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Dispersion of polar optical phonons in wurtzite quantum wells
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Dispersion relations for polar optical phonon modes in wurtzite quantum wells~QW’s! are obtained in the
framework of the dielectric continuum model. It is found that anisotropy of the dielectric medium causes a
number of qualitative peculiarities in the phonon spectra. Among these are the absence of the proper confine-
ment for the oscillatory waves located in the QW, inversion of the order of symmetric and antisymmetric
quasiconfined optical modes, formation of the finite energy intervals where such confined modes—which are
found to be dispersive—can exist, penetration of the half-space phonons into the QW, etc. Some additional
peculiarities, such as appearance of propagating modes, strong dispersion of long-wavelength half-space
modes, and reduction of the number of interface modes, arise as a result of overlapping characteristic phonon
frequencies of the surrounding material and the material of QW. Predicted phonon behavior leads to the
conclusion that dependence of dielectric properties of ternary-binary low-dimensional wurtzite heterostructures
on composition can serve as a powerful tool for the purposes of phonon spectrum engineering. In order to
illustrate these results, the optical phonon spectra are calculated for an Al0.15Ga0.85N/GaN/Al0.15Ga0.85N QW,
an AlN/GaN/AlN QW, and for a GaN dielectric slab.@S0163-1829~99!05907-X#
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I. INTRODUCTION

High optical efficiency and strong atomic bonding, whi
are characteristics of GaN, make this material attractive
basis for the creation of reliable high-power devices able
work in extreme environmental conditions. Recent progr
achieved in growth technology, such as the growth of hi
quality GaN on sapphire substrates using AlN buffers,1 as
well as the creation of a blue laser diode based on GaN~Ref.
2! have stimulated a new wave of interest in the nitrides.
this material system with hexagonal symmetry, opti
phonons play a dominant role in energy dissipation proce
as a result of the difference in anion and cation masses. A
known for the case of zinc-blende materials, the presenc
heterointerfaces dramatically changes the spectrum of
optical vibrations and leads to the appearance of the c
fined, interface, and half-space modes.3 Due to the dielectric
anisotropy caused by the lower symmetry of the wurtzit
one can expect that the spectrum of optical phonons
wurtzite-based low-dimensional structures will manife
some additional peculiarities. Since knowledge of the p
non spectra in nanostructures is necessary to unders
phonon-electron interactions and other phonon-related
cesses, we investigate the characteristics of polar optica
brations in wurtzite heterostructures in the present pa
Particularly, we specify these peculiarities for a case wh
the optical axis is perpendicular to the heterointerface usin
free-standing GaN quantum well/slab~FSQW! and
Al xGa12xN/GaN/AlxGa12xN heterostructures as an illustra
tion. Our treatment is based on the approach developed
Loudon4 for uniaxial crystals and the macroscopic dielect
continuum model.5

The paper is organized as follows. General remarks
garding details of the approach are given in Sec. II. Sec
PRB 590163-1829/99/59~7!/5013~8!/$15.00
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III is devoted to the derivation of the optical-phonon mod
in wurtzite dielectric slabs and QW’s. Results are discus
in Sec. IV and summarized in Sec. V.

II. ASSUMPTIONS

We take thez axis along the direction of the crystallo
graphicc axis, which is assumed to be perpendicular to
heterointerfaces. The width of the well isd and thez coor-
dinates of the interfaces are7d/2. The frequency-dependen
dielectric functions are

ez~v!5ez
`
v22vLz

2

v22vz
2

, e t~v!5e t
`
v22vLt

2

v22v t
2

, ~1!

wherevLz , vz , vLt , andv t are the characteristic frequen
cies of A1(LO), A1(TO), E1(LO), and E1(TO) modes, re-
spectively. The subscriptt denotes the direction perpendicu
lar to thez axis. We assume that, for a given material, t
relationez

`5e t
` is satisfied with good accuracy.

