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Detailed atomic structure of arbitrary fcc [100] twist grain boundaries
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The generalized coincidence site network model has been applied to the study of fcEl@@isgrain
boundaries. The result has been the detailed atomistic description of ge€t@®dakwist grain boundaries,
supported by a set of quantitative expressions obtained directly from the model's hypotheses concerning
primary and secondary dislocation spacings and Burgers vectors; these are in complete agreement with both
accepted theory and experimental observations. According to the model, singular boundaries, defined as those
boundaries containing only one primary dislocation per coincidence site lattice unit cell, are proposed to be
composed of atomic domains with the structuresdf, separated by an array of perfect primary dislocations.
Every random boundary has an associated singular boundary and its structure consists of a mixture of domains
found in the associated boundary, in different translational states; these domains are in turn separated by an
array of partial secondary dislocations. A nonsingular boundary therefore contains arrays of both primary and
secondary dislocation$S0163-18209)07803-0

I. INTRODUCTION with atoms at positions determined by quasicoincident sites,
which are assumed to minimize the elastic energy at the in-
Most technological applications of metals involve their terface, a hypothesis to be verifiadposterioriboth empiri-
use in polycrystalline form. Since many properties of poly-cally and numerically.
crystals depend strongly on phenomena occurring at grain Although the GCSN model contains an explicit assump-
boundarieSGB’s), there has been a vast amount of work intion concerning atomic relaxations at the interface, so that it
the past decades attempting to relate the GB structure armhnnot be considered as purely geometridgalcannot pre-
properties. A major part of this work has been devoted to thalict which GBs will turn out to have comparatively lower
development of geometrical criterigot explicitly taking  energies. The model merely supplies a starting atomic con-
into account the physical interaction between atoms at th&guration for each GB that is expected to be near a local
interfacé) directed at obtaining information about the atomic minimum for most common(centra) potentials used to
structure of a GB given the macroscopic degrees of freedormodel fcc metals. To determine which boundaries are ener-
that define the relative orientation of the parent crystals andetically preferred, one must perform atomistic calculations
the boundary plane. Although most available models, such asn GCSN bicrystals using a suitable potential. Such calcula-
those based on the coincidence site lattiesL), theO lat-  tions, performed using a variety of potentiald? have
tice, and the displacement shift compléBSC) lattice, have  showrt! that indeed GCSN bicrystals are, for all the poten-
succeeded in accounting for the properties of singular GB8$als used, close to an energy minimum and that the original
(GBs with special propertigsthey have failed to provide structure remains basically unaltered upon relaxation. How-
their detailed atomic structure, which has had to be inferre@ver, although the relaxed structures obtained from different
from computer simulations. Although such calculations havepotentials are basically indistinguishable from one another,
provided important insight into the relation between the GBthe actual energy vs misorientation curves show substantial
structure and properti€shey are restricted by their discrete differences, even for the same métaFor this reason, al-
nature. Thus the general problem of relating the structure anthough GCSN structures are found to be stable for all the
properties of arbitraryrandom boundaries, by far the most potentials tried, the final assessment must be based on their
abundant, has had limited attention, which has been one faability to account for actual experimental observations rather
tor preventing the development of the field of grain boundarythan computer simulations.
crystallography. This paper contains a set of results obtained from the
Recently, a structural model that could aid in the solutionapplication of the GCSN model to the study of fcc twist
of the above limitation, called the generalized coincidencd 100] grain boundaries under the hypothesis that there are at
site network(GCSN), has been introducetf The GCSN least some real systems “affine” to the model whose inter-
model generalizes the coincidence site lattice nbbglre-  atomic potentials minimize interfacial energy as proposed by
placing the strict coincidence criterion by one of quasicoin-the model and whose structure is therefore well represented
cidence. This definition allows the study of grain boundariedy it. The fact that the structure of GCSN bicrystals remains
using the mathematical framework developed in recent yearsasically unaltered upon relaxation, preliminarily supports
for quasicrystal§,thus unifying both fields. The quasicoinci- this hypothesis, although the strongest piece of evidence is
dence criterion on its own, however, is not what makes therovided by the quantitative results described in this paper.
GCSN distinct and useful; the model’s key feature lies in the In the following sections it will be shown that GCSN
way in which grain boundarieticrystalg are built. Con- grain boundaries reproduce quantitatively important experi-
trary to the usual construction of merely juxtaposing twomental observations about the structure of primary and sec-
crystal slabs, GCSN bicrystals have a distinct GB volumeondary GB dislocation networks. We also introduce a defi-
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nition of singularity based on minimum dislocation content a v
and report other fundamental predictions concerning the de- Ty Tep CW

tailed atomic structure of singulddelimiting) and random
(intervening boundaries, as well as the angular range over
which the structure of delimiting boundaries extends.

