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Non-Fermi-liquid regime of a doped Mott insulator

Olivier Parcollet and Antoine Georges
Laboratoire de Physique Theque de I'Ecole Normale Supeure, 24 rue Lhomond, 75231 Paris Cedex 05, France
(Received 10 June 1998

We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnitude
and sign of the magnetic exchange. Two quite different doping regidsed* and 5> &* are found, with
o*=J/t (J is the characteristic magnitude of the exchange,tahe hopping amplitude In the high-doping
regime, a(Brinkman-Rice Fermi-liquid description applies with a coherence scale of oilerdn the low-
doping regime, local magnetic correlations strongly affect the formation of quasiparticles, resulting in a very
low coherence scalet=J(8/5*)2. Fermi-liquid behavior does apply beloef , but a “quantum-critical
regime” ef <T<J holds, in whichmarginal Fermi-liquidbehavior of several physical properties is found:
NMR relaxation time I~ const, resistivitypyT) T, optical lifetime rgp}ocwlln(w/e’;) together withw/T
scaling of response functions, e.gEaX”(d,w)octanh@IZT). In contrast,single-electronproperties display
stronger deviations from Fermi-liquid theory in this regime with/a dependence of the inverse single-
particle lifetime and a 4/w decay of the photoemission intensity. On the basis of this model and of various
experimental results, it is argued that the proximity of a quantum-critical point separating a glassy Mott-
Anderson insulator from a metallic ground state is an important ingredient in the physics of the normal state of
cuprate superconductors. In this picture the corresponding quantum critical regime is a spin liquid with inco-
herent holes and a slow state of spins and holes with slow spin and charge dynamics responsible for the
anomalous properties of the normal state. This picture may be particularly relevant to Zn-doped materials.
[S0163-182698)09143-1

I. INTRODUCTION spin excitations, of a quite different nature than spin waves,
as evidenced by inelastic neutron scattering experinfefis.
How (and whether coherent quasiparticles form in a It is important to notice that the compounds with a glassy
lightly doped Mott insulator is a key question in the physicsground-state display, at sufficiently high temperat{aieove
of strongly correlated electron systems. A satisfactory theothe onset of localizationthe same distinctive transport prop-
retical understanding of this issue has been achieved in th&ties as in samples with higher doping, e.g., linear
limit where magnetic correlations do not play a prominentresistivity®° It is thus tempting to view these low-energy

role, starting with the work of Brinkman and Ri¢&’ I aycitations as the source of anomalous scattering in the nor-
cuprate superconductors, however, the undoped phase is iy state.

antiferromagnetic insulator with a rather large exchange cou-

; Anticipating some of the speculations made at the end of
pling Jae (on the scale of 100 meyso that we have to face (Ef

is paper, we shall argue that these low-energy excitations
re associated with a particular kind of spin state: the state
Furthermore, there is ample experimental evidence tha?lssomated W(;th the tc);llscr)]rollermg .Of an msulatlﬁcfg)ssmly
carrier localizationandmagnetic frustratioralso play a cru- glassy ground state by hole _motl(_)n, quantum ugtu_atlo_ns,
cial role in the low to intermediate doping regime. This is ‘e‘md therme}! effects_. In this picture, many distinctive
anomalous” properties of the normal state of the cuprate

particularly clear in the La ,Sr,CuQ, compound at con- . . o
centrations just above=0.02 (the threshold for the disap- superconductors are associated with the quantum critical re-
gime corresponding to thE=0 transition at which the insu-

pearance of the antiferromagnetic long-range Qgrdéor : | ) -
which true spin-glass ordering of the copper moments hating (glassy ground state melts into a metalligermi-
been demonstrated at very low temperatiwéth T,~7 K  liquid) ground state when doping is increased.

for x=0.04(Ref. 4]. Up to which doping concentration does [N this paper, we shall study a highly simplified model of
this glassy regime persist when superconductivity is supsuch a state of spins and holes. Our starting point is the work
pressed is not known at this point, but carrier localization isof Sachdev and Y& who showed that in the largie limit
indeed observed at low temperature up to optimal doping irof the fully connected random Heisenberg modeSai(M)

both theab andc directions when a strong magnetic field is spins, quantum fluctuations are strong enough to overcome
applied>® It was actually predicted early 6ithat hole dop- the tendency to spin-glass ordering. Instead, a gapless spin-
ing induces strong frustration in the system when the hole$iquid state is found down to zero temperature with a large
become localized, replacing locally an antiferromagneticdensity of low-energy spin excitations Remarkably, these
Cu-Cu bond with an effectivelferromagneticone, with a  excitations are characterized by a local dynamic spin suscep-
strength larger than the origindly-. We observe further- tibility that has precisely the form advocated by the “mar-
more that the disappearance of antiferromagnetic long-rangginal Fermi-liquid” phenomenological descriptithof the
order is accompanied by the appearance of new low-energpw-energy spin excitations in cuprates, namely,

the problem of the interplay between local coherence an
magnetic correlations.
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This model is one of the few cases in which a response g
function having the marginal Fermi-liquid form could be de- .
rived explicitly (see also Ref. 19 The generalization of Eg. Spin liquid
(1) to finite temperature will be given in Sec. Il [Eq. (57)] (Incoherent
. . . . metal) 2
and displaysw/T scaling. The physical mechanism for the NTRL g (i)
gaplessness and the high density of spin excitations in this Yy 5
model is discussed in more detail at the beginning of Sec. IIl. secl 1
It has to do with the large number of transverse components t
of the spins in the largé4 limit. In this respect, it might be FIG. 1. Crossover diagram as a function of temperature and
a reasonable picture for the disordering of the twO-ygping. The coherence scadf is indicated by a dashed line and is
dimensional quantum Heisenberg spin glass due to quantuiven by ex=J(8/5*)2 for 8<&*, ek=st for 6>6*, with &*
fluctuations and low dimensionality. =J/t. Below €f , Fermi-liquid behavior holds. Fof< &*, an in-
The main purpose of this paper is to determine whethefermediate quantum-critical regime is found in the range<T
this marginal Fermi-liquid spectrum survives the introduc-<J, in which charge transport is incoherent and spins have a mar-
tion of charge carriers and the associated insulator-to-metgjinal Fermi-liquid dynamics.
transition. The physics of this problem is dominated by the
interplay between two competing effects) The formation  (RKKY) interactions, while J stands for the typical strength
of coherent metallic quasiparticles, which can be viewed as af the RKKY interaction. For this reason, the results of the
binding of spin and charge degrees of freedom. In the simpresent paper may also have some relevance, with appropri-
plest description of a doped Mott insulator with=, co-  ate changes, to the physics of the disordered rare-earth com-
herent quasiparticles form below a scale of or@igg~ e, pounds near the quantum-critical transition into a spin-glass
~ 5t (where § is the doping and the hopping amplitude  ground staté?
This is a “naive” estimate of the effective Fermi-energy
scale, since it ignores any effect coming from the magnetic Il. MODEL
exchangdwhich will tend to suppress)it(ii) The binding of _
spin degrees of freedom on neighboring sites into singlet or A. Disordered SU(M) t-J model
triplet states, and the corresponding slow dynamics of the The effect of charge carriers on the Sachdev-Ye spin-
on-site local moment. This is the phenomenon leading to théquid phase will be investigated by generalizing the model
formation of the spin-liquid state in the undoped phasepf Ref. 16 to at-J model, with randomness on the exchange
which involves a scale of ordek(the characteristic strength couplingsJ;; between nearest-neighbor sites:
of the exchange
It is clear from comparing the scales above that whén _ + 2 2
larger than the naive coherence scelg, the magnetic ex- H= %“a tiPa “CJ“P+% iS5 @
change pr.e_vents the form*auon of coher(_ant quasiparticles '?rtw this expression, th8U(2) spin symmetry of the electrons
that scale: in other wordgg, cannot possibly be thactual >z _
quasiparticle coherence scatbove which free local mo- has been enlarged ®U(M). S; is the conduction electron
ments are recovered, since the exchange is still effective &Pin density on sitei and the spin indexa runs over
energy scales betweetf, andJ. It is thus expected that the ®=1. ... M. The projection operataP enforces the local
actual coherence scale of the systerf will be much constraint
smaller thanef,, and that a new metallic regime in which M
spin degrees of freedom form a spin-liquid-like state while 2 ci‘tacicﬁ > 3)
charge degrees of freedom are incoherent will be found in “
the intermediate energy and temperature raegew, T |n this manner theM =2 case exactly coincides with the
<J. From the above estimates, this will be the case at smalitandardt-J model with the constraint of no double occu-
doping: 6< 6* ~J/t, while a direct crossover from a coher- pancy.
ent metal to an incoherent high-temperature state is expected The exchange couplings are quenched random variables
for 6> 6*. These expectations are entirely borne out fromwith random sign and magnitude, distributed according to a
our solution of the doped Sachdev-Ye model, as evidenceGaussian distribution with
by Fig. 1, which summarizes the main crossovers found in
our analysis. J — —
It should be emphasized that this competition between ‘Jij:\/:ﬁij: €;=0, ¢;=1 4
. . : . zM
metallic coherence and magnetic exchange is also essential
to the physics of heavy fermion compourfddn this con-  (throughout this paper the bar will denote an average over
text, the “naive” coherence scalef, stands for the single- the disordex. In the following, we shall consider this model
impurity Kondo scaldor rather, any estimate of the lattice on a lattice of connectivity, with a nearest-neighbor hop-
Kondo scale that ignores Ruderman-Kittel-Kasuya-Yosidgping amplitude normalized as

Fermi liquid
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and we shall analyze the model in the following double limit: - _M > f drf{2(n)bY( )b A(7)f2,(7)
(i) z—<. In this limit of infinite connectivity, a dynamical VZMT
mean-field theory applies that reduces the model to the study
of a single-site self-consistent problénas detailed in Sec. Zsz f drdr’

Il B. However, this single-site model is still a complicated
interacting problem. For the sake of simplicity, the lattice

will be taken to be a Bethe lattid@o essential physics is lost X E > >

in this assumption (i) M—c, in which the single-site (i) 1=a.B,y,6<M 1<ab=n

problem b(_acqmgs _tractable. In .the ab.sence of a random ex- XS?Q'B( T)Sa A7) %(T )S 57(7,), )
change, this limit yields the familiar Brinkman-Rice descrip-

tion of a doped Mott insulatol? where the actior§, is defined by

The scaling ireandM in Egs.(4) and(5) are chosen such
that this double limit gives nontrivial results. Alternatively, B
one could considefas in Ref. 16 this model on a fully So[ftf,bT,bJ\]EJ' dT( bf(7)a.b(r)+ 2 ()
connected lattice oN sites, withrandom hopping ampli- 0 “
tudes:t;; = (2t/M JN) &; with &;=0, 5, =1. This leads to
precisely the same equations for smgle-particle Green’s X (0= w)Talm)
functions as the= Bethe lattice®

We shall use a decomposition of the physical electron
operator into a spin-carrying fermidrnand a slave bosob:
c;” =f;' b;. The local constraint3) becomes

+i jOBdTA(T)

x| 2 fL(r)fa<r>+b*<T)b<r>—%).

