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Numerical study of relaxation in electron glasses

A. Pérez-Garrido, M. Ortun˜o, A. Dı́az-Sánchez, and E. Cuevas
Departamento de Fı´sica, Universidad de Murcia, Murcia 30.071, Spain

~Received 14 July 1998!

We perform a numerical simulation of energy relaxation in three-dimensional electron glasses in the strongly
localized regime at finite temperatures. We consider systems with no interactions, with long-range Coulomb
interactions, and with short-range interactions, obtaining a power-law relaxation with an exponent of 0.15,
which is independent of the parameters of the problem and of the type of interaction. At very long times, we
always find an exponential regime whose characteristic time strongly depends on temperature, system size,
interaction type, and localization radius. We extrapolate the longest relaxation time to macroscopic sizes and,
for interacting samples, obtain values much larger than the measuring time. We finally study the number of
electrons participating in the relaxation processes of very low-energy configurations.
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I. INTRODUCTION

Strongly localized systems are characterized by very s
relaxation rates due to the exponential dependence of
transition rates on hopping length.1–3 For a wide range of
parameters, the typical times involved are much larger t
the experimental times and a glassy behavior is obser
Ben Chorin et al.1 reported on nonergodic transport
Anderson localized films of indium oxide and ascribed t
phenomena to the hopping transport in nonequilibri
states. Ovadyahu and Pollak2 performed further experiment
on this system that clearly demostrate the glassy natur
Anderson insulators. Glassy behavior may be obtained in
pendently of the strength of interactions and regardless
their long or short range. In systems with localized sta
long hopping lengths result in very long relaxation time
However, it is thought that there are specific features of
glassy relaxation behavior that indeed depend on the
and strength of the interactions involved. If so, relaxat
experiments could be an adequate tool for studying
strength of interactions. There has been no systematic s
of the effects of interactions on the relaxation properties
strongly localized systems, and in this paper we try to fill t
gap as much as possible.

Most properties of systems with localized electronic sta
strongly depend on interactions. This is especially true
Coulomb glasses where interactions are of a long-range c
acter. The nonequilibrium properties of these systems
affected by dynamic correlations in the motion of electron4

One-particle densities of states or excitations are not eno
to encompass the whole problem. To deal with such pr
lems, methods were developed5–7 to obtain the low-lying
states and energies of electron glasses. The states of the
tem, their energies, and the transition rates between t
constitute the information needed to compute nonequilibri
properties. We use this information to study energy rel
ation for systems with no interactions, with long-range Co
lomb interactions, and with short-range interactions.
PRB 590163-1829/99/59~8!/5328~5!/$15.00
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In the next section, we describe the model and the
merical procedure used. In Sec. III, we study the tempo
dependence of energy relaxation and, in Sec. IV, we ca
late the largest relaxation timet2 and its dependence on siz
and temperature. Finally, in Sec. V, we present results ab
the number of electrons participating in low-energy rela
ation processes.

II. MODEL AND NUMERICAL PROCEDURE

We consider three-dimensional systems in the stron
localized regime, in which quantum overlap energies,h, aris-
ing from tunneling are much smaller than the other import
energies in the problem and are taken into account only
the lowest contributing order, i.e., to zero order for energ
and to first order for transition rates. Spin is neglected si
exchange energies are proportional tot2. We use the stan-
dard tight-binding Coulomb gap Hamiltonian:8

H5(
i

e ini1(
i , j

ninjVi j , ~1!

wheree i is the random site energy chosen from a box dis
bution with interval @2W/2,W/2#. For noninteracting sys-
temsVi j 50, whileVi j 51/r for systems with Coulomb inter
actions andVi j 5(0.7/r )4 is the potential chosen for shor
range interactions. The large value of the Hubbard energ
accounted for by disallowing double occupation of sites.

We study systems with sizes from 248 to 900 sites pla
at random~for short-range interactions we only consider sy
tems sizes up to 465 sites!, but with a minimum separation
between them, which we choose to be 0.5l 0 where l 0
5(4pN/3)21/3 andN is the concentration of sites. We tak
e2/ l 0 as our unit of energy andl 0 as our unit of distance. We
choose the number of electrons to be equal to half the n
ber of sites. We use cyclic boundary conditions.

