a function of the ra
v/T.

~iii ! Finally, a high-temperature regime applies, defin
by T.J ~for d,d* ) or T.dt5eF* ~for d.d* ) in which
both spin and charge are incoherent and essentially free.
note that ifJ,t and the doping is larger thand* .J/t, the
system goes directly from a Fermi liquid to this hig
temperature regime as temperature is increased, withou
intermediate marginal Fermi-liquid regime.

This qualitative analysis can be established on firm
grounds by generalizing the low-doping scaling analysis
Sec. III A to finite temperature. Assuming that the coheren
scale is small as compared to bothJ and the hoppingt ~i.e.,
that d,d* ), and thatv,T!J,t, the spectral function take
the following scaling form, generalizing Eq.~25!:

r f~v,T!5
1

td
F f S v

eF*
,

T

eF*
D . ~41!

In the following,v̄ andT̄ stand forv/eF* andT/eF* , respec-
tively. Equation~41! yields for the Green’s functionGf(v)
51/(td)gf(v̄,T̄) ~with F f52gf9/p). We assume that the

self-energy also scales asS f9(v)5(td)s f9(v̄,T̄). From the
saddle-point equation~14! we deduce the following equa
tions:

Im gf
21~v̄,T̄!52gf9~v̄,T̄!2s f9~v̄,T̄!, ~42!

s f9~v̄,T̄!5pE
2`

` E
2`

`

dx1dx2F f~x1 ,T̄!F f~x2 ,T̄!

3F f~x11x22v̄,T̄!

3FnFS x2

T̄
D 2nFS x11x22v̄

T̄
D G

3FnFS x1

T̄
D 1nBS x12v̄

T̄
D G . ~43!

In this expression,nF and nB are the Fermi and Bose fac
tor: nF,B(y)51/(ey61). With a Kramers-Kronig transfor-
mation one can deducegf8 ands f8(v̄,T̄)2s f8(0,T̄) from F f

and s f9 . From the equation for Regf
21 , we have thatm

2l02S f8(v50,T); f (T/eF* ), wheref is some scaling func-
tion that can, in principle, be calculated from Eq.~42!. The
function f vanishes at small argument@ f (0)50# due to Lut-

d
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tinger’s theorem, and at large argument@ f (1`)50# due to
the auxiliary fermion particle-hole symmetry of the undop
model.

We now discuss the solution of this scaled integral eq
tion, and the form taken byF f in the various regimes de
scribed above.

~i! Fermi-liquid regime. T!eF* . At zero temperature, the
scaling functionF f reduces to that in Eq.~25!:

F f~v̄,T̄50!5f f~v̄ !. ~44!

We can also consider the limit of low-frequency and te
peraturev,T!eF* but with an arbitrary ratiov/T. In this
limit, the self-energy term is negligible altogether in E
~42!, and one gets simplygf

2521, i.e.,

F f~v̄!1, T̄!1!→
1

p
. ~45!

Note that the r.h.s. coulda priori be a function of the ratio
v/T, but is actually a constant~as is generically the case i
a Fermi liquid!. From this, we can deduce a scaling form
the scattering rate in the same regime. Indeed, Eq.~45! cor-
responds to the imaginary-time Green’s function:

Gf~t!→2
1

ptd

p/b

sinpt/b
, 1/eF* !t, b2t . ~46!

Hence, in this limit, the self-energy takes the form

S f~t!;2
J2

~ptd!3S p/b

sinpt/b D 3

, ~47!

which can be Fourier transformed to yield

Im S f~v!eF* , T!eF* !52
J2

2~ptd!3 ~v21p2T2!.

~48!

~ii ! Spin-liquid regime T@eF* . In this quantum-critical
regime the energy scaleeF* drops out from the problem an
the spectral density and response functions become func
of the ratiov/T only. Indeed, the scaling functionF f(v̄,T̄)
takes the formw f(v̄/T̄)/AT in the limit T̄@1. In order to

find w f in explicit form, we divide both side of~42! by AT̄

and take the limitT̄→`, v̄/T̄ fixed. Then the first term of
the r.h.s vanishes and we are left with a scaled equation
w f in which all dependence oneF* has disappeared. Remar
ably, this integral equation can be solved in closed form a
yields

r f~v,T!→
1

AJT
w f S v

T D5
1

2p9/4AJT

3coshS v

2TD UGS 1

4
1 i

v

2pTD U2

. ~49!

Some details are provided in Appendix D. This scaling fun
tion describes how the 1/Av singularity associated with th
low-energy excitations of the spin liquid is cut off~by the
temperature! at frequenciesv,T so that the spectral densit
is of order 1/AJT at v50. @Note that if the limit T̄→` is
-

-

ns

or

d

-

performed while keepingv̄ fixed in Eq.~42!, the same result
is obtained as when the limit is taken withv̄50. Hence there
is no additional crossover in the frequency dependence of
response functions belowv5eF* in this regime#. Equation
~49! corresponds to the following scaling form for th
imaginary-time Green’s function:

Gf~t!;2
1

A2Jp1/4S p/b

sinpt/b D 1/2

. ~50!

Remarkably, Eq.~50! has the form that would hold in a
model havingconformal invariance, for example, a quantum
impurity model of a spin interacting with a structureless ba
of conduction electrons. In that case, a conformal mapp
from theT50 half-planet.0 to the finite-temperature strip
0<t<b can be used to show29 that if the Green’s function
decays as 1/At at T50, then it takes a scaling form given b
Eq. ~50! at finite temperature~lower than a high-energy cut
off!. In the present case, the original model is an infin
connectivitylattice modelthat does nota priori satisfy con-
formal invariance. It does map onto a single-site quant
impurity model, but with an additional self-consistency co
dition. This means that the effective bath for the local spin
given by the local spin-spin correlator itself, and thus do
have nontrivial structure at low energy. However, this stru
ture appears only as a subdominant correction to the lea
low-frequency behaviorx loc9 (v);const. For this reason, ou
effective single-site model does obey conformal invarian
properties in the low-energy limit, which explains the res
above. This remark actually applies in a broader context t
the specific model considered here, as will be discusse
more detail elsewhere.

