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Detailed atomic structure of arbitrary fcc †100‡ twist grain boundaries
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The generalized coincidence site network model has been applied to the study of fcc twist@100# grain
boundaries. The result has been the detailed atomistic description of general~100! twist grain boundaries,
supported by a set of quantitative expressions obtained directly from the model’s hypotheses concerning
primary and secondary dislocation spacings and Burgers vectors; these are in complete agreement with both
accepted theory and experimental observations. According to the model, singular boundaries, defined as those
boundaries containing only one primary dislocation per coincidence site lattice unit cell, are proposed to be
composed of atomic domains with the structure ofS1, separated by an array of perfect primary dislocations.
Every random boundary has an associated singular boundary and its structure consists of a mixture of domains
found in the associated boundary, in different translational states; these domains are in turn separated by an
array of partial secondary dislocations. A nonsingular boundary therefore contains arrays of both primary and
secondary dislocations.@S0163-1829~99!07803-0#
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I. INTRODUCTION

Most technological applications of metals involve the
use in polycrystalline form. Since many properties of po
crystals depend strongly on phenomena occurring at g
boundaries~GB’s!, there has been a vast amount of work
the past decades attempting to relate the GB structure
properties. A major part of this work has been devoted to
development of geometrical criteria~not explicitly taking
into account the physical interaction between atoms at
interface1! directed at obtaining information about the atom
structure of a GB given the macroscopic degrees of freed
that define the relative orientation of the parent crystals
the boundary plane. Although most available models, suc
those based on the coincidence site lattice~CSL!, the O lat-
tice, and the displacement shift complete~DSC! lattice, have
succeeded in accounting for the properties of singular G
~GBs with special properties!, they have failed to provide
their detailed atomic structure, which has had to be infer
from computer simulations. Although such calculations ha
provided important insight into the relation between the G
structure and properties,2 they are restricted by their discre
nature. Thus the general problem of relating the structure
properties of arbitrary~random! boundaries, by far the mos
abundant, has had limited attention, which has been one
tor preventing the development of the field of grain bound
crystallography.

Recently, a structural model that could aid in the solut
of the above limitation, called the generalized coinciden
site network ~GCSN!, has been introduced.3,4 The GCSN
model generalizes the coincidence site lattice model5 by re-
placing the strict coincidence criterion by one of quasico
cidence. This definition allows the study of grain boundar
using the mathematical framework developed in recent ye
for quasicrystals,6 thus unifying both fields. The quasicoinc
dence criterion on its own, however, is not what makes
GCSN distinct and useful; the model’s key feature lies in
way in which grain boundaries~bicrystals! are built. Con-
trary to the usual construction of merely juxtaposing tw
crystal slabs, GCSN bicrystals have a distinct GB volu
PRB 590163-1829/99/59~7!/5134~8!/$15.00
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with atoms at positions determined by quasicoincident si
which are assumed to minimize the elastic energy at the
terface, a hypothesis to be verifieda posterioriboth empiri-
cally and numerically.

Although the GCSN model contains an explicit assum
tion concerning atomic relaxations at the interface, so tha
cannot be considered as purely geometrical,1 it cannot pre-
dict which GBs will turn out to have comparatively lowe
energies. The model merely supplies a starting atomic c
figuration for each GB that is expected to be near a lo
minimum for most common~central! potentials used to
model fcc metals. To determine which boundaries are en
getically preferred, one must perform atomistic calculatio
on GCSN bicrystals using a suitable potential. Such calcu
tions, performed using a variety of potentials,7–10 have
shown11 that indeed GCSN bicrystals are, for all the pote
tials used, close to an energy minimum and that the orig
structure remains basically unaltered upon relaxation. Ho
ever, although the relaxed structures obtained from differ
potentials are basically indistinguishable from one anoth
the actual energy vs misorientation curves show substa
differences, even for the same metal.11 For this reason, al-
though GCSN structures are found to be stable for all
potentials tried, the final assessment must be based on
ability to account for actual experimental observations rat
than computer simulations.

