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Dispersion of polar optical phonons in wurtzite quantum wells
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Dispersion relations for polar optical phonon modes in wurtzite quantum W@WU¢'s) are obtained in the
framework of the dielectric continuum model. It is found that anisotropy of the dielectric medium causes a
number of qualitative peculiarities in the phonon spectra. Among these are the absence of the proper confine-
ment for the oscillatory waves located in the QW, inversion of the order of symmetric and antisymmetric
guasiconfined optical modes, formation of the finite energy intervals where such confined modes—which are
found to be dispersive—can exist, penetration of the half-space phonons into the QW, etc. Some additional
peculiarities, such as appearance of propagating modes, strong dispersion of long-wavelength half-space
modes, and reduction of the number of interface modes, arise as a result of overlapping characteristic phonon
frequencies of the surrounding material and the material of QW. Predicted phonon behavior leads to the
conclusion that dependence of dielectric properties of ternary-binary low-dimensional wurtzite heterostructures
on composition can serve as a powerful tool for the purposes of phonon spectrum engineering. In order to
illustrate these results, the optical phonon spectra are calculated fop a4 g5/ GaN/Aly 1:Gay gsN QW,
an AIN/GaN/AIN QW, and for a GaN dielectric slaf50163-18289)05907-X]

I. INTRODUCTION Il is devoted to the derivation of the optical-phonon modes
in wurtzite dielectric slabs and QW'’s. Results are discussed
High optical efficiency and strong atomic bonding, which in Sec. IV and summarized in Sec. V.

are characteristics of GaN, make this material attractive as a
basis _for the creatloq of reliable h|gh_—power devices able to Il. ASSUMPTIONS
work in extreme environmental conditions. Recent progress
achieved in growth technology, such as the growth of high- We take thez axis along the direction of the crystallo-
quality GaN on sapphire substrates using AIN buffeess  graphicc axis, which is assumed to be perpendicular to the
well as the creation of a blue laser diode based on G@é#d.  heterointerfaces. The width of the well dsand thez coor-
2) have stimulated a new wave of interest in the nitrides. Indinates of the interfaces ared/2. The frequency-dependent
this material system with hexagonal symmetry, opticaldielectric functions are
phonons play a dominant role in energy dissipation processes

as a result of the difference in anion and cation masses. As is 02— w2 02— o2
known for the case of zinc-blende materials, the presence of e(w)= E;O_LZ, e(w)= ef—“, (1)
heterointerfaces dramatically changes the spectrum of the 2—w§ wz_wtz

optical vibrations and leads to the appearance of the con-

fined, interface, and half-space modd3ue to the dielectric wherew,,, ®,, o, ande, are the characteristic frequen-
anisotropy caused by the lower symmetry of the wurtzitescies of A (LO), A,(TO), E;(LO), and E(TO) modes, re-
one can expect that the spectrum of optical phonons iRpectively. The subscrifitdenotes the direction perpendicu-
wurtzite-based low-dimensional structures will manifest|ar to thez axis. We assume that, for a given material, the
some additional peculiarities. Since knowledge of the photejation €;=¢; is satisfied with good accuracy.

n(r)]n specltra innanostructures dis nheces:;ary to llmd((ajrstand The phonon potential is taken to have the forbr)
phonon-electron interactions and other phonon-relate prqéq)(z)e‘q'”, Whereﬁ andﬁ are the two-dimensional phonon
cesses, we investigate the characteristics of polar optical vij- d th di ol
brations in wurtzite heterostructures in the present pape}’.vave vector and the radius vector in pangy(),_ respec-
) . N tively. We will consider the case of free oscillations:
Particularly, we specify these peculiarities for a case when
the optical axis is perpendicular to the heterointerface using a
free-standing GaN quantum well/slaiFSQW and .
Al,Ga _,N/GaN/Al,Ga, N heterostructures as an illustra- V-D=
tion. Our treatment is based on the approach developed by
Loudorf for uniaxial crystals and the macroscopic dielectric . .
continuum mode? 4 P with standard boundary conditioBC's) for the z compo-
The paper is organized as follows. General remarks rebent of the displacement vectdrand the tangential compo-

garding details of the approach are given in Sec. Il. Sectioment of the electric fielE at the interfaces:

