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Quantum energy flow in mesoscopic dielectric structures
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~Received 26 March 1998!

We investigate the phononic energy-transport properties of mesoscopic, suspended dielectric wires. The
Landauer formula for the thermal conductance is derived and its universal aspects discussed. We then deter-
mine the variance of the energy current in the presence of a steady-state current flow. In the final part, some
initial results are presented concerning the nature of the temperature fluctuations of a mesoscopic electron-gas
thermometer due to the absorption and emission of wire phonons.@S0163-1829~99!02707-1#
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I. INTRODUCTION

Mesoscopic physics might be defined as the study of
tain quantum electronic phenomena, normally belonging
the atomic domain, which through the use of special mic
fabrication techniques are realized in structures having
mensions ranging from tens of nanometers up to micro
ters. One consequence of our improving ability to direc
probe quantum phenomena at these scales is the incre
relevance of the more nontrivial aspects of quantum mech
ics for the proper explanation of the phenomena, such as
need to include in the description the measurement proc
With further advances in fabrication techniques, this tre
will continue and we can look forward to mesoscopic stru
tures, which display the counterintuitive aspects of quant
mechanics becoming commonplace.

It should also be possible to fabricate mesoscopic st
tures in which thelattice degrees of freedom behave in
manifestly nonclassical way. Phononic analogues of vari
mesoscopic electron phenomena are an obvious possibili
consider. For example, we might ask whether the ther
conductance of a dielectric wire with sufficiently small cro
section will exhibit steps of universal magnitude~i.e., ex-
pressed, apart from a numerical factor, solely in terms
Boltzmann’s and Planck’s constants! analogous to the elec
tronic conductance steps observed in quantum wire1,2

Phononic analogues of various quantum optical phenom
can also be considered, such as squeezed phonon sta3,4

Phonons may be particularly suited for the study of tim
dependent phenomena in the mesoscopic domain. The w
ness of the phonon-phonon interaction at low temperatu
and also the ability to fabricate mesoscopic structures ha
only a few defects, may allow for the possibility to track th
evolution of nonequilibrium phonon distributions as they a
proach thermal equilibrium distributions. Such an investig
tion might provide new insights into the longstanding fund
mental problem concerning the recovery of macrosco
irreversibility from the microscopic reversible laws~for a
discussion of this problem in the context of mesoscopic s
tems, see Ref. 5!.

Phonon-confining mesoscopic structures are not
straightforward to realize as electron quantum wells, wir
etc. For acoustic phonons, there are no perfect thermal i
lators; although confined modes may exist in a heterost
ture consisting of layers of material with different elas
PRB 590163-1829/99/59~7!/4992~7!/$15.00
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properties, there will always be unconfined bulk modes w
the same energies. The only solution is to usesuspended
structures, i.e., structures that are physically separated f
the substrate for most of their extent. An additional challen
is the problem of probing the phonon dynamics in the s
pended structures. For example, in order to measure the
mal conductance of a suspended nanowire, a way mus
found in which to heat one end of the wire while keeping t
other end at a fixed temperature and also to measure
temperature difference between the two ends. As can be
preciated, it is rather more difficult to fabricate suspend
nanostructures integrated with ultrasensitive probes than
to fabricate conventional heterostructures. Several gro
have been involved in related work during the past f
years, with pioneering studies carried out by Pottset al.6 and
by Seyler and Wybourne.7 The recent successful experimen
of Roukes and co-workers8 demonstrate their mastery of th
fabrication techniques and have opened up for explora
the field of mesoscopic phonon physics.

In this paper we investigate several phonon phenom
which can in principle be observed using devices similar
those considered by Tigheet al.8 In Sec. II we calculate the
mean of the energy current flowing in a suspended dielec
wire connected at each end to equilibrium phonon reserv
at different temperatures. The Landauer formula for the th
mal conductance is recovered from the mean-energy cur
expression and the conditions on the phonon-energy s
trum for the observation of conductance steps determined
actual dielectric wires the energy spectrum fails to satisfy
conditions, and thus the steps cannot be resolved. The
perature dependence of the conductance is then solved
merically for the special case of a GaAs wire with unifor
rectangular cross section. The main results of this sec
have also been obtained by Angelescuet al.9 and by Rego
and Kirczenow.10

In Sec. III we calculate the variance of the energy curr
in the presence of a steady-state current flow. When the t
peratures of the two reservoirs coincide, so that the aver
current flow is zero, we recover the Johnson-Nyquist no
formula for the phonon-energy current.

