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Numerical study of relaxation in electron glasses
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We perform a numerical simulation of energy relaxation in three-dimensional electron glasses in the strongly
localized regime at finite temperatures. We consider systems with no interactions, with long-range Coulomb
interactions, and with short-range interactions, obtaining a power-law relaxation with an exponent of 0.15,
which is independent of the parameters of the problem and of the type of interaction. At very long times, we
always find an exponential regime whose characteristic time strongly depends on temperature, system size,
interaction type, and localization radius. We extrapolate the longest relaxation time to macroscopic sizes and,
for interacting samples, obtain values much larger than the measuring time. We finally study the number of
electrons participating in the relaxation processes of very low-energy configurations.
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[. INTRODUCTION In the next section, we describe the model and the nu-
merical procedure used. In Sec. lll, we study the temporal
Strongly localized systems are characterized by very slowependence of energy relaxation and, in Sec. IV, we calcu-
relaxation rates due to the exponential dependence of thate the largest relaxation timeg and its dependence on size
transition rates on hopping length® For a wide range of and temperature. Finally, in Sec. V, we present results about
parameters, the typical times involved are much larger thafhe number of electrons participating in low-energy relax-
the experimental times and a glassy behavior is observe@tion processes.
Ben Chorin et all reported on nonergodic transport in
Anderson localized films of indium oxide and ascribed the Il. MODEL AND NUMERICAL PROCEDURE
phenomena to the hopping transport in nonequilibrium

states. Ovadyahu and Polfaerformed further experiments localized regime, in which quantum overlap energiesris-

on this sy;tem that clearly demost.rate the glassy_natu_re % g from tunneling are much smaller than the other important
Anderson insulators. Glassy behavior may be obtained ind&snergies in the problem and are taken into account only to
pendently of the strength of interactions and regardless ohe |owest contributing order, i.e., to zero order for energies
their long or short range. In systems with localized statesgnq to first order for transition rates. Spin is neglected since

long hopping lengths result in very long relaxation times.exchange energies are proportionaltfo We use the stan-
However, it is thought that there are specific features of thejard tight-binding Coulomb gap Hamiltonidn:

glassy relaxation behavior that indeed depend on the type
and strength of the interactions involved. If so, relaxation
experiments could be an adequate tool for studying the HZEi ei”i+i2j ninVij, @
strength of interactions. There has been no systematic study
of the effects of interactions on the relaxation properties ofwhereg; is the random site energy chosen from a box distri-
strongly localized systems, and in this paper we try to fill thisbution with interval[ —W/2W/2]. For noninteracting sys-
gap as much as possible. temsV;; =0, while V;;=1/r for systems with Coulomb inter-
Most properties of systems with localized electronic statesictions andV;;=(0.74)* is the potential chosen for short-
strongly depend on interactions. This is especially true forange interactions. The large value of the Hubbard energy is
Coulomb glasses where interactions are of a long-range chagccounted for by disallowing double occupation of sites.
acter. The nonequilibrium properties of these systems are We study systems with sizes from 248 to 900 sites placed
affected by dynamic correlations in the motion of electrbns. at random(for short-range interactions we only consider sys-
One-particle densities of states or excitations are not enoudiems sizes up to 465 sijedut with a minimum separation
to encompass the whole problem. To deal with such probbetween them, which we choose to be I9.5vhere |
lems, methods were developedto obtain the low-lying = (4wN/3)” Y3 andN is the concentration of sites. We take
states and energies of electron glasses. The states of the sgé/l, as our unit of energy anig as our unit of distance. We
tem, their energies, and the transition rates between thechoose the number of electrons to be equal to half the num-
constitute the information needed to compute nonequilibriunber of sites. We use cyclic boundary conditions.
properties. We use this information to study energy relax- We use two different numerical algorithms to obtain the
ation for systems with no interactions, with long-range Cou-ground state and the lowest energy many-particle configura-
lomb interactions, and with short-range interactions. tions of the systems up to a certain energy. For short-range