(10)
M Following the “cavity method” (reviewed in Ref. B a site
E f’r i +b b= (6) of the lattice is singled out, and a trace is performed over all

degrees of freedom at the other siténcentrating on
phases without translational symmetry breaking, so that all
With this decomposition the Hamiltonia2) can be rewrit- ~ Sités are equivalentin the z—o limit, this can be per-
ten as formed explicitly, and the problem reduces to a single-site
effective action that reads

=——2 (flabib] .+ H.c) Serr= 2 S, %,b™,b%\%]
Z(ij)e
J? B (B
oM drd7' S3 ()RS 5, (T— 7'
2 6”2 SiapSipa (7) 2Ma,b,a2,ﬁ,y,a fo fo A7 Sep(MRgasy (7= 7')
z(ij) aB

Shs(7')+

2t
M) J J drd7' f13(7)
and theM?—1 components of th&U(M) spin operators
S=(S)** read X b3(1)C22(7—7')bTa(7")f3( 7). (11)

This effective action is supplemented by a self-consistency
S ,=ftf,——6.,3 f*f, ) C(_)ndition that constrain€(7— 7') and_R(T— 7') to coincide_
lap " TialiB () TaBLd Tiatiar with the local electron Green’s function and spin-correlation
function, respectively:

B. Reduction to a single-site problem C2(7,7)=—(TC(1)C3(7"))s

In this section, we explain how the large connectivity =—(T(f3 ™) () (%) (7"))s_,
limit z—o0 reduces the problem to the study of a single-site e
model supplemented by a self-consistency condition. First

’ _ /ca b ’
we use a path integral representation of the partition function arol 77 ) =(Sap(NSo(7))s=(Sop( NS 7)) sy

Z and introduce a Lagrange multiplier fiel(7) on each (12
site in order to handle thg coanstra(ﬁb. We then introduce@ | each of these equations, the last equality expresses the fact
replicas of the fieldsf(*,b? A?,a=1,... n) inorder to ex-  that local correlation functions can be calculated using the

pressZ" and average over the disorder. The action associategingle-site actiorS itself. The limitn—0 must eventually
with Z" reads be taken in these equations.
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C. Saddle-point equations in the largeM limit 1.0
and slave-boson condensation

We shall study the above self-consistent single-site prob-
lem in the largeM limit, focusing on the paramagnetic phase
of the model. In this case, all the above correlators become
replica diagonal C33=C, D3’=Ds,,). 0.

Furthermore, we shall look for solutions in which the ”
slave boson undergoes a Bose condensatfwiutions with Jxloc
an uncondensed boson when the bosons carry an addition
channel index have been investigated by Horbach anc
Ruckensteiff). The solutions considered here can be found 0.2
as a saddle point 08, by setting:b(7)=M/2¢(7) and
looking for solutions in which both(7) and the Lagrange
multiplier N (7) become static at the saddle point: 0.0

6

0.4 -

/N

M
b 7) = \g\/g iNgg T)=No. (13 FIG. 2. Local dynamical susceptibility,.(w,T=0) of the un-
doped spin liquid. Inset: spectral function.

From the constraint of EC(B), the total number of electrons IIl. PHYSICAL PROPERTIES OF THE METALLIC STATE
will be related tos throughZ (f1f )= (M/2)(1- 8) so that

The saddle-point equations then reduce to a nonlinear ird function of the doping leveb. Let us first recall some of
tegral equation for the fermion Green's function the properties of the spin-liquid insulating state found dor
—(Tt (D7) = 8apGt(7—7'), which reads[with w, =0, as obtained by Sachdev and ¥dn this case, our Egs.
—(2n+ 1)75//3 the Matsubara frequencies (149—(14¢0 coincide with those of Ref. 16. Note that Eq.

(14d) decouples, being automatically satisfiedéat0, and
: H reint
G L —iwt w—An— (18)2G:(i S (i , that particle-hole symmetry imposgs—\y=2:(i0")=0.
i (fon)=lontu=Ro=(10)°Gyliw) Ef(lw”)(ma A low-frequency analysis of the integral equation reveals
that theT=0 Green’s function and spectral density have a
1/\Jw singularity for|w|—0. More precisely?* in the com-

=_ 7232 —
2(1)=—-JGH(n)G(~ 7), (14D plex frequency plane as—0,
and to the following relations, which determine the Lagrange m \Y4(1—-i)
multiplier g and the chemical potential for given values Gi(z)= (W) —+---, Imz>0. 17
of the dopings and the temperatur@iven the couplings) Vz
andt): This yields the following behavior of the local dynamical
susceptibility foro—0:
1-6
Gi(m=07)= - (149 , 32
Xioo( @)= Z5-Sgr(@) + - - . (18

Figure 2 displays a numerical calculation pf(w) and
Xioc{®@) at zero doping(in agreement with the one in Ref.
16). These results display the above low-frequency behavior

The derivation of these saddle-point equations friégpis  [but we note that significant corrections to E@8) are al-

Ao/o=— 2t253’2fﬁdref( IG(—7). (140
0

detailed in Appendix A. ready sizeable at rather low values®fJ.]
Thelocal spin-spin-correlation function is directly related ~ Hence the insulator a§=0 is a gapless quantum para-
to G; in the M — limit, as magnet(spin liquid, with a rather large density of low-

energy spin excitations. Remarkably, Ef8) is of the same
1 form as the “marginal Fermi-liquid” susceptibility proposed
R(7)=—5>, (Siap(7)Siga(0))=—G(7)G(—7) on phenomenological grounds by Varmal '8 for the nor-
M=z mal state of the cuprate superconductors. In the present con-
(15 text, the physical nature of these low-energy excitations is

. . intimatel nn he f hat the exchan lin
In the following, we shall often consider the spectral func-(#ﬂt ately connected to the fact that the exchange couplings
I

tion iated with the sinal rticle Green's function andi are random in sign. In constructing the ground state of the
ons associated e sl gg-pa cle Loreen's function a sulator, let us imagine that we first try to satisfy the bonds
the local spin-spin correlation:

with the larger exchange constants. When such a bond is
1 antiferromagnetic, the two spins connected by it will form a
— S " _ Co nondegenerate singlet. For a ferromagnetic bond, however,
pilw) wlme(wHo ) Xiod @) =IMR(0+i107) the two spins will pair into a state of maximal possible spin
(16) [the generalization t&U(M) of a triplet stat¢ This state
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has a degeneracy, which actually becomes very léegpo- In the high-doping regime, on the other hafwd whent
nential inM) asM becomes large. Continuing the process in>J), one should consider first the limit of a vanishing mag-
order to accommodate bonds with smaller strengths will tendhetic exchangel=0. In this limit, the usual slave-boson
to remove part of this degenera€yput leaves behind a very (largeM) description of a doped Mott insulator is
large density of low-energy spin excitations. These effectsecovered. Setting=3.;=0 in the equations above yields a
are clearly favored by th&ermionic) largeM limit consid-  semicircular spectral density:

ered here, because of the high degeneracies of the “triplet”

state and because the strength of quantum fluctuations in this g=o_ L1 [@+p—Ao
limit precludes the appearance of long-range ofdeg., spin Pt =% 1) '
glass, which would remove degeneracies in a different man- .
ner. We believe, however, that this physics is notaatifact whereD is given by

of the largeM limit. Indeed, preliminary theoretical studfés 1 c

suggest that the local spin correlations near the quantum- D(€e)= —\ /1_(_> ] (21)
critical point associated with th€=0 transition into a me- mt 2t

tallic spin-glass phase could be similar to E#8), with re-  The original bandwidth # of the noninteracting case has

lated physics. _ _ _ _ been reduced by a facte?, and the usual Brinkman-Rice
Finally, we note that the single-site action to which theaguit for the coherence scale is recovered:

model reduces at zero dopifige., Eq.(11) with t=0] has
some similarities with the multichannel Kondo effect in the eE=t8, (6>6%). (22

overscreenedcase. In the present context, however, the ] ) ] ] )
“path” seen by the spin is not due to an electronic conduc-Turning onJ as a perturbation from this starting point does

tion band, but generated by all the other spins in the latticeOt affect the leading low-frequency beha_VIor of the self-
The spin correlations of both the bath and the spin adjust t§"€/dy, but does lead to a scattering rate Jm
the self-consistent long-time behaviofS(0)S(7))~R(7) ~ *@"I7/(8t)°+--- characteristic of a Fermi liquidn con-
~1/7 similar to that of theSU(M) Kondo model withk  frast, theJ=0 model has infinite quasiparticle lifetime in the
—M channel¥ [two-channel model in th&U(2) casé. largeM -I|m|t). Fr.om_Eqs.(22,19, it is plear that when the
magnetic scattering is strong%t), regime(19) always ap-
plies, while for weaker scattering€t) a crossover between
the two regimes is found at a characteristic doping:

(20)

A. Low-frequency analysis and the
Fermi-liquid coherence scale

The first question we would like to address is whether the
marginal Fermi-liquid spin dynamics survives the introduc-

tion of charge carriers. As we shall demonstrate, this depends . .
on the temperature range considef&d. 1). At low tem- We thus observe that below some characteristic doping the

perature, below some—possibly very low—coherence scall?W-energy coherence scale is strongly affected by the mag-
€, it turns out that a Fermi liquid is recovered. netic scattering. When the exchange is large or for doping
This is easily seen from a low-frequency analysis of theSMaller thats*=J/t, the actual coherence scaig is much
integral equation fofs; at zero temperature. At zero doping, Smaller than the naive coherence sceflg (which holds in
the Green’s function and self-energy behave at low frethe absence of magnetic correlatipnsiere we find ez,
quency asG(w)~1\Jw, 3(w)~\Jw. When inserted in =8t and €f/ef,=4/5*. This is one of the crucial physical
Eq. (14a, this controls the leading low-frequency behavior conclusions of this paper.
of both the right- and left-hand side of the equation taken at A numerical solution of the saddle-point equations pro-
5=0, which match each other. However, 60, the term  vides clear evidence for these two regimes. The numerical
(t8)2G(w) would introduce a N singularity and prevent Procedure that we have used is explained in Appendix C.
this matching from taking place: this indicates that the low-Figure 3 displays th&=0 spectral functionp¢(w) for three
frequency behavior of the zero-temperature Green's functiojalues ofJ. WhenJ is very small, the spectral function is
for arbitrary small doping is no longer . In this respect, Very close to the semicircular sha®p), while for a larger
an infinitesimal doping is asingular perturbationof the the 1k divergence is observed over a large-frequency
above equations. This observation directly yields an estimaténge e <o <J but is cutoff for o<ef so thatp;(0) is
of the coherence sca@ such thath(w)~1/\/5 iS recov- finite. Anticipating the results of Sec. Il B, we observe that
ered for et <w<J. Indeed, the termt@)2G(w) becomes the value ofp;(w=0, T=O)_ is actually independent dfas
comparable t& () in this regime(thus providing a cutoff & consequence of the Lut.tmger theorem. Indeed, the follow-
to the singular behaviprwhen w=(4t)2/J. Hence, in the "9 relation can be established at zero temperature:

low-doping regime, f—No—3:(107)—Sug(8) as T—0, (24)

()2
2

J
5* ~min ?,1 . (23

where uq(0) is the noninteracting value of the chemical po-
tential for the tight-binding model on the=«~ Bethe lattice.
This impliesp¢(0,T=0)=1/(=t5) for all values ofJ.

with 6* defined below[In the following we shall take Eq. At very small doping, a scaling analysis of the saddle-
(19) as definingef in the low-doping regime, with no addi- point equations can be performed in order to characterize
tional prefactorg. more precisely the crossover between the low-frequency and

€

(8<5*), (19
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.0 05 0.0 0.5 10 X
(:)/t FIG. 4. T=0 scaling function associated with the spectral den-

sity pi(w)=(1/6) ¢¢(w/€f) in the low-doping regime.
FIG. 3. The spectral function of the auxiliary fermion as a func-

tion of frequency for a doping=0.1 and three values of _ 1 . .

=0.01,0.3,1. di(w)= ;—Clwz—k .-+ forw—0,
high-frequency regimes d=0. As we now show, the spec-

tral function(and the Green'’s function itsglbbeys a scaling — G —

form pi(w)=—=+--- for w—+o, (29)

pi(w)= id’f 2 for w<lt, 6<6* :ﬂ_ (25)  Wherec; andc, are two constants. The low-frequency be-
67\ e t havior reflects the Fermi-liquid nature of the low-energy ex-
citation spectrum, while the {» behavior characteristic of

In order to derive the integral equation satisfied by the scalfhe undoped spin liquid is recovered for> et .

ing function ¢;, we rewrite Eq.(149 at T=0 [using Eq.

(24)] as _ : - :
B. Single-electron properties atT=0: quasiparticle residue,

G;l(w)zw_,_ Sl 8) — (18)%Gi(w)—[S¢(w)—24(0)]. effective mass, Luttinger theorem, and photoemission
(26) In this section, we focus on the one-particle Green’s func-
is of orderd. Hence, rescaling frequencies by the coherenc@uxiliary fermion by
scale ef =(8t)%/J, we see that the first two terms in the Co oy te et
right-hand sider.h.s) of Eqg. (26) can be neglected. Analyti- Ge(kiiwn) = =(TCkaCia) = ~{Thifkaf b

cally continuing toreal time t and frequency, and denoting M
by G the real-frequencyi=0 Green’s function(with the =5 Gilkiwp), (30
usual Feynman prescriptiprwe define a scaling functiogf
associated wittGF by the Hilbert transform: hence
* b1(e€) Mé g .
g'fz(w)=f_wd6 o—e+isgne’ (27) = Ge(Kiwn) ' =iwntpu—No=2¢(iwp) — Jey.
(31

We finally obtain from Eq(26) an integral equation satisfied . . . _ _
by g; (and thus byg;) that no longer contains dimensional In this expressiong, stands for the single-particle energies

parameters: of a noninteracting tight-binding model on the Bethe lattice
with hoppingt//z between nearest-neighbor sitéghe dis-
[gf(m)]fl: —g'f:(w)—[a'F(w)—a'F(O)], tribution of these single-particle energies is the semicircular
(28) density of state®(€) defined in Eq(21).
aF(t)=[gF()1%gF(—1) From the large-frequency behavior of E@®1), we see

) . ) . ) that the physical electron spectral density in lhe-oo limit
(as explained in Appendix. C, a sign change occurs in thgs normalized ag **p.=M /2 (in contrast tof *Zp;=1).
expression of the self-energy &t=0) _ This is expected from the fact that the constraB)ton the
The universal scaling functiors; can be obtained by ijpert space yields a normalizatiofior arbitrary M) of
solving numerically Eq(28), and the res_ult is displayed in [ 2pe=({c,cTH=M 812+ (1— 8)/2 [note that this yields
Fig. 4. The asymptotic behaviors @f¢(w) for large and  (1+5)/2 for M=2, as expected for th&J=o Hubbard
small = w/€f can be obtained analytically and read model.
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Since our normalization of the hopping ig; 1.0 x T . ;
=2t/(M/z), the noninteracting conduction electron Green’s
function reads
08 | i
. 2
Gc(kllwn)freezlwn—'—/u’_ Mfk- (32
0.6 .
Thus, the physical electron self-energy reads Z
c
. . 2 . ) 04 :
2c("l’n):”"’n"'l"*_M_a[lwn"':“_)\o_zfown)]-
(33 J=3
0.2 J=1 b
We observe that it depends solely on frequency, as is gener =25
ally the case in the limit of large dimensionality.
We first consider the location of the Fermi surface for 0.0 s . . s

both the noninteracting and interacting problems, i.e., look 0.0 0.2 0.4 s 0.6 0.8 1.0

for the poles of the electron Green'’s function. In the nonin-

teracting case, we relate the chemical potentidl-a0 to the FIG. 5. Physical electron quasiparticle residjevs doping for

number of particlegn,)=(1- 6)/2 and find J=0.3,1,2.5(the proportionality factor M has been set equal to
1).

2
HMiree™ 1 Mo( D), (34) . . .
free MmO From the low-frequency analysis of the preceding section

and the corresponding estimates of the coherence scale, we

where the functionuy(5) is defined by the relation
expectZ, to be of ordereg/t and thus

wo(6) 1-6
f deD(e)=—5—. (35
t 2
Hence the noninteracting Fermi surface corresponding to a Zc~352N§(5<5*)1 Z;~5(6>5%). (39)

doping S is defined bye, = uo(5). In the interacting case,
we see from Eq(31) that the Fermi surface is located gt
=[w(T=0)—No(T=0)—2(w=0, T=0)]/5. In the ab- _ _ _ .
sence of magnetic scattering<0), it can be shown by an In Fig. 5, we _dlsplay thg result of a numerical calculation
explicit calculatiod from the saddle-point equations that the Of Zc @s a function of doping, for three valuesbt. These
r.h.s of this equation is jusio(d) and thus that the Fermi results entirely confirm the above expectatlons. We have
surface is unchanged in the presence of the constraint. Whéiiecked that at small dopirig,/ 5™ scales proportionally to
J#0, such an explicit calculation is not possible, since the(8/ ") with a universal prefactor. _
saddle-point equations are coupled nonlinear integral equa- From Eq.(31), we see that the quasu_)artlcles hgve a dis-
tions. However, a proof of Luttinger theorem can still be Persion characterized by an effective hoppirtgs/t
given using the fact that a Luttinger-Ward functional exists= 6Z¢ [m*/m=1/Z.>1/(6Z;)]. Hence the effective mass
for this problem and is known in explicit form in the largé-  diverges as the Mott insulator is reachfes 16%). The rea-
limit, as detailed in Appendix B. The conclusion of this Son for this divergence is the largextensivé®) entropy of

analysis is that the volume of the Fermi surface correspondé'€ insulating spin-liquid ground state. This entropy must be
to (1-48)/2 particles per spin flavor and that the zero-e€leased at a temperature of the order of the coherence scale

temperature, Zero_frequency Se|f-energy must obey 6; in the doped system. Hence, integrating the specific heat
ratio C/T=y betweenT=0 and T=¢f leads toyef ~1,
w(T=0)—No(T=0)—2(w=0, T=0)=Sue(5) which is the result found above. This divergenceyoés §