Bottom Crystal 7

Il. GCSN MODEL

In what follows we shall give a brief nonmathematical
description of the GCSN model for self-containment pur-

poses. For a more rigorous treatment the reader is referred to
previously published papefé. FIG. 1. (8 Common bicrystal construction with two juxtaposed

crystal slabs(b) GCSN bicrystal with a distinct boundary regi@n
gray). (c) Left, tilt bicrystal with boundary atoms in gray; right, side
view of boundary atoms.

A. GCSN bicrystal

The coincidence site lattice modetonsiders points com-
mon to both lattices as points of good fit and assumes that B. Elastic energy minimization
Sp?‘”f'ﬂ bound_?rgs antsedvl\;hen_thle rec_;_p;}rmgcl:cg’\ﬁhe d(;anls_lty of It must be noted that the above prescription differs from
coincidence sitefdenoted by2) is low. The MOCELIS  the one commonly used to model bicrystiisyhere two

"’.”SO defined as a set of points of good f'.t between two IatE:rystal slabs are just juxtaposed on either side of the bound-
tices, but here the strict coincidence requirement of the CSlary as shown in Fig. (). Thus, in contrast to the usual

s replaqed by one of “quasic;oincidence'_’ d(_afined as.fonows'construction, the prerelaxed boundary in a GCSN bicrystal
Two points(one in each latticgeare quasicoincident if they contains atomic sites that, except for coincidences, do not

both lie in the intersection of their respective Wigner-SeitzbeIOng to either crystdf
cells. A more intuitive definition is that two points, or sites, This difference is c.rucial and lies at the heart of the

atoms that occupy the sites. The GCSN is then defined as t
set of middle or average points between quasicoincide

pairs. It must be noted that although the term lattice has be Bositions each crystal atom would occupy in its own lattice if

used,t tht? def;mtut)n of tthebGCSN g_oesthnot rﬁqm_re t?ﬁ Nt ere were no interface. This causes the atoms in the bound-
penetrating structures to be periodic, thus allowing the Cong .y 1, gt a5 an elastic cushion that provides a smooth tran-

struction of crystal-quasicrystal and quasicrystal-quasicryst ifion between the two adjacent crystals. As a result, when a

interfaces. GCSN bicrystal is relaxed, the atoms in the boundary and

Since the quasicoincidence criterion is obviously met by - - ;
. . . . : r r Is change their itions only very sli
strictly coincident points, the GCSN contains the associate iega g)y :;Zl\??r?gst%eaG%e;trﬁctSSes;?acs'[i(?allil/ u?]gltseﬂggﬁbe

oint is a compromise location between the slightly different

CSL, but more importantly it also contains its decoration ;
(see Fig. 4. Thus, for decorated lattices the GCSN yields thefairB?essgsoentht?Oﬁbg;/ %’]éhgg (;tsnlj\lctwédilf Sahr?; Igyps):gmdfeora
detailed atomic structure of the boundary including the pri-WhiCh the GCSN energy minimizing mechanism holds true
mary and secondary dislocation n_etworks. No_te that in Con(presumably most close packed metaisany system whose
trast to the CSL'. the_ GCS.N remains well _deﬂned when th%tructure can be modeled by a central potential. Although,
tangent of the misorientation angle is irrational, although in
this case the GCSN set will be an aperiodic network rather
than a latiice!® SRR S Gy IR eint
A GCSN bicrystal is built as follows(a) Two arbitrary 3:) C@D Cﬁj ng Cg) C%)C%) C%
lattices are brought together with a common origin and one %:) c%j @ @3 @ Cg
of them is rotated through a given axis/angle pair. Option- 33 c83 %@%ﬁ%}@
ally, one of the lattices can be further displaced by an arbi- d§3 %%
trary vector.(b) A boundary slab with nonzero thickne@be A Cg:b ‘H
GB thickness is normally set to one interplanar spaciag (28:5 A ) 2
defined passing through the origin for conveniencg.All '
lattice points inside the boundary are replaced by the GCSN
set as defined abovéd) All remaining points of lattice 1
(lattice 2 above(below) the boundary are removed, leaving
only the points of lattice Zlattice 1) that have not been used
to generate a GCSN point in the boundary.
In the specific case of twist boundaries with low index
rotational axes, all boundary atoms lie on a single plane
[Figs. 1b) and 3. On the other hand, when the boundary
normal is not a low index crystallographic plane, the pre- FIG. 2. Superimposed plots of atoms in the random boundary
relaxed boundary zone may have finite thickness, as showfp=23.62°) before and after static relaxation carried out using the
in Fig. 1(c). Ni potential of Bristowe and Crocker.
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FIG. 3. Normalized plot of the atomic density vs the misorien-  FIG. 4. (8—(e) Atomic structures of5,%41,%61,%17, and
tation angle in degrees for fddl00] twist boundaries calculated 37, respectively(f) %37 with vacant sites removed. Open circles:

every one-hundredth of a degree. The numbers next to the peak®rmal GB atoms; dark gray circles, CSL nodes; thin lirf@dat-
identify the corresponding values Bif. tice unit cell; thick lines, CSL unit cell. Light gray atoms K5

mark atomic patterns also found B17. Dark squares iX41 (n

we reiterate, a final assessment of the validity of this state-:4) highlight atomic domains with four and five atoms on the

ment and the determination of what systems are well deS99¢:

scribed by the model requires the comparison of the predic-

tions of the model with experimental observations. For all

such systems, the GCSN model allows the basic structural f=2tar !
features of their GBs to be studied without recourse to com-

puter calculations, making it possible to perform crystallo-

graphic studies on arbitrarily large boundaries over thegy;in x andy relatively prime integersN=h?+k?+12, and

y
WN ;>, )

whole angular range. 3 =x?+Ny? (divided by two until3 is odd. Using these
definitions, major peaks in Fig. NE= 1) are found at angles

1Il. STRUCTURE OF SINGULAR BOUNDARIES 6, for whichy=1 andx=2n+ 1, while troughs occur when
x=2n, n=1,2,....Therefore, all special orientations cor-

A. Primary dislocations respond to coincidence boundaries for which1 and3,

As an example of a useful calculation that can now be=2n?+2n+1 for peaks andX,=4n2+1 for troughs.
performed over the whole angular range, Fig. 3 shows a pldEquivalent results have been obtained fdi0] and [111]
of the GB atomic density vs misorientation angle for fcctwist and tilt boundaries, but they shall be described else-
[100] twist boundaries, calculated with an accuracy of one-where.
hundredth of a degree. The plot describes the number of GB It turns out that the calculated boundaries of all major
sites(quasicoincident paijfound in a fixed circular section peaks & odd are composed of square atomic domains dis-
of the boundary plane with a diameter of 30 lattice spacingsposed in a checkered pattern, containmgndn+1 atoms

Note that the plot, which properly normalized describeson the edge(see Fig. 4 As the misorientation angle in-
all cubic lattices, has sharp peaks and troughs at specificreases, the size of the domains decreases from infinite at
coincidence misorientations with the valuesSoindicated in  31(6=0°) to the smallest possible square domains of
the figure. Although at this point, no physical significance is%5(6=36.87°) with only one and two atoms on edge. This
attributed to this plot other than being a measure of the goots exemplified in Figs. @)—4(c) showing the structures of
fit or registry between two rotatedl00 crystal planes, it 35,241, and%61 (n=1, 4, and 5), respectively. In Fig. 4
turns out that both major peaks and troughs reproduce thihe circles represent general GCSN atoms, with dark gray
orientations of low-energy singular boundaries found incircles marking coincidence positions. The CSL @nkittice
some real systems. This is evidenced by the fact that theynit cells are also drawn with thick and thin lines, respec-
coincide with the orientations identified as most probable irtively. In the case of trougHs$-igs. 4d) and 4e)], the bound-
MgO twist bicrystal experiment$:® Although these experi- ary is also composed of a small number of atomic domains,
mental results differ somewhat, the highest observed frebut not all of them are square and some have vacant sites,
guencies coincide with the peaks and troughs of Fig. 3. Aswhich accounts for their low density. We shall discuss these
suming that these orientations identify specialngulay  vacancies below, but first we must make the important re-
boundaries, if a physical property could be found that distin-mark that all boundaries in Fig. 4 belong to the translational
guishes them from all others, it could be possible to establisktate defined as type 2 by Bristowe and CrockeThe
a definition of singularity that might prove to be valid for all GCSN model always produces structures in this state when
cubic (100) twist boundaries. there is no relative translation between the parent lattices.

