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Transverse magnetoresistance of the two-dimensional chiral metal
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We consider the two-dimensional chiral metal, which exists at the surface of a layered, three-dimensional
sample exhibiting the integer quantum Hall effect. We calculate its magnetoresistance in response to a com-
ponent of magnetic field perpendicular to the sample surface, in the low temperature, but macroscopic, regime
where inelastic scattering may be neglected. The magnetoresistance is positive, following a Drude form with a
field scaleB05F0 /alel given by the transverse field strength at which one quantum of fluxF0 passes through
a rectangle with sides set by the layer-spacinga and the elastic mean free pathl el . Experimental measurement
of this magnetoresistance may, therefore, provide a direct determination of the elastic mean free path in the
chiral metal.@S0163-1829~99!05807-5#
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I. INTRODUCTION

The existence of a new electronic phase, the tw
dimensional chiral metal, formed at the surface of a layer
three-dimensional quantum Hall conductor has recently b
predicted theoretically,1,2 and confirmed experimentally.3

This chiral metal arises from hybridization of the edge sta
associated with each layer of the quantum Hall conduc
The resulting surface phase is decoupled from states in
bulk of the conductor, which at the Fermi energy must
localized by disorder for the Hall conductance to be qu
tized. The distinguishing characteristics of the phase a
from the fact that electron motion is chiral along the edge
each layer, but diffusive in the direction perpendicular to
layers. In particular, drift in the chiral direction prevents r
peated, phase coherent scattering of an electron from
given impurity, suppressing localization effects complete
outside the mesoscopic regime. By contrast, interference
fects in the mesoscopic regime have a variety of con
quences, which have been investigated theoretically in s
detail.1,2,4–12

Transport measurements are, of course, the obvious
perimental probe of the chiral metal. A surface-response
rent flowing in the chiral direction is associated with t
quantized Hall conductance of the three-dimensional syst
In contrast, surface conductivity in the nonchiral, diffusi
direction depends on microscopic parameters of the sys
the elastic mean free pathl el , the interlayer coupling energ
t, the chiral drift velocityv, and the inelastic scattering ra
t in

21 ; specifically, the mean conductance per squares is
given2 in units of e2/h by s5at2l el /(\v)2. Knowledge of
the amplitude of mesoscopic conductance fluctuations,
gether with sample dimensions, should allow determinat
of the inelastic scattering length.9 The first detailed studies o
this kind3 involved vertical transport in multiquantum we
semiconductor samples; conduction by surface states
provides an interpretation of earlier13 and more recent14 ex-
periments on the bulk quantum Hall effect in semiconduc
PRB 590163-1829/99/59~7!/4999~4!/$15.00
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samples, as well as phenomena in organic metals in str
magnetic fields.15

In this paper we suggest that measurements of the tr
verse magnetoresistance of the chiral metal—the depend
of surface resistance on a magnetic-field componentB' ,
perpendicular to the surface—may be a useful source of
ditional information. As anticipated by Balents and Fishe2

this magnetoresistance is positive. We calculate it in
~macrosccopic! low-temperature regime, in which the inela
tic scattering rate is much smaller than that for elastic sc
tering, obtaining a Drude form

s~B'!5
s~B'50!

11~B' /B0!2
, ~1!

with B05F0 /alel . This result is exact for the model w
study. Its simplicity is a direct consequence of the elimin
tion of multiple-scattering processes by chiral motion. Mo
over, while the value ofs(B'50) depends on two unknown
microscopic quantities, the elastic mean free path and
chiral velocity, the magnetoresistance field scaleB0 involves
only the first of these. Studies of magnetoresistance
hence potentially both a test of our understanding of
chiral metal, and a way to determine separately the value
l el andv.

We give qualitative arguments that lead to our results
Sec. II, present a detailed calculation in Sec. III, and a
remarks bearing on experiment in Sec. IV.

II. MODEL AND QUALITATIVE DISCUSSION

Consider first the edge of a single, two-dimensional la
that has unit-quantized Hall conductance. Under the co
bined influence of the magnetic-field component normal
the layer and the confining potential at the edge of
sample, electrons at the Fermi energy will drift along t
edge, acquiring at most a phase shift from impurity scat
ing or randomness in the position of the edge. Within
4999 ©1999 The American Physical Society
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single particle description, this may be represented using
Hamiltonian

H5vpx1V~x!, ~2!

wherepx is the momentum operator in the direction paral
to the edge. The potentialV(x) includes impurity contribu-
tions, and also generates the Aharonov-Bohm phase
electrons accumulate if their path wanders to enclose m
netic flux because of surface roughness.

By extension,2 the Schro¨dinger equation for a many-laye
sample with a surface in thex-z plane, hopping energyt
between neighboring edges~labeled by integern and sepa-
rated with spacinga), and transverse magnetic fieldB' ,
represented by the vector potentialA5(B'an,0,0), is

~Hc!n~x!5v~2 i\]x1eB'an!cn~x!

2t@cn11~x!1cn21~x!#1Vn~x!cn~x!. ~3!