(36) 0 is clearly an artifact of the large+ and larged limits.
) . ] ) The residual ground-state entropy of the spin-liquid phase
We now consider the weight and dispersion of the quasishould not survive a more realistic treatment of this phase
particles, which can be read off from Eq®1,33 by ex-  [whether this happens while preservipl(w)~ const in this
pandlng around the Fg_rml surfape. We define a renormallzaﬁhase is an open problem at this monjeRurthermore, our
tion factor for the auxiliary fermions as model does not include a uniform antiferromagnetic ex-
change constant superimposed on the random part. Including

-1
7= ( 1— %) (37) this coupling will help in locking the spins into singlets and
f Jw =0 cut off the divergence of the effective maler a largeM
) o ) treatment of this point, see, e.g., Ref. 2
so that the physical electron quasiparticle residue reads Finally, we discuss the shape of the conduction electron
spectral density(e, ,w) for afixedvalue of the energy, as
_M a function of frequency, as relevant for photoemission ex-
Z.=—=6Z;. (39 . i
2 periments:
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4 . . , (i) At low doping §<6*, an intermediate temperature
regime exists, defined bsf <T<J. In this regime, coherent
quasiparticles no longer existas shown below, I
«+\/w), but the spin degrees of freedom are not free local
moments since the temperature is smaller than the magnetic
exchange. Hence, the spins behave in this regime as in a spin
liquid, with a marginal Fermi-liquid form for the local spin
response functiams shown below, this regime corresponds
to the so-called quantum-critical regime associated with the
quantum-critical point a = 6=0. In this regime, the low-
energy scalesg drops out from response functions, which
obey universal scaling properties as a function of the ratio
olT.
02 (iii) Finally, a high-temperature regime applies, defined
by T>J (for §<5*) or T>édt=€f (for 5>6*) in which
both spin and charge are incoherent and essentially free. We
FIG. 6. Conduction electron spectral densjife, ,») for §  note that ifJ<<t and the doping is larger thaf* =J/t, the
=0.04,T/t=1/300, and)/t=0.3 and for two values of the energy system goes directly from a Fermi liquid to this high-
€. The arrow indicates the crossover between the Fermi-liquidemperature regime as temperature is increased, without an
regime and the spin-liquid regime, as explained in the text. intermediate marginal Fermi-liquid regime.
This qualitative analysis can be established on firmer
1 grounds by generalizing the low-doping scaling analysis of
pel€c,0)=——Gl(€&,0) Sec. lll A to finite temperature. Assuming that the coherence
77 scale is small as compared to batland the hopping (i.e.,
that 6<6*), and thatw, T<J,t, the spectral function takes

=_ M_5 i(0) ] the following scaling form, generalizing EQ5):
27 (04 pu—No—2{(0)— 5)°+ 3] (w)?
(40 e e T
pf(w-T)_ té(bf E; 1&_; . (41)

Numerical results for this quantity are displayed in Fig. 6. L
This function is peaked at a frequen@yea=Zc(ex—€x.)  In the following, w andT stand forw/ef andT/eg , respec-
with a height of order 5., (at T=0). Moving away from  tively. Equation(41) yields for the Green’s functio®(w)
this quasiparticle peala.(e,,w) has the characteristic @f =1/t5)gs(w,T) (with ®¢=—gf/7). We assume that the
decay of a Fermi liquid only in the limited frequency range self-energy also scales &5 (w)=(t8)c}(w,T). From the
|wpeal <|w|<ef , followed (for §<*) by a much slower saddle-point equationil4) we deduce the following equa-
1/Jw tail corresponding to the spin-liquid regime in the fre- tions:
quency rangesr <|w|<J. (We note that this non-Fermi-

liquid tail is absent in the high-doping regimerhese two

1,71 TR TORE =
regimes are clearly apparent in Fig. 6. If the resolution of a Imgi (0, T)==gi(o,T)~0f(a.T), (42)
photoemission experiment is not significantly smaller than
€r , the peak will be smeared into a broad feature, and the p— w o — —
measured signal will be dominated by the slowly decaying U'f(w’T):Tlem wdxlde(I)f(xl,T)(I)f(xz,T)
tail. Furthermore, as shown in the next section, temperature
has a large effect on the peak, the height of which decreases XD (X1 +Xo— @, T)

as 1AT in the temperature rangg <T<J.

C. Finite-temperature crossovers

Xz X1+ X2_ w

n jumm— - n - =

F T F T
The metal-insulator transition a&=0 asé—0 is a quan- X1 X1~

tum critical point. The associated crossover regimes at finite X|Ng| = | +Nng| —= .

temperature can be easily deduced by comparing the coher- T T

ence scalesf to the magnetic exchangkand to the tem- i ) )

perature. This analysis yields three regimes, as depicted i this expressionng andng are the Fermi and Bose fac-

Fig. 1: tor: ng g(y)=1/(e¥+1). With a Kramers-Kronig transfor-
(i) For T<e! , the doped holes form a Fermi liquid. The mation one can dedug® andof(w,T)—o¢(0,T) from dy

low-energy degrees of freedom are the fermionic quasipartiand ot . From the equation for R;f_l, we have thatu

cles described by the auxiliary fermiohs, which behave in  —\o—3{(0=0,T)~f(T/ef), wheref is some scaling func-

a coherent manner since their inverse lifetime vanishes dton that can, in principle, be calculated from E¢2). The

low-frequency as In ;= w? in this regime. functionf vanishes at small argumenit(0)=0] due to Lut-

(43
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tinger's theorem, and at large argumeff++)=0] due to  performed while keeping fixed in Eq.(42), the same result
the auxiliary fermion particle-hole symmetry of the undopedig oained as when the limit is taken with=0. Hence there

mo\;jvel. di th luti  thi led int | is no additional crossover in the frequency dependence of the
€ now discuss the solution ol this scaled integra equaFesponse functions below= e} in this regimd. Equation

tion, and the form taken by in the various regimes de- (49) corresponds to the following scaling form for the

scribed above. imaginary-time Green’s function:
(i) Fermi-liquid regime. K €f . At zero temperature, the '

scaling function®; reduces to that in Eq25):
_ _ 1 / wl B \?
D (0, T=0)= (). (44) Gf(r)~—@wl,4\sinm/ﬂ
We can also consider the limit of low-frequency and tem-

peraturew, T<eg but with an arbitrary ratiow/T. In this  Remarkably, Eq.(50) has the form that would hold in a
limit, the self-energy term is negligible altogether in EQ. model havingconformal invariancefor example, a quantum

(50)

(42), and one gets simplg;=—1, i.e., impurity model of a spin interacting with a structureless bath
of conduction electrons. In that case, a conformal mapping

@f(;< 1, ?<1)Hi_ (45) from the T=0 half-planer>0 to the finite-temperature strip

™ 0<r=<p can be used to shdWthat if the Green’s function

Note that the r.h.s. could priori be a function of the ratio decays as lﬁ atT=0, then it takes a scaling form given by
lT, but is actually a constaras is generically the case in EQ: (50) at finite temperaturéower than a high-energy cut-
a Fermi liquid. From this, we can deduce a scaling form of ©ff)- In the present case, the original model is an infinite
the scattering rate in the same regime. Indeed,(&%). cor- connectivitylattice modelthat does no& priori satisfy con-

responds to the imaginary-time Green’s function: forma_l invariance. It FJoes map onto a single-site quantum
impurity model, but with an additional self-consistency con-

!B . dition. This means that the effective bath for the local spin is
Ge(1)—— o sinmrlB’ lleg<7,B—7. (40  given by the local spin-spin correlator itself, and thus does
have nontrivial structure at low energy. However, this struc-

Hence, in this limit, the self-energy takes the form ture appears only as a subdominant correction to the leading
32 mlg \° Iow-frgque_ncy be_havio;({gc(w)~const. For this reason, our
Si(7r)~— _3( —> , (47)  effective single-site model does obey conformal invariance
(wtd)*\ sinm/ B properties in the low-energy limit, which explains the result

above. This remark actually applies in a broader context than
the specific model considered here, as will be discussed in
J? more detail elsewhere.
Im3(w<e, T<€§):_W(w2+721—2)- Let us also consider the scattering rate in this regime,
(48) which is obtained by Fourier transforming the imaginary-
time self-energy,

which can be Fourier transformed to yield

(i) Spin-liquid regime ®e€f . In this quantum-critical

regime the energy scak§® drops out from the problem and o ; 312 3/4
the spectral density and response functions become functions (1) ﬁ[(w/ﬁ)/(gmwr/ﬁ)] Ham™,

of the ratiow/T only. Indeed, the scaling functioh(w,T)
takes the forme(w/T)/\/T in the limit T>1. In order to
find ¢; in explicit form, we divide both side of42) by \T s

and take the limif—w, o/T fixed. Then the first term of S (w)~—m (3 JJ_'rcosk(ﬂ)F(—Jri —)
the r.h.s vanishes and we are left with a scaled equation for 2T 4 271

which yields

2

¢+ in which all dependence ogf has disappeared. Remark- (5D
ably, this integral equation can be solved in closed form and

yields We have calculated numerically the real-frequency, finite-
temperature Green's function by following the method de-
(o.T) 1 (w) 1 scribed in Appendix C. In Fig. 7, we display results for the

Pilw, V) === @t = | = g = spectral density for various temperatures #t=0.3 at a
WTHAT] 27907 doping of §=0.04<6*. These values correspond to a low-

2 energy coherence scalef/J=(5/5%)?=1.8x10"2. The

1 a))