We use two different numerical algorithms to obtain t
ground state and the lowest energy many-particle config
tions of the systems up to a certain energy. For short-ra
5328 ©1999 The American Physical Society
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interactions, we employ an algorithm that relaxes the sys
through certain simultaneousn-electron transitions.9 The
procedure is repeated for different initial random configu
tions of the charges until the configuration of lowest ene
is found ten times. The configurations thus generated w
memorized in terms of site occupation numbers and of
ergy, whenever this was less than the highest energy
figuration in memory storage. We complete the set of lo
energy configurations by generating all the states that d
by one- or two-electron transitions from any configurati
stored.

For long-range interactions, we use an algorithm that c
sists of finding the low-energy many-particle configuratio
by means of a three-step algorithm.10 This comprises loca
search,9,11 thermal cycling,12 and construction of ‘‘neighbor-
ing’’ states by local rearrangements of the charges.9,11 The
efficiency of this algorithm is discussed in Ref. 10. In t
first step, an initial set,S, of metastable low-energy many
particle states is created. We start from states chosen at
dom. These states are relaxed by a local search algor
which ensures stability with respect to excitations from o
to four sites. In the second step, this setS is improved by
means of the thermal cycling method, which combines
Metropolis and local search algorithms. Lastly, the third s
completes the setS by systematical investigations of the su
roundings of the states previously found.

The transition ratev IJ between configurationsI andJ is
taken to be

v IJ5
1

t0
expS 22( r i j /aDexpS 2

EJ2EI

kT D , ~2!

for EJ.EI , and without the second exponential forEJ
,EI . In this equation,t0 is the inverse phonon frequenc
of the order of 10213 s, a is the localization radius, which
we take to be equal to 0.3l 0 , and(r i j is the minimized sum
of the hopping lengths of the electrons participating in
transition.

The relaxation process is governed by the master eq
tion, which in first order can be written in matrix form a
p(t1dt)5Mp(t), wherep is the vector of occupation prob
abilities in the configuration space, andM the matrix of
transition probabilities between states during a time,dt,
given by:13,14

~M!JI5H v IJdt for IÞJ,

12 (
KÞI

v IKdt for I 5J.
~3!

We assume that the system initially occupies a set,K, of
m configurations with equal probabilities, that is,pK

(0)51/m
for KPK, andpL

(0)50 for all otherL. The time evolution of
p is governed by the eigenvaluesl i and right eigenvectors
fW i of M. We will assume that thel i are arranged in de
creasing order. Rewritingp(0) as a linear combination of th
fW i , the probability vector aftern time stepsp(n) is given by

p~n!5a1fW 11a2fW 2l2
n1a3fW 3l3

n1 . . . ~4!
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whereai is the i th component ofp(0) in the basis$fW i%. At
long times ~large n), Eq. ~4! approaches equilibrium with
time dependences given byl i

n . Thus, the relaxation times
are given by

t i5
1

u ln l i u
~5!

in units ofdt. The final state ispM
(`)5exp(2EM /kT)/Z for all

M, whereEM is the energy of stateM, andZ is the partition
function. Clearlyp(`) is a right eigenvector ofM with ei-
genvalue 1, sinceMp(`)5p(`). All the other eigenvalues o
M are smaller than 1, since otherwise the system would
tend to the stationary probability distribution. The seco
largest eigenvalue corresponds to the largest relaxation
of the system. The addition of the other eigenvectors tof1

5p(`), transfersp from high-energy states to low-energ
states at various rates.