Let us also consider the scattering rate in this regim
which is obtained by Fourier transforming the imaginar
time self-energy,

S f~t!;2AJ@~p/b!/~sinpt/b!#3/2/~4p!3/4,

which yields

S f9~v!;2p2~3/4!AJTcoshS v

2TD UGS 3

4
1 i

v

2pTD U2

.

~51!

We have calculated numerically the real-frequency, fini
temperature Green’s function by following the method d
scribed in Appendix C. In Fig. 7, we display results for th
spectral density for various temperatures forJ/t50.3 at a
doping ofd50.04,d* . These values correspond to a low
energy coherence scaleeF* /J5(d/d* )2.1.831022. The
crossover from the Fermi-liquid regime at low temperatu
into the quantum-critical regime at intermediate temperatu
is clearly visible ~in particular, the peak height can b
checked to decrease as 1/AT). Note also thatr f(v) remains
approximately centered atv'0 until T.J and shifts rapidly
away fromv50 for T.J. In the inset, we also display th
thermal scaling function associated withr f , Eq. ~49!.
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D. Local spin dynamics

In this section, we describe the behavior of the local s
dynamics in the various temperature regimes. In the largeM
limit, the local spin correlation function is given by

x loc~t!52Gf~t!Gf~2t!,

x loc9 ~v!5pE
2`

1`

dnr f~n!r f~n2v!@nF~n2v!2nF~n!# .

~52!

In Fig. 8, we displayx loc9 (v) for various temperatures an
the same choice of parameters as in Fig. 7. In the low-dop
regime,eF* !J,t, d,d* , x loc9 obeys a scaling form that fol
lows from the convolution of Eq.~41!:

FIG. 7. Spectral functionspr f(v) for d50.04 andJ/t50.3
~corresponding toeF* /J.1.831022). The different curves corre
spond from top to bottom toT/t51/200,1/50,1/25,1/10,1. Inse
thermal scaling function Eq.~49!.

FIG. 8. Local dynamical susceptibilityx loc9 (v) for d50.04 and
J/t50.3. The different curves correspond from top to bottom
T/t51/200,1/50,1/25,1/10,1/5,1. In the temperature rangeeF* ,T
,J and for frequenciesv,J, these curves scale on the univers
form x loc9 (v,T)5(Ap/2J)tanh(v/2T).
n

g

x loc9 ~v,T!5
1

J
FxS v

eF*
,

T

eF*
D . ~53!

Let us discuss the limiting forms of this expression asT
→0 or T@eF* .

~i! At zero temperature,x loc9 (v) has a shape that re
sembles the undoped spin-liquid case~Fig. 2! for frequencies
v.eF* . At lower frequency, the Fermi-liquid behavio
x loc9 (v)}v is recovered. This results in a peak with a heig
of order 1/J at T50. This crossover can be described by
scaling function,

x loc9 ~v!J, T50!5
1

J
fxS v

eF*
D , ~54!

wherefx(x)5Fx(x,y50) can be obtained by convolutin
f f with itself, resulting in the asymptotic behaviors

x loc9 ~v,T50!.
v

p~d t !2, v!eF* x loc9 ~v,T50!.
p3/2

2J
,

eF* !v!J. ~55!

This can be used to estimate the behavior of the static lo
susceptibility at low dopingx loc8 (v50)5*dvx loc9 (v)/v. In
this integral, the regioneF* ,v,J ~corresponding to spin-
liquid excitations! gives the dominant contribution, leadin
to the logarithmic behavior ford!d* :

x loc8 ~v50!.
1

J
ln

d

d*
. ~56!

In contrast, as detailed in Appendix E, theuniform static
susceptibilityx5x8(q50, v50) is a constant of order 1/J,
with no divergence at small doping.

~ii ! In the spin-liquid regime T@eF* , x loc9 becomes a func-
tion of v/T. The corresponding scaling function is remar
ably simple: from Eq. ~50! we have x loc(t)
}p/@bsin(pt/b)# which yields

x loc9 ~v,T!5
Ap

2J
tanh

v

2T
. ~57!

This behaves exactly as the spin response function postu
in the marginal Fermi-liquid phenomenology18 (v/T for v
!T, const forv@T).

We finally use these results to compute the tempera
dependence of the NMR relaxation rate:

1

T1T
5

x loc9 ~v,T!

v
U

v50

~58!

Expanding the scaling form~53! to linear order inv @and
noting thatFx(0,y)50 becausex9 is odd#, we get forT
!J

1

T1
5

1

J
cS T

eF*
D ~59!

@with c(y)5y]xFx(x50,y)]. In Fig. 9, we plot this univer-
sal scaling function. We have also checked the data colla
of our numerical results on this function. Limiting forms a
easily obtained from Eqs.~55! and ~57!:

l
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~i! T!eF* : c(y!1);y/p, hence 1/T1.T/@p(dt)2#.
We find a Korringa law~as expected from a Fermi liquid!
but with avery strong doping dependence. We also note that
in contrast to a noninteracting Fermi gas, 1/(T1T)}1/(td)2,
x loc}1/Jln(d* /d) andx}1/J obey quite different behavior a
a function of doping. In particular, the so-called ‘‘Korring
ratio’’ 1/(T1Tx2).(d* /d)2 is very large at low doping.

~ii ! J.T@eF* : c(y@1)→Ap/4, hence 1/T1;Ap/4J
5const as expected in amarginal Fermi liquid. We note that
1/T1 is doping independent in this quantum-critical regim
This is because the scaleeF* no longer appears explicitly.

E. Transport and frequency-dependent conductivity

In the limit of large connectivity, the current-current co
relation function has no vertex corrections, due to the o
parity of the current~see, e.g., Ref. 3!. Hence the frequency
dependent conductivity is given by

Res~v!5t2E
2`

`

de D~e!E
2`

`

dn rc~e,n!rc~e,n1v!