The phonon potential is taken to have the formF(r )
5F(z)eiqW •rW , whereqW andrW are the two-dimensional phono
wave vector and the radius vector in plane (x,y), respec-
tively. We will consider the case of free oscillations:

¹•DW 5F ez~v!
]2

]z2
2e t~v!q2GF~r !50, ~2!

with standard boundary conditions~BC’s! for the z compo-
nent of the displacement vectorDW and the tangential compo
nent of the electric fieldEW at the interfaces:
5013 ©1999 The American Physical Society
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2e2z~v!
]F2~z!

]z U
z57d/2

52e1z~v!
]F1~z!

]z U
z57d/2

,

F2~z!uz57d/25F1~z!uz57d/2 . ~3!

Throughout this paper, we will use index 1 for the mater
of the QW and index 2 for the surrounding material.

In a crystal with wurtzite structure, there are two types
phonon waves:4 ~a! ordinary waves, where for any angleu
between the phonon wave vectorkW 5(kW z ,qW ) and thec axis,
both the electric fieldEW and the polarizationPW are perpen-
dicular to thec axis andkW simultaneously, and~b! extraor-
dinary waves, for which the orientation ofEW and PW with
respect tokW and thec axis is more complicated. AssumingEW

andPW }ei (kW •rW2vt) and neglecting retardation effects, the o
dinary phonons become the transverse lattice vibrations r
tive to thec axis and haveEW 50. In light of this fact, the
present article will consider only extraordinary phonons
which EW i2kW for the given assumptions.

The dispersion relation for the extraordinary bu
phonons is

e t~v!sin2 u1ez~v!cos2 u50. ~4!

For the chosen geometry, Eq.~4! reduces to

e t~v!q21ez~v!kz
250. ~5!

Herein, we assume that bothq andv are real and positive
This implies that thez component of the phonon wave ve
tor, kz , can be either purely real or purely imaginary d
pending on the sign ofeze t in each medium. Thus, we hav

ez~v!e t~v!,0, Im@kz#50 for oscillating waves,
~6a!

and

ez~v!e t~v!.0, Re@kz#50 for decaying waves.
~6b!

At each givenv, the conditions of Eqs.~6a! and~6b! deter-
mine the character of the modes in each region~confined,
interface, etc.!.

III. OPTICAL PHONON MODES IN WURTZITE
QUANTUM WELLS

A. Confined modes

In an optically isotropic QW, proper confinement of th
phonon modes is possible since the BC’s for the oscillat
waves in the QW require zero potential both at the interf
and throughout medium 2. As a result, the confined~C!
modes have no dispersion and are characterized by dis
values of the phonon wavenumberq. Breaking of the spheri-
cal dielectric symmetry, however, forbids the existence
the dispersionless confined waves since for this case,
condition e t(v)5ez(v)5e(v)50 cannot be satisfied
Moreover, since the anisotropy of frequency-dependent
electric function implies e1,2z(v)Þ0uqÞ0 and e1z(v)
Þe2z(v), the BC’s of Eq.~3! for a mode spatially localized
in the z direction inevitably lead to finite potential at th
l
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interface and, consequently, to the penetration of a pho
with frequencyv into medium 2. For this account, we defin
C modes in a wurtzite-based QW as modes that satisfy
conditions of Eqs.~6a! and ~6b! in media 1 and 2, respec
tively. Thus, confinement for the phonon modes in a wurtz
QW (ciz) means that the modes are localizedaroundrather
then confined inside an embedded QW and are characte
by finite dispersion that leads to the formation of a band
allowed frequencies.