According to Ranganathdf,a CSL is generated when In terms of the integers andy, theO lattice basis vectors
one lattice is rotated with respect to the other around an axiare given(in the standard fcc basis with the coordinate
(h,k,I) through the angle omitted by
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1 boundaries have the structure of 200 crystal plane £1)

01=4—y(X+ Y,y—X), and all special boundaries contain atomic patterns or two-
@ dimensional structural unit$2DSU’s), found in adjacent

special boundaries. To see this, compare the light gray atoms

Ozzi(x—y,x—ky). of 25 in Fig. 4a) with the atomic patterns of the adjacent
4y special boundar® 17 in Fig. 4d).
When x and y have different parity(troughg, the CSL is We shall now discuss the origin of the large differences in
parallel to theO lattice with basis vectors given by GB density. In the trivial situationd=0), every atom in one

crystal lattice is paired with exactly one fully coincident
1 atom in the other. This means that when overlapping atoms
01=§(X+y,y—x), are replaced by single atoms at intermediate points, the num-
3) ber of GCSN sites equals the number of atoms each crystal
1 had in the intersection volume, i.e., in the GB region. In this
czzz(x—y,er y). case, the density of the GB is equal to that of the crystal, the
maximum possible. In the general case, there is a number of
Whenx andy are both oddpeaks, the CSL is inclined 45°  atomic sites, which varies with the angle, that do not have a
to the O lattice and its unit cell vectors are quasicoincident partner in the other lattice and cannot give
rise to a GCSN atom. These “orphan” atoms are invariably
1 located at positions where the atomic fit is worse and result
Clzz(xvy)a (4 in avoid or vacancy near them. The peaks of Fig. 3 occur at
the relative orientations for which the number of quasicoin-
1 cident pairs is maximized, while at troughs, the contrary oc-
szi(y'_x)' CUI’S.. . . ' . .
It is possible to fill the voids in the boundary by repeating
. . . the quasicoincidence pairing process using only the sites that
'F|gure 4.ShOWS that atomic domains glvyays haveCan remgined unpaired du?ing tﬁepfirst iteratiorgJ or b{/ leaving the
pomt at their center and fchat they are delimited by an ‘?‘rra)()rphan atoms as part of the boundary. The result of carrying
line defects known as primary grain b(_)undary_d|slocat|0n_sout such an operation is shown in Figf)4 which is to be
Here the GCSN model has_passed.lts f|rs.t tesp in re_producm(gOmpared with its “unfilled” counterpart of Fig.(d). Al-
the well known fact t_hat primary d|§locat|on Ime; lie along though these extra atoms are too close to other boundary
the edges of'the Wigner-Seitz Iat.tlce' qf tﬁbllattlce and atoms, giving rise to zones of relatively high strain, calcula-
mark the regions V‘.’here t_h_e atom|_c fit is at its wotde tions have showtt that a smaller energy value is often ob-
gooql measure O.f tr."s misfit is the distance betwe;en the OVetained when these sites are filled. However, due to the local
lapping(quasicoincidentcrystal atoms that gave rise to each strain at these sites, it is possible that even lower-energy

GCSN atom in the boundary. This separation increases "r\'/alues could be obtained if they are occupied by atoms of a

early fro'm Zero at the domain qenter toa maximum of ha.lfdifferent species; this would turn them into preferential sites
an atomic diameter at the domain edge, where the dislocati

. ) . ) ._-for impurity segregation. If this is so, then low-density spe-
line lies. Note that, in accordance with Bollmann, the dis-g;a) oyndaries might have different properties, such as dif-

. L Nrusion coefficients, from the ones giving rise to peaks. This
bogndarles, and hgnce between domams, IS a vector @th‘? would imply that GB’s that have a singular behavior under a
Iatnce._Anothe_r pomt_of agreement Wlth established theory 'Sgiven property such as minimum dislocation content may
that primary dislocations have crystalline Burgers vectors appear to be random under another. We are at present carry-
[110], as verified by performing a Burgers circuit going ing out calculations to clarify this point.