(92

€z(w)g—€t(w)q2 @(r)=0, @)
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oD ,(2) D 4(2) interface and, consequently, to the penetration of a phonon
— €2,(w) 97 =—€(w) 97 ) with frequencyw into medium 2. For this account, we define
z=5ai2 z=%di2 C modes in a wurtzite-based QW as modes that satisfy the
P P - 3 conditions of Eqs(6a) and (6b) in media 1 and 2, respec-
2D)]z=5a2=P1(2) |- 702 ) tively. Thus, confinement for the phonon modes in a wurtzite
Throughout this paper, we will use index 1 for the materialQW (c[z) means that the modes are localizedundrather
of the QW and index 2 for the surrounding material. then confined inside an embedded QW and are characterized

In a crystal with wurtzite structure, there are two types ofby finite dispersion that leads to the formation of a band of
phonon wave$:(a) ordinary waves, where for any angie  allowed frequenmes. _ N
between the phonon wave vectore («,,q) and thec axis, For the confined modes, by applying the additional BC
both the electric fielcE a»nd the polarizatio® are perpen- Dy(2)|,.5=0 (7)
dicular to thec axis andx simultaneously, angb) extraor-

_ . . _ = > one can obtain the following set of equations:
dinary waves, for which the orientation & and P with

respect tac and thec axis is more complicated. Assumiiy Qmi[né, cog aQp) — &1 siN(aQpy) JA
andP o«e/(x'T=“) and neglecting retardation effects, the or- .
dinary phonons become the transverse lattice vibrations rela- +[—péssin(aQm) — & €0t aQpy) 1B} =0,
tive to thec axis and haveE=0. In light of this fact, the Qui[ — &, co% aQpy) + &; sin(aQ,) JA
present article will consider only extraordinary phonons for
which E|| - « for the given assumptions. +[— pé, sin(aQy) — & cog aQ,,) 1B} =0, (8)
The dispersion relation for the extraordinary bulk .
phonons isp Y where M:S|gr[51z(w)fzz(w)]: §1=V| e (0)en(w)], &
= V| €2(w) €x(w)], a=3 | €e1(w)/ €1,(w)], Qu=0nd, and
e(w)sir? 6+ e,(w)cog 6=0. (4 m is the quantum number for even and odd confined modes.

To find the full system of nontrivial solutions fo®,
=Q(w), we transform the set of equations denoted by Eq.
(8) into

For the chosen geometry, E@) reduces to
e()9%+ e ) k2=0. (5

Herein, we assume that bothand » are real and positive. sifaQn+ u arctar &, /£,)]=0
This implies that thez component of the phonon wave vec-
tor, x,, can be either purely real or purely imaginary de-
pending on the sign of,e; in each medium. Thus, we have

for antisymmetric modegA=0), 9

sifaQp—parctarié,/§;)]=0
€(w)e(w)<0, Imk,]=0 for oscillating waves,

(63 for symmetric modegB=0).
and Finally, the dispersion relation becomes
e(w)e(w)>0, Rdk,]=0 for decaying waves. Q4 =[mm—parctari&, /&) ]/ a
(6b)
) » for antisymmetric modes
At each givenw, the conditions of Eq96a) and(6b) deter-
mine the character of the modes in each redioconfined, (m=123... and 0 if u=-1), (10

interface, eto.
Qi =[mm+ parctani &,/ &,) ]/ a
1Il. OPTICAL PHONON MODES IN WURTZITE for symmetric modes

QUANTUM WELLS
A. Confined modes (m=1,23... and 0 if u=1).