We consider three-dimensional systems in the strongly
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interactions, we employ an algorithm that relaxes the systefyherea; is theith component 0p® in the basis{;}. At
through certain simultaneous-electron tl’anSItIOI’l%. The |0ng times(|arge n), Eq (4) approaches equi”brium with

procedure is repeated for different initial random configura+jme dependences given by'. Thus, the relaxation times
tions of the charges until the configuration of lowest energy, ¢ given by '

is found ten times. The configurations thus generated were
memorized in terms of site occupation numbers and of en- 1
ergy, whenever this was less than the highest energy con- =
figuration in memory storage. We complete the set of low- [N

Energy configuratlions by genergtingfall the statesf_that d_iffe;rn units of st. The final state ispﬁf): exp(—Ey, /KT)/Z for all
2/ orée- or two-electron transitions from any con |gurat|onM, whereE,, is the energy of stathl, andZ is the partition
> OIL(?)r.Ion -range interactions, we use an algorithm that Con[unction. Clearlyp™ is a right eigenvector oft with ei-
. ng-rang ' ag ; ~“"genvalue 1, sincap™)=p(). All the other eigenvalues of
sists of finding the low-energy many-particle configurations . ;
by means of a three-sten alqoritifThis comorises local M are smaller than 1, since otherwise the system would not
y 1 ; % 9 I p“ . tend to the stationary probability distribution. The second
search’!! thermal cyclingt? and construction of “neighbor- . T
o largest eigenvalue corresponds to the largest relaxation time
ing” states by local rearrangements of the charjésThe of the system. The addition of the other eigenvectorgio
efficiency of this algorithm is discussed in Ref. 10. In the — .,y %/ransférs from hiah-ener statesgto low-ener
first step, an initial setS, of metastable low-energy many- —p 1ersp 9 9y 9y
states at various rates.

particle states is created. We start from states chosen at ra We have develoned a renormalization method to be able
dom. These states are relaxed by a local search algorith[[n v handl pth h f i ii tes in-
which ensures stability with respect to excitations from one IprgpeLry an Ie € fruge range do ranst 'r?n r? esin
to four sites. In the second step, this sets improved by v%yeh - Large V? Ues ofr; .corrEesspon OtIOMd.W't valuels
means of the thermal cycling method, which combines the\{'.v Ich are very close tq unity, Eq ) and a Irect ca cula-
ion of 7;, in units of 6t, is strongly limited by the numerical

Metropolis and local search algorithms. Lastly, the third step_ =" = N
recision of the computer. In order to minimize errors, we

. . . . _ p
::ool;rrl]péliitgess ;?(ihseei‘;saesgs;ferciaotg:sill|P(;/§r?é|gatlons of the sur must choose @t which is as large as possible, although this

The transition rates,; between configurationsandJ is soon yields negative diagonal e_IementsAdf We overcome
taken to be this problem using a renormahzatlon procedure that allows
us to increasét and to simultaneously keep all terms.bf
positive. This procedure forms groups of configurations.
ex;{ B E;— E|> 7 Each group is made up of configurations connected between
kT /)’ themselves by transition rates which are larger than a critical
one. The groups are clusters in local equilibrium for times
for E;>E,, and without the second exponential f&;  greater than the inverse of the critical transition rate. Firstly,
<E,. In this equation,ry is the inverse phonon frequency, we take a critical transition raie.. Then for eachw,, larger
of the order of 10*2 s, a is the localization radius, which thanw., we define a new equilibrium staté, and substitute
we take to be equal to 0@ andZrj; is the minimized sum the original configurationd,andJ, by this new stateM. The
of the hopping lengths of the electrons participating in thetransition rates betwee and any other configuration

©)