through both crystals.

o , , IV. STRUCTURE OF RANDOM (GENERAL ) BOUNDARIES
B. Definition of singularity

Since the size ratios of the CSL and O lattice unit vectors In what follows we will show that any randomonsin-

o gulan GB can be associated with a singular boundary of the
are 2y and /2y for the parallel and inclined states, respec- ; : : - -
tively [Eqs. (2)—(4)], it follows that asy increases, o does type described in the preceding section. We will then see that

! ! o . . the structure of the arbitrary GB is composed of a mixture of
the density ofO points within the CSL unit cell, with the St rorrary ° Pos e

. . . ] the structural units of the associated singular boundary in
consequent decrease in domain sfigeod fit regiong and

. S ; . . different translational states.
increase in primary dislocation content. It is then reasonable

to assume that the boundaries for which 1 owe their sin-
gularity to the fact that they have the smallest possible value
of y and therefore the minimum dislocation content per CSL  As it will become clear below, a useful insight into the
unit cell. Also, in Sec. IV we shall see that whgn-1 (a  structure of general GCSN boundaries can be obtained if one
general GB, an additional network of secondary dislocationsregards random boundaries as coincidence boundaries of ar-
appears in the boundary, increasing its complexity and prebitrarily long periods. Since the set of rational numbers is
sumably its energy. dense, any random GB with a measured misorientation angle
Two important points must be kept in mind. Notwith- ,,, can be approximated, according to Efj), to any de-

standing its variable size, all the domains found in speciafree of accuracy by 2tart(p/q) for some relatively prime

A. Associated singular boundary
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integersp and g; note thatN=1 for the (100 twist case
under consideration. This means that, given a tolerance, e
ery GB can be thought of as a coincidence boundary with

Earb: p2+ q2 5)
if p andq have different parities and
1 2 2
Earbzi(p +q9) (6)

otherwise. The decisive step is to express the ratip/q in
terms of the integers andc as

1
F=lxep= x+c/p’ @
. . FIG. 5. Some GB'’s associated witb: (a) 253 without vacan-
with x defined as cies, (b) 253 with vacancies(c) %185, (d) and(e) wire frames of
3461 andX 1189 with lines joining atoms separated one lattice
X=TR 9 =R 1/ tar( aafb” (8) spacing or less, and) %5 in the translational state type CSL. Gray
p 2 ' atoms, atomic domains in the type 2 translational state; thick lines,

CSL vectors; thin lines, average position of partial secondary GB

R[ ] being the nearest integer function and dislocations.
c=q—px. C)

The positive integekx labels the singulary=1) boundary
3, at the special misorientation angle

Note that>,,=2 ¢ p,— as by ,— 6x, which means
that the period of intervening boundaries grows without limit
as they approach, . This should come as no surprise since,

1 as we have seen, also the period of singular boundarjes
6,=2tan ? —) (100  diverges ag),—0. This is a trivial result for singular bound-

X . ; . . .

aries and it means that the distance between primary dislo-

that is to be associated to the arbitrary boundary,  cations, which is an increasing functi@y, grows without
=3, p- If one writes the denominator of EG7) asx’=x limit as one approachesl at 6,=0. In the case of random
+c/p, then the ternt/p (which need not be rationatepre-  boundaries, the distance between secondary dislocations is
sents a deviation parameter from the associated singulaiso an increasing function of the periag, . , and conse-
boundarys., . quently it must also diverge upon approachig.

Given that the choicep,q is not unique, this approach  From the comparative observation of GCSN twist bound-
would appear to lead to an ambiguous description of GB'sgries over the whole angular range (045°), a fundamental
Experimentally, however, this is not the case since all relyggyit emerges. Every nonsingular1) GB is composed
evant quantities will ultimately depend on the deviation pa-of 5 mixture of two sets of isostructural atomic domains ar-
rameterc/p and x, which are well defined quantities. The ranged in a checkered pattern that has the periodicity of the
|mpqrtant point is that, theoreucally, one r_\as direct access tﬂonsingular CSLX¥,.,). The domains in each set have the
mg :jnetgi'?;; \;?rrtljac?llﬁg cz;‘ngllc'tv://\ilgtchhBa’l;e directly related to same structure of the associat®¢ special boundary, but

: they are in different translational stat€s.