This is the model that we study in this paper.
There are two limitations of this model that are wor

noting. Both arise from restricting the single-edge problem
one dimension. In doing so we have to worry about the f
that, in semiclassical terms, the guiding center trajectorie
particles with different energies will lie at different distanc
from the bulk of the sample, and will, therefore, experien
different impurity potentials. This has the consequence
the scattering phase shift will depend upon the energy of
state—such an effect is not representable in our model a
will see below. A second, potentially more serious effect
the introduction of a random spatial~x! dependence into the
z-axis hopping on account of the different wanderings of
uncoupled edges in neigboring layers; this is representa
but not included in our model. An extreme case would be
directed network model of Ref. 1, which will lead to ve
different results as we discuss in Sec. IV.

Without impurity scattering or a transverse magnetic fie
the surface states fill a one-sided Fermi sea as sketche
Fig. 1. Impurity scattering generates a finite conductanc1,2

which can be estimated as follows. First, note that eigenfu
tions c(x) of the single-edge Hamiltonian with energyE
have the form

FIG. 1. Fermi sea of chiral metal, with wave vectorskx in the
chiral direction andkz in the interlayer direction.
he
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c~x!5c~0!expS i

\vE0

x

@E2V~x8!#dx8D . ~4!

The phase acquired as a result of the disordered pote
~which is independent of energy as promised!, a(x)
5(1/\v)*0

xV(x8)dx8 is of no importance for a particle
propagating along an isolated edge, but sets the mean
pathl el for a system of coupled edges, this being the dista
an electron must propagate to accumulate a random pha
unit magnitude. Suppose for definiteness that the potentia
the nth edgeVn(x) is Gaussian distributed with short-rang
correlations, so that ^Vn(x)&50 and ^Vn(x)Vm(x8)&
5Ddnmd(x2x8). Then the condition̂ a2(x5 l el)&51 re-
sults in l el5(\v)2/D.

Given the mean free path, it is easy to estimate the di
sion constantD and surface conductivitys in the transverse
direction. Typical velocities in this direction have magnitu
at/\, while the scattering rate isv/ l el , so that

D;S at

\ D 2 l el

v
. ~5!

The density of states in energy is (hv)21 per unit length for
a single edge, and (hva)21 per unit area for the surface, an
hence the Einstein relation gives

s;
e2

h

at2l el

~\v !2
. ~6!

Consider now the effect of a transverse magnetic field
the absence of impurities, the Lorentz force arising from
chiral motion will sweep electrons across the Brillouin zo
in the nonchiral direction, in a time (h/a)/(eB'v). Corre-
spondingly, electrons follow a snaking path in real spa
~Fig. 2! with an amplitudeA for oscillations of their coordi-
nate in the interplane direction, which decreases with
creasingB' , having the dependenceA;t/eB'v. The field
scale for the magnetoresistance is the field strength at w
the period of these oscillations is comparable to the ela
scattering time l el /v from which follows the valueB0

FIG. 2. Trajectory of electrons in real space, in the presence
a transverse component to the magnetic field, with coordinatesx in
the chiral direction andz in the interlayer direction, and oscillation
amplitudeA.
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;h/ealel . At field strengths much smaller than this, the ele
tron scatters too frequently from impurities for its path to
influenced by the transverse magnetic field, while at mu
larger-field strengths its interplane coordinate follows a r
dom walk, with step lengthA and step ratev/ l el . The result-
ing diffusion coefficientD(B');t2/(e2B'

2 v l el) is reduced
from its zero-field value by a factor (B0 /B')2, as is, there-
fore, also the conductivity, producing the large-field behav
of Eq. ~1!.

III. CALCULATION

The disorder-averaged one- and two-particle Gree
functions can be calculated exactly for the chiral metal, p
vided disorder correlations are shortrange, because motio
the chiral direction suppresses repeated scattering from
given impurity. As a result, modeling the impurity potenti
with Gaussian white noise, the one-particle Green’s funct
is given exactly by the Born approximation, and the two
particle function by a sum of ladders. We show below th
corrections to this behavior in a potential with a finite cor
lation lengthl are small in powers ofl/ l el ; they are also
strongly irrelevant~in the renormalization-group sense! to
long-distance properties, as shown by Balents and Fishe2

We simplify notation by introducing the dimensionle
field strengthb5eB'va/t, and choosing units in whicht
5\v51, so that the model@Eq. ~3!# takes the form

~Hc!n~x!52 i ]xcn~x!2@cn11~x!1cn21~x!#

1bncn~x!1Vn~x!cn~x!

[~H0c!n~x!1Vn~x!cn~x!. ~7!

We use a position vectorr5(x,n) with one continuous and
one discrete component. Denoting the Green’s function
g[(z2H)21, we require its disorder average,

G~z;r1 ,r2![^g~z;r1 ,r2!&, ~8!

the diffusion propagator,

K~v;r1 ,r2![^g~v1 i0;r1 ,r2!g~2 i0;r2 ,r1!&, ~9!

and in particular the behavior at small wave vectors of
Fourier transform,

K~v;k![E
2`

`

dx(
n

eik•rK~v;0,r !. ~10!