For the confined modes, by applying the additional BC

F2~z!uz→7`50 ~7!

one can obtain the following set of equations:

Qm$@mj2 cos~aQm!2j1 sin~aQm!#A

1@2mj2 sin~aQm!2j1 cos~aQm!#B%50,

Qm$@2mj2 cos~aQm!1j1 sin~aQm!#A

1@2mj2 sin~aQm!2j1 cos~aQm!#B%50, ~8!

where m5sign@e1z(v)e2z(v)#, j15Aue1z(v)e1t(v)u, j2

5Aue2z(v)e2t(v)u, a5 1
2 Aue1,t(v)/e1,z(v)u, Qm5qmd, and

m is the quantum number for even and odd confined mod
To find the full system of nontrivial solutions forQm
5Qm(v), we transform the set of equations denoted by E
~8! into

sin@aQm1m arctan~j1 /j2!#50

for antisymmetric modes~A50!, ~9!

sin@aQm2m arctan~j2 /j1!#50

for symmetric modes~B50!.

Finally, the dispersion relation becomes

Qm
a 5@mp2m arctan~j1 /j2!#/a

for antisymmetric modes

~m51,2,3 . . . and 0 if m521!, ~10!

Qm
s 5@mp1m arctan~j2 /j1!#/a

for symmetric modes

~m51,2,3 . . . and 0 if m51!.

The dispersion relation for a FSQW can be obtained
settingj2[1 in Eq. ~10!. It is straightforward to show tha
for the isotropic case, the dispersion relation of Eq.~10!
transforms to the well-known discrete values ofqm . Indeed,
taking into account that for an isotropic mediumj150 and
a51/2, we haveqm8 5m8p/dÞq(v) with m851,3,5 . . . for
symmetric andm852,4,6 . . . for antisymmetric modes, re
spectively.

B. Interface modes

The interface~IF! modes are the evanescent modes w
maximum amplitude at the interfaces. For these modes,
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requiremente1ze2z,0 must be satisfied along with the co
dition of Eq. ~6b! in both media. Applying appropriate BC’
for the interface modes, the dispersion relation can be fo
as

Qa5
1

2
ln Fj11j2

j22j1
G /a for antisymmetric modes ,

~11!

Qs5
1

2
ln Fj11j2

j12j2
G /a for symmetric modes.

The resonant frequency for IF modes can be obtained f
the relationj1[j2 . For a wurtzite FSQW, as before,j2
must be replaced by 1. In the absence of dielectric ani
ropy, Eq. ~11! transforms to the dispersion relation know
for zinc-blende QW’s.3

C. Propagating modes

Overlapping of the characteristic phonon frequencies c
ates conditions for the appearance of so-called propaga
~P! modes for which the requirement of Eq.~6a! must be
satisfied in both media. In the absence of damping, howe
the BC of Eq.~7! cannot be applied for a given case. Ne
ertheless, to obtain the dispersion relation for the propaga
modes we can use an additional requirement. In the abs
of retardation, it can be shown that the propagating extra
dinary waves obey the condition2kW 3EW 50.4

The chosen symmetry of the problem leads to

kz

]F~r !

]r
2q

]F~r !

]z
50. ~12!

Then, the BC for the tangential component of the elec
field can be rewritten as

1

2b

]F2~z!

]z U
z57d/2

2
1

2a

]F1~z!

]z U
z57d/2

50, ~13!

where b5 1
2 Aue2t(v)/e2z(v)u. From Eqs.~2! and ~3!, the

potentials in media 1 and 2 are found to be

F1~z!5A cos~2aQmz/d!1B sin~2aQmz/d!, ~14!

and

F2~z!5F6S m
j1

j2
cos~b Q!sin~aQ!2cos~aQ!sin~bQ! DA

1S m
j1

j2
cos~b Q!cos~a Q!

1sin~bQ!sin~a Q! DBGsin~2bQz/d!

1F S m
j1

j2
sin~aQ!sin~bQ!1 cos~aQ!cos~bQ! DA

6S m
j1

j2
cos~aQ!sin~bQ!