As an example, Fig.(®) shows the atomic structure of the
nonsingular boundar¥53=2;, , located atf3; ,=31.89°

Assume that tard,,,,) is restricted to be a rational number between the singular boundari€sl7=%,, and 35=3.,.
and consider the sequence of coincidence boundgrigs,} This boundary is the secong€ 2) element of the sequence
obtained by varying while keepingc andx fixed. At the  {3;,,} and is composed of two sets of atomic domains. For
one end, whenp=1,r,.,=1/(x+c) and 6,p= 60y, easy identification, the atoms in the first set have been filled
which is by definition a singular boundang{..) sincex  with two levels of gray, while the atoms in the second set are
+c is an integer. At the other end, ps», r, . ,—~1/ and represented with unfilled circles. Note that the domains of
farn— Oy, Which is the special boundaly, associated with the first set have the structure of tB& type 2 boundary
the randon®.,,. Therefore{r, . ,} generates a sequence of shown in Fig. %a), while those of the second set have the
(intervening boundaries{>, ¢} in the interval @4,60,,c)  structure of£5 type CSL, shown in detail in Fig.(8. This
between the specigbelimiting) boundariesX., . . andX, . boundary was constructed using the same misorientation
There is one such sequence for every value,odlthough  angle of 25 (36.87°) but with one crystal shifted by the
they have only formal interest since(and hence the delim- vector 3(d; +d,), whered;=(3,1)/10 andd,=(1,—3)/10
iting angle 6, ;) cannot be determined experimentally and,are the unit vectors of the associafe8 DSC latticet®*’
as it will be seen shortly, the structure of any boundary is The DSC lattice basis vectors are the same vectors of the
completely determined by the structure of the associate@SL [Eqgs.(3) and(4)] divided byZ, and for singular bound-
boundary3.,. aries they can be expressed as

B. Structure of random boundaries
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(x=3,c=1) sequencex185=2;, ,at 03, ,~34.21°. Note
5 (x,1), that the domains have increased in size, but their structure
x“+1 and relative position within the CSL have remained un-
(11 changed. Note also that adjacent domains always merge co-
herently, so that domain limits are not easily determined
(1,—x), from a two-dimensiona(2D) diagram alone.
To illustrate what the differences between different se-
whenx,y are both odd and guences,(different ¢) are, Figs. &) and Fe) show the
boundaries 2461=33,9, 03,9=34.48° and X1189
=3339, 0339=33.72°, also associated with5 (x=3 for
(x+1,1-x) all of them but belonging to the=2 andc=3 sequences,
respectively. In view of the large size of the CSL unit cell,
(12 these boundaries are shown as wire frames for clarity. To-
(X=1x+1) gether, Figs. &)-5(e) illustrate that there are always|
’ ' atomic domains of a given translational state along both the
) . edge and diagonal of the CSL unit cell.
otherwise. In either case Since CSL type atomic domains appear after displacing
_ _ _12 one crystal lattice byo=*(d;*d,)/2, the thin lines drawn
|dy|=]dp|=(2%) "~ (13 pbetween domains in Figs.(&-5() represent dislocation
lines with the Burgers vectdy. It is important to note thad;

Figure §2) shows the randorit 53 with its vacant sites and d, belong to the DSC lattice of the singular boundary

filled. If the vacancies are not filled, the boundary structur : :
looks as shown in Fig.(6), where one can see that the nowe.Ex' not fo the DSC lattice of the arbitraBy, c.p, and thath
’ is always parallel to the dislocation lines, which implies that

Tcomplet_e light gray dc_>ma|ns have the_struc;ureﬁdf? these dislocations have a screw character, a fact that is in

22.4 .Of Fig. 4(d), which is also sho_wn In its unﬁllgd State. ccordance with experimental observatiohs.

o sayas. _Using EQS(11) and(12) it can e seen tht the Burgers
vectorb has a very simple expressidm the standard fcc

fro.m the.two ;pemal .boundan@ and .., between which lattice) in terms of the misorientation angle of the associated
it lies, this being a direct consequence of the fact that ever)éingular boundang,
.

singular boundang., contains atomic patterns &, ; as
described in Sec. Il A. d.+d
The same conclusion is arrived at in the structural model b,= L2

of Vitek and Suttof according to which all GB’s in a cer- 2 2(x*+1)
tain misorientation range delimited by two short period