1

w,JzT—Oexp< -2 r;la

transition. K (K#1,J) are defined as
The relaxation process is governed by the master equa-
tion, which in first order can be written in matrix form as Wk = WK T WKy (6)

p(t+ 6t)= Mp(t), wherep is the vector of occupation prob-

abilities in the configuration space, andl the matrix of ok ®3k

transition probabilities between states during a timg, OMK= + , (7)
given by.13!?4 : MR 1Ry
whereR,, is given b
w8t for 1+, M1 d y
= (l)
(M) 1- > wdt for 1=J. ® RM=w—”=exp[(E|—EJ)/kBT}. )
K#1 Jl

I . The diagonal matrix elementsy;,, are again equal to 1 mi-
We assume that the system initially occuple_so? Betof s the sum of the nondiagonal elements of the colivinn
m configurations with equal probabilities, that p§( =1/m multiplied by &t.
for K e K¢, andp{®’=0 for all otherL. The time evolution of After the matrixM has been renormalized by the previ-
p is governed by the eigenvaluas and right eigenvectors ous procedure, we can increase the time scale to a larger
&; of M. We will assume that tha; are arranged in de- interval 't=1/w.. With this 't we calculate the new ele-
creasing order. Rewriting®) as a linear combination of the ments of M. The eigenvalues of the transition matrix will be
&: , the probability vector aften time stepp(™ is given by ~ diven now in units of6’t(> ét). We have checked the va-
lidity of our renormalization procedure with several samples
M 3 . - of small systems where errors are not critical. The method
p=aidrtazdohytagdaizt ... (4 minimizes computer errors in the solution of the eigenprob-
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FIG. 1. Double log, plot of the temporal derivative of the re- FIG. 2. Double log, plot of |dE/dt| versus time for a noninter-

laxation energy versus time for a system with Coulomb inte.ractionacting system, folf = 0.004(solid curve and 0.005dashed curve
for T=0.004 (solid curvg and 0.005(dashed curve The straight  The straight line has a slope equaltd.15. t is given in units of
line corresponds to power-law relaxation, and has a slope equal 0.
—1.15. tis given in units ofr.

trons hop away from electrons in the nearest neighbors sites,
lem as the matrix becomes less ill conditioned, and allows ughe whole process being very fast.
to consider large systems, with matrix elements that differ by Several samples have been checked and in all of them we
many orders of magnitude. obtain similar results to Figs. 1 and 2. Two features charac-
terize our relaxation process, the exponantf the power-
law regime and the longest relaxation time. The exponents
do not appreciably vary from sample to sample, nor with

We calculate the temporal dependence of the energy demperature or with the type of interaction. On the other

the system when it relaxes from an initial set of high-energyhand, the longest relaxation time drastically changes from
configurations. At very long times, the longest relaxationsample to sample and with changes in temperature, size, and
process involved predominates and we see an exponentitile range of interaction. On average, this time increases with
relaxation. For shorter times, there is an almost continuouthe size of the system and with the strength of the interac-
sequence of relaxation times, which gives rise to a powertions. In the next section we study the longest relaxation time
law relaxation E—Egot™ . To obtain the exponent of this in detail. Now we shall analyze exponesmt
law it is convenient to represent the absolute derivative of Temporal relaxation can be described as a sum of parallel
the energy with respect to time. In Fig. 1 we shif/dt| exponential relaxation processes, each with its own different
versus time(in units of 75) in a double log, plot for a  relaxation time,7;. The energy,E, of the system can be
sample with Coulomb interactions and 248 sites. The conwritten as a function of timet, as follows:
tinuous curve corresponds to a temperatlire0.004, and
the dashed curve t6=0.005. The straight line is a fit to the En=" ¢ exp{ ot
data in the nonexponential part of both curves, and its slope = Ti
is equal to—1.15. So the power-law exponent for relaxation ] . o
is «=0.15. This exponent is basically independent of tem_whereci_ is the product of theth component of the initial _
perature for all the systems considered. occupation vectora;, and the energy associated to the ei-