Practically no mention is made in Secs. II and III abo
the ways in which the conductance or variance of the curr
might actually be measured. This is partly remedied in S
IV, where we consider a model thermometer consisting of
electron gas confined to a thin cross sectional slab of
4992 ©1999 The American Physical Society
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wire. We investigate the temperature fluctuations occuring
this electron gas caused by the absorption and emissio
phonons. The remarkable possibility of detectingsingle
phonons through the temperature fluctuations is a co
quence of the very small volume, and hence heat capacit
the electron gas. From the magnitude of a given tempera
fluctuation the energy of the absorbed or emitted phono
known and, thus, there is the possibility for high-resoluti
phonon spectroscopy. In particular, the energy depende
of the phonon-transmission probability for a suspended w
can be determined. We develop some of the necessary th
for describing the statistics of the fluctuations and, on
basis of the derived expressions, make some initial obse
tions concerning the extraction of the transmission proba
ity energy dependence from the fluctuation statistics.

In our calculations we use the second quantizat
method. This formalism arises quite naturally when quan
ing the lattice degrees of freedom and also enables a sys
atic derivation of the thermal conductance, current noise,
temperature fluctuation formulas. Although we do not do
in the present paper, it is important to try to rederive the
formulas ~particularly the current noise and temperatu
fluctuation formulas! using a different approach in which th
phonons are described by propagating, spatially locali
wave packets.11,12 Such an approach might provide a clea
picture of what the phonons are ‘‘actually doing’’ in th
mesoscopic wires.

II. THE THERMAL CONDUCTANCE

The model wire structure that we shall consider is sho
in Fig. 1. Two very long, perfect leads~i.e., crystalline and
with uniform cross section! join a central segment in which
the phonon scattering occurs. The scattering may be ca
by any combination of the following: a changing cross s
tion, surface roughness, or various internal defects. The o
restriction we place on the scattering is that it be elas
Phonon-phonon interactions are also neglected. The o
ends of the two leads are connected to reservoirs where
phonon distributions are Bose-Einstein distributions.
scattering occurs at the reservoir-lead connections.

Our point of departure is the classical equations of mot
for the lattice dynamics of a perfect wire~i.e., no scattering!
and also the expression for the classical energy current fl
ing in the wire. At Kelvin or lower reservoir temperature
phonon wavelengths typically exceed several hundred a
stroms, and thus the continuum approximation can be u
for the equations of motion:

r] t
2ui2ci jkl ] j]kul50, ~1!

where ui denotes thei th component of the displaceme
field, r is the mass density, andci jkl is the elastic modulus
tensor. The displacement field satisfies the following bou
ary condition at the wire surface:
in
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ci jkl nj]kul uS50, ~2!

wherenj is the j th component of the unit vector normal t
the wire surfaceS. In terms of the displacement field an
elastic modulus tensor, the energy current at a given loca
x is ~the x coordinate runs along the length of the wire!:

I ~x,t !52cx jklE
A
dydz] tuj]kul , ~3!

where the integral is over the cross sectional surfaceA at x.
In order to quantize the equations of motion~1!, we re-

quire a complete set of normal mode solutions. For a perf
infinitely long wire, these solutions can be written in th
following form:

un,q,i~r ,t !5
1

A2p
e2 i ~vn,qt2qx!xn,q,i~y,z!, ~4!

whereq is the longitudinal wave vector along the wire ax
andn is the subband label. It follows from the equations
motion that these solutions can be chosen to satisfy the
thonormality condition

E drun,q,i* un8,q8,i5dnn8d~q2q8!. ~5!