This paper contains a set of results obtained from
application of the GCSN model to the study of fcc twi
@100# grain boundaries under the hypothesis that there ar
least some real systems ‘‘affine’’ to the model whose int
atomic potentials minimize interfacial energy as proposed
the model and whose structure is therefore well represe
by it. The fact that the structure of GCSN bicrystals rema
basically unaltered upon relaxation, preliminarily suppo
this hypothesis, although the strongest piece of evidenc
provided by the quantitative results described in this pap

In the following sections it will be shown that GCSN
grain boundaries reproduce quantitatively important exp
mental observations about the structure of primary and s
ondary GB dislocation networks. We also introduce a de
5134 ©1999 The American Physical Society
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PRB 59 5135DETAILED ATOMIC STRUCTURE OF ARBITRARY fcc . . .
nition of singularity based on minimum dislocation conte
and report other fundamental predictions concerning the
tailed atomic structure of singular~delimiting! and random
~intervening! boundaries, as well as the angular range o
which the structure of delimiting boundaries extends.

II. GCSN MODEL

In what follows we shall give a brief nonmathematic
description of the GCSN model for self-containment p
poses. For a more rigorous treatment the reader is referre
previously published papers.6,4

A. GCSN bicrystal

The coincidence site lattice model,5 considers points com
mon to both lattices as points of good fit and assumes
special boundaries arise when the reciprocal of the densit
coincidence sites~denoted byS) is low. The GCSN model is
also defined as a set of points of good fit between two
tices, but here the strict coincidence requirement of the C
is replaced by one of ‘‘quasicoincidence’’ defined as follow
Two points~one in each lattice! are quasicoincident if they
both lie in the intersection of their respective Wigner-Se
cells. A more intuitive definition is that two points, or site
are quasicoincident if each is the only nearest neighbor of
other and their distance is less than the sum of the radii of
atoms that occupy the sites. The GCSN is then defined a
set of middle or average points between quasicoincid
pairs. It must be noted that although the term lattice has b
used, the definition of the GCSN does not require the in
penetrating structures to be periodic, thus allowing the c
struction of crystal-quasicrystal and quasicrystal-quasicry
interfaces.

Since the quasicoincidence criterion is obviously met
strictly coincident points, the GCSN contains the associa
CSL, but more importantly it also contains its decorati
~see Fig. 4!. Thus, for decorated lattices the GCSN yields t
detailed atomic structure of the boundary including the p
mary and secondary dislocation networks. Note that in c
trast to the CSL, the GCSN remains well defined when
tangent of the misorientation angle is irrational, although
this case the GCSN set will be an aperiodic network rat
than a lattice.3,6

A GCSN bicrystal is built as follows.~a! Two arbitrary
lattices are brought together with a common origin and o
of them is rotated through a given axis/angle pair. Optio
ally, one of the lattices can be further displaced by an a
trary vector.~b! A boundary slab with nonzero thickness~the
GB thickness is normally set to one interplanar spacing! is
defined passing through the origin for convenience.~c! All
lattice points inside the boundary are replaced by the GC
set as defined above.~d! All remaining points of lattice 1
~lattice 2! above~below! the boundary are removed, leavin
only the points of lattice 2~lattice 1! that have not been use
to generate a GCSN point in the boundary.

In the specific case of twist boundaries with low ind
rotational axes, all boundary atoms lie on a single pla
@Figs. 1~b! and 3#. On the other hand, when the bounda
normal is not a low index crystallographic plane, the p
relaxed boundary zone may have finite thickness, as sh
in Fig. 1~c!.
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B. Elastic energy minimization

It must be noted that the above prescription differs fro
the one commonly used to model bicrystals,12 where two
crystal slabs are just juxtaposed on either side of the bou
ary as shown in Fig. 1~a!. Thus, in contrast to the usua
construction, the prerelaxed boundary in a GCSN bicrys
contains atomic sites that, except for coincidences, do
belong to either crystal.13

This difference is crucial and lies at the heart of t
model. In a GCSN bicrystal, every atom in the boundary
located at the middle point between two quasicoincident s
~overlapping atoms! from the parent lattices. The middl
point is a compromise location between the slightly differe
positions each crystal atom would occupy in its own lattice
there were no interface. This causes the atoms in the bo
ary to act as an elastic cushion that provides a smooth t
sition between the two adjacent crystals. As a result, whe
GCSN bicrystal is relaxed, the atoms in the boundary a
nearby crystals change their positions only very slightly~see
Fig. 2!, leaving the GB structure practically unaltered.11

Based on the above, the GCSN model should provid
fair representation of the GB structure of any system
which the GCSN energy minimizing mechanism holds tr
~presumably most close packed metals! or any system whose
structure can be modeled by a central potential. Althou

FIG. 1. ~a! Common bicrystal construction with two juxtapose
crystal slabs.~b! GCSN bicrystal with a distinct boundary region~in
gray!. ~c! Left, tilt bicrystal with boundary atoms in gray; right, sid
view of boundary atoms.

