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Quantum energy flow in mesoscopic dielectric structures
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We investigate the phononic energy-transport properties of mesoscopic, suspended dielectric wires. The
Landauer formula for the thermal conductance is derived and its universal aspects discussed. We then deter-
mine the variance of the energy current in the presence of a steady-state current flow. In the final part, some
initial results are presented concerning the nature of the temperature fluctuations of a mesoscopic electron-gas
thermometer due to the absorption and emission of wire phon80463-18289)02707-1

[. INTRODUCTION properties, there will always be unconfined bulk modes with
the same energies. The only solution is to gsspended

Mesoscopic physics might be defined as the study of cerstructures, i.e., structures that are physically separated from
tain quantum electronic phenomena, normally belonging tdhe substrate for most of their extent. An additional challenge
the atomic domain, which through the use of special microis the problem of probing the phonon dynamics in the sus-
fabrication techniques are realized in structures having dipended structures. For example, in order to measure the ther-
mensions ranging from tens of nanometers up to micromemal conductance of a suspended nanowire, a way must be
ters. One consequence of our improving ability to directlyfound in which to heat one end of the wire while keeping the
probe quantum phenomena at these scales is the increasiather end at a fixed temperature and also to measure the
relevance of the more nontrivial aspects of quantum mechartemperature difference between the two ends. As can be ap-
ics for the proper explanation of the phenomena, such as thgreciated, it is rather more difficult to fabricate suspended
need to include in the description the measurement processanostructures integrated with ultrasensitive probes than it is
With further advances in fabrication techniques, this trendo fabricate conventional heterostructures. Several groups
will continue and we can look forward to mesoscopic struc-have been involved in related work during the past few
tures, which display the counterintuitive aspects of quantunyears, with pioneering studies carried out by Pettal® and
mechanics becoming commonplace. by Seyler and Wybourn&The recent successful experiments

It should also be possible to fabricate mesoscopic strucef Roukes and co-worketsiemonstrate their mastery of the
tures in which thelattice degrees of freedom behave in a fabrication techniques and have opened up for exploration
manifestly nonclassical way. Phononic analogues of variouthe field of mesoscopic phonon physics.
mesoscopic electron phenomena are an obvious possibility to In this paper we investigate several phonon phenomena
consider. For example, we might ask whether the thermalvhich can in principle be observed using devices similar to
conductance of a dielectric wire with sufficiently small crossthose considered by Tighet al® In Sec. Il we calculate the
section will exhibit steps of universal magnitudiee., ex- mean of the energy current flowing in a suspended dielectric
pressed, apart from a numerical factor, solely in terms ofvire connected at each end to equilibrium phonon reservoirs
Boltzmann’s and Planck’s constap&nalogous to the elec- at different temperatures. The Landauer formula for the ther-
tronic conductance steps observed in quantum wifes. mal conductance is recovered from the mean-energy current
Phononic analogues of various quantum optical phenomenaxpression and the conditions on the phonon-energy spec-
can also be considered, such as squeezed phonon *tategrum for the observation of conductance steps determined. In
Phonons may be particularly suited for the study of time-actual dielectric wires the energy spectrum fails to satisfy the
dependent phenomena in the mesoscopic domain. The weakenditions, and thus the steps cannot be resolved. The tem-
ness of the phonon-phonon interaction at low temperaturegerature dependence of the conductance is then solved nu-
and also the ability to fabricate mesoscopic structures havinmerically for the special case of a GaAs wire with uniform
only a few defects, may allow for the possibility to track the rectangular cross section. The main results of this section
evolution of nonequilibrium phonon distributions as they ap-have also been obtained by Angelesstal® and by Rego
proach thermal equilibrium distributions. Such an investiga-and Kirczenow°
tion might provide new insights into the longstanding funda- In Sec. Il we calculate the variance of the energy current
mental problem concerning the recovery of macroscopidn the presence of a steady-state current flow. When the tem-
irreversibility from the microscopic reversible lawfor a  peratures of the two reservoirs coincide, so that the average
discussion of this problem in the context of mesoscopic syseurrent flow is zero, we recover the Johnson-Nyquist noise
tems, see Ref.)5 formula for the phonon-energy current.