3
nF~n!2nF~n1v!

v
, ~60!

whererc(e,v) is the single-electron spectral density defin
in Eq. ~40!. This expression yields the conductivity in uni
of e2/(ha22d) wherea is the lattice spacing and some n
merical prefactors have been dropped~we shall also ignore
the prefactorM in rc).

1. Resistivity

We first discuss the behavior of the dc conductivity:

sdc~T!5Res~v50,T!

5E
2`

`

de D~e!E
2`

` dx

4 cosh2~x/2!
rc

2~e,Tx!.

~61!

FIG. 9. Scaling functionc associated with the NMR relaxatio
rate:J/T15c(T/eF* ).
.

d

~i! In the Fermi-liquid regime T!eF* , we have from the
behavior ~48! of the scattering rate:2Im S f(v,T)}J2(v2

1p2T2)/(dt)3 and v1m2ReS f(v,T)5v/Zf1constT.
Making the change of variablese5Tu, we see that the inte
gral overu in sdc/T diverges as 1/T3. Hence, we find in this
regime the expected Fermi-liquid behavior of the resistiv
rdc51/sdc:

rdc~T!}S T

eF*
D 2

, T!eF* . ~62!

~ii ! In the spin liquid regimeeF* !T!J at low doping,
2S f8(v) is of orderAJT ~times a scaling function ofv/T).
This must be compared tode.dt in the denominator of
rc(e,v). SinceT@eF* , we see that ReS f always dominates
overde, which can thus be neglected. Hence one can rep
rc(e,v) by the local spectral functiondr f(v). In other
words, the limit d→0 must be taken before the low
temperature limit in this quantum-critical regime. Using t
thermal scaling function, Eq.~49!, we obtain

sdc~T!5
d2

16JTE2`

` dx

cosh2~x/2!
w f~x!2. ~63!

The integral can calculated explicitly using*0
`dxuG( 1

4

1 ix)u45p3 @Ref. 30, Eq.~6.412!#, we finally find

rdc~T!516Ap
T

eF*
, eF* !T!J. ~64!

Hence the resistivity turns out to have a linear behavior a
function of temperature in the spin-liquid regime, again as
the marginal Fermi-liquid phenomenology. This is rather
markable in view of the fact that thesingle-particlescatter-
ing rate behaves asAT in this regime. As further discussed i
the conclusion, this is characteristic of a regime of incoher
transport in which the transport scattering rate cannot be
ively related to the single-particle lifetime. Furthermore, w
note that theAv behavior of the self-energy is a crucia
ingredient in producing aT-linear resistivity. With a different
power law (va), the resistivity would behave asT2a in this
incoherent regime.

The crossover fromT2 to T in the resistivity can be cap
tured in a more precise manner in a universal scaling fu
tion,

rdc~T!5crS T

eF*
D . ~65!

We have determined numerically the functioncr , which is
depicted in Fig. 10. We observe that it is linear over a w
temperature range@with a slope in agreement with Eq.~64!#.

2. Optical conductivity

We now turn to the analysis of the frequency-depend
conductivity.~i! In the Fermi liquid regime, the conductivity
takes the form, atT50,

s~v!5Dd~v!1s reg~v!, ~66!
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where D is the weight of the Drude peak ands reg(v)
→const asv→0. The Drude peak is easier to capture by
finite temperature analysis: thed function is regularized byT
in the form T2/(v21T4). Performing a low-temperature
low-frequency analysis of Eq.~60! leads to the estimation
D}t2D(m0)Zfd}d2 at small doping. A closed formula ca
be given for Res reg(v) as a~truncated! convolution of the
scaling functionf f . A low-frequency analysis then show
that Res(v!eF* )5const, while Res(v@eF* );eF* /v.

~ii ! In the regimeeF* ,T,J, we have from Eqs.~60! and
~49! the scaling form

Res~v!5
eF*

v
wsS v

T D ,

ws~y![E
2`

1` dx

Aux~11x!u
w f~xy!w f„~11x!y…

3$ f ~xy!2 f @~11x!y#%, ~67!

wheref (x)51/(ex11). From Eq.~67!, ws(1`)5const and
thus we have in this spin-liquid regime:

Res~v!}
eF*

v
, T!v!J,

Res~v!}
eF*

T
, v!T . ~68!

Moreover, using the Kramers Kronig relation Ims(v)
5*dv8Res(v8)/(v2v8) we find, in the same regime fo
v.T,

Im s~v!}
eF*

v
lnS v

eF*
D . ~69!

Hence defining an optical scattering rate from an effect
Drude formula topt

21(v)5v Res(v)/Im s(v), we find
topt

21(v);v/ ln(v/eF* ).

FIG. 10. Scaling function for the resistivity. Inset: low
temperature Fermi-liquid regime.
e

We have also calculated Res(v) numerically, following
the method explained in Appendix C. Numerical results
displayed for various temperatures in Fig. 11 and are
agreement with the previous analysis.

IV. CONCLUSION AND DISCUSSION

A. Summary

In this paper, we have solved a model of a doped s
fluid with strong frustration on the exchange constantsJi j .
The undoped model is anSU(M ) quantum Heisenberg
model with random exchange, previously studied by Sa
dev and Ye~Ref. 16! in the limit of large-M and infinite
connectivity. These authors found that, in this limit, quantu
fluctuations are so strong that no spin-glass phase form17

Instead, a gapless spin liquid is found with local spin dyna
ics identical to the marginal Fermi-liquid phenomenology18