FIG. 2. Superimposed plots of atoms in the random bound
(u523.62°) before and after static relaxation carried out using
Ni potential of Bristowe and Crocker.



t
de
di
a
ur
m

lo
th

b
pl
cc
e
G

g
e
ci

is
oo

t
in
h
i

fr
As

tin
lis
ll

n
ax

r-

se-

jor
is-

-
e at
of
is

f

ray

c-

ins,
ites,
se
re-
nal

hen
s.

n

ea

s:

he

5136 PRB 59ROMEU, BELTRÁN-del-RIO, ARAGÓN, AND GÓMEZ
we reiterate, a final assessment of the validity of this sta
ment and the determination of what systems are well
scribed by the model requires the comparison of the pre
tions of the model with experimental observations. For
such systems, the GCSN model allows the basic struct
features of their GBs to be studied without recourse to co
puter calculations, making it possible to perform crystal
graphic studies on arbitrarily large boundaries over
whole angular range.

III. STRUCTURE OF SINGULAR BOUNDARIES

A. Primary dislocations

As an example of a useful calculation that can now
performed over the whole angular range, Fig. 3 shows a
of the GB atomic density vs misorientation angle for f
@100# twist boundaries, calculated with an accuracy of on
hundredth of a degree. The plot describes the number of
sites~quasicoincident pairs! found in a fixed circular section
of the boundary plane with a diameter of 30 lattice spacin

Note that the plot, which properly normalized describ
all cubic lattices, has sharp peaks and troughs at spe
coincidence misorientations with the values ofS indicated in
the figure. Although at this point, no physical significance
attributed to this plot other than being a measure of the g
fit or registry between two rotated~100! crystal planes, it
turns out that both major peaks and troughs reproduce
orientations of low-energy singular boundaries found
some real systems. This is evidenced by the fact that t
coincide with the orientations identified as most probable
MgO twist bicrystal experiments.14,15Although these experi-
mental results differ somewhat, the highest observed
quencies coincide with the peaks and troughs of Fig. 3.
suming that these orientations identify special~singular!
boundaries, if a physical property could be found that dis
guishes them from all others, it could be possible to estab
a definition of singularity that might prove to be valid for a
cubic ~100! twist boundaries.

According to Ranganathan,16 a CSL is generated whe
one lattice is rotated with respect to the other around an
^h,k,l & through the angle

FIG. 3. Normalized plot of the atomic density vs the misorie
tation angle in degrees for fcc@100# twist boundaries calculated
every one-hundredth of a degree. The numbers next to the p
identify the corresponding values ofS.
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u52 tan21SAN
y

xD , ~1!

with x and y relatively prime integers,N5h21k21 l 2, and
S5x21Ny2 ~divided by two untilS is odd!. Using these
definitions, major peaks in Fig. 3 (N51) are found at angles
un for which y51 andx52n11, while troughs occur when
x52n, n51,2, . . . . Therefore, all special orientations co
respond to coincidence boundaries for whichy51 andSn
52n212n11 for peaks andSn54n211 for troughs.
Equivalent results have been obtained for@110# and @111#
twist and tilt boundaries, but they shall be described el
where.

It turns out that the calculated boundaries of all ma
peaks (x odd! are composed of square atomic domains d
posed in a checkered pattern, containingn and n11 atoms
on the edge~see Fig. 4!. As the misorientation angle in
creases, the size of the domains decreases from infinit
S1(u50°) to the smallest possible square domains
S5(u536.87°) with only one and two atoms on edge. Th
is exemplified in Figs. 4~a!–4~c! showing the structures o
S5, S41, andS61 (n51, 4, and 5), respectively. In Fig. 4
the circles represent general GCSN atoms, with dark g
circles marking coincidence positions. The CSL andO lattice
unit cells are also drawn with thick and thin lines, respe
tively. In the case of troughs@Figs. 4~d! and 4~e!#, the bound-
ary is also composed of a small number of atomic doma
but not all of them are square and some have vacant s
which accounts for their low density. We shall discuss the
vacancies below, but first we must make the important
mark that all boundaries in Fig. 4 belong to the translatio
state defined as type 2 by Bristowe and Crocker.17 The
GCSN model always produces structures in this state w
there is no relative translation between the parent lattice