We have developed a renormalization method to be a
to properly handle the huge range of transition rates
volved. Large values oft i correspond tol i with values
which are very close to unity, Eq.~5!, and a direct calcula-
tion of t i , in units ofdt, is strongly limited by the numerica
precision of the computer. In order to minimize errors, w
must choose adt which is as large as possible, although th
soon yields negative diagonal elements ofM. We overcome
this problem using a renormalization procedure that allo
us to increasedt and to simultaneously keep all terms ofM
positive. This procedure forms groups of configuratio
Each group is made up of configurations connected betw
themselves by transition rates which are larger than a crit
one. The groups are clusters in local equilibrium for tim
greater than the inverse of the critical transition rate. Firs
we take a critical transition ratevc . Then for eachv IJ larger
thanvc , we define a new equilibrium state,M, and substitute
the original configurations,I andJ, by this new state,M. The
transition rates betweenM and any other configuration
K (KÞI ,J) are defined as

vKM5vKI1vKJ ~6!

vMK5
v IK

11RM
1

vJK

11RM
21

, ~7!

whereRM is given by

RM5
v IJ

vJI
5exp$~EI2EJ!/kBT%. ~8!

The diagonal matrix elementsvMM are again equal to 1 mi
nus the sum of the nondiagonal elements of the columnM
multiplied by dt.

After the matrixM has been renormalized by the prev
ous procedure, we can increase the time scale to a la
interval d8t51/vc . With this d8t we calculate the new ele
ments ofM. The eigenvalues of the transition matrix will b
given now in units ofd8t(.dt). We have checked the va
lidity of our renormalization procedure with several samp
of small systems where errors are not critical. The meth
minimizes computer errors in the solution of the eigenpro
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lem as the matrix becomes less ill conditioned, and allows
to consider large systems, with matrix elements that differ
many orders of magnitude.

III. TEMPORAL DEPENDENCE

We calculate the temporal dependence of the energ
the system when it relaxes from an initial set of high-ene
configurations. At very long times, the longest relaxati
process involved predominates and we see an expone
relaxation. For shorter times, there is an almost continu
sequence of relaxation times, which gives rise to a pow
law relaxation (E2Eeq)}t2a. To obtain the exponent of thi
law it is convenient to represent the absolute derivative
the energy with respect to time. In Fig. 1 we showudE/dtu
versus time~in units of t0) in a double log10 plot for a
sample with Coulomb interactions and 248 sites. The c
tinuous curve corresponds to a temperatureT50.004, and
the dashed curve toT50.005. The straight line is a fit to th
data in the nonexponential part of both curves, and its sl
is equal to21.15. So the power-law exponent for relaxati
is a50.15. This exponent is basically independent of te
perature for all the systems considered.

We have also studied energy relaxation for systems w
short-range interactions and for noninteracting systems.
results for short-range interactions are very similar to th
for Coulomb interactions. The power-law exponent
roughly 0.15 and the largest relaxation time is of the sa
order of magnitude as for Coulomb systems. In Fig. 2
showudE/dtu as a function of time in a double log10 plot for
a noninteracting system withN5248 sites. The continuou
curve is forT50.004, and the dashed curve forT50.005.
The slope of the straight line is again equal to21.15. There
are two differences between the results for interacting
for noninteracting systems. The longest relaxation times
shorter for the latter, and the power-law regime is not v
well defined in the absence of interactions. Both figures g
the rate of relaxationudE/dtu at any time. At very smallt, the
interacting systems relax faster than the noninteracting
tems. A possible explanation of this is that in the excit
state of the interacting systems some electrons get very c
to each other. In the initial stages of relaxation these e

FIG. 1. Double log10 plot of the temporal derivative of the re
laxation energy versus time for a system with Coulomb interact
for T50.004 ~solid curve! and 0.005~dashed curve!. The straight
line corresponds to power-law relaxation, and has a slope equ
21.15. t is given in units oft0 .
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trons hop away from electrons in the nearest neighbors s
the whole process being very fast.

Several samples have been checked and in all of them
obtain similar results to Figs. 1 and 2. Two features char
terize our relaxation process, the exponenta of the power-
law regime and the longest relaxation time. The exponenta
do not appreciably vary from sample to sample, nor w
temperature or with the type of interaction. On the oth
hand, the longest relaxation time drastically changes fr
sample to sample and with changes in temperature, size,
the range of interaction. On average, this time increases
the size of the system and with the strength of the inter
tions. In the next section we study the longest relaxation ti
in detail. Now we shall analyze exponenta.