In the presence of scattering, we can still construct soluti
in the leads using the perfect wire solutions~4! as follows:

un,q,i
1 55 un,q,i1(

n8
un8,2q8,i tn8n

11
~v! lead 1

(
n8

un8,q8,i tn8n
21

~v! lead 2

~6!

and

un,q,i
2 55 (

n8
un8,2q8,i tn8n

12
~v! lead 1

un,2q,i1(
n8

un8,q8,i tn8n
22

~v! lead 2,

~7!

whereq,q8.0. The solutionsun,q,i
1 describe waves propa

gating from lead 1 to lead 2, while solutionsun,q,i
2 propagate

from lead 2 to lead 1. The absolute value of the scatter
matrix elementtn8n

ba (v) gives the fraction of the inciden
wave in leada, with frequencyv and subband labeln, which
is transmitted/reflected into leadb and subbandn8. In the
sum overn8, the frequencyv is kept fixed, whileq8 is
treated as a function ofn8 and v through the condition
vn8,q85vn,q5v.

From energy conservation, the time average of the ene
currentI (x,t) should be independent of the positionx. Sub-
stituting into the definition for the energy current~3! an ar-
FIG. 1. Schematic diagram of the model wire. The left and right reservoirs are at temperaturesT1 andT2 , respectively.
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4994 PRB 59M. P. BLENCOWE
bitrary linear combination of solutions~6! and ~7! and de-
manding that the time-averaged energy currents in lead
and 2 be the same, we obtain the following conditions on
scattering matrix elements:

(
n9

vn9,q9tn9n
11

~v!tn9n8
11* ~v!

1(
n9

vn9,q9tn9n
21

~v!tn9n8
21* ~v!5vn,qdnn8 , ~8!

(
n9

vn9,q9tn9n
22

~v!tn9n8
22* ~v!1(

n9
vn9,q9tn9n

12
~v!tn9n8

12* ~v!

5vn,qdnn8 , ~9!

and

(
n9

vn9,q9tn9n
11

~v!tn9n8
12* ~v!1(

n9
vn9,q9tn9n

21
~v!tn9n8

22* ~v!50,

~10!

wherevn,q5]vn,q /]q is the group velocity. In the deriva
tion of these conditions, we require the following very use
orthogonality condition:

ipcxi j l E
A
dydz~un,q,i] jun8,q8,l

* 2un8,q8,i
* ] jun,q,l !

5rvn,qvn,qdnn8 , ~11!

wherevn8,q85vn,q . This relation is obtained from the equa
tions of motion~1!. Note that, using Eqs.~5! and ~8!–~10!,
one can also show that the wire scattering-mode solut
satisfy the following orthonormality condition:

E drun,q,i
s* un8,q8,i

s8 5dss8dnn8d~q2q8!, s,s851,2,

~12!

where, in the integral over thex coordinate, leads 1 and
have been given fictitious extensions so that they are
scribed by the coordinate rangesx,0 andx.0, respectively
~see Sec. V of Ref. 13 and also Appendix A of Ref. 14 fo
discussion of such orthonormality conditions in the case
electron scattering-wave states!. Only orthogonality condi-
tion ~11! will be required in the subsequent analysis, ho
ever.

We are now ready to quantize. In the wire leads, the d
placement field operator has the solution

ûi~r ,t !5(
n,s

E
0

`

dqA \

2rvn,q

3@ ân,q
s un,q,i

s ~r ,t !1ân,q
s† un,q,i

s* ~r ,t !#, ~13!

where the phonon creation and annihilation operators sa
the commutation relations

@ ân,q
s ,ân8,q8

s8†
#5dss8dnn8d~q2q8!. ~14!

Substituting the field operator solution~13! into the energy-
current operator
1
e

l

s

e-

f

-

-

fy

Î 52
1

2
cx jklE

A
dydz~] tû j]kûl1]kûl] tû j ! ~15!

and then taking the expectation value ofÎ at any locationx in
leads 1 or 2, we obtain

^ Î &5
1

2p(
n,n8

E
vn,0

`

dv \v vn,q
21vn8,q8tn8n

21
~v!tn8n

21* ~v!