In terms of the integersx andy, theO lattice basis vectors
are given~in the standard fcc basis with theZ coordinate
omitted! by

-

ks

FIG. 4. ~a!–~e! Atomic structures ofS5, S41,S61,S17, and
S37, respectively.~f! S37 with vacant sites removed. Open circle
normal GB atoms; dark gray circles, CSL nodes; thin lines,O lat-
tice unit cell; thick lines, CSL unit cell. Light gray atoms inS5
mark atomic patterns also found inS17. Dark squares inS41 (n
54) highlight atomic domains with four and five atoms on t
edge.
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O15
1

4y
~x1y,y2x!,

~2!

O25
1

4y
~x2y,x1y!.

When x and y have different parity~troughs!, the CSL is
parallel to theO lattice with basis vectors given by

c15
1

2
~x1y,y2x!,

~3!

c25
1

2
~x2y,x1y!.

Whenx andy are both odd~peaks!, the CSL is inclined 45°
to theO lattice and its unit cell vectors are

c15
1

2
~x,y!, ~4!

c25
1

2
~y,2x!.

Figure 4 shows that atomic domains always have anO
point at their center and that they are delimited by an ar
line defects known as primary grain boundary dislocatio
Here the GCSN model has passed its first test in reprodu
the well known fact that primary dislocation lines lie alon
the edges of the Wigner-Seitz lattice of theO lattice and
mark the regions where the atomic fit is at its worse.18 A
good measure of this misfit is the distance between the o
lapping~quasicoincident! crystal atoms that gave rise to ea
GCSN atom in the boundary. This separation increases
early from zero at the domain center to a maximum of h
an atomic diameter at the domain edge, where the disloca
line lies. Note that, in accordance with Bollmann, the d
tance between primary dislocations in singular GC
boundaries, and hence between domains, is a vector of tO
lattice. Another point of agreement with established theor
that primary dislocations have crystalline Burgers vector1

2

@110#, as verified by performing a Burgers circuit goin
through both crystals.

B. Definition of singularity

Since the size ratios of the CSL and O lattice unit vect
are 2y andA2y for the parallel and inclined states, respe
tively @Eqs. ~2!–~4!#, it follows that asy increases, so doe
the density ofO points within the CSL unit cell, with the
consequent decrease in domain size~good fit regions! and
increase in primary dislocation content. It is then reasona
to assume that the boundaries for whichy51 owe their sin-
gularity to the fact that they have the smallest possible va
of y and therefore the minimum dislocation content per C
unit cell. Also, in Sec. IV we shall see that wheny.1 ~a
general GB!, an additional network of secondary dislocatio
appears in the boundary, increasing its complexity and p
sumably its energy.

Two important points must be kept in mind. Notwith
standing its variable size, all the domains found in spe
y
.
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boundaries have the structure of a@100# crystal plane (S1)
and all special boundaries contain atomic patterns or t
dimensional structural units~2DSU’s!, found in adjacent
special boundaries. To see this, compare the light gray at
of S5 in Fig. 4~a! with the atomic patterns of the adjace
special boundaryS17 in Fig. 4~d!.

We shall now discuss the origin of the large differences
GB density. In the trivial situation (u50), every atom in one
crystal lattice is paired with exactly one fully coincide
atom in the other. This means that when overlapping ato
are replaced by single atoms at intermediate points, the n
ber of GCSN sites equals the number of atoms each cry
had in the intersection volume, i.e., in the GB region. In th
case, the density of the GB is equal to that of the crystal,
maximum possible. In the general case, there is a numbe
atomic sites, which varies with the angle, that do not hav
quasicoincident partner in the other lattice and cannot g
rise to a GCSN atom. These ‘‘orphan’’ atoms are invariab
located at positions where the atomic fit is worse and re
in a void or vacancy near them. The peaks of Fig. 3 occu
the relative orientations for which the number of quasico
cident pairs is maximized, while at troughs, the contrary
curs.