GB'’s, are composed of mixtures of structural elements that d;—d,

belong to these boundaries. The delimiting boundaries are b,= 2 2(X2+1)(X_1*X+1)’ (14)
then called favored if they are not themselves, composed of

units from other boundaries. In Vitek and Sutton’s model, (

d]_:

d=
2 21

dy=————
Yo+ 1)

dy=——
2 2(x%+1)

(x+1,1-x),

delimiting boundaries are assumed to be periodic boundaries b|=by| =|b,|= isin &) = !
with low 3 and their role is equivalent to the singulzr, V2 2 2\/2—X
poundarles of this .work, although in our case, no restrlctlonfor x odd and

is made on the size ok,, which can be very large for

small-angle boundaries. This model was later extended to

twist boundarieg and generalized for cubic systeRtsAl- b,
though the main assertion of the two models is identical, 2 x?+1
there are important differences, one of them being that de-

limiting boundaries are automatically produced by the GCSN d;—d, 1
model and do not have to be determined from considerations by=—o— =" (L% (15)
outside the model. Another important difference lies in the

nature of the structural units, which is necessarily different

due to the different models of bicrystal used. In particular, it |b|=|by|=|b,|=sin
would be very difficult to detect atomic domains in different
translational states using the usual bicrystal construction.

Cditd, 1

(x,1),

@)_ 1
2] 5,

otherwise. It is well knowt# that secondary dislocations
with DSC Burgers vectors appear in arbitrary GB’s as a re-
sult of the angular difference with a nearby special GB.
The arrangement of the domains within the CSL dependSinceb is not a DSC lattice vector, the dislocations in Fig. 5
only onx andc, i.e., on the particular sequence the randomcannot be perfect secondary dislocations but partials, and it
GB belongs to. All boundaries in a given sequefigg . is the stacking fault associated with partial dislocations that
remain topologically identical gsincreases, the only change is responsible for the different structures of adjacent do-
being the size of the domains. This is exemplified in Fig.mains. Neighboring isostructural domains are themselves
5(c), which shows the fourth membep€4) of the same shifted with respect to each other by the vectors of the DSC

C. Secondary grain boundary dislocations
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FIG. 6. Distance between secondary grain boundary dislocations

in reduced units vs the misorientation angle. Note that the distance FIG. 7. Semilogarithmic plot ok, versus the angle in degrees

between dislocations diverges at the orientations of singular de|imi-ndicating the range over which the structure of singular boundaries

iting boundaries. is maintained in the two-dimensional structural units of ft60]
twist grain boundaries.

lattice d; and d,; hence the observed partial dislocations

must be interpreted as the dissociation products of perfecthis expression, which has been directly derived from the

secondary dislocations separating isostructural domains. model, quantitatively reproduces the experimental data of
Balluffi et al.,summarized in Ref. 19, as is easily verified by

comparing its values with the results described therein. Ex-

o . . . pressingé in terms of the Burgers vectdy defined above
While discussing the structure of singular boundaries Weyng A g, one obtains

mentioned that the relative sizes of the CSL @hlhttice are
given by 2 when the two lattices are inclined an@®p NA |b| 1 b

when thgy are parallel. This means thqt there are exactly o= Tm o= Zm 19
2p0 lattice vectors along the edge or diagonal of the CSL

unit cell, depending on orientation, and that there faje  for the inclined & odd and parallel x even states, respec-
isostructural domains along both the edge and diagonal dively. If A#<1, these equations reduce to

the CSL cell. It then follows that the average distance be-

tween partial secondary dislocatiotseparating domainss -~ \/_E M _ } M (20)
given by the reciprocal of the deviation parametpfc| 2 AG’ 2A6

times the size of th® lattice basis vectors, i.e.,

D. Secondary dislocations spacing

which, replacingb| by the more accurate expressifi/2,
tan by ¢ /2) coincide for the parallel case with the value f®rgiven in
=|o| 1—xtar(’0’ 2 (16)  Eq.(2) of Ref. 19, which disregards the relative orientations
x.c.p of the O and CSL lattices.
where|o| is the size of the lattice vectors and, . , is the Knowing that the structure of random twist boundaries is
measured misorientation angle. With the aid of E8), Eq. determined by that of its associated singular boundary, it is

(16) can be expressed in terms of the misorientation angldteresting to enquire as to the angular range over which the
6.c.p @nd the lattice parameteras structure of singular boundaries extends. Figure 7 shows a

semilogarithmic plot o&, vs 6, illustrating that this range
J2a 1 depends monotonically oB and that it is larger for smaller

. . 1 3.