3@n1~v!2n2~v!#, ~16!

where

ns~v!5
1

e\v/kBTs21
, ~17!

with Ts the temperature of the reservoir at the end of leads.
In the derivation of Eq.~16!, use is made of relation~11! and
conditions ~8!–~10!. We also use the following creation
annihilation operator expectation values:

^ân,q
s† ân8,q8

s8 &5ns~vn,q!dss8dnn8d~q2q8!. ~18!

Defining

Tn8n
21

~E!5vn,q
21vn8,q8tn8n

21
~v!tn8n

21* ~v!, ~19!

whereE5\v, we can rewrite Eq.~16! as follows:

^ Î &5
1

2p\(
n,n8

E
En,0

`

dEETn8n
21

~E!@n1~E!2n2~E!#.

~20!

This is our key expression for the mean energy current. Fr
the form of this expression and condition~8!, we see that the
matrix Tn8n

21 (E) is naturally interpreted as the probability fo
a phonon with energyE in subbandn of lead 1 to be trans-
mitted into subbandn8 of lead 2. Equation~20! is the start-
ing point for the investigations in Refs. 9 and 10.

When the temperature difference between the reservoi
small, i.e.,uT12T2u!T1 ,T2 , we can expand Eq.~20! to ob-
tain the wire thermal conductance:

k5
^ Î &

uT12T2u
5

pkB
2T

6\ (
n,n8

E
En,0 /kBT

`

deg~e!Tn8n
21

~ekBT!,

~21!

whereT is the average temperature and

g~e!5
3eee

p2~ee21!2
. ~22!

Equation~21! relates the thermal conductance to the sing
phonon transmission probability, and thus we call this
Landauer expression for the phonon thermal conductanc

The functiong(e) satisfies*0
`deg(e)51. Therefore, in

the absence of scattering a given subbandn contributes to the
reduced conductancek/T the universal quantum pkB

2/6\
'9.465310213 W K22 in the limit En,0 /kBT→0.10

Whether or not steps can be resolved in the temperature
pendence of the reduced conductance depends on the
ration of the subband edgesEn11,02En,0 and also on the size
of the temperature interval over which the integr
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*En,0 /kBT
` deg(e) goes from being much less than one to clo

to one. A rough criterion can be arrived at by requiring th
the temperature at which thenth subband contributes 90% o
a universal quantum be less than the temperature at w
then11th subband contributes 10% of a universal quantu
This yields the following condition on the subband ed
separation:

En11,0.14En,0 . ~23!

Therefore, in order to resolve the steps, the subband sep
tion would have to increase by an order of magnitude fr
one subband to the next. In an actual wire, the separa
typically goes like En11,0/En,0;(n11)/n, and thus the
steps cannot be resolved. The same conclusion is reach
Ref. 9, where the possibility of using nonequilibrium
narrow-band phonon distributions to observe the steps is
considered.

In Fig. 2, we show the temperature dependence of
reduced thermal conductance for perfect GaAs wires w
uniform, rectangular cross sections of various dimensi
comparable to those used in the experiment of Ref. 8.
only GaAs wire characteristics that are needed in orde
determine the conductance are the zone-center freque
vn,0 . These can be calculated using the elegant nume
method developed in Ref. 15. As expected, there are no s
like features. There is, however, a plateau forT→0 where
only phonons in the lowest subband withEn,050 contribute
~see also Ref. 10!. The plateau has the value of 4 in univers

FIG. 2. Reduced thermal conductance vs temperature for pe
GaAs wires with uniform rectangular cross section 200
3400 nm ~solid line!, 200 nm3300 nm ~dashed line!, and
200 nm3100 nm~dotted line!. The reduced conductance is give
in units pkB

2/6\'9.465310213 W K22.
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quantum units, a consequence of there being four basic m
types: dilatational, torsional and, two types of flexur
mode.15