It is possible to fill the voids in the boundary by repeati
the quasicoincidence pairing process using only the sites
remained unpaired during the first iteration or by leaving
orphan atoms as part of the boundary. The result of carry
out such an operation is shown in Fig. 4~f!, which is to be
compared with its ‘‘unfilled’’ counterpart of Fig. 4~e!. Al-
though these extra atoms are too close to other boun
atoms, giving rise to zones of relatively high strain, calcu
tions have shown11 that a smaller energy value is often o
tained when these sites are filled. However, due to the lo
strain at these sites, it is possible that even lower-ene
values could be obtained if they are occupied by atoms o
different species; this would turn them into preferential si
for impurity segregation. If this is so, then low-density sp
cial boundaries might have different properties, such as
fusion coefficients, from the ones giving rise to peaks. T
would imply that GB’s that have a singular behavior unde
given property such as minimum dislocation content m
appear to be random under another. We are at present c
ing out calculations to clarify this point.

IV. STRUCTURE OF RANDOM „GENERAL … BOUNDARIES

In what follows we will show that any random~nonsin-
gular! GB can be associated with a singular boundary of
type described in the preceding section. We will then see
the structure of the arbitrary GB is composed of a mixture
the structural units of the associated singular boundary
different translational states.

A. Associated singular boundary

As it will become clear below, a useful insight into th
structure of general GCSN boundaries can be obtained if
regards random boundaries as coincidence boundaries o
bitrarily long periods. Since the set of rational numbers
dense, any random GB with a measured misorientation a
uarb can be approximated, according to Eq.~1!, to any de-
gree of accuracy by 2tan21(p/q) for some relatively prime
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integersp and q; note thatN51 for the ~100! twist case
under consideration. This means that, given a tolerance,
ery GB can be thought of as a coincidence boundary wit

Sarb5p21q2 ~5!

if p andq have different parities and

Sarb5
1

2
~p21q2! ~6!

otherwise. The decisive step is to express the ratior 5p/q in
terms of the integersx andc as

r[r x,c,p[
1

x1c/p
, ~7!

with x defined as

x5RFq

pG5RF1Y tanS uarb

2 D G , ~8!

R@ # being the nearest integer function andc

c5q2px. ~9!

The positive integerx labels the singular (y51) boundary
Sx at the special misorientation angle

ux52 tan21S 1

xD ~10!

that is to be associated to the arbitrary boundarySarb
[Sx,c,p . If one writes the denominator of Eq.~7! asx85x
1c/p, then the termc/p ~which need not be rational! repre-
sents a deviation parameter from the associated sing
boundarySx .

Given that the choicep,q is not unique, this approac
would appear to lead to an ambiguous description of GB
Experimentally, however, this is not the case since all
evant quantities will ultimately depend on the deviation p
rameterc/p and x, which are well defined quantities. Th
important point is that, theoretically, one has direct acces
the internal variablesp and c, which are directly related to
the detailed structure of all twist GB’s.

B. Structure of random boundaries

Assume that tan(uarb) is restricted to be a rational numbe
and consider the sequence of coincidence boundaries$r x,c,p%
obtained by varyingp while keepingc and x fixed. At the
one end, whenp51, r x,c,151/(x1c) and uarb5ux1c ,
which is by definition a singular boundary (Sx1c) sincex
1c is an integer. At the other end, asp→`, r x,c,p→1/x and
uarb→ux , which is the special boundarySx associated with
the randomSarb . Therefore,$r x,c,p% generates a sequence
~intervening! boundaries$Sx,c,p% in the interval (ux ,ux1c)
between the special~delimiting! boundariesSx1c and Sx .
There is one such sequence for every value ofc, although
they have only formal interest sincec ~and hence the delim
iting angleux1c) cannot be determined experimentally an
as it will be seen shortly, the structure of any boundary
completely determined by the structure of the associa
boundarySx .
v-

lar

.
l-
-

to

,
s
d

Note thatSarb[Sx,c,p→` as ux,c,p→ux , which means
that the period of intervening boundaries grows without limi
as they approachux . This should come as no surprise since
as we have seen, also the period of singular boundariesSx

diverges asux→0. This is a trivial result for singular bound-
aries and it means that the distance between primary dis
cations, which is an increasing functionSx , grows without
limit as one approachesS1 at ux50. In the case of random
boundaries, the distance between secondary dislocations
also an increasing function of the periodSx,c,p and conse-
quently it must also diverge upon approachingSx .