We have also studied energy relaxation for systems witf§envectore; . This energy is the sum of the components of
short-range interactions and for noninteracting systems. The .
results for short-range interactions are very similar to those 10 ' ' ' ' '
for Coulomb interactions. The power-law exponent is
roughly 0.15 and the largest relaxation time is of the same 5

Ill. TEMPORAL DEPENDENCE

+Egq» 9)

order of magnitude as for Coulomb systems. In Fig. 2 we 107 r |
show|dE/dt| as a function of time in a double Iggplot for _
a noninteracting system witN= 248 sites. The continuous £ 10 | |
curve is forT=0.004, and the dashed curve for=0.005. g

The slope of the straight line is again equakd.15. There
are two differences between the results for interacting and 1¢g"* |
for noninteracting systems. The longest relaxation times are
shorter for the latter, and the power-law regime is not very

well defined in the absence of interactions. Both figures give 10
the rate of relaxatiofdE/dt| at any time. At very smal, the
interacting systems relax faster than the noninteracting sys-
tems. A possible explanation of this is that in the excited FIG. 3. Exponential relaxation processes coming from several
state of the interacting systems some electrons get very clogsgenvalues of\ in a double logg plot. A power law arises from

to each other. In the initial stages of relaxation these electhe combination of all of them.
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FIG. 5. Average of logyr, versusL ! at T~*=400 for nonin-
teracting systemgsquares and systems with Coulomfaloty and
short-ranggdiamonds interactions.

FIG. 4. Average of log, r, versus 1T for systems with Cou-
lomb interaction(solid lineg, a short-range interactiofdotted-
dashed lings and systems without interactiofdashed lings The
size of the systems stems from 248 sitlesvest ling to 900 sites
(highest lines For short-range interactions the largest size considy ) denotes averages over site configurations. Fluctuations in
ered is 465 sites. T, from sample to sample are very large and, as is the case

with most properties of disordered systems, one has to aver-
¢; multiplied by the corresponding energi€s, is the equi-  age the common logarithm af,, rather thanr; itself. The
librium energy, i.e.,Eg;=E(t—). In Fig. 3 we plot curves extend over the range of validity of the results. The

(ci/7)exp(—t/7) for the 30 largest eigenvalues o#, ex-  “high” temperature limit T, depends on the energy range
cluding\;=1, as a function of time for a sample with Cou- AE spanned by the configurations stored. We chobgg;
lomb interactions and of sizd=465. The solid line repre- =0.1AE. The low temperature limit arises from the discrete

sents the temporal derivative of the actual energy as aature of the spectrum of configurations and we take it as
function of time. This curve is below, but very close to, the being equal to the mean energy spacing of the ten lowest
envelope of the curves corresponding to the individual relaxenergy configurationa e.
ation processes. Note how the combination of several simple From Fig. 4 we can conclude that the longest relaxation
exponential relaxation processes gives rise to a power-latime depends strongly on the type of interactieg.is one
relaxation. order of magnitude larger for interacting than for noninter-
Surprisingly,« is fairly independent of temperature, size, acting systems. As we will see, this effect is much larger
type of interaction considered, and localization radius, factsvhen extrapolated to macroscopic sizes.
for which we do not have any interpretation. Anyway, the In order to extrapolate the previous results to macroscopic
robustness of the exponent could be a signature of selfizes we plottedlog,,7,) as a function ofL"# at a fixed
organized criticality. Similar trends have been found in ex-temperature for different values of the exponght L
perimental measurements of the excess conductance of twe=N' is the length of the side of the system, aNds the
dimensional samples excited far from equilibridnm the  number of sites. We found that the results for the three types
absence of magnetic field, the power-law exponent of thesef interactions fit straight lines fairly well wheg=1. In Fig.
measurements ranges between 0.27 and 0.29, diminishifgwe show logy 7, versusL ! for systems with Coulomb
with the strength of the magnetic field. interactions(dots, short-range interaction@iamonds, and
Our results point to the difficulty in extracting information without interactions(squares The horizontal dashed line
about the effects of interactions from the power-law expo+epresents a macroscopic time, say, one dag@®r,). The
nent. Nevertheless, the type of interaction significantly aftemperature chosen in this plotTs=0.0025, which is valid
fects the longest relaxation times. for the four sizes employed in both types of interactions. The
size of the symbols used roughly corresponds to the standard
deviation of logy7,. The crossing point of each straight line
IV. LONGEST RELAXATION TIME with the vertical axis is the extrapolation e to macro-