We generalized this result to finite temperature and fou
that the local spin response function displaysv/T scaling:
Jx9(v,T) loc}tanhv/2T ~for v,T,J). Doping this Mott in-
sulating phase with holes, we found that a characteristic d
ing d* .J/t appears separating two quite different dopi
regimes. In the high-doping regimed.d* , magnetic effects
are weak and a Brinkman-Rice Fermi-liquid description
valid, with a rather large coherence scale of orderdt. In the
low-doping regime, however, the interplay between local
herence and magnetic effects gives rise to a coherence
eF* 5J(d/d* )2, which can be very low. At low temperatur
T,eF* , Fermi-liquid behavior is recovered, but an incohe
ent regime is found in a rather wide regime of temperat
eF* ,T,J in which physical properties strongly deviate fro
Fermi-liquid theory. This regime corresponds to t
quantum-critical regime associated with the metal-insula
transition, which in this model happens atdc5T50. We
found that both transport properties and response funct
in this incoherent regime behave as in the marginal Fer

FIG. 11. Real part of the optical conductivity Res(v) vs v, for
d50.04 and J/t50.3. The different curves correspond toT/t
51/200,1/100,1/50,1/25,1/10. HereeF* /t51.831022. Inset: the
curve corresponding toT/t51/100, plotted in log-log coordinates
in the frequency rangeT;eF* ,v,J. The 1/v behavior described
in the text is clearly visible.
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liquid phenomenology, namely, rdc}T, topt(v)21

}v/ ln(v/eF* ), 1/T1}const, andJx loc9 (v,T)}tanhv/2T. Re-
markably, single-particle properties deviate much mor
strongly from Fermi-liquid theory, with a single-particl
scattering rate behaving as ImS}Av ~or AT), in contrast to
the ImS}v behavior postulated in the marginal Ferm
liquid phenomenology.

These behavior result from the solution of the large-M
saddle-point equations, which also yields explicit expr
sions for the scaling functions ofv/eF* andv/T describing
the crossover of the various physical quantities between
Fermi-liquid and the non-Fermi-liquid regime. We also no
that in the large-M limit, response functions can be calc
lated from theinteracting single-particleGreen’s function.
Hence the behavior ofS}Av and of Imx loc}const are inti-
mately related. In contrast, in the marginal Fermi-liquid ph
nomenology, the behavior of Imx is related toa priori un-
known higher-order vertex functions. In this sense,
present model yields a solution to the problem of inter
consistency of the marginal Fermi-liquid ansatz, resulting
a more singular form of the single-particle Green’s functio

We also note that numerical studies of the doped tw
dimensionalt-J model with uniform antiferromagneticJ by
Imada and co-workers31 have some intriguing similarities to
the results of the present work. Specifically, a Drude wei
and coherence temperature scaling asd2 are also found. The
specific heat coefficient is found to scale as 1/d in this case,
in contrast to the present work. The reason for this differe
is the existence of a residual entropy in the undoped s
liquid phase of our model. However, the temperature dep
dence of the specific heat at the critical point is found to
AT in both cases.

Finally, we briefly discuss the possible instabilities of t
metallic paramagnetic phase discussed in this paper. It
actually be checked that for a givenJ/t, a low-temperature
and low-doping regime exists in which an instability to pha
separation is found, signaled by a negative compressibi
This is quite easily explained on a physical basis for a giv
realization of the exchange couplings: the holes will tend
cluster in regions with ferromagnetic bonds in order to ma
mize kinetic energy. A proper treatment of this phas
separated regime should take into account longer-range C
lomb repulsion. In the infinite connectivity limit, a
additional termV( i j ninj in the Hamiltonian reduces to
Hartree shiftm1V^n& of the chemical potential~thus the
compressibility readskV

215kV50
21 1V), so that the phase

separation boundary can be continuously tuned as a func
of V. In future work, we are planning to consider other po
sible instabilities of this model. The issue of spin-gla
ordering32 does not arise for theM5` fermionic represen-
tation considered in this paper,16 but spin glass phases a
indeed present forM5` for bosonic representations wit
high enough ‘‘spin.’’33 Even in the fermionic case, first-orde
corrections in 1/M are likely to restore a regime of spin-gla
ordering. Finally, an open issue is that of possible pair
instabilities of the metallic phase towards a superconduc
state.

B. Relevance to cuprate superconductors

In this section, we would like to present arguments s
gesting that the problem studied in this paper may be
-
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evant for the understanding of some of the striking aspect
the normal state of cuprate superconductors. The line of
guments relies on three sets of experimental observation

~i! The experiments reported in Refs. 5 and 6, in which
61-T magnetic field is used to suppress superconducti
strongly suggest that the ground state of La22xSrxCuO4 is
actually aninsulator, up to Sr doping of aboutx.0.16, cor-
responding to the highestTc . This is true even in sample
having large values ofkFl , making weak-localization effects
an unlikely explanation of the logarithmic upturn ofbothrab
and rc observed at low temperature. Insulating behavior
no longer found in overdoped samples.

~ii ! At very low doping in the La22xSrxCuO4 com-
pounds, a low-temperature spin-glass phase is found fox
.0.02,4 in agreement with theoretical arguments,7 suggest-
ing that localized holes induce locally a strong frustration
the magnetic exchange. This localization of the carriers
duces a strong upturn ofrab at low temperature in thes
samples, first in a logarithmic manner followed by an ac
vated behavior. Nevertheless, the high-temperature beha
of the resistivity in these samples is quite similar to th
found close to optimal doping.