From the comparative observation of GCSN twist bound
aries over the whole angular range (0°245°), a fundamental
result emerges. Every nonsingular (y.1) GB is composed
of a mixture of two sets of isostructural atomic domains ar
ranged in a checkered pattern that has the periodicity of th
nonsingular CSL (Sx,c,p). The domains in each set have the
same structure of the associatedSx special boundary, but
they are in different translational states.17

As an example, Fig. 5~a! shows the atomic structure of the
nonsingular boundaryS53[S3,1,2 located atu3,1,2531.89°
between the singular boundariesS17[S4 and S5[S3 .
This boundary is the second (p52) element of the sequence
$S3,1,p% and is composed of two sets of atomic domains. Fo
easy identification, the atoms in the first set have been fille
with two levels of gray, while the atoms in the second set ar
represented with unfilled circles. Note that the domains o
the first set have the structure of theS5 type 2 boundary
shown in Fig. 5~a!, while those of the second set have the
structure ofS5 type CSL, shown in detail in Fig. 5~f!. This
boundary was constructed using the same misorientati
angle of S5 (36.87°) but with one crystal shifted by the
vector 1

2 (d11d2), whered15(3,1)/10 andd25(1,23)/10
are the unit vectors of the associatedS5 DSC lattice.19,17

The DSC lattice basis vectors are the same vectors of t
CSL @Eqs.~3! and~4!# divided byS and for singular bound-
aries they can be expressed as

FIG. 5. Some GB’s associated withS5: ~a! S53 without vacan-
cies,~b! S53 with vacancies,~c! S185, ~d! and ~e! wire frames of
S461 andS1189 with lines joining atoms separated one lattice
spacing or less, and~f! S5 in the translational state type CSL. Gray
atoms, atomic domains in the type 2 translational state; thick line
CSL vectors; thin lines, average position of partial secondary G
dislocations.
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d15
1

x211
~x,1!,

~11!

d25
1

x211
~1,2x!,

whenx,y are both odd and

d15
1

2~x211!
~x11,12x!

~12!

d25
1

2~x211!
~x21,x11!,

otherwise. In either case

ud1u5ud2u5~2S!21/2. ~13!

Figure 5~a! shows the randomS53 with its vacant sites
filled. If the vacancies are not filled, the boundary struct
looks as shown in Fig. 5~b!, where one can see that the no
incomplete light gray domains have the structure ofS17
[S4 of Fig. 4~d!, which is also shown in its unfilled state
This is a general result. Every twist GB~with or without
vacancies! contains a mixture of atomic patterns~2DSU’s!
from the two special boundariesux andux11 between which
it lies, this being a direct consequence of the fact that ev
singular boundarySx contains atomic patterns ofSx11, as
described in Sec. III A.

The same conclusion is arrived at in the structural mo
of Vitek and Sutton20 according to which all GB’s in a cer
tain misorientation range delimited by two short peri
GB’s, are composed of mixtures of structural elements t
belong to these boundaries. The delimiting boundaries
then called favored if they are not themselves, compose
units from other boundaries. In Vitek and Sutton’s mod
delimiting boundaries are assumed to be periodic bounda
with low S and their role is equivalent to the singularSx
boundaries of this work, although in our case, no restrict
is made on the size ofSx , which can be very large fo
small-angle boundaries. This model was later extended
twist boundaries21 and generalized for cubic systems.22 Al-
though the main assertion of the two models is identic
there are important differences, one of them being that
limiting boundaries are automatically produced by the GC
model and do not have to be determined from considerat
outside the model. Another important difference lies in t
nature of the structural units, which is necessarily differ
due to the different models of bicrystal used. In particular
would be very difficult to detect atomic domains in differe
translational states using the usual bicrystal construction

C. Secondary grain boundary dislocations

The arrangement of the domains within the CSL depe
only on x andc, i.e., on the particular sequence the rand
GB belongs to. All boundaries in a given sequence$Sx,c,p%
remain topologically identical asp increases, the only chang
being the size of the domains. This is exemplified in F
5~c!, which shows the fourth member (p54) of the same
e
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(x53,c51) sequence:S1855S3,1,4 at u3,1,4534.21°. Note
that the domains have increased in size, but their struc
and relative position within the CSL have remained u
changed. Note also that adjacent domains always merge
herently, so that domain limits are not easily determin
from a two-dimensional~2D! diagram alone.