We also study the longest relaxation time, as a func-  SCOPIC sizes. The results aref~ 1017, = 10" s
tion of temperature and the size of the sample for system&Coulomb interactions 75 ~10'*? s (short-range interac-
with Coulomb interactions, with short-range interactions andions), and 7-(2°°)~10"ail s (no interactions It is clear from
for noninteracting systems. In Fig. 4 we pldog,o7,) ver-  this figure that the longest relaxation time drastically in-
sus the inverse of the temperature for the three types of irereases with the strength of interactions, although these re-
teractions mentioned, Coulomksolid lineg, short-range sults have to be taken with care as they are extracted from a
(dotted-dashed lingsand no interaction&ashed lines The  very long extrapolation.
number of sites considered a¥e=248, 341, 465, 744, and The results presented in Figs. 4 and 5 correspond to a
899, for long-range interactions and for noninteracting sysiocalization radiusa=0.3,. For larger values o8, the re-
tems; for short-range interactions we did not use the twdaxation times will decrease, as can be deduced from(&gq.
largest sizesr, increases with sample size, and thus theWe have found empirically that a change @&ncauses a
smallest sample corresponds to the lowest curve, and so ochange int, of approximatelyAlog,,m,~3A(a"1). The
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have stored the number of electronarticipating in the
6p © ° ] transition.
5| | In Fig. 6 we show the number of electrons, of the
fastest transition from an initial configuration as a function of
4 boamooo o o o oo ol the number of this configuration for a Coulomb interacting
= ’ sample with 900 sites. At very low energies, the relative
3 000> 00 aoEEme ae 00 0 0 ®o © oo importance of many-electron transitions increases. The pro-
portion of transitions with a fixed number of electrons
5 - o d greater than onen(>1) increases with decreasing energy.
Obviously, in the noninteracting case all processes are one-
1 electron transitions.
0 1000 2000 3000 4000 5000
N(E) VI. CONCLUSIONS

FIG. 6. Number of electrons participating in the fastest transi- Our numerical results of relaxation in localized electronic
tion as a function of the order of the initial configuration. systems show a power-law behavior with an exponent close
to 0.15 and independent of all the parameters and type of

values of %§*) are so large for interacting systems that we Mteractions considered. At very long times, we obtain expo-
would expezct nonergodic behavior for these systems even f nential relaxation with a characteristic time that strongly var-
h laraer localization radii than the one considered here%s with size, localization radius, and type of interaction. The
muc g extrapolation of this characteristic time to macroscopic sizes
predicts values much larger than the typical experimental

V. VARIABLE NUMBER RELAXATION times, especially for the interacting cases. The strength of

At zero temperature, the relaxation process is downwar- teractions in experiments performeq on these systems can
in energy and we can assume that the fastest process alwayg deduced from their longer relaxation times.

dominates, corresponding to a well defined sequence of con-
figurations with decreasing energies. For each transition at
T=0, the shorter the hopping length, the faster the corre- We would like to acknowledge Professor M. Pollak for
sponding transition rate. From each configuration, the systemseful conversations and a critical reading of the manuscript.
chooses the nearest ofie terms of>r) from those with less We also acknowledge the DireccicGeneral de Investiga-
energy. With this in mind, we have computed for all low- cion Cientfica y Tecnica for financial support, Project No.
energy configurations the closest one of smaller energy, anéB 96/1118, and for the financial support of A.P.G.
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