Phonon-confining mesoscopic structures are not as Practically no mention is made in Secs. Il and Il about
straightforward to realize as electron quantum wells, wiresthe ways in which the conductance or variance of the current
etc. For acoustic phonons, there are no perfect thermal insumight actually be measured. This is partly remedied in Sec.
lators; although confined modes may exist in a heterostrud¥, where we consider a model thermometer consisting of an
ture consisting of layers of material with different elastic electron gas confined to a thin cross sectional slab of the
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wire. We investigate the temperature fluctuations occuring in Cijk njgkul|sz 0, 2

this electron gas caused by the absorption and emission of _ . .

phonons. The remarkable possibility of detectisingle where_nj is the jth component of the.unlt vector ngrmal to
phonons through the temperature fluctuations is a consdl® Wire surfaceS In terms of the displacement field and
quence of the very small volume, and hence heat capacity (ﬁlastlc modulus.tensor, the energy current at a given location
the electron gas. From the magnitude of a given temperaturgS (the x coordinate runs along the length of the wire
fluctuation the energy of the absorbed or emitted phonon is

known and, thus, there is the possibility for high-resolution I(x,t)= —cxjklf dydz,u;du, ©))
phonon spectroscopy. In particular, the energy dependence A

of the phonon-transmission probability for a suspended wirgyhere the integral is over the cross sectional surfac x.
can be determined. We develop some of the necessary theory |n order to guantize the equations of motith), we re-

for describing the statistics of the fluctuations and, on th‘%quire a complete set of normal mode solutions. For a perfect,
basis of the derived expressions, make some initial Observ%finitely long wire, these solutions can be written in the
tions concerning the extraction of the transmission prObab”Tollowing form:

ity energy dependence from the fluctuation statistics.

In our calculations we use the second quantization 1 '
method. This formalism arises quite naturally when quantiz- Un,q,i(r,t)= \/—_e"“"n,qt‘qx)xn]q’i(y,z), 4
ing the lattice degrees of freedom and also enables a system- 2m

atic derivation of the thermal conductance, current noise, anghereq is the longitudinal wave vector along the wire axis
temperature fluctuation formulas. Although we do not do soandn is the subband label. It follows from the equations of

in the present paper, it is important to try to rederive thesenotion that these solutions can be chosen to satisfy the or-
formulas (particularly the current noise and temperature-thonormality condition

fluctuation formulasusing a different approach in which the
phonons are described by propagating, spatially localized _ ,

wave packetd!'? Such an approach might provide a clearer drug q,iUn’,q7,i = Onn 8(d—0"). )
picture of what the phonons are “actually doing” in the

mesoscopic wires. In the presence of scattering, we can still construct solutions

in the leads using the perfect wire solutigd$ as follows:

Il. THE THERMAL CONDUCTANCE 1

Ungit 2 Unr—qritira(@)  lead 1
The model wire structure that we shall consider is shown 1 mA A T
in Fig. 1. Two very long, perfect leadge., crystalline and Un,q,i = (6
with uniform cross sectionjoin a central segment in which > uy o 2 (@) lead 2
the phonon scattering occurs. The scattering may be caused n’ o
by any combination of the following: a changing cross sec-
X X . nd
tion, surface roughness, or various internal defects. The on@
restriction we place on the scattering is that it be elastic.

Phonon-phonon interactions are also neglected. The other E un/,_q/,itfn(w) lead 1
ends of the two leads are connected to reservoirs where the 5 n’
phonon distributions are Bose-Einstein distributions. No Un,q,i= @)
scattering occurs at the reservoir-lead connections. uny—qyi—’_E un/,qr,itﬁen(w) lead 2,
n!

Our point of departure is the classical equations of motion

for the lattice dynamics of a perfect wifee., no scattering whereq,q’>0. The solutionsuﬁ ... describe waves propa-

and_also the. expression for the classical energy current ﬂowgating from lead 1 to lead 2, while solutiou§ . propagate
ing in the wire. At Kelvin or lower reservoir temperatures, e

; from lead 2 to lead 1. The absolute value of the scattering
phonon wavelengths typically exceed several hundred ang- . ba . . e
stroms, and thus the continuum approximation can be use atrix elementt,,,,(w) gives the fraction of the incident

for the equations of motion: wave in leads, with frequencyw and subband label, which
is transmitted/reflected into leadoland subband’. In the
Pﬁtzui—cijmﬁjt?kUFO, (1) sum overn’, the frequencyw is kept fixed, whileq’ is

treated as a function of’ and o through the condition
where u; denotes theith component of the displacement w, ¢ =wp = w.
field, p is the mass density, ang;y, is the elastic modulus From energy conservation, the time average of the energy
tensor. The displacement field satisfies the following boundeurrentl (x,t) should be independent of the positignSub-

ary condition at the wire surface: stituting into the definition for the energy curre(® an ar-
reservoir I 7 lead 1 T scattering T lead 2 TTTTN, reservoir
Tl \\\:---- ot 1'egion Tt ---: T2