~iii ! Inelastic neutron scattering reveals peculiar lo
energy spin excitations for all underdoped samples, quite
ferent in nature from spin waves.8–15 For very low-doping,
these excitations occur in a remarkably low-energy range
the scale of 10 meV, distinctly smaller thanJAF . In a re-
stricted range of frequency and temperature, the energy s
for these excitations is actually set by the temperature it
and v/T scaling applies8,10 These excitations, which ar
present in a wide range of temperature~much above the
freezing transition mentioned above! and in the whole under-
doped regime, correspond to aslower spin dynamicsthan in
a Fermi liquid, as is also clear from the non-Korringa beha
ior of the copper NMR relaxation time. Similar observatio
have been made in the YBa2Cu3O61y compounds.14 This is
particularly clear when a small amount of Zn substitution
used to suppress superconductivity15 ~we note that this si-
multaneously opens up again a region of glassy behavio
low temperature for a rather wide range of oxyg
content!.34

In our view, these observations suggest that, in the
sence of superconductivity, aT50 metal-insulator transition
occurs at some critical value of the dopingx5xMI . This
transition might be rather close to optimal doping
La22xSrxCuO4.6 For x.xMI , the incipient ground state is
Fermi liquid, corresponding to the overdoped regime. Fox
,xMI , the ground state is a Mott-Anderson insulator
which holes are localized atT50. At very smallx (0.02
,x,0.05), the mechanism for this hole localization h
been studied in Ref. 35 and involves both the freezing
hole motion due to the antiferromagnetic spin backgrou
and impurity effects. This localization induces strong frust
tion in the local exchange, in agreement with the argume
of Ref. 7. As a result, this insulator will have a glassy natu
at T50 for low doping, as indeed found in La22xSrxCuO4.
Beyond x50.05, however, the onset of superconductiv
has prevented up to now an investigation of the lo
temperature properties of this incipient insulating grou
state and the origin of the observed localization is still
open problem. It may be that the insulator loses its gla
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5354 PRB 59OLIVIER PARCOLLET AND ANTOINE GEORGES
character at some critical dopingxg below xMI , or that the
two critical points actually coincide (xg5xMI).

As the temperature is raised, the holes become gradu
mobile. This quickly destroys the glassy ordering, leav
the system in a state which is a spin liquid with incoher
mobile holes and spins. Neutron scattering and NMR exp
ments show that the spin dynamics in this regime is m
slower than in a Fermi-liquid state, with local spin correl
tions decaying~in some time range! as 1/t ~corresponding to
a high density of low-energy spin excitationsx9(v)}const
in some frequency range!. We view the model studied in thi
paper as a simplified description of such a state of spins
holes, valid in the high-temperature quantum-critical regi
associated with the transition atT50, x5xg ~or xMI), as
depicted schematically in Fig. 12. Indeed, it is a model o
doped Mott insulator with strong frustration, in which th
effect of quantum disordering the glassy insulating state
mimicked by taking the large-M limit. Fluctuations in the
transverse components of the spin may actually be an es
tial ingredient in the disordering process, and this is precis
the effect that is emphasized in the large-M limit and pro-
duces the high density of low-energy spin excitations.

Of course the present model is highly simplified and
meant to retain only the interplay of Mott localization wi
that of frustration in the magnetic exchange constants.
such, it does not include several important physical asp
of the actual materials, most notably the following:

~i! The fact that frustration is a consequence of hole
calization at low temperature7 ~in our model frustration is
introduced by hand!. ~ii ! Localization of carriers by disorde
~as a consequence of both~i! and ~ii !, the metal-insulator
transition occurs at zero doping in our model!. ~iii ! The av-
erage antiferromagnetic componentJAF of the exchange ha
not been included~in that sense we are dealing with a stro
frustration limit J@JAF). This could be corrected for by re
introducing JAF in a mean-field manner, leading t
x(q,v)21.x loc(v)211JAFD(q), whereD(q) is the Fou-
rier transform of the nearest-neighbor connectivity matrix
the lattice. We note that this formula produces a suscept
ity peaked at the antiferromagnetic wave vector, with a c
relation length of the order of the lattice spacing, while
the nontrivial dynamics comes from local effects.

FIG. 12. Schematic crossover diagram for cuprates illustra
~i! the existence of a metal-insulator transition as a function
doping atT50 and~ii ! the possible relevance of our model to th
corresponding quantum-critical regime~other features such as th
pseudogap and the Ne´el temperature have not been depicted!.
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For these reasons, the present model is unable to add
the question of the precise nature of the incipient insulat
ground state of underdoped materials~or of the low-
temperature pseudogap regime associated with it!, even
though the remarks made above point towards a ph
separated regime. Various proposals have been made in
literature regarding this issue. One of the most widely d
cussed is the ‘‘stripes’’ picture, in which there is phase se
ration between the doped holes and the spins into dom
wall-like structures. We note that as long as the holes rem
confined in these structures, the mechanism of Ref. 7 imp
the existence of ferromagnetic bonds in the hole-rich regi
as indeed found in numerical calculations.35–37 As tempera-
ture or doping is raised, a melting transition of the stri
structure takes place, and the model introduced here
become relevant in the associated quantum-critical regim

Keeping these caveats in mind, we comment on the co
parison between our findings and some aspects of the no
state of cuprates in the regime depicted schematically in
12:

a. Low-energy coherence scale.The present model yields
a remarkable suppression of the low-energy coherence s
of a doped Mott insulator in the presence of frustrating e
change couplings. We find this scale to be of ordereF*
5(dt)2/J5J(d/d* )2 instead of the naive~Brinkman-Rice!
estimatedt. We note that, witht/J.5, andJ.1200 K, this
scale can be as low as a few hundred degrees. If relevan
cuprates, this observation suggests that the normal s
properties may well be associated, over an extended~high-!
temperature regime, withincoherent behaviorcharacteristic
of a quantum-critical regime dominated by thermal effec
We note, however, that the present model, as any mode
which low-energy excitations are local in character, wou
lead to a large effective mass at low temperature, dire
proportional to 1/eF* . In cuprates, additional physics sets
at lower temperature@cf. ~iii !, above# which quenches the
corresponding entropy, leading to the experimentally o
served moderate effective mass.38

b. Photoemission. In the incoherent regimeT.eF* , we
find a single-particle Green’s function decaying as 1/Av
~and an associated single-particle lifetime ImS}Av), lead-
ing to a markedly non-Fermi-liquid tail of the photoemissio
intensity. It is worth noting that precisely this form has be
recently shown to provide a rather good fit to the hig
frequency part of the photoemission line shape above
pseudogap temperature in underdoped Bi2Sr2CaCu2O81x .39