In an optically isotropic QW, proper confinement of the  The dispersion relation for a FSQW can be obtained by
phonon modes is possible since the BC's for the oscillatoryetiing £,=1 in Eq. (10). It is straightforward to show that
waves in the QW require zero potential both at the interfacgq; the isotropic case, the dispersion relation of Ef0)
and throughout medium 2. As a result, the confif@  {ransforms to the well-known discrete valuesgf. Indeed,
modes have no dispersion and are characterized by d|scre(r§King into account that for an isotropic mediufp=0 and
values of the phonon wavenumbgrBreaking of the spheri- a=1/2, we havey,=m’ 7/d+q(w) with m’=1,35... for
cal dielectric symmetry, however, forbids the existence ofg, oo andm’n;z 46... for antisymmetric modes, re-
the dispersionless confined waves since for this case, t ectively. ' '
condition e(w)=¢,(w)=€(w)=0 cannot be satisfied.

Moreover, since the anisotropy of frequency-dependent di-

electric function implies el’zz(w)sé0|q¢0 and eq,(w)

# €5,(w), the BC's of Eq.(3) for a mode spatially localized The interface(IF) modes are the evanescent modes with
in the z direction inevitably lead to finite potential at the maximum amplitude at the interfaces. For these modes, the

B. Interface modes
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requiremente,,€,,<0 must be satisfied along with the con- where the uppetlower) signs correspond to negatiyposi-
dition of Eqg.(6b) in both media. Applying appropriate BC's tive) z. With this result, Eq(13) can be transformed into the
for the interface modes, the dispersion relation can be founbllowing system of equations:

2 x(Asin(aQ)+BcogaQ))=0, (16)
2 L |&1té : .
Q*=3In = f /a for antisymmetric modes, x(—Asin(aQ)+B cog aQ))=0,
1D with
1 1&6+6 . ¢
S=—| la f des. _ 1
Q°=5In g, o for symmetric modes X_l_’ug_z' (17

The resqnant Eequency for IF modes can be obtained fron?,he conditiony=0 corresponds to the dispersionless solu-
the relation¢é;=¢,. For a wurtzite FSQW, as beforé, tion w=w’. At this “frequency of transparency” waves

With any values ofy>0 will “propagate” through the QW.

ropy, Eq.(11) transforms to the dispersion relation known Finally, the dispersion relation for propagating modes re-

for zinc-blende QW'S.

duces to
C. Propagating modes m' o
. . . 1=—— for w# o’ 18
Overlapping of the characteristic phonon frequencies cre- Qm 2 wre (18
ates conditions for the appearance of so-called propagating. . .
PP bropag \%Ith m’'=1,3,5... for antisymmetric modes andn’

(P) modes for which the requirement of E¢a must be —24 f i d

satisfied in both media. In the absence of damping, however, < ... for symmetric modes. . .

the BC of Eq.(7) cannot be applied for a given case. Nev- These requts are as expected. From the collinearity re-
ertheless, to obtain the dispersion relation for the propagatingél;/reme”t for« andE and the BC's forE; andD,, it fol-
modes we can use an additional requirement. In the absené@ws that at an interface

of retardation, it can be shown that the propagating extraor-
K2z €1 w)

dinary waves obey the condition kX E=0.* 2oy , (19)
The chosen symmetry of the problem leads to K1z €24(®)
J0(r) J0(r) which, for u=1, immediately yields the conditiory=0,
K, —q =0. (12) since k,= \&(w)/ €,(w)q. The frequency of & mode can
ap 0z differ from o’ if and only if the condition
Then, the BC for the tangential component of the electric?®1(2)/ 92|, == dP(2)/ 92| ;- z4,=0 is satisfied, i.e.,
field can be rewritten as when thez component of the electric field vanishes at the
interface providing for the fulfillment of both BC’s and col-
1 9D,(2) 1 0d4(2) linearity independently of the components of the dielectric
ﬁ 0z T4 oz - =0, (13  tensor. In that case, the solution is given by Etp).
z==df2 z==df2 In QW’s made from isotropic materials there are Ro
where 8=3\|ex(w)/€,,(w)|. From Egs.(2) and (3), the modes defined above. Indeed, substitutifg— e;(w),
potentials in media 1 and 2 are found to be &,— e,(w) in Eq. (16) we find that the only possible solution