4 \COS( Ox.c.p/2) =X SIN(bx ¢, p/2) 7 Note that Eqs(16)—(20) are independent of the internal

. . . variablesp and ¢ and contain only observable quantities.
. Note that for_ special boundanesﬁx(?’p: 6,), the devia- Their quantitative agreement with both experimental obser-
t|<_)n parameter is zero _and CWQ):XS'.H(W 2).' so that the .vations and accepted theory constitutes the strongest piece of
(j_|§tance between par.tlal secondary dislocations becomes iRviqence in favor of the GCSN model and the hypotheses
finite, as expected. Figure 6 shows a plotdls O,cp 8 made therein for the fc€100) twist case studied here, al-
given by Eq.(17) vs misorientation. This exact equation though the above results are geometrically identical and pos-
completes, for the whole angular range, the plot of Fig. 6 injp|,"yalid in principle for any cubic system, subject to the
Ref. 19, obtained using a small-angle approximation. constrictions mentioned in previous sections.

The secondary dislocation spacing can also be given in g 3 final word on the structure of random boundaries, we
terms of the angular deviation from exact coincidedt@  gpa)| mention that their structure is not modified when one
= 0x= Oxcp @S crystal is shifted with respect to the other by the only

) change being that the two sets of domains interchange posi-
_ @ sin(6,/2) (18) tions, the energy of the boundary remaining practically the
4 sin(A0I2)° same after shifting®

6=|o|

p
C

5:
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In this paper we have chosen the fd®0] twist case to atomic domains with the structure &1, separated by an
illustrate the main GCSN model's results and predictionsarray of perfect primary dislocations. Every random bound-
since it is the simplest 2D system that contains all pertinenary, has an associated singular boundary and its structure
GB features. However, the model can also be applied as it isonsists of a mixture of domains found in the associated
to the study of arbitrary crystalline and noncrystalline inter-boundary in different translational states; these domains are
faces, epitaxial systems, and in general, any system fdn turn separated by an array of partial secondary disloca-
which a 2D boundary can be constructed as prescribed itions.

Sec. Il. In particular, the GCSN model can be used to study In summary, we have in this paper, the followirig. The
ionic crystals GB'’s, where the introduction of vacancies indetailed atomic structure of GCSaffine fcc (100 twist
the boundary has been shown to reduce the interfacial enegrain boundaries has been obtained in the whole angular
gy* to determine the location of such vacancies; when quarange.(b) An unambiguous criterion for singularity, consis-
sicoincident ions have the same charge, they are replaced bgnt with experimental observations and based entirely on
an ion of that charge or by a vacancy if the charges arghysical (minimum dislocation conteptand numerical ¥
different. These cases shall be the subject of future work. =1) grounds, has been proposég). It has been shown that
every random GCSN GB has a unique associated singular
boundary and a precise association criterion has been given.
V. CONCLUSION (d) It has been described how the structure of any random

In this work the GCSN model has been applied to theboundary is related to that of its associated singular and the
study of fcc Twist{100] grain boundaries under the hypoth- Structure of singular(delimiting) GB’s consists of atomic
esis that there are at least some real systems whose intéfomains with 2DSU’s o =1 separated by a network of
atomic potentials minimize interfacial energy as proposed byerfect primary dislocationge) It has been shown that the
the model and whose structure is therefore well represente®fructure of random GCSN GB's consists of mixtures of such
by it. The result has been a set of quantitative expressiordomains separated by a network of partial secondary dislo-
obtained direct|y from the model's hypotheses’ Concerningations.(f) The Configuration at the atomic level of observed
primary and secondary dislocation spacings and Burgers verfimary and secondary dislocation networks, including dis-
tors that are in complete agreement with both acceptelpcation spacings and Burgers vectors, has been obtained and
theory and experimental observations. This has provided evfound to be in quantitative agreement with experimental ob-
dence supporting the above hypothesis, as well as other préervations.
dictions for which there is no explicit experimental data yet,
such as the propqsed structure of singular and nonsingular ACKNOWLEDGMENTS
(random boundaries. Accordingly, singular boundaries,
which are defined as those boundaries containing only one This work was supported by CONACyT through Grants
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