2 sin~aQ!cos~bQ! DBGcos~2bQz/d!, ~15!
d
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t-

-
ng

r,

g
ce
r-

c

where the upper~lower! signs correspond to negative~posi-
tive! z. With this result, Eq.~13! can be transformed into th
following system of equations:

x„A sin~aQ!1B cos~aQ!…50, ~16!

x„2A sin~aQ!1B cos~aQ!)50,

with

x512m
j1

j2
. ~17!

The conditionx50 corresponds to the dispersionless so
tion v5v8. At this ‘‘frequency of transparency’’ waves
with any values ofq.0 will ‘‘propagate’’ through the QW.

Finally, the dispersion relation for propagating modes
duces to

Qm85
m8p

2a
for vÞv8 ~18!

with m851,3,5, . . . for antisymmetric modes andm8
52,4,6, . . . for symmetric modes.

These results are as expected. From the collinearity
quirement forkW andEW and the BC’s forEt andDz , it fol-
lows that at an interface

k2z

k1z
5m

e1z~v!

e2z~v!
, ~19!

which, for m51, immediately yields the conditionx50,
sincekz5Ae t(v)/ez(v)q. The frequency of aP mode can
differ from v8 if and only if the condition
]F1(z)/]zuz57d/25]F2(z)/]zuz57d/250 is satisfied, i.e.,
when thez component of the electric field vanishes at t
interface providing for the fulfillment of both BC’s and co
linearity independently of thez components of the dielectric
tensor. In that case, the solution is given by Eq.~18!.

In QW’s made from isotropic materials there are noP
modes defined above. Indeed, substitutingj1→e1(v),
j2→e2(v) in Eq. ~16! we find that the only possible solutio
would correspond to the case ife1(vLO)5e2(vLO)50, i.e.,
when the materials 1 and 2 are identical. The only excep
is for the hypothetical case, which would correspond to
ther different TO frequencies in both materials or coin
dence of the LO frequencies of one~or more! modes in het-
erostructures made of materials with multimode behavior
the phonon branches.

D. Half-space modes

We define half-space modes as the modes that should
isfy the conditions of Eqs.~6b! and ~6a! in media 1 and 2,
respectively. This definition is dictated by the fact that co
ditionsF2(6d/2)50 and]F2(z)/]zuz57d/250 must be ex-
cluded from consideration because in both these cases
BC’s can be satisfied only forq[0.

General solutions in media 1 and 2 can be represente

F1~z!5A cosh~2aQz/d!1B sinh~2aQz/d!,

F2~z!5a cos~2bQz/d!1b sin~2bQz/d!. ~20!
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TABLE I. Material parameters.

Material vLz (cm21) vz (cm21) vLt (cm21) v t (cm21) e`

GaNa 735 533 743 561 5.29
AlNa 893 660 916 673 4.68
Al0.15Ga0.85N

b 772 544 783 570 5.20c

aReference 6.
bReference 7.
cThe value ofe` fot the ternary compound was estimated by the linear interpolation.
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Applying the BC’s of Eq.~3! for these potentials and takin
into account that for symmetric~antisymmetric! solution
both coefficientsB and b (A and a) are equal to zero we
found the dispersion relations for HS modes to be

bQm
a 2m arctanFj2

j1
tanh~aQm

a !G2mp50

for antisymmetric modes, ~21!

bQm
s 1m arctanFj1

j2
tanh~aQm

s !G2mp50

for symmetric modes.

In Eq. ~21!, m51,2,3,4 . . . and 0 for thecases when a solu
tion Q0(v)Þ0 can exist in any of the allocated frequen
intervals.

The HS modes in a heterostructure formed by optica
isotropic media are the oscillatory waves in medium 2 w
zero potential at the interfaces. This implies no optical vib
tions inside of the QW. The latter circumstance makes
impossible to obtain the dispersion relation in terms of
y

-
it
-

rameters of the QW:a, d, and e1(v). Therefore, the an-
isotropy of the dielectric media provide unique possibiliti
to influence the dispersion of HS modes varying the app
priate parameters of the QW.