. would correspond to the casedf(w, o) = €>(w o)=0, i.e.,
®4(z2)=Acog2aQnz/d)+Bsin(2aQnz/d), (14  when the materials 1 and 2 are identical. The only exception
is for the hypothetical case, which would correspond to ei-

and ther different TO frequencies in both materials or coinci-
& dence of the LO frequencies of of@ more modes in het-
b,y(2)= t(,u—cos(ﬁ Q)sin(aQ)—coq aQ)sin(BQ) |A erostructures made of materials with multimode behavior of
& the phonon branches.
&1
+ MS—ZCOS{B Q)coga Q) D. Half-space modes
We define half-space modes as the modes that should sat-
+sin(,8Q)sin(aQ))B sin(28Qz/d) isfy the conditions of Eqs(6b) and (6a) in media 1 and 2,
respectively. This definition is dictated by the fact that con-
¢ ditions ®,(*d/2)=0 andd®,(z)/dz|,- + 4»=0 must be ex-
+ (,u—1sin(0[Q)sin(,3Q)jL cog aQ)cog BQ) |A cluded from consideration because in both these cases the
& BC'’s can be satisfied only fay=0.
( & General solutions in media 1 and 2 can be represented as
| nz-cogaQ)sin(BQ)
& ®,(z)=Acost2aQz/d)+B sinh(2aQz/d),

cog28Qzd), (15 d,(z)=acog2BQ2z/d)+bsin(28Q2zd). (20

- sin(aQ)cos(BQ)) B
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TABLE I. Material parameters.

Material w, (cm™ ) w, (cm™ ) L (cm™1) wy (cm™ 1) €

GaN? 735 533 743 561 5.29
AIN? 893 660 916 673 4.68
Al 15 g NP 772 544 783 570 5.20

3Reference 6.
bReference 7.
“The value ofe” fot the ternary compound was estimated by the linear interpolation.

Applying the BC'’s of Eq.(3) for these potentials and taking rameters of the QWuw, d, and e;(w). Therefore, the an-
into account that for symmetri¢antisymmetri¢ solution  isotropy of the dielectric media provide unique possibilities
both coefficientsB andb (A anda) are equal to zero we to influence the dispersion of HS modes varying the appro-
found the dispersion relations for HS modes to be priate parameters of the QW.

—mm=0 IV. POLAR MODES IN NITRIDE-BASED
HETEROSTRUCTURES: DISCUSSION

BQE— 1 arctar{?tanf( aQg)
1

for antisymmetric modes, (21) Compared to the dielectrically isotropic case, a few sig-
nificant peculiarities appear in the optical phonon spectra.
s & s The main source of these peculiarities is the inseparable re-
BQmn+ u arcta g—tanr(an) lation between the phonon wave number and its frequency
2 given by condition of Eq(5). This relation together with the
for symmetric modes. BCs determine the beha\_/ior of the polar p.ho_non modes in
finite energy intervals defined by characteristic phonon fre-
In Eq. (21), m=1,2,34... and 0O for thecases when a solu- quencies. Since the energy intervals allocated to each of the
tion Qq(w)#0 can exist in any of the allocated frequency types of phonon modes can be regulated by composition
intervals. variations, investigation of the effect of these variations on
The HS modes in a heterostructure formed by opticallyphonon spectra is very important for understanding of
isotropic media are the oscillatory waves in medium 2 withphonon-related processes in wurtzite-based heterostructures.
zero potential at the interfaces. This implies no optical vibradn this section, we illustrate peculiarities of composition-
tions inside of the QW. The latter circumstance makes idependent phonon spectra in wurtzite low-dimensional struc-
impossible to obtain the dispersion relation in terms of patures for the example of AIN/GaN-based QW's.

