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Transverse magnetoresistance of the two-dimensional chiral metal
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We consider the two-dimensional chiral metal, which exists at the surface of a layered, three-dimensional
sample exhibiting the integer quantum Hall effect. We calculate its magnetoresistance in response to a com-
ponent of magnetic field perpendicular to the sample surface, in the low temperature, but macroscopic, regime
where inelastic scattering may be neglected. The magnetoresistance is positive, following a Drude form with a
field scaleBy,=®,/al given by the transverse field strength at which one quantum offfigipasses through
a rectangle with sides set by the layer-spa@rand the elastic mean free pat. Experimental measurement
of this magnetoresistance may, therefore, provide a direct determination of the elastic mean free path in the
chiral metal [S0163-18299)05807-5

[. INTRODUCTION samples, as well as phenomena in organic metals in strong
magnetic fields?

The existence of a new electronic phase, the two- In this paper we suggest that measurements of the trans-
dimensional chiral metal, formed at the surface of a layeredverse magnetoresistance of the chiral metal—the dependence
three-dimensional quantum Hall conductor has recently bee@f surface resistance on a magnetic-field comporignt
predicted theoretically? and confirmed experimentalfy. ~Perpendicular to the surface—may be a useful source of ad-
This chiral metal arises from hybridization of the edge stateglitional information. As anticipated by Balents and Fisher,
associated with each layer of the quantum Hall conductorthis magnetoresistance is positive. We calculate it in the

The resulting surface phase is decoupled from states in tHEn&crosccopiclow-temperature regime, in which the inelas-
bulk of the conductor, which at the Fermi energy must peliC scattering rate is much smaller than that for elastic scat-

localized by disorder for the Hall conductance to be quan:[e”ng' obtaining a Drude form

tized. The distinguishing characteristics of the phase arise

from the fact that electron motion is chiral along the edge of _ ao(B, =0)

each layer, but diffusive in the direction perpendicular to the o(By)= 2’
. o LA 1+(B./Bo)

layers. In particular, drift in the chiral direction prevents re-

peated, phase coherent scattering of an electron from anyi, g =@,/al,,. This result is exact for the model we
given impurity, suppressing localization effects completely,sydy. Its simplicity is a direct consequence of the elimina-
outside the mesoscopic regime. By contrast, interference efion of multiple-scattering processes by chiral motion. More-
fects in the mesoscopic regime have a variety of consegyer, while the value of(B, =0) depends on two unknown
quences, which have been investigated theoretically in somgjicroscopic quantities, the elastic mean free path and the
detail 412 chiral velocity, the magnetoresistance field s@jenvolves
Transport measurements are, of course, the obvious exnly the first of these. Studies of magnetoresistance are
perimental probe of the chiral metal. A surface-response cuhence potentially both a test of our understanding of the
rent flowing in the chiral direction is associated with the chiral metal, and a way to determine separately the values of
guantized Hall conductance of the three-dimensional systent, andv.
In contrast, surface conductivity in the nonchiral, diffusive We give qualitative arguments that lead to our results in
direction depends on microscopic parameters of the systen@ec. I, present a detailed calculation in Sec. Ill, and add
the elastic mean free patl, the interlayer coupling energy remarks bearing on experiment in Sec. IV.
t, the chiral drift velocityv, and the inelastic scattering rate
Ti;l; specifically, the mean conductance per squarés
giver? in units of e/h by o=at?l4/(%v)2. Knowledge of
the amplitude of mesoscopic conductance fluctuations, to- Consider first the edge of a single, two-dimensional layer
gether with sample dimensions, should allow determinatiorithat has unit-quantized Hall conductance. Under the com-
of the inelastic scattering leng®The first detailed studies of bined influence of the magnetic-field component normal to
this kind® involved vertical transport in multiquantum well the layer and the confining potential at the edge of the
semiconductor samples; conduction by surface states alsample, electrons at the Fermi energy will drift along the
provides an interpretation of earliérand more recefit ex-  edge, acquiring at most a phase shift from impurity scatter-
periments on the bulk quantum Hall effect in semiconductoling or randomness in the position of the edge. Within a

€y

II. MODEL AND QUALITATIVE DISCUSSION
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FIG. 2. Trajectory of electrons in real space, in the presence of
a transverse component to the magnetic field, with coordinaites
the chiral direction and in the interlayer direction, and oscillation
%mplitudeA.