FIG. 1. Schematic diagram of the model wire. The left and right reservoirs are at tempefiataedT,, respectively.
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bitrary linear combination of solution&) and (7) and de-
manding that the time-averaged energy currents in leads 1
and 2 be the same, we obtain the following conditions on the

scattering matrix elements: and then taking the expectation valud aft any locatiorx in
leads 1 or 2, we obtain

—
Il

1 ~ A ~ A
- ECXjkledydz((gtujﬁkul+(9ku|(7tuj) (15)

11
E Unr q//tn,,n (l))tnn*/( ) 1 *° 1 21 21
— *
:Ez f d(l) ﬁw vn’qvn”q’tn!n(w)tn’n(w)
n,n’ 7 @no

21%
+ Unr //t nal W t " w [ ’ 8
20 v rtyn( @)t (©) =Un g0 ® X[ny(@)=ng(@)], (16
where
2 Upr q//tn,,n w)tﬁ,?*, +2 Upr, ”tn// (w)tig*/( ) 1
Ne(w)= ———7—, 17)
4 olkgT, _
=Un,g0nn’ » (9) e 1
and with T, the temperature of the reservoir at the end of lead
In the derivation of Eq(16), use is made of relatiofil) and
12 conditions (8)—(10). We also use the following creation/
* 22* e . .
2 O gt (@) e +2 O gt @)t () =0, annihilation operator expectation values:
(10)

(A7haT, N =N,(0nq)8py Srd(A—0").  (18)
wherev,, q=dw, 4/dq is the group velocity. In the deriva-

tion of these conditions, we require the following very useful P€fining
orthogonality condition:

T2 (E)=vp tvnr g tern (@) (@), (19
i e If dydzu 3Un.q1) whereE=%w, we can rewrite Eq(16) as follows:
Xij n,g,i ] n’ q' I~ n ,q’,i n.g,
l
= p@ngnadun (1) WL”EH f nOdEETZ E)[Nny(E) —ny(E)].
wherew, 4= wp . This relation is obtained from the equa- (20)

tions of motion(1). Note that, using Eqg5) and (8)—(10),  This is our key expression for the mean energy current. From
one can also show that the wire scattering-mode solutionghe form of this expression and conditié8), we see that the

satisfy the following orthonormality condition: matrix T2;, (E) is naturally interpreted as the probability for
a phonon with energ¥ in subbanadn of lead 1 to be trans-
j drug, iug,' o =84 O 8(q—Q'), 0,0'=1,2, mitted into subbanah’ of lead 2. Equatior{20) is the start-

ing point for the investigations in Refs. 9 and 10.

(12 When the temperature difference between the reservoirs is
where, in the integral over the coordinate, leads 1 and 2 small, i.e.,|T;—T,/<T;,T,, we can expand Eq20) to ob-
have been given fictitious extensions so that they are ddain the wire thermal conductance:
scribed by the coordinate ranges.0 andx>0, respectively

(see Sec. V of Ref. 13 and also Appendix A of Ref. 14 for a (1) kG T 21

; 3 : o : K== deg(e)T , (ekgT)
discussion of such orthonormality conditions in the case of ITi—Tol 64 5 Je, oikeT n'nt 0BT
electron scattering-wave state©nly orthogonality condi- ' ’ (21)
tion (11) will be required in the subsequent analysis, how- ,
ever. whereT is the average temperature and

We are now ready to quantize. In the wire leads, the dis- .
placement field operator has the solution _ 3ee 29
9(e)=—, > (22)
To(ef—1)

Equation(21) relates the thermal conductance to the single-
phonon transmission probability, and thus we call this the
Landauer expression for the phonon thermal conductance.
Aot ox
X[a”q n.ai(1D) a0 qlngi(r 0], (13 The functiong(e) satisfiesf,deg(€)=1. Therefore, in
where the phonon creation and annihilation operators satisfje absence of scattering a given subbaedntributes to the

ui(r,t)= f dq pr
n,q

the commutation relations reduced conductance/T the universal quantum wk3/6%:
~9.465< 10 WK~2 in the limit ,O/kBT—>01°
[égq, ] Sp0r O 0(q—0q’). (14) Whether or not steps can be resolved in the temperature de-

pendence of the reduced conductance depends on the sepa-
Substituting the field operator soluti@f3) into the energy- ration of the subband edgé&s . ; o— E,, o and also on the size
current operator of the temperature interval over which the integral
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7.0 . quantum units, a consequence of there being four basic mode
types: dilatational, torsional and, two types of flexural
—— 200nm x 400nm mode™®