Of course, in actual wires phonon scattering will occ
For example, the reservoirs can be much larger than
wires, with a sharp decrease in cross section where they
Reservoir phonons approaching the wire with transve
wavelength component exceeding the cross sectional dim
sions of the wire will be backscattered with high probabil
and the resulting suppression in the dielectric wire therm
conductance at low temperatures may conceal the pla
described above. An initial investigation of the consequen
for the thermal conductance of a nonuniform cross sec
can be found in Refs. 9 and 10. In classical wave optics
acoustics, the same strong-reflection phenomenon occur
waves traveling in narrowing waveguides and is called ‘‘d
fractional blocking.’’ This phenomenon is also somewh
analogous to the situation in an electronic quantum w
when the Fermi level lies below the lowest subband edge
that electrons can only tunnel from one contact region to
other, resulting in an exponential suppression in the cond
tance.

Some closely related work to that described in this sect
is in the area of dielectric point contact spectroscopy.16–18In
fact, diffractional blocking has already been observed
thermal conductance measurements of point contacts;18 by
measuring the temperature at which the thermal conducta
dropped sharply, it was possible to estimate the contact
ameters that were found to be in the region of tens of
nometers.

III. ENERGY CURRENT NOISE

Using the methods developed in the preceding section
is possible to calculate more nontrivial quantities charac
izing the energy flow in the wire, such as the variance of
energy current (DI )25^ Î 2&2^ Î &2. If we take the expectation
value of@ Î (x,t)#2, we obtain a meaningless divergent resu
however. Given that we cannot measure the current at a
cise instant, a more realistic quantity to consider is the f
lowing ~see, e.g., Ref. 19!:

I m~x,t !5E
2`

`

dtH~ t2t!I ~x,t!, ~24!

whereH(t) is a causal filter function satisfyingH(t)50 for
t,0 and*2`

` dtH(t)51. We call I m the measured current

The expectation value of@ Î m(x,t)#2 is now finite and well
defined. The variance of the measured current is calcula
using a similar procedure to that outlined in the previo
section for the mean. Omitting the details and going direc
to the final result, we find

~DI m!2'
B

2p\ (
n,n8

E
En,0

`

dEE2$T n8n
21

@n12n2#2

1Tn8n
21

@n1~n211!1n2~n111!#%, ~25!

where the transmission probabilityTn8n
21 is defined in Eq.~19!

and the transmission matrixT n8n
21 is defined as follows:

ct
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T n8n
21

5 (
m,m8

~vnvn8!
21vmvm8tm8n8

21 tm8n
21* tmn

21 tmn8
21* . ~26!

The constantB is the filter bandwidth:

B5
1

2pE2`

`

dvH̃2~v!, ~27!

where H̃(v)5*2`
` dte2 ivtH(t). Approximation ~25! is a

good one provided that the energy scaleE5\v over which
H̃(v) is nonzero is small as compared with the energy sc
over which the transmission matrices and phonon distri
tions vary~see, e.g., Ref. 19!.

Formula ~25! resembles the electron current varian
formula.20,21,12 ~The correspondence is even more direct
the electronenergycurrent variance is used for compariso
rather than the more commonly considered charge-cur
variance.! Just as for the electron case, we see that pho
current noise in the presence of a nonzero steady-state
rent ~i.e., T1ÞT2) contains more information concerning th
transmission characteristics of the wire than the thermal c
ductance.

For the special case where the reservoir temperatures
the same, theT matrix term drops out and Eq.~25! can be
written as follows:

~DI m!2'2BkBT2k, ~28!

wherek is the thermal conductance~21!. Thus, the equilib-
rium phonon noise gives the same information concern
the wire transmission characteristics as the thermal con
tance. We call Eq.~28! the Johnson-Nyquist noise formu
for the phonon-energy current. Again, this formula bear
close resemblance to the electron-current Johnson-Nyq
noise formula.11,21 When the temperature difference is no
zero but small, we see from the form of the phonon distrib
tion terms in Eq.~25! that corrections to the Johnson-Nyqu
equilibrium noise are of second order in the temperature
ference.