IV. POLAR MODES IN NITRIDE-BASED
HETEROSTRUCTURES: DISCUSSION

Compared to the dielectrically isotropic case, a few s
nificant peculiarities appear in the optical phonon spec
The main source of these peculiarities is the inseparable
lation between the phonon wave number and its freque
given by condition of Eq.~5!. This relation together with the
BC’s determine the behavior of the polar phonon modes
finite energy intervals defined by characteristic phonon f
quencies. Since the energy intervals allocated to each of
types of phonon modes can be regulated by composi
variations, investigation of the effect of these variations
phonon spectra is very important for understanding
phonon-related processes in wurtzite-based heterostruct
In this section, we illustrate peculiarities of compositio
dependent phonon spectra in wurtzite low-dimensional str
tures for the example of AlN/GaN-based QW’s.
odes are
dotted line
FIG. 1. Dispersion of the polar optical phonons in GaN FSQW. Only four confined modes are shown in each interval. The m
identified according to both symmetry and quantum number. The characteristic frequencies are shown by the dashed lines. The
indicates resonant frequency for the IF mode.
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FIG. 2. Dispersion of the polar optical phonons in a ternary-binary system. Only a few confined, propagating, and half-space m
shown in each corresponding interval. The modes are identified according to both symmetry and quantum number. The cha
frequencies are shown by the dashed lines. The dotted line indicates the resonant frequency for the IFII mode. The dot-dashed line indicate
the frequency of transparencyv8.
a
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Parameters of the materials are given in Table I. The v
ues of composition-dependent characteristic frequencie
x50.15 were estimated taking into account the one-m
behavior of the polar modes in AlxGa12xN.8 Dispersion
curves for the optical phonon modes in a GaN dielectric s
l-
at
e

b

and an AlxGa12xN/GaN/AlxGa12xN QW with x50.15 are
shown on Figs. 1 and 2, respectively. Since atx51 the dis-
persion in intervalvP@v2t•••v2Lt# is qualitatively the
same as in case ofx50.15, only the low-energy optical pho
non modes in AlN/GaN/AlN QW are shown on Fig. 3.
des are
racteristic
FIG. 3. Low-energy part of the dispersion of the polar optical phonons in AlN-GaN QW. Only a few confined, and half-space mo
shown in each corresponding interval. The modes are identified according to both symmetry and quantum number. The cha
frequencies are shown by the dashed lines. The dotted line indicates resonant frequency for the IFI .
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FIG. 4. Degree of confinement for the con
fined modes withm<2: ~a! interval CI ; ~b! in-
tervalCII . The modes are identified according
both symmetry and quantum number.
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For a symmetrical AlN/GaN/AlN QW as well as for
GaN FSQW, C modes exist intwo frequency intervals
@v1z•••v1t# (CI) and @v1Lz•••v1Lt#(CII ). However, it
follows from the composition-dependent Raman shift of
characteristic frequencies of infrared active modes in tern
Al xGa12xN compounds7–9 that at appropriate values ofx the
ternary-binary system exhibits the peculiar feature of ov
lapping TO-like frequency intervals@vz•••v t#. Due to this
overlap, the intervalCI reduces to@v1z•••v2z# as shown in
Fig. 2.

In a wurtzite heterostructure, the wave vector of the c
fined phonons becomes frequency dependent; i.e., it is c
acterized by appropriate dispersion. In the intervalCI (CII ),
the antisymmetric modes withm50 correspond to the low
est~highest! energy at a givenq. The quantum numberm can
take any integer value~and zero for the antisymmetric mode!
for both symmetric and antisymmetric modes. Confinem
of the modes is characterized by leakage of the poten
from the QW and depends strongly on the frequency. T
dependence is illustrated on Fig. 4 where the decay lengt
medium 2 is taken as a measure of confinement. As sh
on Fig. 4, confinement of the modes of higher order is mu
stronger with respect to the modes withm50 and increases
with increasingq for all the modes. At the same time, com
pared to the mode withm50 in the intervalCII , the lowest
mode in the intervalCI manifests significantly stronger lo
calization.