— —- 200nm x 300nm ] Of course, in actual wires phonon scattering will occur.
"""""" 200nm x 100nm For example, the reservoirs can be much larger than the
wires, with a sharp decrease in cross section where they join.
Reservoir phonons approaching the wire with transverse
wavelength component exceeding the cross sectional dimen-
sions of the wire will be backscattered with high probability
and the resulting suppression in the dielectric wire thermal
conductance at low temperatures may conceal the plateau
described above. An initial investigation of the consequences
for the thermal conductance of a nonuniform cross section
can be found in Refs. 9 and 10. In classical wave optics and
acoustics, the same strong-reflection phenomenon occurs for
waves traveling in narrowing waveguides and is called “dif-
fractional blocking.” This phenomenon is also somewhat
analogous to the situation in an electronic quantum wire
when the Fermi level lies below the lowest subband edge, so
that electrons can only tunnel from one contact region to the
other, resulting in an exponential suppression in the conduc-
tance.

Some closely related work to that described in this section
3.0 ‘ s ‘ ‘ is in the area of dielectric point contact spectrosctpy®In
0.00 0.02 004 0.6 0.08 0.10 fact, diffractional blocking has already been observed in

T(Kelvin) thermal conductance measurements of point contidiy;

FIG. 2. Reduced thermal conductance vs temperature for perfecf'€asuring the temperature at_ which the_ thermal conductam_:e
GaAs wires with uniform rectangular cross section 200 nmdropped sharply, it was possible to estimate the contact di-
X400 nm (solid line, 200 nmx300 nm (dashed ling and ameters that were found to be in the region of tens of na-
200 nmx 100 nm(dotted ling. The reduced conductance is given NOMEters.
in units 7k3/6h~9.465< 10 * W K 2.

T (9.465x10™"° W K?)
o
o

4.0 +

Ill. ENERGY CURRENT NOISE
f°,§n O/kBTd €g(e€) goes from being much less than one to close

to one. A rough criterion can be arrived at by requiring that  Using the methods developed in the preceding section, it
the temperature at which tmh subband contributes 90% of is possible to calculate more nontrivial quantities character-
a universal quantum be less than the temperature at whid#ing the energy flow in the wire, such as the variance of the
then-+ 1th subband contributes 10% of a universal quantumenergy current£1)2=(12)—(1)2. If we take the expectation

This yields the following condition on the subband edgeyajye of[(x,t)]2, we obtain a meaningless divergent result,
separation: however. Given that we cannot measure the current at a pre-
cise instant, a more realistic quantity to consider is the fol-
Ent10>14E,0. (23)  Jowing (see, e.g., Ref. 19

Therefore, in order to resolve the steps, the subband separa- o
tion would have to increase by an order of magnitude from Im(x,t)=f drH(t— 7)1 (X, 7), (29
one subband to the next. In an actual wire, the separation *
typically goes like En.,10/Eno~(n+1)/n, and thus the whereH(t) is a causal filter function satisfyinig (t) =0 for

steps cannot be resolved. The same conclusion is reached in o _
Ref. 9, where the possibility of using nonequilibrium, t<0 andfZ.dtH(t)=1. We calll, the measured current.

narrow-band phonon distributions to observe the steps is alsbh€ expectation value dfi (x,t)]? is now finite and well

considered. defined. The variance of the measured current is calculated
In Fig. 2, we show the temperature dependence of thélsin_g a similar procedur(_a to that outli_ned in the prgvious

reduced thermal conductance for perfect GaAs wires wittfection for the mean. Omitting the details and going directly

uniform, rectangular cross sections of various dimensioné0 the final result, we find

comparable to those used in the experiment of Ref. 8. The

only GaAs wire characteristics that are needed in order to (Al )Z%i D J“ dEEATZ [ny—n,]?

determine the conductance are the zone-center frequencies m 2mwh [~ JE,, n'ntTi1 T2

wno. These can be calculated using the elegant numerical 1

method developed in Ref. 15. As expected, there are no step- +Talnu(na+1) +ny(ng + 1) ]}, (25

like features. There is, however, a plateau Tor0 where o o ) )

only phonons in the lowest subband wih ,=0 contribute ~ Where the transmission probabili, , is defined in Eq(19)