4 o0 (49 crossover from the Fermi-liquid regime at low temperature

w
xcos?(ﬁ) ‘F
into the quantum-critical regime at intermediate temperatures

Some details are provided in Appendix D. This scaling func-s clearly visible (in particular, the peak height can be
tion describes how the {kb singularity associated with the checked to decrease as/T). Note also thap;(w) remains
low-energy excitations of the spin liquid is cut dffy the  approximately centered at~0 until T=J and shifts rapidly
temperaturat frequencies»<T so that the spectral density away fromw=0 for T>J. In the inset, we also display the

is of order 14/JT at w=0. [Note that if the limitT—o is  thermal scaling function associated wjih, Eq. (49).
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* " 1 o T
Xio @, T)= 5P, s (53
FEF

20.0
Let us discuss the limiting forms of this expression Tas
—0 orT>e€f .

(i) At zero temperaturey

trp

"
[

o(w) has a shape that re-

f sembles the undoped spin-liquid cdB&y. 2) for frequencies
10.0 o>¢€f . At lower frequency, the Fermi-liquid behavior
Xioc(@) < w is recovered. This results in a peak with a height
of order 10 at T=0. This crossover can be described by a
scaling function,
0.0 : ; 2 1 ®
F

_ where ¢, (x) =®,(x,y=0) can be obtained by convoluting
FIG. 7. Spectral functionsrp(w) for 6=0.04 andJ/t=0.3 ¢ with itself, resulting in the asymptotic behaviors

(corresponding taef/J=1.8x10"2). The different curves corre- a2

spond from top to bottom td/t=1/200,1/50,1/25,1/10,1. Inset: " w .
thermal scaling function Eq49). Xio{ @, T=0)= 7(51)2 W<€f Xjo 0, T=0)= 23
D. Local spin dynamics et <w<J. (55)

In this section, we describe the behavior of the local spifrpis can pe used to estimate the behavior of the static local
dynamics in the various temperature regimes. In the lafge- susceptibility at low doping,,(w=0)=Jdwx!
oC

limit, the local spi lation function is given b oe( @)/ . In

IMit, the local spin correlation function is given by this integral, the regioref <w<J (corresponding to spin-

Yiod )= — G(7)G(—7), liquid excﬁatlon_é. gives t_he domlna.nt contribution, leading
to the logarithmic behavior fo6< 6*:

octw) = [ dvp (v @) ne(v—0) =],

, 1 6
Xloc(w: 0): 3In§ (56)
(52)
. . " . In contrast, as detailed in Appendix E, thmiform static
In Fig. 8, we displayy,[(w) for various temperatures and susceptibilityy = x' (q=0, =0) is a constant of order 1/

the same choice of parameters as in Fig. 7. In the low-dopingith no divergence at small doping.

regime,eg <J,t, 9<&*, Xxioc Obeys a scaling form that fol- iy in the spin-liquid regime ¥ €f , x[,. becomes a func-
lows from the convolution of Eqi41): tion of w/T. The corresponding scaling function is remark-
ably simple: from Eg. (500 we have xo7)
3.00 . : . . o« 7r/[ Bsin(w7 B)] which yields
Vr
Xioc @, T) = > stanh—. (57)

This behaves exactly as the spin response function postulated
in the marginal Fermi-liquid phenomenold§y( /T for
<T, const foro>T).

We finally use these results to compute the temperature
dependence of the NMR relaxation rate:

1 i_xiéc(w,T)
T o

(58)

w=0
Expanding the scaling forn63) to linear order inw [and

noting that®,(0y)=0 becausex” is odd|, we get forT
<J

1.0

(59

FIG. 8. Local dynamical susceptibilityy,(w) for §=0.04 and
J/t=0.3. The different curves correspond from top to bottom to[with ¢(y)=yd,®,(x=0y)]. In Fig. 9, we plot this univer-
T/t=1/200,1/50,1/25,1/10,1/5,1. In the temperature raefecT  sal scaling function. We have also checked the data collapse
<J and for frequenciew<J, these curves scale on the universal of our numerical results on this function. Limiting forms are
form xj(w,T) = (\V7/2J)tanh@/2T). easily obtained from Eq$55) and (57):
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FIG. 9. Scaling functiony associated with the NMR relaxation
rate:J/T,= (Tl ef).

30

(i) T<ef: y(y<l)~ylm, hence IT,=T/[m(dt)2].
We find a Korringa lawm(as expected from a Fermi liquid
but with avery strong doping dependend&’e also note that
in contrast to a noninteracting Fermi gas, TY/T) « 1/(t8)2,
Xioc™ 1A3In(8*/18) and y=< 1/J obey quite different behavior as
a function of doping. In particular, the so-called “Korringa
ratio” 1/(T,Tx?) =(5*/6)? is very large at low doping.

(i) I>T>e: y(y>1)— w4, hence I~ 7/4]
=const as expected inmarginal Fermi liquid We note that
1/T, is doping independent in this quantum-critical regime.
This is because the scaé no longer appears explicitly.

E. Transport and frequency-dependent conductivity

In the limit of large connectivity, the current-current cor-
relation function has no vertex corrections, due to the od
parity of the currentsee, e.g., Ref.)3Hence the frequency-
dependent conductivity is given by

Re(J'(cu)='[2joc de D(os)J'oO dv pc(€,v)pcl€,v+ w)

% Ne(v) —Ne(v+ o)

w

: (60)

wherep (€, ) is the single-electron spectral density defined

in Eq. (40). This expression yields the conductivity in units
of e?/(ha?"9) wherea is the lattice spacing and some nu-
merical prefactors have been droppeee shall also ignore
the prefactoM in p.).

1. Resistivity
We first discuss the behavior of the dc conductivity:

o4(T)=Rec(w=0,T)

o

=F deD(e) pi(€,TX).

—=4 cosK(x/2)
(62)

A DOPED MOTT INSULATOR 5351

(i) In the Fermi-liquid regime & ef , we have from the
behavior (48) of the scattering rate=Im3(w,T)xJ?(w?
+w2T?)/(6t)® and w+u—ReS(w,T)=w/Z;+constT.
Making the change of variables=Tu, we see that the inte-
gral overu in o4./T diverges as T7°. Hence, we find in this
regime the expected Fermi-liquid behavior of the resistivity
pdc=ogc:

2

pad T)= = T<ef. (62
F

(ii) In the spin liquid regimeef <T<J at low doping,
—3/(w) is of orderJT (times a scaling function ab/T).
This must be compared tée= 4t in the denominator of
pc(€,w). SinceT>ef , we see that RE; always dominates
over Se, which can thus be neglected. Hence one can replace
pc(€,w) by the local spectral functiondp;(w). In other
words, the limit —~0 must be taken before the low-
temperature limit in this quantum-critical regime. Using the
thermal scaling function, Eq49), we obtain

o

82 dx

J’oocosﬁ’-(x/Z)

ol T)= Te57 b2 (63

The integral can calculated explicitly usingydx|T' (5
+ix)|*= 72 [Ref. 30, Eq.(6.412], we finally find

T
pad T)=16Jm—, ef<T<J. (64)
€F

Hence the resistivity turns out to have a linear behavior as a
function of temperature in the spin-liquid regime, again as in
the marginal Fermi-liquid phenomenology. This is rather re-
markable in view of the fact that th&ingle-particlescatter-
ing rate behaves agT in this regime. As further discussed in
he conclusion, this is characteristic of a regime of incoherent
ransport in which the transport scattering rate cannot be na-
ively related to the single-particle lifetime. Furthermore, we
note that theyw behavior of the self-energy is a crucial
ingredient in producing @-linear resistivity. With a different
power law @), the resistivity would behave &¢ in this
incoherent regime.

The crossover fronT? to T in the resistivity can be cap-
tured in a more precise manner in a universal scaling func-

tion,
T
e

pdc(T): (vl’p( (65)

We have determined numerically the functigy, which is
depicted in Fig. 10. We observe that it is linear over a wide
temperature rangevith a slope in agreement with E(64)].

2. Optical conductivity
We now turn to the analysis of the frequency-dependent
conductivity. (i) In the Fermi liquid regimethe conductivity
takes the form, alT=0,

o(0)=Dé(w)+ oedw), (66)
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FIG. 11. Real part of the optical conductivity Béw) vs w, for
FIG. 10. Scaling function for the resiStiVity. Inset: low- 5=0.04 andJ/t=0.3. The different curves Correspond o't
temperature Fermi-liquid regime. =1/200,1/100,1/50,1/25,1/10. Here/t=1.8x10 2. Inset: the
curve corresponding td/t=1/100, plotted in log-log coordinates,
where D is the weight of the Drude peak an@f{®) in the frequency rang&~e: <w<J. The 1k behavior described
—const asw— 0. The Drude peak is easier to capture by ain the text is clearly visible.
finite temperature analysis: tl&function is regularized by
in the form T?%/(w?+T%). Performing a low-temperature, ~ We have also calculated R¢ ) numerically, following
low-frequency analysis of Eq60) leads to the estimation the method explained in Appendix C. Numerical results are
Doct?D (o) Z 8 82 at small doping. A closed formula can displayed for various temperatures in Fig. 11 and are in
be given for Rer¢4(w) as a(truncated convolution of the —agreement with the previous analysis.
scaling functiong;. A low-frequency analysis then shows
that Reo(w< €f) = const, while Rer(w> €f)~ et/ w. IV. CONCLUSION AND DISCUSSION
(ii) In the .regimee’;<T<J, we have from Eqs(60) and A. Summary
(49) the scaling form
In this paper, we have solved a model of a doped spin
€r ) fluid with strong frustration on the exchange constahfs
Reo(w)= o o ' The undoped model is aBU(M) quantum Heisenberg
model with random exchange, previously studied by Sach-