IV. A MESOSCOPIC THERMOMETER

In order to probe the phonon dynamics of a wire, so
kind of measuring apparatus is obviously required. It is i
portant to understand the behavior of that part of the ap
ratus that interacts directly with the wire phonons, so that
can know just what properties of the phonon system are
fact being measured.

As our model measuring system, we consider an elec
gas confined to a thin cross sectional slab of one of the w
leads. The gas density and slab thickness are small enou
that the wire phonon current is hardly affected by its pr
ence. In other words, a phonon traversing the gas layer
only a very small probability to be absorbed. The gas den
should also be large enough so that the time scale for
electron gas to reach internal thermal equilibrium due
electron-electron scattering is much less than the time s
separating consecutive phonon absorption or emis
events. This latter assumption allows us to assign a temp
ture to the electron gas, which fluctuates in time due to
absorption and emission of phonons. The remaining par
the apparatus, which we do not describe, measures
s
-
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electron-gas temperature with negligible disturbance to
gas. This measuring system is in fact a closely related
alization of that employed by Tigheet al. in their
experiments.8

Measuring the wire thermal conductance presents
problem. A known constant power source is supplied to r
ervoir 1, say, while reservoir 2 acts as heat sink with kno
temperature. The electron-gas thermometer is located a
reservoir end of lead 1 and its average temperature meas
The conductance is then just the power divided by the
ference between the gas thermometer temperature and
temperature of reservoir 2@see Eq.~21!#.

The fluctuations of the electron-gas temperature g
much more information concerning the wire-phonon dyna
ics than the average temperature. The real possibility to
tect temperature fluctuations is a consequence, as the fol
ing estimates show, of the very small electron-gas volu
that can be achieved. For a nearly degenerate electron ga
specific heat is approximately

]E

]T
'

p2nVkB
2T

2EF
, ~29!

wheren andV are the electron-gas number density and v
ume, respectively. Using the relation betweenEF andn for
free electrons to eliminateEF , Eq. ~29! becomes

]E

]T
'

p2/3mn1/3VkB
2T

32/3\2
. ~30!

If the electron-gas absorbs or emits a thermal phonon w
energy 3kBT, then from Eq.~30! we get an approximate
temperature change

dT'
35/3\2

p2/3mn1/3VkB

. ~31!

For GaAs with, e.g.,n51018 cm23, this gives

dT'0.4V21 mK, ~32!

where the volumeV is given in units mm3. Thus,
for an electron-gas thermometer with submicron dimensi
~which can be achieved with present fabricati
techniques8!, absorption or emission of a thermal phono
will produce a temperature fluctuation in excess of a m
liKelvin.

Note, however, that it is not possible to measure
energy-current fluctuations using the electron-gas therm
eter. Although the energy of an absorbed phonon can
determined from the size of the temperature fluctuation,
information is lost concerning the direction in which the wi
phonon was travelling. To gain an initial idea about wh
information can be obtained concerning the phonon dyna
ics, we shall now examine more closely the temperature fl
tuations.

Much of the theory of photoelectric light detection
quantum optics~see, e.g., Chap. 14 of Ref. 22! can be
adapted to our present problem. As a phonon detector, h
ever, the electron-gas thermometer behaves in a more
trivial manner than the photoelectric detector. Unlike a co
ventional photoelectric detector, the gas thermometer can
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only detect phonons, but measure their energy as well.
thermore, the gas thermometer can emit phonons. When
cessive phonon detections are correlated, these propertie
make the calculation of various detection probabilities m
difficult. In the following, we shall neglect the correlation
This then allows us to recover all statistical properties of
temperature fluctuations from the detection probability
very short time intervals~i.e., short enough so that the pro
ability is much less than one!. It should be borne in mind
however, that many of the expected interesting quan
properties will be correlation effects and, thus, it is importa
to try to include the correlations in future improvements
the theory.