FIG. 1. Fermi sea of chiral metal, with wave vectégsin the
chiral direction andk, in the interlayer direction.

single particle description, this may be represented using th
Hamiltonian i
H=0p,+V(x), @ $(X) w(O)eXp( o JO[E V(x')]dx ) 4
wherep, is the momentum operator in the direction parallel The phase acquired as a result of the disordered potential
to the edge. The potentiad(x) includes impurity contribu- (which is independent of energy as promised(x)
tions, and also generates the Aharonov-Bohm phase that(1/iv)[5V(x')dx’ is of no importance for a particle
electrons accumulate if their path wanders to enclose magropagating along an isolated edge, but sets the mean free
netic flux because of surface roughness. pathl, for a system of coupled edges, this being the distance
By extensiorf. the Schrdinger equation for a many-layer an electron must propagate to accumulate a random phase of
sample with a surface in the-z plane, hopping energy  unit magnitude. Suppose for definiteness that the potential on
between neighboring edgélabeled by integen and sepa- the nth edgeV,(x) is Gaussian distributed with short-range

rated with spacinga), and transverse magnetic fiell, , correlations, so that{(V,(x))=0 and (V,(X)Vn(X"))
represented by the vector potenthe (B, an,0,0), is =A8,m0(x—x"). Then the conditionf a®(x=14))=1 re-
sults inlg=(Av)?/A.
(Hy)n(X)=v(=ihid,+eBan)g,(x) Given the mean free path, it is easy to estimate the diffu-

_ sion constanD and surface conductivity in the transverse
L+ 100+ -1 () ]+ Va(X) ¢n(x). (3) direction. Typical velocities in this direction have magnitude

This is the model that we study in this paper. at/fi, while the scattering rate is/l¢, so that

There are two limitations of this model that are worth 2|
noting. Both arise from restricting the single-edge problem to e (5)
one dimension. In doing so we have to worry about the fact v

that, in semiclassical terms, the guiding center trajectories O'Fhe density of states in energy is() ! per unit length for
particles with different energies will lie at different distances _ y 1 gy P 9
a single edge, anchga) -~ per unit area for the surface, and

from the bulk of the sample, and will, therefore, experiencehence the Einstein relation gives
different impurity potentials. This has the consequence that
the scattering phase shift will depend upon the energy of the 2 .2
: - e at’ly

state—such an effect is not representable in our model as we o~ — e
will see below. A second, potentially more serious effect, is h (hv)?
the introduction of a random spati@) dependence into the
z-axis hopping on account of the different wanderings of the Consider now the effect of a transverse magnetic field. In
uncoupled edges in neigboring layers; this is representabléhe absence of impurities, the Lorentz force arising from the
but not included in our model. An extreme case would be thechiral motion will sweep electrons across the Brillouin zone
directed network model of Ref. 1, which will lead to very in the nonchiral direction, in a timeh(a)/(eB,v). Corre-
different results as we discuss in Sec. IV. spondingly, electrons follow a snaking path in real space

Without impurity scattering or a transverse magnetic field,(Fig. 2) with an amplitudeA for oscillations of their coordi-
the surface states fill a one-sided Fermi sea as sketched imate in the interplane direction, which decreases with in-
Fig. 1. Impurity scattering generates a finite conductdrice, creasingB, , having the dependende~t/eB, v. The field
which can be estimated as follows. First, note that eigenfuncscale for the magnetoresistance is the field strength at which
tions (x) of the single-edge Hamiltonian with enerdy the period of these oscillations is comparable to the elastic
have the form scattering timelg/v from which follows the valueBy

at

f

(6)



PRB 59 TRANSVERSE MAGNETORESISTANCE OF THE TWO- ... 5001

~h/eal,. At field strengths much smaller than this, the elec- b (N)=J,_,(2Db), (14
tron scatters too frequently from impurities for its path to be

influenced by the transverse magnetic field, while at muchwith €,=ab and« integer, whereJ|(X) is the Bessel func-
larger-field strengths its interplane coordinate follows a rantion of orderl.

dom walk, with step lengti and step rate/l. The result- The single-particle Greer)'s function in the absence of dis-
ing diffusion coefficientD (B, )~1t%/(e2B%ul,) is reduced Ordergo(z)=(z—Ho) * is given by

from its zero-field value by a factoB/B,)?, as is, there- k(=)

fore, also the conductivity, producing the large-field behavior Go(ZiF 1o ):if‘” dkE € ®a(N) (M)

of Eq. (1). OS2 on) L4 z—(k+e€,)

(15

Ill. CALCULATION In particular, forZm(z)>0,9o(z;r;,r») =0 if X,<x4, while

The disorder-averaged one- and two-particle Green'$or X;=x;+0%,00(Z;r1,r2)=—1m.
functions can be calculated exactly for the chiral metal, pro- Disorder generates a self-energy after averaging, which is
vided disorder correlations are shortrange, because motion #iagonal in real space and given in the Born approximation
the chiral direction suppresses repeated scattering from arly
given impurity. As a result, modeling the impurity potential
with Gaussian white noise, the one-particle Green’s function
is given exactly by the Born approximation, and the two-
particle function by a sum of ladders. We show below that ) ) o
corrections to this behavior in a potential with a finite corre-In order to examine corrections to the Born approximation,
lation length\ are small in powers ok/l; they are also Suppose t_empo_rarlly that the Gaussian distributed potential
strongly irrelevant(in the renormalization-group senst  Vn(X) is piecewise constant on segments of lengtlso that
long-distance properties, as shown by Balents and Fisher. the second cumulant {/,(x)Vin(x)) = (A/\) 8y, if there

We simplify notation by introducing the dimensionlessis an integerN for which NA<x,x’<(N+1)\, and zero
field strengthb=eB, va/t, and choosing units in which  Otherwise. Self-energy contributions at thi order are pro-