—mmw=0

a,i
740 ' —_— 9
—————————————————— f———
s,2
720 .
700 .
680 4
660 .
‘_/\
|
£ 640 4
(3]
S
S 620 GaN FSQW -
600 .
580 -
560
5401

FIG. 1. Dispersion of the polar optical phonons in GaN FSQW. Only four confined modes are shown in each interval. The modes are
identified according to both symmetry and quantum number. The characteristic frequencies are shown by the dashed lines. The dotted line
indicates resonant frequency for the IF mode.



PRB 59 DISPERSION OF POLAR OPTICAL PHONONS IN ... 5017

FIG. 2. Dispersion of the polar optical phonons in a ternary-binary system. Only a few confined, propagating, and half-space modes are
shown in each corresponding interval. The modes are identified according to both symmetry and quantum number. The characteristic
frequencies are shown by the dashed lines. The dotted line indicates the resonant frequency fomibe@elFThe dot-dashed line indicates
the frequency of transparenay .

Parameters of the materials are given in Table I. The valand an AlGa _,N/GaN/ALGa,_ N QW with x=0.15 are
ues of composition-dependent characteristic frequencies &hown on Figs. 1 and 2, respectively. Sincecatl the dis-
x=0.15 were estimated taking into account the one-mod@ersion in intervalw e[ wy- - - w, ] is qualitatively the
behavior of the polar modes in Aba _,N.® Dispersion same as in case af=0.15, only the low-energy optical pho-
curves for the optical phonon modes in a GaN dielectric slatmon modes in AIN/GaN/AIN QW are shown on Fig. 3.

s,1
== } T T al ' 5.0 m2t
BEOf ————~-——————-——-—-—-—- - - - - - S -—=-————====—1 D,
640 1
AIN/GaN QW
620 "
o~
i)
£
3600 '
3
580 T
s
[0)
BE0fF~—memmeee = = — — - — — e m m —— —————— = — = —— = — = 471t
5,2
a,0 s
540 3
1 ! 1 1 T (01Z
0 2 4 6 8 10 12
qd

FIG. 3. Low-energy part of the dispersion of the polar optical phonons in AIN-GaN QW. Only a few confined, and half-space modes are
shown in each corresponding interval. The modes are identified according to both symmetry and quantum number. The characteristic
frequencies are shown by the dashed lines. The dotted line indicates resonant frequency for the IF
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For a symmetrical AIN/GaN/AIN QW as well as for a dependent frequency overlap, leads to discretization of the

GaN FSQW,C modes exist intwo frequency intervals \ygve vectoﬁ at the frequencys,,. At this frequency, sym-

[0, --@y] (C)) and [y, - - 01 ](Cyy). However, it metric, with q,,= m(m—1/2)/a(w,,), and antisymmetric,
follows from the composition-dependent Raman shift of the;i, q=mm/a(w,,), C modes Mm=1,23...) transform
characteristic frequencies of infrared active modes in ternary,, - thn(; antisymmeztr}c withn’ = 1,35 . andsymmetric

-9 .
AIXG%*XN compounds th_at_ at appropriate values githe with m'=2,46..., propagating modes, respectively. It
ternary-binary system exhibits the peculiar feature of OVEeI_ suld be pointed out that althou hea, the wave numbers
lapping TO-like frequency intervalsw,- - - w]. Due to this P ghead,

overlap, the intervaC, reduces td w4, - - w,,] as shown in of al C T"O.d.es Withm>0 arg]linite, the decay length in this
Fig. 2. case is |nf|n|t¢ sm.cezz(al)zz) =0. o