(see also Ref. J0The plateau has the value of 4 in universaland the transmission matrik’,, is defined as follows:
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electron-gas temperature with negligible disturbance to the
Tore= 2 (vn)  gomtay tar i (26) gas. Thisgmeasuiing system is ingfa?:t a closely related ide-
m,m’ alization of that employed by Tigheetal. in their
The constanB is the filter bandwidth: experiment$.
Measuring the wire thermal conductance presents no
B— i * dwf2(w) 27 problem. A known constant power source is supplied to res-
27 ) — o ' ervoir 1, say, while reservoir 2 acts as heat sink with known
_ _ temperature. The electron-gas thermometer is located at the
where H(w)= [ _.dte ''H(t). Approximation (25) is a reservoir end of lead 1 and its average temperature measured.
good one provided that the energy scBle# w over which  The conductance is then just the power divided by the dif-
H(w) is nonzero is small as compared with the energy scaleference between the gas thermometer temperature and the
over which the transmission matrices and phonon distributémperature of reservoir [Bee Eq(21)].
tions vary(see, e.g., Ref. 19 The fluctuations of the electron-gas temperature give
Formula (25) resembles the electron current variancemuch more information concerning the wire-phonon dynam-
formula?®2%12(The correspondence is even more direct ificS than the average temperature. The real possibility to de-
the eiectrorenergycurrent Variance is used for Comparison tect temperature fluctuations is a Consequence, as the follow-
rather than the more commonly considered charge-curreig estimates show, of the very small electron-gas volume
variance). Just as for the electron case, we see that phonoHat can be achieved. For a nearly degenerate electron gas the
current noise in the presence of a nonzero steady-state cuiPecific heat is approximately
rent(i.e., T;#T,) contains more information concerning the 2
transmission characteristics of the wire than the thermal con- E% 77 ndZBT
ductance. aT 2E
For the special case where the reservoir temperatures
the same, th& matrix term drops out and E@25) can be
written as follows:

(29

Afheren andV are the electron-gas number density and vol-
ume, respectively. Using the relation betwdepn andn for
free electrons to eliminateg, Eq. (29 becomes

JE w2 PmntAVIGT
aT 32/3;2

(Al)?~2BkgT?k, (29

wherek is the thermal conductand@l). Thus, the equilib-
rium phonon noise gives the same information concerning

the wire transmission characteristics as the thermal condugf the electron-gas absorbs or emits a thermal phonon with

tance. We call Eq(28) the JOhnSOI’l-NyquiSt noise formula energy &BT' then from Eq(30) we get an approximate
for the phonon-energy current. Again, this formula bears gemperature change
close resemblance to the electron-current Johnson-Nyquist

(30

noise formulat}?! When the temperature difference is non- 3532
zero but small, we see from the form of the phonon distribu- 6T~ ST TV (32)
tion terms in Eq(25) that corrections to the Johnson-Nyquist 7 mntVkg
equilibrium noise are of second order in the temperature dife,; Gaas with, e.g.n=10 cm~3, this gives
ference.
ST~0.4vV"1 mK, (32

IV. A MESOSCOPIC THERMOMETER . . . . 3
where the volumeV is given in units um°. Thus,

In order to probe the phonon dynamics of a wire, somefor an electron-gas thermometer with submicron dimensions
kind of measuring apparatus is obviously required. It is im-(which can be achieved with present fabrication
portant to understand the behavior of that part of the appaechnique®, absorption or emission of a thermal phonon
ratus that interacts directly with the wire phonons, so that wewill produce a temperature fluctuation in excess of a mil-
can know just what properties of the phonon system are itiKelvin.
fact being measured. Note, however, that it is not possible to measure the

As our model measuring system, we consider an electroenergy-current fluctuations using the electron-gas thermom-
gas confined to a thin cross sectional slab of one of the wireter. Although the energy of an absorbed phonon can be
leads. The gas density and slab thickness are small enough determined from the size of the temperature fluctuation, all
that the wire phonon current is hardly affected by its presinformation is lost concerning the direction in which the wire
ence. In other words, a phonon traversing the gas layer hgshonon was travelling. To gain an initial idea about what
only a very small probability to be absorbed. The gas densitynformation can be obtained concerning the phonon dynam-
should also be large enough so that the time scale for thigs, we shall now examine more closely the temperature fluc-
electron gas to reach internal thermal equilibrium due tauations.
electron-electron scattering is much less than the time scale Much of the theory of photoelectric light detection in
separating consecutive phonon absorption or emissioguantum optics(see, e.g., Chap. 14 of Ref. 22an be
events. This latter assumption allows us to assign a temperadapted to our present problem. As a phonon detector, how-
ture to the electron gas, which fluctuates in time due to thever, the electron-gas thermometer behaves in a more non-
absorption and emission of phonons. The remaining part dfrivial manner than the photoelectric detector. Unlike a con-
the apparatus, which we do not describe, measures theentional photoelectric detector, the gas thermometer can not
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only detect phonons, but measure their energy as well. Fur-