A
S(z)=—i Esgr{Im(z)]. (16)

=hv=1, so that the moddEq. (3)] takes the form portional to (A/\)PA?P(go)*~*, where the factor of*P
arises from integration over internal position coordinates, re-
(He) o (X)= =i 9xthn(X) — [ I+ 1(X) + thn_1(X)] stricted to an interval of rang&. Restoring dimensionful
units, the pth order contribution is proportional toi(
+ b (X) + Via(X) (%) le)P- (go) "%, so that only the Born termp(=1) need be
=(Hoth) n(X) + Vs (X) hn(X). (7)  retained asX/l,)—0. Hence, we have
We use a position vectar=(x,n) with one continuous and . 1 (= ek2=x) g (n) ¢, (m)
one discrete component. Denoting the Green’s function by G(E+i0;ry,r;)= Ef dk> E+iA/2—(k+e)
g=(z—H) 1, we require its disorder average, I “ 17
C(zrLr)=(9(zr1.r2), ®) Analogous arguments show that the diffusion propagator
the diffusion propagator, is given in the same limit by a sum of ladder diagrams, with
_ _ the result that
K(w;rq,r)={(g(w+i0;ry,r,)g(—i0;rp,ry)), (9
and in particular the behavior at small wave vectors of its K(w:k)= M (18)
Fourier transform, ' 1-AA(w;k)’
% _ where
K(w;k)Ef dx>, ek K(w;0,r). (10)
— 00 n o
A(w;k)=J dx>, e*'G(w+i0;0,r)G(—i0;r,0).
A first step is to treat the problem without disorder. The e
eigenfunctions oH, satisfy 19
(Hoth) y(X) = (K+ €,,) thn(X), (11) Using Eqgs.(13) and(17), we obtain
with I 4sin(k,/2)/b]
Awik)=2, A—i(Ket 0 +1b)” 20
— ik
Yn(X)= \/ﬂel “ba(n), (12) At small wave vectors this gives the behavior
where
K(wik)= —————, (2D)
€aba(N)=DN,(N) — po(n+1) = Po(n—1). (13 H(w+ky) +Dky

This equation has the solution with
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2A >|g. The two contributions should be distinguishable by

=—. (22 comparing surface magnetoresistances in two configurations.
A®+b In one, the magnetic-field component that lies within the

Using the Einstein relation to obtain the conductivity, we Plane of the sample layers is directed normal to the sample
arrive at our main result: Eq1).%8 surface; in the other, it lies within the surface plane. A mag-

netic field normal to the surface should generate a magne-
toresistance via both mechanisms, whereas a magnetic field
within the surface plane will affect only the interlayer tun-
The observability of transverse magnetoresistance deneling energy. A rectangular sample with a large aspect ratio
pends on a number of factors. The inelastic scattering rateould be ideal for such a comparison.
7+ must be smaller than the interchain hopping tatefor Finally, as noted in the discussion following E§), sub-
transport not simply to be incoherent; and for the theory weStantial roughness at the surface may imply that something
have described to apply. should also be smaller than the Il_ke the dlrected network model of Ref. 1 is a better descrip-
elastic scattering rate/l. The fact that mesoscopic con- tion of the details of transport at the edge. This would lead to
ductance fluctuations have been obsefviedtransport by @ second type of chiral metal, which would exhibg intrin-
surface states in semiconductor samples seems a good indi€ Magnetoresistance, even in the absence of inelastic scat-
cation that both these conditions can be met experimentall{£Ting. In such a system, interlayer tunneling takes place only
at low temperature. If this is the case, the remaining condiat discrete points, and not continuously in the chiral direction
tion is that the field scalB, should not be too large. In order @S in Eq.(3). If a large random-scattering phase is accumu-
that B, is much smaller than the magnetic field component@ted between tunneling points, then a transverse magnetic-
parallel to the sample surface, which is responsible for thdl€ld component can have no effect. Consequently, a null
bulk quantum Hall effect, we require a clean, flat surface, s¢esult for the magnetoresistance would plausibly indicate that
that the elastic mean free path satisfigs-12/a, wherelgis ~ Song spatial randomness in thexis tunneling is essential
the magnetic length within the layers of the sample, aigl for a proper description of the transport in experimental sys-

the interlayer spacing. tems.
We should remark that the intrinsic magnetoresistance we
have discussed is distinct from the simple reduction of the
interplane matrix element by an in-plane magnetic field, ana- We are grateful to the Institute for Theoretical Physics,
lyzed for example in Ref. 17. The dependence of the tunneluCSB, for hospitality during the completion of this paper,
ing energyt on B, will make a contribution to the magne- which was supported in part by NSF Grants No. PHY94-
toresistance that is additional to the one we calculate, an@7194(1TP), DMR-9632690(S.L.S), the A. P. Sloan Foun-
with a field scale that will be much larger thdy if 1  dation(S.L.S), and by EPSRC Grant No. GR/J83@(T.C).

IV. DISCUSSION
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