T

o dx dev and Ye(Ref. 16 in the limit of largeM and infinite
%(V)EI —————i(XY) e ((1+X)Y) connectivity. These authors found that, in this limit, guantum
—e \[X(1+x)] fluctuations are so strong that no spin-glass phase fofms.
x{f(xy)— f[(L+x)y]}, (67) Instead, a gapless spin liquid is found with local spin dynam-

ics identical to the marginal Fermi-liquid phenomenoldgy.
wheref (x) = 1/(e*+1). From Eq(67), ¢,(+>)=constand We generalized this result to finite temperature and found
thus we have in this spin-liquid regime: that the local spin response function displaysl' scaling:
Ix"(@,T) o tanhw/2T (for @, T<J). Doping this Mott in-
sulating phase with holes, we found that a characteristic dop-
ing 6* =J/t appears separating two quite different doping
regimes. In the high-doping regim®> §*, magnetic effects
are weak and a Brinkman-Rice Fermi-liquid description is
valid, with a rather large coherence scale of orderin the
low-doping regime, however, the interplay between local co-
Moreover, using the Kramers Kronig relation tMw)  herence and magnetic effects gives rise to a coherence scale
=[dw'Rec(w’)/(0—w’) we find, in the same regime for ¢* = 3(5/5*)2, which can be very low. At low temperature
w=>T, T<ef , Fermi-liquid behavior is recovered, but an incoher-
) ent regime is found in a rather wide regime of temperature

*

€F
Reo(w)e o T<w<],

*

Re(r(w)oc?':, w<T. (68)

(69) €r <T<J in which physical properties strongly deviate from
Fermi-liquid theory. This regime corresponds to the
quantum-critical regime associated with the metal-insulator

Hence defining an optical scattering rate from an effectiveransition, which in this model happens 8=T=0. We

Drude formula Tgp]t'(w):w Reo(w)/Imo(w), we find found that both transport properties and response functions

rgp%(w)~wlln(w/e’,§). in this incoherent regime behave as in the marginal Fermi-

*

6F w
Imo(w)x—In| —

w E;
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liquid phenomenology, namely, pgT, Topt(w)_l evant for the understanding of some of the striking aspects of
xw/In(wl/€f), LTxconst, andly;.(w,T)xtanhw/2T. Re-  the normal state of cuprate superconductors. The line of ar-
markably, single-particle properties deviate much more guments relies on three sets of experimental observations.
strongly from Fermi-liquid theory, with a single-particle (i) The experiments reported in Refs. 5 and 6, in which a
scattering rate behaving as En<\/w (or \T), in contrastto  61-T magnetic field is used to suppress superconductivity
the ImX«w behavior postulated in the marginal Fermi- strongly suggest that the ground state of LgSr,CuQ, is
liquid phenomenology. actually aninsulator, up to Sr doping of about=0.16, cor-
These behavior result from the solution of the laMe- responding to the highedt,. This is true even in samples
saddle-point equations, which also yields explicit expreshaving large values df:I, making weak-localization effects
sions for the scaling functions @/ef and /T describing  an unlikely explanation of the logarithmic upturnladth p,;,

the crossover of the various physical quantities between thgnd p. observed at low temperature. Insulating behavior is
Fermi-liquid and the non-Fermi-liquid regime. We also noteng |onger found in overdoped samples.

that in the largeM limit, response functions can be calcu- (i) At very low doping in the La_,Sr,CuQ, com-
lated from theinteracting single-particleGreen’s function. pounds, a low-temperature spin-glass phase is founc for
Hence the behavior df \/Z and of Imy|,c>const are inti-  ~.5 024 jn agreement with theoretical argumenhtsyggest-
mately related. In contrast, in the marginal Fermi-liquid phe-jng that Iocalized holes induce locally a strong frustration in
nomenology, the behavior of Iny is related toa priori un- he magnetic exchange. This localization of the carriers in-
known higher-order vertex functions. In this sense, theyces a strong upturn gf,, at low temperature in these
present model yields a solution to the problem of internalsymples; first in a logarithmic manner followed by an acti-

consistency of the marginal Fermi-liquid ansatz, resulting in,ateq behavior. Nevertheless, the high-temperature behavior
a more singular form of the s_lngle—par'tlcle Green’s function.qf the resistivity in these samples is quite similar to that
We also note that numerical studies of the doped twos,,nd close to optimal doping.

dimensionalt-J model with uniform antiferromagnetié by (i) Inelastic neutron scattering reveals peculiar low-
Imada and co-worke?s have some intriguing similarities to energy spin excitations for all underdoped samples, quite dif-
the results of the present work. Specifically, a Drude weighterent in nature from spin wavés's For very low-doping,
and coherence temperature scalingsasre also found. The  these excitations occur in a remarkably low-energy range, on
_specn‘lc heat coefficient is found to scale aé Iif this case, ihe scale of 10 meV, distinctly smaller thanq. In a re-
in contrast to the present work. The reason for this differencgyyicted range of frequency and temperature, the energy scale
is the existence of a residual entropy in the undoped spingyr these excitations is actually set by the temperature itself
liquid phase of our model. However, the temperature depensng /T scaling applies® These excitations, which are
dence of the specific heat at the critical point is found to bepresent in a wide range of temperaturauch above the
JT in both cases. freezing transition mentioned abowend in the whole under-
Finally, we briefly discuss the possible instabilities of the yoped regime, correspond teskower spin dynamicthan in
metallic paramagnetic phase discussed in this paper. It cag Fermi liquid, as is also clear from the non-Korringa behav-
actually be checked that for a giveit, a low-temperature jor of the copper NMR relaxation time. Similar observations
and low-doping regime exists in which an instability to phasenaye been made in the YB@u;0; ., compounds? This is
separation is found, signaled by a negative compressibilityparticularly clear when a small amount of Zn substitution is
This is quite easily explained on a physical basis for a giverysed to suppress superconductititywe note that this si-
realization of the exchange couplings: the holes will tend toytaneously opens up again a region of glassy behavior at
cluster in regions with ferromagnetic bonds in order to maxi-joy temperature for a rather wide range of oxygen
mize kinetic energy. A proper treatment of this phase‘conten).34
separated regime should take into account longer-range Cou- |n our view, these observations suggest that, in the ab-
lomb repulsion. In the infinite connectivity limit, an gsence of superconductivity,Ta=0 metal-insulator transition
additional termVZXnin; in the Hamiltonian reduces to a occyrs at some critical value of the dopimg:xy, . This
Hartree shift.+V(n) of the chemical potentialthus the  transition might be rather close to optimal doping in
compressibility readscy*=rxy2y+V), so that the phase La, SrCu0,® Forx>xy,, the incipient ground state is a
separation boundary can be continuously tuned as a functiorermi liquid, corresponding to the overdoped regime. ¥or
of V. In future work, we are planning to consider other pos-<x,,, the ground state is a Mott-Anderson insulator in
sible instabilities of this model. The issue of spin-glassyhich holes are localized a&=0. At very smallx (0.02
ordering” does not arise for thél =oc fermionic represen- <x<0.05), the mechanism for this hole localization has
tation considered in this pap#tbut spin glass phases are peen studied in Ref. 35 and involves both the freezing of
indeed present foM =< for bosonic representations with hole motion due to the antiferromagnetic spin background
high enough “spin.”®® Even in the fermionic case, first-order and impurity effects. This localization induces strong frustra-
corrections in I are likely to restore a regime of spin-glass tjon in the local exchange, in agreement with the arguments
ordering. Finally, an open issue is that of possible pairingof Ref. 7. As a result, this insulator will have a glassy nature
instabilities of the metallic phase towards a superconductingt T=0 for low doping, as indeed found in La,Sr,CuO,.
state. Beyond x=0.05, however, the onset of superconductivity
has prevented up to now an investigation of the low-
temperature properties of this incipient insulating ground
In this section, we would like to present arguments sugstate and the origin of the observed localization is still an
gesting that the problem studied in this paper may be relopen problem. It may be that the insulator loses its glassy

B. Relevance to cuprate superconductors
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T For these reasons, the present model is unable to address
the question of the precise nature of the incipient insulating
ground state of underdoped materialsr of the low-
temperature pseudogap regime associated with eiven
though the remarks made above point towards a phase-
separated regime. Various proposals have been made in the
literature regarding this issue. One of the most widely dis-
cussed is the “stripes” picture, in which there is phase sepa-
ration between the doped holes and the spins into domain-
SN Fermi Liquid Metal wall-like structures. We note that as long as the holes remain
Insulator N, . . . . .
* confined in these structures, the mechanism of Ref. 7 implies
Xy X the existence of ferromagnetic bonds in the hole-rich region,

FIG. 12. Schematic crossover diagram for cuprates iIIustrating;as indeed f‘?“”q In numencal Cal,cmat'(fﬁs,??As tempera-.
(i) the existence of a metal-insulator transition as a function o ure or doping is raised, a melting trar_1$|t|on of the stripe
doping atT=0 and(ii) the possible relevance of our model to the Structure takes place, and the model introduced here may
corresponding quantum-critical regintether features such as the become relevant in the associated quantum-critical regime.
pseudogap and the Betemperature have not been depigted Keeping these caveats in mind, we comment on the com-
parison between our findings and some aspects of the normal
state of cuprates in the regime depicted schematically in Fig.