To illustrate what the differences between different s
quences,~different c! are, Figs. 5~d! and 5~e! show the
boundaries S461[S3,2,9, u3,2,9534.48° and S1189
[S3,3,9, u3,3,9533.72°, also associated withS5 (x53 for
all of them! but belonging to thec52 andc53 sequences
respectively. In view of the large size of the CSL unit ce
these boundaries are shown as wire frames for clarity.
gether, Figs. 5~a!–5~e! illustrate that there are alwaysucu
atomic domains of a given translational state along both
edge and diagonal of the CSL unit cell.

Since CSL type atomic domains appear after displac
one crystal lattice byb56(d16d2)/2, the thin lines drawn
between domains in Figs. 5~a!–5~e! represent dislocation
lines with the Burgers vectorb. It is important to note thatd1
and d2 belong to the DSC lattice of the singular bounda
Sx , not to the DSC lattice of the arbitrarySx,c,p , and thatb
is always parallel to the dislocation lines, which implies th
these dislocations have a screw character, a fact that
accordance with experimental observations.19

Using Eqs.~11! and ~12!, it can be seen that the Burge
vector b has a very simple expression~in the standard fcc
lattice! in terms of the misorientation angle of the associa
singular boundaryux :

b15
d11d2

2
5

1

2~x211!
~x11,12x!,

b25
d12d2

2
5

1

2~x211!
~x21,x11!, ~14!

ubu5ub1u5ub2u5
1

A2
sinS ux

2 D5
1

2ASx

for x odd and

b15
d11d2

2
5

1

x211
~x,1!,

b25
d12d2

2
5

1

x211
~1,2x!, ~15!

ubu5ub1u5ub2u5sinS ux

2 D5
1

ASx

otherwise. It is well known18 that secondary dislocation
with DSC Burgers vectors appear in arbitrary GB’s as a
sult of the angular difference with a nearby special G
Sinceb is not a DSC lattice vector, the dislocations in Fig.
cannot be perfect secondary dislocations but partials, an
is the stacking fault associated with partial dislocations t
is responsible for the different structures of adjacent
mains. Neighboring isostructural domains are themsel
shifted with respect to each other by the vectors of the D
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lattice d1 and d2 ; hence the observed partial dislocatio
must be interpreted as the dissociation products of per
secondary dislocations separating isostructural domains.

D. Secondary dislocations spacing

While discussing the structure of singular boundaries
mentioned that the relative sizes of the CSL andO lattice are
given by 2p when the two lattices are inclined andA2p
when they are parallel. This means that there are exa
2pO lattice vectors along the edge or diagonal of the C
unit cell, depending on orientation, and that there areucu
isostructural domains along both the edge and diagona
the CSL cell. It then follows that the average distance
tween partial secondary dislocations~separating domains! is
given by the reciprocal of the deviation parameterup/cu
times the size of theO lattice basis vectors, i.e.,

d5uouUpcU5uou
tan~ux,c,p/2!

12x tan~ux,c,p/2!
, ~16!

whereuou is the size of theO lattice vectors andux,c,p is the
measured misorientation angle. With the aid of Eq.~2!, Eq.
~16! can be expressed in terms of the misorientation an
ux,c,p and the lattice parametera as

d5
A2a

4 S 1

cos~ux,c,p/2!2x sin~ux,c,p/2! D . ~17!

Note that for special boundaries (ux,c,p5ux), the devia-
tion parameter is zero and cos(ux/2)5xsin(ux/2) , so that the
distance between partial secondary dislocations become
finite, as expected. Figure 6 shows a plot ofd vs ux,c,p as
given by Eq. ~17! vs misorientation. This exact equatio
completes, for the whole angular range, the plot of Fig. 6
Ref. 19, obtained using a small-angle approximation.

The secondary dislocation spacing can also be given
terms of the angular deviation from exact coincidenceDu
5ux2ux,c,p as

d5
A2a

4

sin~ux/2!

sin~Du/2!
. ~18!

FIG. 6. Distance between secondary grain boundary dislocat
in reduced units vs the misorientation angle. Note that the dista
between dislocations diverges at the orientations of singular de
iting boundaries.
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This expression, which has been directly derived from
model, quantitatively reproduces the experimental data
Balluffi et al.,summarized in Ref. 19, as is easily verified b
comparing its values with the results described therein.
pressingd in terms of the Burgers vectorb defined above
andDu, one obtains

d5
A2

4

ubu
sin~Du/2!