The quantity of interest, then, is the probabili
R(E,E8)dt that the electron gas, initially with total energ
E, has energyE8ÞE after a short time intervaldt, due to the
absorption or emission of a phonon with energyD5uE8
2Eu. Recall that we are assuming the electron gas to b
internal thermal equilibrium between absorption/emiss
events. For a large number of electrons, the electron-gas
peratureT can be determined to good approximation fro
the total energyE of the electron gas by using the relatio
E52(a«a f («a), where«a is a single electron-energy e
genvalue andf («a) is the Fermi-Dirac distribution. Neglect
ing correlations, an energy probability distributionP(E) will
evolve in time according to the following equation:

]P

]t
~E,t !5(

E8
P~E8,t !R~E8,E!2(

E8
P~E,t !R~E,E8!.

~33!

Thus, knowing the rateR(E,E8) allows us to in principle
determine how a probability distribution evolves.

Using the methods of, e.g., Chap. 14 of Ref. 22, we obt
the following expression for the rate:

R~E,E6D!

5
p

rD (
a,b

«b2«a56D

f a~12 f b!F (
n,n8

vn,q
21~ uln,q

ab u2dn8n

1uln,2q
ab u2dn8n1ln,q

ab* ln8,2q8
ab tn8n

11
1ln,q

ab ln8,2q8
ab* tn8n

11* !

3~n11 1
2 7 1

2 !1 (
n,n8,n9

vn,q
21ln8,2q8

ab ln9,2q9
ab* tn8n

12 tn9n
12*

3~n22n1!G ,

~34!

where all the phonon quantities are evaluated atv5D/\.
This rate expression is for the case where the thermomet
located in lead 1. To obtain the corresponding express
when it is located in lead 2, the lead indices ‘‘1’’ and ‘‘2
should be interchanged wherever they appear. The qua
ln,q

ab is the electron-phonon matrix element:
r-
c-

can
e

e
r

m
t
f

in
n
m-

in

is
n

ity

ln,q
ab 5E

V
drcb* ~r !S Jd] iun,q,i~r !

1
ēe14

4peEV
dR

e2q0ur2Ru

ur2Ru
]~12

2 un,q,3)~r !D ca~r !,

~35!

where the integrals are over the electron-gas volume,ca is
the electron-energy eigenstate, andun,q,i is the phonon-mode
solution in the lead@see Eq.~4!#. The first term in the large
brackets is the deformation component of the potential
the second term is the piezoelectric component~see, e.g.,
Chap. 3 of Ref. 23!.

The rate expression~34! comprises two terms, of which
the second involving the wire phonon-transmission ma
t12 is the most interesting. A possible experimental proced
would be to measure the rates forT2ÞT1 and also forT2
5T1 , with T1 the same in each case. The difference betw
the two rates would then be given by just the second term
Eq. ~34!. Because this term is proportional tot12t12* evalu-
ated atv5D/\, the rate difference, therefore, provides d
rect information concerning the energy dependence of
phonon-transmission matrix averaged over the various s
bands. Of course, knowledge of the electron-phonon ma
elements~35! would be required in order to extract this in
formation.

V. CONCLUSION

We have presented several results concerning the ene
flow properties of mesoscopic, suspended dielectric wi
The mean of the energy current was calculated and a La
auer formula for the thermal conductance obtained. Wh
scattering is absent, each phonon subband contributes a
versal quantumpkB

2/6\ to the reduced conductancek/T.
Steps are not observed, however, because of the broadne
the Bose-Einstein distribution as compared with the subb
edge separation. The temperature dependence of the red
conductance was solved numerically for the example o
GaAs wire with uniform, rectangular cross section. The va
ance of the energy current was then calculated and
Johnson-Nyquist equilibrium noise formula obtained as
special case. In the final part, an initial investigation w
carried out concerning the nature of the fluctuations o
mesoscopic electron-gas thermometer due to the absorp
and emission of wire phonons. It was found that the fluct
tions give direct information concerning the energy dep
dence of the phonon transmission matrix for the wire.
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21M. Büttiker, Phys. Rev. Lett.65, 2901~1990!.
22L. Mandel and E. Wolf,Optical Coherence and Quantum Optic

~Cambridge University Press, Cambridge, England, 1995!.
23B. K. Ridley, Quantum Processes in Semiconductors, 3rd ed.

~Clarendon Press, Oxford, 1993!.