The modem50 in the intervalCII exhibits unique behav
ior. At the resonant frequencyv res5v1tL , this mode has a
finite value ofq5(2/d)e1z(v1tL)/j2(v1tL) ~with j2[1 for
the case of FSQW! and the highest energy among all th
other confined modes. In an embedded QW and at the s
resonant frequency this mode transforms to the antisymm
ric IF mode. As shown on Fig. 4, a finite value of the wa
vector as well as absence of singularities ine2t

21 and e2z at
the resonant frequency implies reduced localization for
mode compared to all the other modes asv→v res.

Shrinking of the regionCI , induced by the composition
e
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-
ar-
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me
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is

dependent frequency overlap, leads to discretization of

wave vectorqW at the frequencyv2z . At this frequency, sym-
metric, with qm5p(m21/2)/a(v2z), and antisymmetric,
with qm5pm/a(v2z), C modes (m51,2,3 . . . ) transform
into the antisymmetric, withm851,3,5 . . . , andsymmetric,
with m852,4,6 . . . , propagating modes, respectively.
should be pointed out that although atv2z the wave numbers
of all C modes withm.0 are finite, the decay length in thi
case is infinite sincee2z(v2z)

21[0.
In a wurtzite dielectric slab, two IF modes exist in th

frequency interval@v1t•••v1Lz#. At the same time, the AlN/
GaN/AlN QW would manifestfour interface modes.10 Two
pairs of modes are found in two frequency interva
@v1t ..v2z# (IFI) and@v1tL•••v2zL# (IFII ). For the case of
x50.15, however, the relationv2z,v1t is satisfied so that
inverted interval IFI now corresponds to the propagatin
modes. As a result, onlytwo IF modes located in the interva
IFII can exist for such a heterostructure. The values of re
nant frequencies are 711.8 and 758.5 cm21 for the slab and
ternary-binary system, respectively. Atx51, these frequen-
cies are approximately 589.7 cm21 ~interval IFI) and 838.4
cm21 ~interval IFII ).

It should be emphasized that although the condition of
~6b! is satisfied forvP@v2t•••v1Lz#, no polar modes can
exist in this frequency interval since thez components of the
dielectric tensor have the same sign in both media. In f
this feature of the ternary-binary wurtzite heterostructu
allows the formation of relatively wide composition
dependent energy gaps~around 8 meV atx51 and 21 meV
at x50.15) forbidden for the polar optical oscillations. On
can expect that the appearance of such gaps in opt
phonon spectra should influence scattering processes in
QW, especially when the characteristic energy of the el
tron transitions is of the order of the width of a phonon-fr
band.

Note that in the case shown on Fig. 2, two IF modes e
in a quite narrow energy interval and are characterized
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low values of group velocity. At the same time, the ener
interval occupied by the IF modes in the GaN FSQW
much wider and the strong dispersion of the symmetric m
in the long-wavelength range suggests that the IF phonon
the FSQW conduct more energy along the well. In gene
for the given system, an increase inx leads to redistribution
of the energy transferred by IF phonons so that at hig
values ofx the antisymmetric modes become the main
ergy carriers.