. "Shish"

character at some critical doping below x, , or that the

wo critical poin I incidex(=Xy) - .
two critical points actually coincidexg=xy) a. Low-energy coherence scalehe present model yields

As the temperature is raised, the holes become graduallg remarkable suppression of the low-energy coherence scale
mobile. This quickly destroys the glassy ordering, Ieavmgof a doped Mott insulator in the presence of frustrating ex-

the system in a state which is a spin liquid with incoherent . . ;
mobile holes and spins. Neutron scattering and NMR experigh"’mg;e coupI|ngs.2We find this scal_e to_be of orfz}ér
ments show that the spin dynamics in this regime is much™ (6t)/3=J(8/6%)* instead of the naiveBrinkman-Ricg
slowerthan in a Fermi-liquid state, with local spin correla- €Stimatest. We note that, witlt/J=5, andJ=1200 K, this
tions decayindin some time rangeas 1t (corresponding to scale can be_ as low as a few hundred degrees. If relevant for
a high density of low-energy spin excitatiogé(w)const cuprate_s, this observation sgggests that the nor_mal state
in some frequency rangiéWe view the model studied in this Properties may well be associated, over an exteritigh-)
paper as a simplified description of such a state of spins anggmperature regime, witmcoherent behaviocharacteristic

holes, valid in the high-temperature quantum-critical regimes\‘; a quantr:Jm-criticthregirrpe dominated db>|/ thermal effzctls_.
associated with the transition &t=0, X=X, (Or Xy), as © note, however, that the present mode, as any model in

which low-energy excitations are local in character, would

depicted schematically in Fig. 12. Indeed, it is a model of a\ q | g | direct]
doped Mott insulator with strong frustration, in which the '€@d t0 a large effective mass at low temperature, directly

effect of quantum disordering the glassy insulating state i®roportional to 17 . In cuprates, additional physics sets in
mimicked by taking the larg® limit. Fluctuations in the &t lower temperaturécf. (iii), abovd which quenches the
transverse components of the spin may actually be an essefR'responding entropy, leading to the experimentally ob-
tial ingredient in the disordering process, and this is precisely€rved modergte .effectlve r_na?@s. _

the effect that is emphasized in the lafgelimit and pro- b. Photoemissianin the incoherent regimd@>ef , we
duces the high density of low-energy spin excitations. find a single-particle Green's function decaying as/dl/

Of course the present model is highly simplified and is(and an associated single-particle lifetime3m \w), lead-
meant to retain only the interplay of Mott localization with ing to a markedly non-Fermi-liquid tail of the photoemission
that of frustration in the magnetic exchange constants. A#tensity. It is worth noting that precisely this form has been
such, it does not include several important physical aspectgcently shown to provide a rather good fit to the high-
of the actual materials, most notably the following: frequency part of the photoemission line shape above the

(i) The fact that frustration is a consequence of hole lo-pseudogap temperature in underdopegSBiICaCyOg .
calization at low temperatufeiin our model frustration is It has been recently argued that the/d/behavior also holds
introduced by hand (ii) Localization of carriers by disorder in the strong-coupling limit of antiferromagnetic spin fluc-
(as a consequence of both and (ii), the metal-insulator tuation theorie4?
transition occurs at zero doping in our modélii) The av- c. Resistivity and optical conductivity¥e would like to
erage antiferromagnetic componeng of the exchange has emphasize again the mechanism that yields a linear resistiv-
not been includedin that sense we are dealing with a strongity in the incoherent regime of our model, starting from a
frustration limitJ>J,g). This could be corrected for by re- single-particle self-energy behaving @&. This holds when
introducing Jar in @ mean-field manner, leading to scattering idocal andincoherentso that the effective quasi-
x(,0) 1=y @) "1+ IarA(Q), Where A(q) is the Fou- particle bandwith(dispersion can be neglected in compari-
rier transform of the nearest-neighbor connectivity matrix onson to lifetime effects. In this limit, conductivity should be
the lattice. We note that this formula produces a susceptibilthought of in real space as a tunneling process between
ity peaked at the antiferromagnetic wave vector, with a corneighboring lattice sites. This mechanism has a higher de-
relation length of the order of the lattice spacing, while allgree of generality than the specific model considered in this
the nontrivial dynamics comes from local effects. paper, and should also apply to other models in which the
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same\w power-law behavior of the self-energy holds, suchsite model defined by Eq$11,12 are provided. In the fol-
as the model of Ref. 40. This model has been proposed itowing, we will drop the indexx in

connection with the normal-state properties of underdoped

cuprates above the pseudogap temperature. G(r—1")=—(2M){(f3b™®) () (fI’bP)(7")).

We note that the magnitude of the linear resistivity in this . .
incoherent regime is larger or comparable to the Mott IimitIn qu..(%jZ). the tt))rackets denﬁte the_ average V‘."th thedacuon
(ah/e?), as is actually the case over a rather extended high§peCI led in subscript. As the actid® Is invariant under
temperature regime in underdoped,LaSr,CuO, (Ref. 41 translations in imaginary time and under the action of
and is a quite general feature of “bad metals.” SU(M.) (the rotation invariance fav =2), C andR take the

Regarding optical conductivity, the form we have ob- following form:
tained is quite similar to the marginal fermi-liquid one, M
which has been showhto provide a very good fit to the data C2¥(7,7')=—G(7—1'),
of e.g., Refs. 43 and 44. a 2

d. Neutron scatteringNeutron scattering experiments on 5
nonsuperconducting  LadBa, o<Cu0, (Ref. 8 and R3%, (T, 7' )= = 8,58, R¥( 7= 1') + 8,30, 5R%(1— 1').
La,_,Sr,CuQ, with x=0.04 Refs. 10 and 13 have revealed (A1)

spin excitations that are centered at the wave veqor The quartic term irf in Eq. (11) is decoupled using a bilocal

=(m,m) with a rather large momentum width. The fre- field P2°(7,7'). Using the expression of the spin operator

guency dependence of these excitations display scaling )
and have been successfully fitted by scaling forms very simiEq' (8) and the change of variable,

lar to that found in the present model® At higher Sr con- v
centration, one of the most notable feature of the neutron b(7)= \ﬁd’(ﬂ,
scattering results is the appearance of sharp peaks at incom- 2
mensurate wave vectors. It is likely, however, that thesgy, qinyje site partition function can be rewritten as
peaks only carry a small fraction of the total spin fluctuation
intensity, as suggested, in particular, by comparison to NMR -

data. A broad, weaklyg-dependent contribution most prob- Zsingle site= f D' DHDNDPe MS1~S (A3)
ably persists up to high temperature, carrying a large part of

the total weight, and hard to distinguish from “background” with the actions

noise in neutron experimerftsin YBa,Cu;Og..,, suppres- .

sion of superconductivity by Zn doping allow us to investi-

gate the spin dynamics of the normal state down to low Sl:if dTEa: ¢"3(7).¢*(1)=InZo

temperaturé>!* Apart from a very-low-temperature quasi-

elastic peak(associated with spin freezing into spin-glass- J? ) oab ' ab ' bas

like ordep, neutron scattering results fgr=0.39 reveal a +§% f dedT R*(7—7")P*(7, 7" )P*(7',7),
strong enhancement of low-frequency spin fluctuations at

low temperature, with a distinctively low-energy scale and a 7 2

strong temp_eraturga depende_nce_ dovv_n to very low tempera- S, = ?2 (f dr(1— ¢T(r)d(1)] . (A4)
ture (compatible withw/T scaling in a limited range These a

features are qualitatively similar to the low-energy excita-|,, ihis expressionz,, is defined by

tions found in the present model. There is furthermore ex-

perimental evidenc® that these low-energy excitations are ‘ S P
associated with the disordering of the spins by transverse Zo[ﬁb:PJ\]EJ DfTDfe™ Sod #.PN (A5a)
fluctuations, as in our model.

(A2)
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APPENDIX A: DERIVATION OF THE SADDLE-POINT
EQUATIONS LS j J drdr £13(7) (1)
a

In this appendix, some further details on the derivation of
the saddle-point equations in the larigelimit for the single- X G¥(7—7")pT(7)F3(7"). (A5b)
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In the limit M —, ZgqesieiS controlled by a saddle point
with respect toPP3(7',7), \(7) and ¢(7). We assume a

condensation of the bospafter the change of variablé?2)

OLIVIER PARCOLLET AND ANTOINE GEORGES

PRB 59

1_5_F deD F 0 Gl w0
T— . eD(e) _wmawn f(E,w)e

¢ is taken to be a finite constant at the saddle-point,

bs{7) =15, and\ is static,iXg{7)=No. Moreover, in this
limit the correlation functions of are given by the average

with the actionSy, taken for these values &f,\,¢. As Sy

is quadratic inf (and the boson is condengethe model is
completely solved in this limit as soon & has been cal-
culated. The saddle-point equations are given by the minim

zation of S; with respect toPP3(7',7), N(7) and ¢(7), re-
spectively, which leads to

P22(7,7')=—(f(7)f"(7))s,,

1=6-2(f2(Df"(7))g,

Noy/6=—2t25%2 J Oﬁdreaa( 1G*(—17),  (AB)

and finally gives Eqs(143,(14b),(140, and(14d) given in
the text.

APPENDIX B: LUTTINGER THEOREM

In order to find the volume of the Fermi surface in the
interacting system, we proceed along the lines of Ref. 46 an

GR(e,
+JO ;.—waw| Sitew) (B5)
—wllm GfR(e,a))

As G has no pole nor zeros in the upper half-plane, the first

iintegral can be closed there and vanishes. Hence we have

1-56 (= _
T:j deD (€)@ (u—No—24(i0")—Se). (B6)

From Eg.(B6) and the definition ofwg, we finally obtain

m(T=0)=No(T=0)~Z(w=0, T=0)=due(5),
(B7)

which is the desired relation and insures that the Luttinger
theorem holds in the presence of both the constraint and the
magnetic scattering. We also checked that this property is
verified in our numerical calculations @t=0.