In a wurtzite heterostructure, the wave vector of the con- N @ wurtzite dielectric slab, two IF modes exist in the
fined phonons becomes frequency dependent; i.e., it is chaf®auency intevelwy;- - - wy ] Atthe same time, tge AIN/
acterized by appropriate dispersion. In the inte@al(C,,), GQN/AIN QW would mamfesfqur interface modeé._ Two
the antisymmetric modes witin=0 correspond to the low- Pairs of modes are found in two frequency intervals:
est(highes} energy at a given. The quantum numbencan  [@1t..@2,] (IF)) and[wyy - - - w2, ] (IFy;). For the case of
take any integer valu@nd zero for the antisymmetric mode X=0.15, however, the relation,,< wy, is satisfied so that
for both symmetric and antisymmetric modes. Confinemeninverted interval IlF now corresponds to the propagating
of the modes is characterized by leakage of the potentiahodes. As a result, onlyvo IF modes located in the interval
from the QW and depends strongly on the frequency. ThidF,, can exist for such a heterostructure. The values of reso-
dependence is illustrated on Fig. 4 where the decay length inant frequencies are 711.8 and 758.5 ¢nfor the slab and
medium 2 is taken as a measure of confinement. As showfernary-binary system, respectively. A1, these frequen-
on Fig. 4, confinement of the modes of higher order is muctties are approximately 589.7 ¢rh (interval IR) and 838.4
stronger with respect to the modes with=0 and increases cm™! (interval IR,).
with increasingq for all the modes. At the same time, com- |t should be emphasized that although the condition of Eq.
pared to the mode witm=0 in the intervalC,, , the lowest (6b) is satisfied forw [ wy- - - w1 ,], NO polar modes can
mode in the intervalC; manifests significantly stronger lo- exist in this frequency interval since tazeomponents of the
calization. dielectric tensor have the same sign in both media. In fact,

The modem=0 in the intervalC;, exhibits unique behav- this feature of the ternary-binary wurtzite heterostructures
ior. At the resonant frequenay'®*=wy, , this mode has a allows the formation of relatively wide composition-
finite value ofq=(2/d) €1,(w1y )/ éx(w1y) (With ;=1 for  dependent energy gagaround 8 meV ak=1 and 21 meV
the case of FSQWand the highest energy among all the at x=0.15) forbidden for the polar optical oscillations. One
other confined modes. In an embedded QW and at the sam@n expect that the appearance of such gaps in optical-
resonant frequency this mode transforms to the antisymmephonon spectra should influence scattering processes in the
ric IF mode. As shown on Fig. 4, a finite value of the waveQW, especially when the characteristic energy of the elec-
vector as well as absence of singularities'sgp1 ande,, at  tron transitions is of the order of the width of a phonon-free
the resonant frequency implies reduced localization for thidband.
mode compared to all the other modesuas . Note that in the case shown on Fig. 2, two IF modes exist

Shrinking of the regiorC,, induced by the composition- in a quite narrow energy interval and are characterized by
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low values of group velocity. At the same time, the energymetric modes. As a result, dispersion of the long-wavelength
interval occupied by the IF modes in the GaN FSQW isHS phonons in the interval H®lramatically increases. This
much wider and the strong dispersion of the symmetric mod@eculiarity opens the way to influence strongly the group
in the long-wavelength range suggests that the IF phonons welocity of these modes by variation of the composition.

the FSQW conduct more energy along the well. In general, Except for the IF and dispersionleBsmodes, the exis-
for the given system, an increasexreads to redistribution tence of the appropriate phonon modes in a given interval is
of the energy transferred by IF phonons so that at higheindependent onu. It is interesting, however, that the value
values ofx the antisymmetric modes become the main en-of this parameter can determine the symmetry of a particular

ergy carriers. mode. This, in turn, can strongly influence the electron-
Besides the narrowing of the interv@| which is accom-  phonon interaction at given energy.
panied by limitation of the lowest allowegl values withm Finally, the analysis made in this section leads to the con-