Besides the narrowing of the intervalCI which is accom-
panied by limitation of the lowest allowedq values withm
.0 and the decrease in the number of IF modes, the ove
of the characteristic frequencies leads to the appearanc
propagating modes in the optical phonon spectrum av
P@v2z•••v1t#. As shown on Fig. 2,P modes are character
ized by a dispersive quantized spectrum where at each
ticular energy, the state with the lowestq corresponds to the
antisymmetric mode withm851. Quantization of the spec
trum is caused by the requirement of collinearity for the ph
non wave vector and the electric field for the waves pro
gating in uniaxial crystal under conditions when retardat
effects can be neglected. This requirement implies an ex
mum in the phonon potential at the interfaces for almost
the frequencies where the propagating modes can exist
exception is the ‘‘frequency of transparency,’’v8, indicated
by the dot-dashed line in Fig. 2. At this particular frequen
which can be estimated asv8'556.05 cm21 for the case
represented on Fig. 2, waves with arbitraryq can ‘‘propa-
gate’’ through the QW. For phonons oscillating with fr
quency,v8, the productkzez is invariant. It is worth noting
that conditions for the existence of such dispersionless wa
can be satisfied only for positivem.

When the characteristic frequencies of each medium
separated in energy, the HS modes exist in two interv
HSI (vP@v2z . . . v2t#) and HSII (vP@v2zL . . . v2tL#). If
a frequency overlap occurs, the interval HSI reduces to
@v1t . . . v2t#. The HS modes also manifest very specific b
havior. Contrary to the isotropic case, in wurtzite hete
structures the dispersion relation for these modes can be
tained in terms of the parameters of the QW. Due
penetration of the HS phonons into the QW, the modes
expected to have much stronger effect on the scattering
cesses. LikeC modes, the HS modes exist intwo energy
intervals. They are dispersive and quantized. However,
lowest, in terms of quantum numberm, HS modes in the
intervals HSI and HSII have different symmetry: the ant
symmetric mode withm50 is absent in the intervalHSII .
This peculiarity also holds atx51.

As follows from the dispersion relation of Eq.~21!, the
frequency overlap leads to discretization of theq values at
frequencyv1t according to the relationsQ5mp/b(v1t) for
antisymmetric modes andQ5p(m21/2)/b(v1t) for sym-
s.
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metric modes. As a result, dispersion of the long-wavelen
HS phonons in the interval HSI dramatically increases. Thi
peculiarity opens the way to influence strongly the gro
velocity of these modes by variation of the composition.

Except for the IF and dispersionlessP modes, the exis-
tence of the appropriate phonon modes in a given interva
independent onm. It is interesting, however, that the valu
of this parameter can determine the symmetry of a partic
mode. This, in turn, can strongly influence the electro
phonon interaction at given energy.

Finally, the analysis made in this section leads to the c
clusion that the features of the wurtzite-based heterost
tures, as well as the dependence of these features on co
sition, gave rise to new possibilities for phonon spectru
engineering in various optoelectronic applications.

V. SUMMARY

We have considered spectra of the optical phonons
wurtzite QW’s for the case when the optical axis is para
to the interface. These spectra manifest a number of feat
caused by the anisotropy of the dielectric properties of
media as well as the composition-dependent overlap of c
acteristic phonon frequencies of the QW and the surround
material. It is found, that contrary to the case of QW’s ma
of cubic crystals, confined and half-space modes are dis
sive and characterized by the leakage of the potential thro
the interfaces. The depth of the potential tails strongly
pends on frequency and the order of a given mode, so
spatial localization of the long-wavelength phonons is ve
weak. The symmetry of a mode is determined by the sign
z components of the dielectric tensors in both media. Over
in characteristic frequencies reduces the number of inter
modes, strongly influences the dispersion of HS andC
modes, and leads to the appearance of dispersive and di
sionless propagating modes with frequency of transpare
determined by conservation of the quantitye tez .

The predicted existence of the ‘‘frequency of transp
ency,’’ the dispersive nature of propagating, half-space
weakly localized confined modes, as well as t
composition-dependent width of the intervals where parti
lar modes can exist, appearance of forbidden gaps for
polar optical vibrations, and variation of phonon-assisted
ergy transport along the QW are some of the unique featu
of phonons in confined wurtzite systems that have not
been observed experimentally. These features portend m
interesting applications of confined wurtzite semiconduc
structures in both optoelectronic and electronic technolog
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