It has been recently argued that the 1/Av behavior also holds
in the strong-coupling limit of antiferromagnetic spin flu
tuation theories.40

c. Resistivity and optical conductivity.We would like to
emphasize again the mechanism that yields a linear resi
ity in the incoherent regime of our model, starting from
single-particle self-energy behaving asAv. This holds when
scattering islocal and incoherentso that the effective quasi
particle bandwith~dispersion! can be neglected in compar
son to lifetime effects. In this limit, conductivity should b
thought of in real space as a tunneling process betw
neighboring lattice sites. This mechanism has a higher
gree of generality than the specific model considered in
paper, and should also apply to other models in which

g
f
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sameAv power-law behavior of the self-energy holds, su
as the model of Ref. 40. This model has been propose
connection with the normal-state properties of underdo
cuprates above the pseudogap temperature.39

We note that the magnitude of the linear resistivity in th
incoherent regime is larger or comparable to the Mott lim
(ah/e2), as is actually the case over a rather extended h
temperature regime in underdoped La22xSrxCuO4 ~Ref. 41!
and is a quite general feature of ‘‘bad metals.’’

Regarding optical conductivity, the form we have o
tained is quite similar to the marginal fermi-liquid on
which has been shown42 to provide a very good fit to the dat
of e.g., Refs. 43 and 44.

d. Neutron scattering.Neutron scattering experiments o
nonsuperconducting La1.95Ba0.05CuO4 ~Ref. 8! and
La22xSrxCuO4 with x50.04 Refs. 10 and 13 have reveal
spin excitations that are centered at the wave vectorQ
5(p,p) with a rather large momentum width. The fre
quency dependence of these excitations displayv/T scaling
and have been successfully fitted by scaling forms very s
lar to that found in the present model.8,10 At higher Sr con-
centration, one of the most notable feature of the neut
scattering results is the appearance of sharp peaks at in
mensurate wave vectors. It is likely, however, that the
peaks only carry a small fraction of the total spin fluctuati
intensity, as suggested, in particular, by comparison to N
data. A broad, weaklyq-dependent contribution most prob
ably persists up to high temperature, carrying a large par
the total weight, and hard to distinguish from ‘‘background
noise in neutron experiments.45 In YBa2Cu3O61y , suppres-
sion of superconductivity by Zn doping allow us to inves
gate the spin dynamics of the normal state down to l
temperature.15,14 Apart from a very-low-temperature quas
elastic peak~associated with spin freezing into spin-glas
like order!, neutron scattering results fory50.39 reveal a
strong enhancement of low-frequency spin fluctuations
low temperature, with a distinctively low-energy scale an
strong temperature dependence down to very low temp
ture ~compatible withv/T scaling in a limited range!. These
features are qualitatively similar to the low-energy exci
tions found in the present model. There is furthermore
perimental evidence15 that these low-energy excitations a
associated with the disordering of the spins by transve
fluctuations, as in our model.
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APPENDIX A: DERIVATION OF THE SADDLE-POINT
EQUATIONS

In this appendix, some further details on the derivation
the saddle-point equations in the large-M limit for the single-
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site model defined by Eqs.~11,12! are provided. In the fol-
lowing, we will drop the indexa in

Gab~t2t8![2~2/M !^~ f a
ab†a!~t!~ f a

†bbb!~t8!&.

In Eq. ~12! the brackets denote the average with the act
specified in subscript. As the actionS is invariant under
translations in imaginary time and under the action
SU(M ) ~the rotation invariance forM52), C andR take the
following form:

Caa
aa ~t,t8!5

M

2
Gaa~t2t8!,

Rabgd
ab ~t,t8!52daddbgRab~t2t8!1dabdgdR̃ab~t2t8!.

~A1!

The quartic term inf in Eq. ~11! is decoupled using a biloca
field Pab(t,t8). Using the expression of the spin operat
Eq. ~8! and the change of variable,

b~t!5AM

2
f~t!, ~A2!

the single-site partition function can be rewritten as

Zsingle site5E Df†DfDlDPe2MS12S̃1 ~A3!

with the actions

S15
1

2E dt(
a

f†a~t!]tf
a~t!2 ln Z0

1
J2

2 (
ab

E E dtdt8Rab~t2t8!Pab~t,t8!Pba~t8,t!,

S̃15
J2

2 (
a

S E dt„12f†~t!f~t!…D 2

. ~A4!

In this expression,Z0 is defined by

Z0@f,P,l#[E Df †Df e2S00[f,P,l, f ] ~A5a!

with

S00@f,P,l, f #5(
a
E dt f †a~t!~]t2m! f a~t!

1 i E dt(
a

la~t!

3S f †a~t! f a~t!1
f†a~t!fa~t!21

2 D
2J2(

a,b
E E dtdt8Rab~t2t8!

3Pab~t,t8! f †b~t8! f a~t!

1t2(
a
E E dtdt8 f †a~t!fa~t!

3Ga~t2t8!f†a~t8! f a~t8! . ~A5b!
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In the limit M→`, Zsingle siteis controlled by a saddle poin
with respect toPba(t8,t), l(t) and f(t). We assume a
condensation of the boson: after the change of variable~A2!
f is taken to be a finite constant at the saddle-po
fsp(t)5Ad, andl is static,ilsp(t)5l0 . Moreover, in this
limit the correlation functions off are given by the averag
with the actionS00 taken for these values ofP,l,f. As S00
is quadratic inf ~and the boson is condensed!, the model is
completely solved in this limit as soon asGf has been cal-
culated. The saddle-point equations are given by the min
zation ofS1 with respect toPba(t8,t), l(t) andf(t), re-
spectively, which leads to

Pab~t,t8!52^ f b~t8! f †a~t!&S00
,

15d22^ f a~t! f †a~t!&S00
,

l0Ad522t2d3/2E
0

b

dtGaa~t!Gaa~2t!, ~A6!

and finally gives Eqs.~14a!,~14b!,~14c!, and ~14d! given in
the text.