A first step is to treat the problem without disorder. T
eigenfunctions ofH0 satisfy

~H0c!n~x!5~k1ea!cn~x!, ~11!

with

cn~x!5
1

A2p
eikxfa~n!, ~12!

where

eafa~n!5bnfa~n!2fa~n11!2fa~n21!. ~13!

This equation has the solution
-
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fa~n!5Jn2a~2/b!, ~14!

with ea5ab anda integer, whereJl(x) is the Bessel func-
tion of orderl.

The single-particle Green’s function in the absence of d
orderg0(z)[(z2H0)21 is given by

g0~z;r1 ,r2!5
1

2pE2`

`

dk(
a

eik~x22x1!fa~n!fa~m!

z2~k1ea!
.

~15!

In particular, forIm(z).0,g0(z;r1 ,r2)50 if x2,x1 , while
for x25x1101,g0(z;r1 ,r2)52 idnm .

Disorder generates a self-energy after averaging, whic
diagonal in real space and given in the Born approximat
by

S~z!52 i
D

2
sgn@Im~z!#. ~16!

In order to examine corrections to the Born approximatio
suppose temporarily that the Gaussian distributed poten
Vn(x) is piecewise constant on segments of lengthl, so that
the second cumulant iŝVn(x)Vm(x8)&5(D/l)dn,m , if there
is an integerN for which Nl,x,x8,(N11)l, and zero
otherwise. Self-energy contributions at thepth order are pro-
portional to (D/l)pl2p(g0)2p21, where the factor ofl2p

arises from integration over internal position coordinates,
stricted to an interval of rangel. Restoring dimensionful
units, the pth order contribution is proportional to (l/
l el)

p
•(g0)21, so that only the Born term (p51) need be

retained as (l/ l el)→0. Hence, we have

G~E1 i0;r1 ,r2!5
1

2pE2`

`

dk(
a

eik~x22x1!fa~n!fa~m!

E1 iD/22~k1ea!
.

~17!

Analogous arguments show that the diffusion propaga
is given in the same limit by a sum of ladder diagrams, w
the result that

K~v;k!5
L~v;k!

12DL~v;k!
, ~18!

where

L~v;k!5E
2`

`

dx(
n

eik•rG~v1 i0;0,r !G~2 i0;r ,0!.

~19!

Using Eqs.~13! and ~17!, we obtain

L~v;k!5(
l

Jl
2@4sin~ky/2!/b#

D2 i ~kx1v1 lb !
. ~20!

At small wave vectors this gives the behavior

K~v;k!5
1

i ~v1kx!1Dky
2

, ~21!

with
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D5
2D

D21b2
. ~22!

Using the Einstein relation to obtain the conductivity, w
arrive at our main result: Eq.~1!.16

IV. DISCUSSION

The observability of transverse magnetoresistance
pends on a number of factors. The inelastic scattering
t in

21 must be smaller than the interchain hopping ratet/\ for
transport not simply to be incoherent; and for the theory
have described to applyt in

21 should also be smaller than th
elastic scattering ratev/ l el . The fact that mesoscopic con
ductance fluctuations have been observed3 in transport by
surface states in semiconductor samples seems a good
cation that both these conditions can be met experimen
at low temperature. If this is the case, the remaining con
tion is that the field scaleB0 should not be too large. In orde
that B0 is much smaller than the magnetic field compon
parallel to the sample surface, which is responsible for
bulk quantum Hall effect, we require a clean, flat surface,
that the elastic mean free path satisfiesl el@ l B

2/a, wherel B is
the magnetic length within the layers of the sample, anda is
the interlayer spacing.

We should remark that the intrinsic magnetoresistance
have discussed is distinct from the simple reduction of
interplane matrix element by an in-plane magnetic field, a
lyzed for example in Ref. 17. The dependence of the tun
ing energyt on B' will make a contribution to the magne
toresistance that is additional to the one we calculate,
with a field scale that will be much larger thanB0 if l el
d
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@ l B . The two contributions should be distinguishable
comparing surface magnetoresistances in two configurati
In one, the magnetic-field component that lies within t
plane of the sample layers is directed normal to the sam
surface; in the other, it lies within the surface plane. A ma
netic field normal to the surface should generate a mag
toresistance via both mechanisms, whereas a magnetic
within the surface plane will affect only the interlayer tu
neling energy. A rectangular sample with a large aspect r
would be ideal for such a comparison.

Finally, as noted in the discussion following Eq.~3!, sub-
stantial roughness at the surface may imply that someth
like the directed network model of Ref. 1 is a better descr
tion of the details of transport at the edge. This would lead
a second type of chiral metal, which would exhibitno intrin-
sic magnetoresistance, even in the absence of inelastic
tering. In such a system, interlayer tunneling takes place o
at discrete points, and not continuously in the chiral direct
as in Eq.~3!. If a large random-scattering phase is accum
lated between tunneling points, then a transverse magn
field component can have no effect. Consequently, a
result for the magnetoresistance would plausibly indicate
strong spatial randomness in thez-axis tunneling is essentia
for a proper description of the transport in experimental s
tems.
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