APPENDIX C: NUMERICAL METHOD

In this appendix, we explain the main steps that we fol-
lowed in solving numerically the saddle-point equations

814).

we observe that the auxiliary fermion self-energy can be ob-

tained as the functional derivative of the following func-

tional:

<I>=sz dt(G{(HGFH(—-1)?, =f(t)=———.
(G (G (—1)) i (1) 5GT(—1)

(B1)
The number of particles reads

1-6 (= d -
—:f @ GfF(w)e"”O

2 | 2 (B2)

and we use the identity

GfF(w)=%f:odeD(e)ln(w-l-p,—)\o—zf':(w)— 5€)

935 (w)
Jw

+

GHw). (B3)

Using the invariance of the Luttinger-Ward functional under
a shift of all frequenciefG(w)—G(w+Q)], the integral of

the last term vanishes:

= g3k
f dw (@)
— w

GH(w)=0 (B4)

d

1. Computation of the Green function G;(w,T)

The calculation of the Green’s function is divided into
two steps. First a Matsubara frequency/imaginary time algo-
rithm is used in an iterative manner in order to find the value
of the chemical potentigh and Lagrange multipliex for a
given dopingd, interaction strengthl/t, and temperature.
Convolutions are calculated using a fast-Fourier transform
algorithm and a simple iteration is used: starting from a
givenG, a self-energy is obtained that is then reinjected into
the expression fo6 until a converged setQ,2) is reached
(for given values ofu,\). A second routine uses the previ-
ous one to adjust and\ in order for Eqs(140),(140) to be
satisfied.

Once the imaginary-time Green'’s function and values of
©,\ have been found using this imaginary-time algorithm, a
different algorithm is used to obtairal frequencyGreen’s
functions and spectral densities. This is done in the following
manner. We consider finite-temperaturegeneralization of
the Green’s function with the Feynman prescription:

G(@)=(1—ng(0))GR(@)+ne(0)GR(w),  (CY

which reduces to the usual Green'’s functi®p at T=0. We
now define

S (H)=J32G(1)2G(—t), (C2)

wheret is the real time. Expressing both and SR as inte-

and the integral of the first term can be explicitly calculatedgrals of the spectral density with the spectral representation

by transforming to retarded Green'’s functiofdenoted by

GF) in the following manner:

of GR, we obtain, after some calculationB (s a superscript
denotingretardedquantities:
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Reolw)="— Ao+ v)—A(v)

i(w)=ER(w)+2i7rJ2Jfdwldwan(wl) & dvRE{Gf(ww)—Gf(v)
8

X p(w1)Ne(w2)p(w)NE(0— w1~ w)) -
Gi(v)—Gi(v+w)

X p(0— w1~ wy), (3 Ne(v) ~Ne(vt @)
A(v)—A(v+w) w
wherep=— (1/7)Im GR andng is the Fermi factor. (o)
At T=0, Eq. (C3) shows that¥ simply coincides with
3F, the usual self-energy &t=0, with the Feynman pre- For the dc conductivity, EqC6) simplifies to
scription and that Eq(14) can be rewritten as, dt=0,
F 1 2F F (T) - f do| R -
1 . _ o(T)= o - -
(Gf(w)) w+,u )\0 (ta) Gf(w) Ef(("-))a 327721- 52(3%((1))_1
SE()=JAGf(1)*Gf(—1) (C4 - - - (C7)
f . PG @)*=1] B
COSHT

together with the equation corresponding to Eq4.0),(14d).

Note the change of the sign in front of. This form was | poth case the integrals are computed simply by transform-
used in Eq.(28). From Eq.(C4) one can write an algorithm ing them into a Riemann sum.

for the computation oGF in the T=0 formalism, similar to

the computation in imaginary time. Of course, as our large-

M limit performs a resummation of the perturbation theory, APPENDIX D: SCALING ANALYSIS

one can also obtain these equations with the diagrammatic |, this appendix, some details about the thermal scaling
rules, but these rules do not apply at finite temperature to thSnaIysis of Sec. Il C in the spin-fluid regime are provided.

Green_’s_functlorG In a systematic manner. . As explained in the text, in this regimgt disappears from
_ Atfinite t_emperaturg, we use the following lteratlve algo- ihe thermal scaling functions and thus the calculation can be
rithm: Starting fromG”, we getG. We then obtair® by  performed in the undoped modék 0. In this appendix(;
direct convolution in real time and the second term of theg,g . will denote the thermal scaling function of these
r.h.s. of Eq.(C3) byadoubls convolution afi.p. Hence we  guantities. They satisfy the scaled saddle-point equation
obtain>" and go back td&3™ with Eq. (14). Gi(w/T) " t=—3(w/T). The calculation is very similar to
As a starting point of the iteration, in order to speed Upihe |ow-temperature, low-frequency analysis made in Ref.
convergence, we take an analytic continuation of the solu'tiorfgo, so we here just give the main steps of the analysis. We
in imaginary time, obtained by a standard Pade approximairst check that the scaling behavi0) in imaginary time
tion. Note that the parametgr and A\, are fixed in this  sqjyes the saddle-point equatitior 5=0) using the Fourier

iteration on the real axis, since they have been calculateg,myjas[which follows from Eq.(3.631 of Ref. 32
before in the Matsubara formalism. As soon as the Green

function has been obtained, some other quantities are

straightforwardly calculated from the formula given in the . B 1

text. In part no . i ir4T) <1’2>(—1)”F(—)
. In particular,y,. is expressed as a convolution. How 2

ever the computation of the uniform susceptibilityconsid- Gillop) == —z—— B 3 wg (D1a

ered in Appendix Eis more involved: we solve EGEJ) for 1“( 4 )r(—+ d )

g by another iterative loop analogous to the previous ones. 4 2m

The scaling function describing the effect of the doping at

T=0, is computed from Eq(28) by an iterative algorithm

4 27

similar to the previous ones. i34 IT(— 1)”F( - E)
2(ilwy)=— . (D1lb

2. Computation of the resistivity r 1_ @B r £+ @np3

4 2w 4 27

We also give some useful details on the numerical calcu-

lation of the frequency-dependent resistivity. It is very con-yhere = (2n+1)#T are the Matsubara frequencies. One
venient to integrate analytically overin Eq. (60) using EQ.  :an then show that Eq&49) and (51) are the scaling func-

(40) and the relation tion on the real axis using the following method. First we use
J d D(G) —G C5 +o e—TS
E—A(V)_G_ i(v). (CH Gf(?’):—fﬂo 1+e_ﬁspf(s)de, Os7r<B (D2

We thus obtainthe Green function is the retarded ¢ne and
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o ™\ K(iwp)
—itu . _ n
jfw dt coshwt)) © 9(iwy) = ((6°—G (i)’ (E3
A iu A iu
N F(E_E) 0<A<l K(1)=28(1)+3%9(NG(1)G(—7).  (E4
~em XEY {u eal  (©9

(see formula 3.313.2 of Ref. R3We then deduce the full With these notations, the uniform susceptibility is given by
Green function(and thus3) by performing the Hilbert x=9(7=0").
transform ofp; using Eq.(D3) again and

2. Low temperature behavior of y for the undoped model

+oo e'zx In the undoped case, EQ(E3) reduces to g(w)
o dx—_ x| 5 =—G¥w)K(w) and the susceptibility af=0 is formally
(Smhﬁ) given by
F(A A Z)I‘(l A)

2 27 0<A<1 0
_pB 12 2w (D4) x<T=0>=J g(w)do. (E9)

T rl1 A Bz z real -

2 '27

From the low-frequency behavior, EGL7), we haveg(w)
x—iK(w)/lw. Thus we have to investigate the low-
frequency behavior dk. Generalizing the Luttinger theorem
APPENDIX E: UNIFORM SUSCEPTIBILITY [as expressed by EB6)] for the colors 1 and 2, we obtain
(atT=0)

(see formula 3.112.1 of Ref. 3

In this appendix, we briefly explain how to calculate the
uniform susceptibilityy and analyze its behavior at small
temperature in the undoped modgt 0. .

P P pEh-ro-3(0=0)=5u5"(8).  (E
1. Effect of a magnetic field

The magnetic field is introduced in treU(M) Hamil-
tonian(2) in the following way:

In this equation,ucfh(a) is given by

h
f #9%deD(e)=nl, (E7)

SH=—h(flf,—flf,). (ED)
This formula clearly reduces to the usual one fdr=2 wheren! is the number of particles of color 1. Hence we
Here, only colors 1 and 2 are coupled to this field but note®Pt@in
that this choice is not unique though convenient for our cal-

culation[more generally the magnetic field must be coupled 1 ‘ . —
to an element of a Cartan subalgebra of(BYJ]. The large- //
d and largeM limit computation is similar to the zero field prad
one explained previously, although it is more involved. A 08 - //
simplification occurs in this double limit: due to the fact that ol
only two colors oveiM are coupled td, the Green function e
G; for colorsi>2 are solutions of the zero-field equations 06 7
(14). Moreover, we findc}=G" andG?=G " whereG" is -~
given by 1JX | —
04 ,/
[GHiwn)] *=iwnt pu—Not+h—(t8)?GH(iwn) ~ 3 (iwy),
(E2a
02
(n=-PGHNGI (NG (-7 (E2H
% 005 01 0.15
[, No, andG!=C are always determined by Eq44)]. The T/J
magnetization is given bjn=G}(07)—G?(07). Let us de-
fine g by Gf —Gf=hg+0O(h?). From Egs(E2a,E2b, g sat- FIG. 13. 14(T) (solid lin@) and Lk,e(T)~ 1/InT (dashed ling

isfies vs T as calculated numerically in the undoped model.
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MB( 5)—M6h( 5) Thus the leading low-frequency singularity gncancels so-
(E8  from Eqg. (E5 we see thaty is smaller than I at small
h ; .
temperature. Strictly speaking we can not prove from the

Taking first the limitd—0 and therh—0 we obtain finally ~ previous argument tha¢ reaches a finite value at zero tem-

2-[27(0)-2{(0)]=4

(as uq is bounded by definition perature, but it is a very natur_al guess tha_\t is, moreover, very
well supported by our numerical calculation as displayed in
K(w=0)=0. (E9) Fig. 13.
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