Temporal relaxation can be described as a sum of par
exponential relaxation processes, each with its own differ
relaxation time,t i . The energy,E, of the system can be
written as a function of time,t, as follows:

E~ t !5(
i .1

ci expS 2
t

t i
D1EEq, ~9!

whereci is the product of thei th component of the initial
occupation vector,ai , and the energy associated to the
genvectorf i . This energy is the sum of the components

,

to

FIG. 2. Double log10 plot of udE/dtu versus time for a noninter-
acting system, forT50.004~solid curve! and 0.005~dashed curve!.
The straight line has a slope equal to21.15. t is given in units of
t0 .

FIG. 3. Exponential relaxation processes coming from sev
eigenvalues ofM in a double log10 plot. A power law arises from
the combination of all of them.
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f i multiplied by the corresponding energies.EEq is the equi-
librium energy, i.e., EEq5E(t→`). In Fig. 3 we plot
(ci /t i)exp(2t/ti) for the 30 largest eigenvalues ofM, ex-
cluding l151, as a function of time for a sample with Cou
lomb interactions and of sizeN5465. The solid line repre-
sents the temporal derivative of the actual energy a
function of time. This curve is below, but very close to, t
envelope of the curves corresponding to the individual rel
ation processes. Note how the combination of several sim
exponential relaxation processes gives rise to a power
relaxation.

Surprisingly,a is fairly independent of temperature, siz
type of interaction considered, and localization radius, fa
for which we do not have any interpretation. Anyway, t
robustness of the exponent could be a signature of s
organized criticality. Similar trends have been found in e
perimental measurements of the excess conductance of
dimensional samples excited far from equilibrium.2 In the
absence of magnetic field, the power-law exponent of th
measurements ranges between 0.27 and 0.29, diminis
with the strength of the magnetic field.

Our results point to the difficulty in extracting informatio
about the effects of interactions from the power-law exp
nent. Nevertheless, the type of interaction significantly
fects the longest relaxation times.

IV. LONGEST RELAXATION TIME

We also study the longest relaxation time,t2 , as a func-
tion of temperature and the size of the sample for syste
with Coulomb interactions, with short-range interactions a
for noninteracting systems. In Fig. 4 we plot^ log10t2& ver-
sus the inverse of the temperature for the three types o
teractions mentioned, Coulomb~solid lines!, short-range
~dotted-dashed lines!, and no interactions~dashed lines!. The
number of sites considered areN5248, 341, 465, 744, and
899, for long-range interactions and for noninteracting s
tems; for short-range interactions we did not use the
largest sizes.t2 increases with sample size, and thus t
smallest sample corresponds to the lowest curve, and so

FIG. 4. Average of log10 t2 versus 1/T for systems with Cou-
lomb interaction~solid lines!, a short-range interaction~dotted-
dashed lines!, and systems without interactions~dashed lines!. The
size of the systems stems from 248 sites~lowest line! to 900 sites
~highest lines!. For short-range interactions the largest size cons
ered is 465 sites.
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^ & denotes averages over site configurations. Fluctuation
t2 from sample to sample are very large and, as is the c
with most properties of disordered systems, one has to a
age the common logarithm oft2 , rather thant2 itself. The
curves extend over the range of validity of the results. T
‘‘high’’ temperature limit Tmax depends on the energy rang
DE spanned by the configurations stored. We chooseTmax
50.1DE. The low temperature limit arises from the discre
nature of the spectrum of configurations and we take it
being equal to the mean energy spacing of the ten low
energy configurationsDe.

From Fig. 4 we can conclude that the longest relaxat
time depends strongly on the type of interaction.t2 is one
order of magnitude larger for interacting than for noninte
acting systems. As we will see, this effect is much larg
when extrapolated to macroscopic sizes.