, d5
1

4

ubu
sin~Du/2!

~19!

for the inclined (x odd! and parallel (x even! states, respec
tively. If Du!1, these equations reduce to

d5
A2

2

ubu
Du

, d5
1

2

ubu
Du

~20!

which, replacingubu by the more accurate expressionubu/2,
coincide for the parallel case with the value ford given in
Eq. ~2! of Ref. 19, which disregards the relative orientatio
of the O and CSL lattices.

Knowing that the structure of random twist boundaries
determined by that of its associated singular boundary,
interesting to enquire as to the angular range over which
structure of singular boundaries extends. Figure 7 show
semilogarithmic plot ofSx vs uarb illustrating that this range
depends monotonically onS and that it is larger for smalle
S.

Note that Eqs.~16!–~20! are independent of the interna
variablesp and c and contain only observable quantitie
Their quantitative agreement with both experimental obs
vations and accepted theory constitutes the strongest pie
evidence in favor of the GCSN model and the hypothe
made therein for the fcc~100! twist case studied here, a
though the above results are geometrically identical and p
sibly valid in principle for any cubic system, subject to th
constrictions mentioned in previous sections.

As a final word on the structure of random boundaries,
shall mention that their structure is not modified when o
crystal is shifted with respect to the other byb, the only
change being that the two sets of domains interchange p
tions, the energy of the boundary remaining practically
same after shifting.11

ns
ce
-

FIG. 7. Semilogarithmic plot ofSx versus the angle in degree
indicating the range over which the structure of singular bounda
is maintained in the two-dimensional structural units of fcc@100#
twist grain boundaries.
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In this paper we have chosen the fcc@100# twist case to
illustrate the main GCSN model’s results and predictio
since it is the simplest 2D system that contains all pertin
GB features. However, the model can also be applied as
to the study of arbitrary crystalline and noncrystalline int
faces, epitaxial systems, and in general, any system
which a 2D boundary can be constructed as prescribe
Sec. II. In particular, the GCSN model can be used to st
ionic crystals GB’s, where the introduction of vacancies
the boundary has been shown to reduce the interfacial e
gy23 to determine the location of such vacancies; when q
sicoincident ions have the same charge, they are replace
an ion of that charge or by a vacancy if the charges
different. These cases shall be the subject of future work

V. CONCLUSION

In this work the GCSN model has been applied to
study of fcc Twist@100# grain boundaries under the hypot
esis that there are at least some real systems whose
atomic potentials minimize interfacial energy as proposed
the model and whose structure is therefore well represe
by it. The result has been a set of quantitative express
obtained directly from the model’s hypotheses, concern
primary and secondary dislocation spacings and Burgers
tors that are in complete agreement with both accep
theory and experimental observations. This has provided
dence supporting the above hypothesis, as well as other
dictions for which there is no explicit experimental data y
such as the proposed structure of singular and nonsing
~random! boundaries. Accordingly, singular boundarie
which are defined as those boundaries containing only
primary dislocation per CSL unit cell~or, equivalently, no
secondary dislocations!, are proposed to be composed
l
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atomic domains with the structure ofS1, separated by an
array of perfect primary dislocations. Every random boun
ary, has an associated singular boundary and its struc
consists of a mixture of domains found in the associa
boundary in different translational states; these domains
in turn separated by an array of partial secondary dislo
tions.

In summary, we have in this paper, the following.~a! The
detailed atomic structure of GCSN~affine! fcc ~100! twist
grain boundaries has been obtained in the whole ang
range.~b! An unambiguous criterion for singularity, consis
tent with experimental observations and based entirely
physical ~minimum dislocation content! and numerical (y
51) grounds, has been proposed.~c! It has been shown tha
every random GCSN GB has a unique associated sing
boundary and a precise association criterion has been gi
~d! It has been described how the structure of any rand
boundary is related to that of its associated singular and
structure of singular~delimiting! GB’s consists of atomic
domains with 2DSU’s ofS51 separated by a network o
perfect primary dislocations.~e! It has been shown that th
structure of random GCSN GB’s consists of mixtures of su
domains separated by a network of partial secondary di
cations.~f! The configuration at the atomic level of observ
primary and secondary dislocation networks, including d
location spacings and Burgers vectors, has been obtained
found to be in quantitative agreement with experimental
servations.
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