>0 and the decrease in the number of IF modes, the overlaglusion that the features of the wurtzite-based heterostruc-
of the characteristic frequencies leads to the appearance tfres, as well as the dependence of these features on compo-
propagating modes in the optical phonon spectrunwat sition, gave rise to new possibilities for phonon spectrum
e[w,, - - wq1;]. As shown on Fig. 2P modes are character- engineering in various optoelectronic applications.

ized by a dispersive quantized spectrum where at each par-

ticular energy, the state with the lowegtorresponds to the V. SUMMARY

antisymmetric mode withm’ =1. Quantization of the spec- . . .
trum is caused by the requirement of collinearity for the pho- We_ have,consndered spectra of the _opt|cal_ p_honons In
non wave vector and the electric field for the waves propayvurtz't.e QW's for the case when th_e optical axis is parallel
gating in uniaxial crystal under conditions when retardationto the interface. These spectra manifest a number of features

effects can be neglected. This requirement implies an extrec-aused by the anisotropy of the dielectric properties of the

mum in the phonon potential at the interfaces for almost alfmadla as well as the composition-dependent overlap of char-

the frequencies where the propagating modes can exist. Aff).'cteristic phonon frequencies of the QW and the surrounding

exception is the “frequency of transparencyy’, indicated g}aéﬁgi’ﬂ';: Izt;?: ng(’)rgrf}itagoggglrgaﬁgsth:ccea?ozzg\:ivrg g:;i dgr-
by the dot-dashed line in Fig. 2. At this particular frequency, y ’ P P

which can be estimated as’' ~556.05 cm® for the case sive and characterized by the leakage of the potential through
represented on Fig. 2, waves witH arbitrapycan “propa- the interfaces. The depth of the potentiall tails strongly de-
gate” through the QW. For phonons oscillating with fre- pends on frequency and the order of a given mode, so that

quency,e’, the productc,e, is invariant. It is worth noting spatial localization of the long-wavelength phonons is very

that conditions for the existence of such dispersionless wavevéleak‘ The symmetry (.)f a m(_)de IS detgrmmed by t_he signs of

can be satisfied only for positive Zcomponents pf the dleleptrlc tensors in both media. _Overlap

When the characteristic frequéncies of each medium ar characteristic frequencies reduces the number of interface

separated in energy, the HS modes exist in two intervalsr:nOdeS’ strongly influences the dlspers!on Of. HS ahq

HS (we[o 0x]) and HS, (e [w 0y ]). If modes, and leads to the appearance of dispersive and disper-
2z -+ - W2t | 2zL -+ - - W2tLd)-

. sionless propagating modes with frequency of transparenc
a frequency overlap occurs, the interval \H®duces to propagating 9 y P y

. - determined by conservation of the quantéty, .
[wlt. .- - Wx]. The HS mo_des als_o manlfest very S.pec'f'c be- The predicted existence of the “frequency of transpar-
havior. Contrary to the isotropic case, in wurtzite hetero-

structures the dispersion relation for these modes can be o ney,” the dispersive nature of propagating, half-space and

tained in terms of the parameters of the QW. Due to eakly localized confined modes, as well as the
penetration of the HS phonons into the QW, the modes arcomposmon-dependent width of the intervals where particu-

; far modes can exist, appearance of forbidden gaps for the
%’olar optical vibrations, and variation of phonon-assisted en-
ergy transport along the QW are some of the unique features
3l phonons in confined wurtzite systems that have not yet
been observed experimentally. These features portend many
interesting applications of confined wurtzite semiconductor
structures in both optoelectronic and electronic technology.

lowest, in terms of quantum numbemn, HS modes in the
intervals H$ and HS, have different symmetry: the anti-
symmetric mode wittm=0 is absent in the intervdilS,, .
This peculiarity also holds at=1.

As follows from the dispersion relation of EqR1), the
frequency overlap leads to discretization of thealues at
frequencywq; according to the relation®=mr/B(w4;) for This study was supported, in part, by the U.S. Army Re-
antisymmetric modes an@=7(m—1/2)/B(w,;) for sym-  search Office and by the Office of Naval Research.
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