In order to extrapolate the previous results to macrosco
sizes we plotted̂ log10t2& as a function ofL2b at a fixed
temperature for different values of the exponentb. L
5N1/3 is the length of the side of the system, andN is the
number of sites. We found that the results for the three ty
of interactions fit straight lines fairly well whenb51. In Fig.
5 we show log10t2 versusL21 for systems with Coulomb
interactions~dots!, short-range interactions~diamonds!, and
without interactions~squares!. The horizontal dashed line
represents a macroscopic time, say, one day ('1018t0). The
temperature chosen in this plot isT50.0025, which is valid
for the four sizes employed in both types of interactions. T
size of the symbols used roughly corresponds to the stan
deviation of log10t2 . The crossing point of each straight lin
with the vertical axis is the extrapolation oft2 to macro-
scopic sizes. The results aret2

(`)'103161t05101861 s
~Coulomb interactions!, t2

(`)'101161 s ~short-range interac-
tions!, andt2

(`)'10561 s ~no interactions!. It is clear from
this figure that the longest relaxation time drastically
creases with the strength of interactions, although these
sults have to be taken with care as they are extracted fro
very long extrapolation.

The results presented in Figs. 4 and 5 correspond t
localization radiusa50.3l 0 . For larger values ofa, the re-
laxation times will decrease, as can be deduced from Eq.~2!.
We have found empirically that a change ina causes a
change int2 of approximatelyD log10t2'3D(a21). The

-

FIG. 5. Average of log10t2 versusL21 at T215400 for nonin-
teracting systems~squares!, and systems with Coulomb~dots! and
short-range~diamonds! interactions.
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values oft2
(`) are so large for interacting systems that w

would expect nonergodic behavior for these systems even
much larger localization radii than the one considered he

V. VARIABLE NUMBER RELAXATION

At zero temperature, the relaxation process is downw
in energy and we can assume that the fastest process al
dominates, corresponding to a well defined sequence of
figurations with decreasing energies. For each transitio
T50, the shorter the hopping length, the faster the co
sponding transition rate. From each configuration, the sys
chooses the nearest one~in terms of(r ) from those with less
energy. With this in mind, we have computed for all low
energy configurations the closest one of smaller energy,

FIG. 6. Number of electrons participating in the fastest tran
tion as a function of the order of the initial configuration.
B
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m
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have stored the number of electronsn participating in the
transition.

In Fig. 6 we show the number of electrons,n, of the
fastest transition from an initial configuration as a function
the number of this configuration for a Coulomb interacti
sample with 900 sites. At very low energies, the relat
importance of many-electron transitions increases. The p
portion of transitions with a fixed number of electron
greater than one (n.1) increases with decreasing energ
Obviously, in the noninteracting case all processes are o
electron transitions.

VI. CONCLUSIONS

Our numerical results of relaxation in localized electron
systems show a power-law behavior with an exponent cl
to 0.15 and independent of all the parameters and type
interactions considered. At very long times, we obtain ex
nential relaxation with a characteristic time that strongly v
ies with size, localization radius, and type of interaction. T
extrapolation of this characteristic time to macroscopic si
predicts values much larger than the typical experimen
times, especially for the interacting cases. The strength
interactions in experiments performed on these systems
be deduced from their longer relaxation times.
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ción Cientı́fica y Técnica for financial support, Project No
PB 96/1118, and for the financial support of A.P.G.

i-
,

d

1M. Ben Chorin, D. Kowal, and Z. Ovadyahu, inProceedings of
HTSC and Localization Phenomena, edited by A. Aronov, A.
Larkin, and V. Lutovinov~World Scientific, Singapore, 1992!.

2Z. Ovadyahu and M. Pollak, Phys. Rev. Lett.79, 459 ~1997!.
3A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Status Solidi

205, 395 ~1998!.
4M. Pollak and M. Ortun˜o, Electron-electron Interactions in Dis

ordered Systems, edited by A.L. Efros and M. Pollak~North-
Holland, Amsterdam, 1985!, p. 287.

5M. Mochena and M. Pollak, Phys. Rev. Lett.67, 109 ~1991!.
6M. Schreiber and K. Tenelsen, Europhys. Lett.21, 697 ~1993!.
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12A. Möbius, A. Neklioudov, A. Dı´az-Sánchez, K.H. Hoffmann, A.

Fachat, and M. Schreiber, Phys. Rev. Lett.79, 4297~1997!.
13J. Ruiz, E. Cuevas, M. Ortun˜o, J. Talamantes, M. Mochena, an

M. Pollak, J. Non-Cryst. Solids172-174, 445 ~1994!.
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