APPENDIX B: LUTTINGER THEOREM

In order to find the volume of the Fermi surface in t
interacting system, we proceed along the lines of Ref. 46
we observe that the auxiliary fermion self-energy can be
tained as the functional derivative of the following fun
tional:

F5J2E dt„Gf
F~ t !Gf

F~2t !…2, S f
F~ t !5

dF

dGf
F~2t !

.

~B1!

The number of particles reads

12d

2
5E

2`

` dv

2ip
Gf

F~v!eiv01
~B2!

and we use the identity

Gf
F~v!5

]

]vE2`

`

deD~e!ln„v1m2l02S f
F~v!2de…

1
]S f

F~v!

]v
Gf

F~v!. ~B3!

Using the invariance of the Luttinger-Ward functional und
a shift of all frequencies@G(v)→G(v1V)#, the integral of
the last term vanishes:

E
2`

`

dv
]S f

F~v!

]v
Gf

F~v!50 ~B4!

and the integral of the first term can be explicitly calculat
by transforming to retarded Green’s functions~denoted by
Gf

R) in the following manner:
t,

i-

d
-

r

12d

2
5E

2`

`

deD~e!F2E
2`

` dv

2ip
]vln Gf

R~e,v!eiv01

1E
2`

0 dv

2ip
]vlnS Gf

R~e,v!

Gf
R~e,v!̄

D G . ~B5!

As Gf
R has no pole nor zeros in the upper half-plane, the fi

integral can be closed there and vanishes. Hence we ha

12d

2
5E

2`

`

deD~e!Q„m2l02S f~ i01!2de… . ~B6!

From Eq.~B6! and the definition ofm0 , we finally obtain

m~T50!2l0~T50!2S f~v50, T50!5dm0~d!,
~B7!

which is the desired relation and insures that the Luttin
theorem holds in the presence of both the constraint and
magnetic scattering. We also checked that this propert
verified in our numerical calculations atT50.

APPENDIX C: NUMERICAL METHOD

In this appendix, we explain the main steps that we f
lowed in solving numerically the saddle-point equatio
~14!.

1. Computation of the Green functionGf„v,T…

The calculation of the Green’s function is divided in
two steps. First a Matsubara frequency/imaginary time al
rithm is used in an iterative manner in order to find the va
of the chemical potentialm and Lagrange multiplierl for a
given dopingd, interaction strengthJ/t, and temperature
Convolutions are calculated using a fast-Fourier transfo
algorithm and a simple iteration is used: starting from
givenG, a self-energy is obtained that is then reinjected in
the expression forG until a converged set (G,S) is reached
~for given values ofm,l). A second routine uses the prev
ous one to adjustm andl0 in order for Eqs.~14c!,~14d! to be
satisfied.

Once the imaginary-time Green’s function and values
m,l have been found using this imaginary-time algorithm
different algorithm is used to obtainreal frequencyGreen’s
functions and spectral densities. This is done in the follow
manner. We consider afinite-temperaturegeneralization of
the Green’s function with the Feynman prescription:

G~v![„12nF~v!…GR~v!1nF~v!GR~v!, ~C1!

which reduces to the usual Green’s functionGF at T50. We
now define

S̃~ t ![J2G~ t !2G~2t !, ~C2!

wheret is the real time. Expressing bothS̃ andSR as inte-
grals of the spectral density with the spectral representa
of GR, we obtain, after some calculations (R is a superscript
denotingretardedquantities!:
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S̃~v!5SR~v!12ipJ2E E dv1dv2nF~v1!

3r~v1!nF~v2!r~v2!nF~v2v12v2!

3r~v2v12v2!, ~C3!

wherer52(1/p)Im GR andnF is the Fermi factor.
At T50, Eq. ~C3! shows thatS̃ simply coincides with

SF, the usual self-energy atT50, with the Feynman pre
scription and that Eq.~14! can be rewritten as, atT50,

„Gf
F~v!…215v1m2l02~ td!2Gf

F~v!2S f
F~v!,

S f
F~ t !5J2

„Gf
F~ t !…2Gf

F~2t !, ~C4!

together with the equation corresponding to Eqs.~14c!,~14d!.
Note the change of the sign in front ofJ2. This form was
used in Eq.~28!. From Eq.~C4! one can write an algorithm
for the computation ofGF in theT50 formalism, similar to
the computation in imaginary time. Of course, as our lar
M limit performs a resummation of the perturbation theo
one can also obtain these equations with the diagramm
rules, but these rules do not apply at finite temperature to
Green’s functionG in a systematic manner.

At finite temperature, we use the following iterative alg
rithm: Starting fromGR, we getG. We then obtainS̃ by
direct convolution in real time and the second term of
r.h.s. of Eq.~C3! by a double convolution ofnFr. Hence we
obtainSR and go back toGR with Eq. ~14!.

As a starting point of the iteration, in order to speed
convergence, we take an analytic continuation of the solu
in imaginary time, obtained by a standard Pade approxi
tion. Note that the parameterm and l0 are fixed in this
iteration on the real axis, since they have been calcula
before in the Matsubara formalism. As soon as the Gr
function has been obtained, some other quantities
straightforwardly calculated from the formula given in th
text. In particular,x loc9 is expressed as a convolution. How
ever the computation of the uniform susceptibilityx ~consid-
ered in Appendix E! is more involved: we solve Eq.~E3! for
g by another iterative loop analogous to the previous on
The scaling function describing the effect of the doping
T50, is computed from Eq.~28! by an iterative algorithm
similar to the previous ones.

2. Computation of the resistivity

We also give some useful details on the numerical ca
lation of the frequency-dependent resistivity. It is very co
venient to integrate analytically overe in Eq. ~60! using Eq.
~40! and the relation

E de
D~e!

A~n!2e
5Gf~n!. ~C5!

We thus obtain~the Green function is the retarded one!
-
,
tic
e

e

n
a-

d
n
re

s.
t

-
-

Res~v!5
d2

8p2
E dn ReFGf~n1v!2Gf~n!