thermore, the gas thermometer can emit phonons. When suc- )\ﬁfé=j dl’lﬂ;;(r)( E 40iUn,q,i(1)
cessive phonon detections are correlated, these properties can v

make the calculation of various detection probabilities more

ec —Qolr—R|
difficult. In the following, we shall neglect the correlations. + 9914f e ® 07212Un (1) | (1)
This then allows us to recover all statistical properties of the dmely [r—R[ “Znad ¢
temperature fluctuations from the detection probability for (35)

very short time intervalsi.e., short enough so that the prob-

ability is much less than onelt should be borne in mind, \here the integrals are over the electron-gas volugneis

however, that many of the expected interesting quantunpg,e electron-energy eigenstate, and, ; is the phonon-mode

properties will be correlation effects and, thus, it is importantsg|ytion in the leadsee Eq.(4)]. The first term in the large

to try to include the correlations in future improvements ofyrgckets is the deformation component of the potential and

the theory. the second term is the piezoelectric compon@ee, e.g.,
The quantity of interest, then, is the probability Chap. 3 of Ref. 28

R(E,E")dt that the electron gas, initially with total energy  The rate expressiof84) comprises two terms, of which

E, has energ§’ #E after a short time intervadt, due to the  the second involving the wire phonon-transmission matrix

absorption or emission of a phonon with enerdy=|E’  {12js the most interesting. A possible experimental procedure

—E|. Recall that we are assuming the electron gas to be ifyould be to measure the rates fo5# T, and also forT,

internal thermal equilibrium between absorption/emission—T,  with T, the same in each case. The difference between

events. For a large number of electrons, the electron-gas teffhe two rates would then be given by just the second term in

peratureT can be determined to good approximation from Eq. (34). Because this term is proportional t#1>* evalu-

the total energyE of the electron gas by using the relation ated atw=A/#, the rate difference, therefore, provides di-

E=2%,e.f(e,), Wheree, is a single electron-energy €i- rect information concerning the energy dependence of the

genvalue and(e,) is the Fermi-Dirac distribution. Neglect- phonon-transmission matrix averaged over the various sub-

ing correlations, an energy probability distributiBGE) will  hands. Of course, knowledge of the electron-phonon matrix
evolve in time according to the following equation: elements(35) would be required in order to extract this in-
formation.

%(E,t)=z P(E’,t)R(E’,E)— >, P(E,t)R(E,E").
E' E' V. CONCLUSION

(33
Thus, knowing the rat®k(E,E’) allows us to in principle We have presented several results concerning the energy-
determine how a probability distribution evolves. flow properties of mesoscopic, suspended dielectric wires.
Using the methods of, e.g., Chap. 14 of Ref. 22, we obtairl e mean of the energy current was calculated and a Land-
the following expression for the rate: auer formula for the thermal conductance obtained. When
scattering is absent, each phonon subband contributes a uni-
R(E,ExA) versal quanturm-rké/(sﬁ to the reduced conductanceT.
Steps are not observed, however, because of the broadness of
_ ™ E f(1—fp) 2 vfl(|)\aﬁ|25 , the Bose-Einstein distribution as compared with the subband
pA & “ Pl mmat Bl T edge separation. The temperature dependence of the reduced
op" o= +A conductance was solved numerically for the example of a
N |28, + N B* NGB L g\ aBy aBx ,tl,l*) GaAs wire with uniform, rectangular cross section. The vari-
L ance of the energy current was then calculated and the
Johnson-Nyquist equilibrium noise formula obtained as a
X(ng+5%3)+ 2 ) Onahnl—q N gt special case. In the final part, an initial investigation was
mnn carried out concerning the nature of the fluctuations of a
mesoscopic electron-gas thermometer due to the absorption
X(nz=ny) |, and emission of wire phonons. It was found that the fluctua-
tions give direct information concerning the energy depen-
(34) dence of the phonon transmission matrix for the wire.
where all the phonon quantities are evaluatedvatA/7. ACKNOWLEDGMENTS
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