A~v1n!2A~n!

2
Gf~n!2Gf~n1v!

A~n!2A~n1v!
GnF~n!2nF~n1v!

v
.

~C6!

For the dc conductivity, Eq.~C6! simplifies to

s~T!5
1

32p2T
E dvFReS 1

d2Gf
2~v!21

D
2

1

d2uGf~v!u221
G 1

cosh2
bv

2

. ~C7!

In both case the integrals are computed simply by transfo
ing them into a Riemann sum.

APPENDIX D: SCALING ANALYSIS

In this appendix, some details about the thermal sca
analysis of Sec. III C in the spin-fluid regime are provide
As explained in the text, in this regimeeF* disappears from
the thermal scaling functions and thus the calculation can
performed in the undoped modeld50. In this appendix,Gf
and S f will denote the thermal scaling function of thes
quantities. They satisfy the scaled saddle-point equa
Gf(v/T)2152S f(v/T). The calculation is very similar to
the low-temperature, low-frequency analysis made in R
30, so we here just give the main steps of the analysis.
first check that the scaling behavior~50! in imaginary time
solves the saddle-point equation~for d50) using the Fourier
formulas@which follows from Eq.~3.631! of Ref. 32#:

Gf~ ivn!52

ip1/4~JT!2~1/2!~21!nGS 1

2D
GS 3

4
2

vnb

2p DGS 3

4
1

vnb

2p D , ~D1a!

S f~ ivn!52

ip3/4AJT~21!nGS 2
1

2D
GS 1

4
2

vnb

2p DGS 1

4
1

vnb

2p D , ~D1b!

wherevn5(2n11)pT are the Matsubara frequencies. O
can then show that Eqs.~49! and ~51! are the scaling func-
tion on the real axis using the following method. First we u

Gf~t!52E
2`

1` e2t«

11e2b«
r f~«!d«, 0<t<b ~D2!

and
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E
2`

1`

dtS p

cosh~pt ! D
D

e2 i tu

5~2p!D21

GS D

2
1

iu

2p DGS D

2
2

iu

2p D
G~D! H 0,D,1

u real
~D3!

~see formula 3.313.2 of Ref. 33!. We then deduce the ful
Green function~and thusS f) by performing the Hilbert
transform ofr f using Eq.~D3! again and

E
0

1`

dx
eizx

S sinh
px

b D D

52D21
b

p

GS D

2
2

ibz

2p DG~12D!

GS 12
D

2
2 i

bz

2p D H 0,D,1

z real
~D4!

~see formula 3.112.1 of Ref. 33!.

APPENDIX E: UNIFORM SUSCEPTIBILITY

In this appendix, we briefly explain how to calculate t
uniform susceptibilityx and analyze its behavior at sma
temperature in the undoped modeld50.

1. Effect of a magnetic field

The magnetic field is introduced in theSU(M ) Hamil-
tonian ~2! in the following way:

dH52h~ f 1
†f 12 f 2

†f 2!. ~E1!

This formula clearly reduces to the usual one forM52.
Here, only colors 1 and 2 are coupled to this field but n
that this choice is not unique though convenient for our c
culation@more generally the magnetic field must be coup
to an element of a Cartan subalgebra of SU~M!#. The large-
d and large-M limit computation is similar to the zero field
one explained previously, although it is more involved.
simplification occurs in this double limit: due to the fact th
only two colors overM are coupled toh, the Green function
Gf

i for colors i .2 are solutions of the zero-field equatio
~14!. Moreover, we findGf

15Gh andGf
25G2h whereGh is

given by

@Gf
h~ ivn!#215 ivn1m2l01h2~ td!2Gf

h~ ivn!2S f
h~ ivn!,

~E2a!

S f
h~t![2J2Gf

h~t!Gf
h50~t!Gf

h50~2t! ~E2b!

@m, l0 , andGf
h50 are always determined by Eqs.~14!#. The

magnetization is given bym5Gf
1(02)2Gf

2(02). Let us de-
fine g by Gf

12Gf
25hg1O(h2). From Eqs.~E2a,E2b!, g sat-

isfies
e
l-
d

g~ ivn!5
K~ ivn!

~ td!22Gf
22~ ivn!

, ~E3!

K~t!52d~t!1J2g~t!Gf~t!Gf~2t!. ~E4!

With these notations, the uniform susceptibility is given
x5g(t502).

2. Low temperature behavior of x for the undoped model

In the undoped case, Eq.~E3! reduces to g(v)
52Gf

2(v)K(v) and the susceptibility atT50 is formally
given by

x~T50!5E
2`

0

g~v!dv. ~E5!

From the low-frequency behavior, Eq.~17!, we haveg(v)
}2 iK (v)/v. Thus we have to investigate the low
frequency behavior ofK. Generalizing the Luttinger theorem
@as expressed by Eq.~36!# for the colors 1 and 2, we obtain
~at T50)

m6h2l02S f
1/2~v50!5dm0

6h~d! . ~E6!

In this equation,m0
6h(d) is given by

E
2`

m0
h
~d!

deD~e!5n1
h , ~E7!

where n1
h is the number of particles of color 1. Hence w

obtain

FIG. 13. 1/x(T) ~solid line! and 1/x loc(T);1/lnT ~dashed line!
vs T as calculated numerically in the undoped model.
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22@S f
1~0!2S f

2~0!#5d
m0

h~d!2m0
2h~d!

h
. ~E8!

Taking first the limitd→0 and thenh→0 we obtain finally
~asm0 is bounded by definition!

K~v50!50 . ~E9!
d
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Thus the leading low-frequency singularity ing cancels so-
from Eq. ~E5! we see thatx is smaller than lnT at small
temperature. Strictly speaking we can not prove from
previous argument thatx reaches a finite value at zero tem
perature, but it is a very natural guess that is, moreover, v
well supported by our numerical calculation as displayed
Fig. 13.
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