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Hubbard-gap tunneling in disordered quantum-dot chains

Ryuichi Ugajin*
Sony Corporation Research Center, 134, Goudo-cho, Hodogaya-ku, Yokohama 240-0005, Japan

~Received 14 May 1998!

In a Hubbard chain under an overall confining potential, electron tunneling through a Hubbard gap in the
center of the chain can be expected even when disorder is introduced into the chain. Two kinds of randomness,
in on-site single-particle energy and in on-site electron-electron interaction, are considered not only separately,
but simultaneously. Because of the randomness in on-site single-particle energy, the variance of the tunneling
amplitude has a peak when the degree of randomness changes. This peak is caused by the interplay between
single-electron tunneling and Hubbard-gap tunneling in the chain where the Fermi statistics of electrons are
important. On the other hand, the effect of randomness in on-site electron-electron interaction is similar to that
in the potential barrier of single-electron tunneling. These effects of randomness on Hubbard-gap tunneling are
important in determining the electronic structures of tunneling-coupled quantum dots.
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I. INTRODUCTION

The nature of correlated electrons in low-number dim
sion structures with disorder has been an active field of
search in recent decades, for example, the fractional quan
Hall effect in a two-dimensional space under a magne
field1–4 and quantum dots in disordered semiconductors5–8

The coexistance of a strong correlation between electr
and disorder presents important problems of ‘‘comple
quantum systems, which are realized in solid-st
materials.9,10

Let us review a way of understanding the fractional qu
tum Hall effect, which consists of three steps.11 The first step
considers wave functions of a single electron runn
through a disordered medium in a magnetic field.12 The sec-
ond step considers the electronic states of correlated e
trons in a uniform space without disorder.13,14 In the third
step, these two systems are unified into a single system
which correlated electrons are in a disordered medium.

In the first step, we see that a single electron in a dis
dered medium can diffuse without spin-orbit interactio
when the number of dimensions is larger than two.15,16

Therefore, all wave functions of noninteracting electrons
two dimensions are localized by randomness when spin-o
interactions are absent.17,18 However, when a magnetic fiel
is introduced in two-dimensional space, only the state in
center of each Landau level becomes extended and the
carries a nondissipative current in a bulk sample. When
Fermi energy is located between the energies of the exten
states, Hall plateaus are seen insxy . This is the integer
quantum Hall effect.19

Let us turn to the second step, in which electrons
correlated in two dimensions, particularly under a stro
magnetic field. It is useful to introduce composite fermio
in two dimensions under a magnetic field.20 Using the com-
posite fermions, correlated electrons in two dimensions
der a magnetic field can be expressed as almost indepen
fermions with a flux of ‘‘virtual magnetic fields.’’ An exter-
nal magnetic field causes Landau-level splitting, resulting
a reduction of the degree of freedom for quanta, so quan
PRB 590163-1829/99/59~7!/4952~9!/$15.00
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systems in two dimensions under a strong magnetic field
similar to quantum systems in one dimension. Note that
have integrable quantum models in one dimension.21–23 An
example is a many-body model with thed-type interaction in
one dimension,24 and another example is the Hubbard mod
in a one-dimensional lattice.25–27

In the third step, we return to the fractional quantum H
effect, in which we have extra plateaus insxy when electron-
electron interaction strongly affects electronic structures
two dimensions under a magnetic field. Because the inte
tion between composite fermions in two dimensions unde
magnetic field is weak, the composite fermions can be in
pendent. Therefore, the fractional quantum Hall effect in t
dimensions with disorder can be understood as the inte
quantum Hall effect of composite fermions in two dime
sions with disorder. Thus, the key to this way of understa
ing the fractional quantum Hall effect is the decompositi
of correlated electron systems into almost independent
ticles.

There is another kind of decomposition of correlated el
tron systems in a Hubbard chain under an overall confin
potential.28,29 In general, the overall confining potential de
stroys the integrability of an infinite Hubbard chain. How
ever, under a certain strength of confining potential, M
insulating electrons and electron tunneling through the M
insulating electrons can be useful in understanding the e
tronic states of the Hubbard chain under an overall confin
potential. In another words, the Hilbert space of the mu
electron system is approximately decomposed into Mott
sulating states with antiferromagnetic spin correlation an
single electron that tunnels through the Mott insulating el
trons. When an even number of electrons are confined
symmetric chain, there is electron tunneling through
Hubbard gap. If asymmetry is introduced into the chain,
tunneling amplitude is strongly suppressed.30 When an odd
number of electrons is confined in a symmetric chain, th
is no electron tunneling through the Hubbard gap, though
know that asymmetry in an odd-number chain enhances
tunneling amplitude. These effects due to the number
electrons have been clarified by the calculations of eig
4952 ©1999 The American Physical Society
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nine-, and ten-electron chains in Ref. 31. Note that the ab
lute value of the tunneling amplitude decreases as the n
ber of the electrons confined in the chain increases. Th
because the length of the tunneling barrier, i.e., Mott insu
ing electrons, increases as the number of electrons incre

In the present paper, we analyze the effect of disorde
Hubbard-gap tunneling. The effect of disorder is importa
not only in analyzing the result of experiments because
the inevitable disorder in experimental situations, e.g., dis
dered quantum-dot chains,32 but for analyzing multielectron
effects on Hubbard-gap tunneling.

II. MODEL OF OUR QUANTUM-DOT CHAINS

Let us consider a chain of 13 sites of a single orbital
each quantum dot, which is described by a Hubbard-t
model:

Ĥ52t (
j 52L

L21

(
s5↑,↓

ĉ j s
† ĉ j 11s1 (

j 52L

L

~V j 21v j !n̂ j

1 (
j 52L

L

~U1uj !n̂ j↑n̂ j↓1H.c., ~1!

wheren̂j s5 ĉ j s
† ĉ j s andn̂ j5n̂ j↑1n̂ j↓ . ĉ j s

† creates an electron
at the j th site with spins. t is the transfer between adjace
sites.U1uj is the strength of on-site electron-electron inte
action andV j 21v j is the on-site potential energy of a sing
electron at thej th site. WhenV.0, electrons in the Hubbard
chain are confined by an overall parabolic potential. Wh
we introduce randomness in our Hubbard chain,uj and/orv j
are treated as random numbers.33 In this paper we analyze
the system of eight electrons in a chain havingL56 and t
51. The eigen energy of the eight-electron ground stateE0
and its eigenvectoruC0& were calculated using the Lanczo
method.34 The ground state of our eight-electron chain h
total spinS50 because there is no possibility of ferroma
netism in single-band Hubbard systems.~This has been nu
merically checked when six electrons are considered i
chain with parabolic confinement.28! S50 indicates that the
z component of the total spinSz is also zero.

Let us review the electronic states of our Hubbard ch
without randomness. WhenV50, the electron gas has a
almost constant density over the chain. Because the de
of electrons is smaller than that of half-filled electrons, o
electronic system is a metal of correlated electrons, i.e
Luttinger liquid.35–37 As the confining potential become
stronger, i.e.,V becomes larger, the density of the cen
region becomes higher. When the density of the center
gion reaches that of half-filled electrons, a Mott-Hubbard g
appears with an antiferromagnetic spin correlation38

Hubbard-gap tunneling between the left of the center and
right is seen in the chain through the Hubbard gap indu
by the overall confining potential.28 The tunneling effect is
analyzed using the equal-time Green’s function of
ground stateuC0&:

Gi , j
s 5^C0uĉis

† ĉ j suC0&, ~2!

because whether electrons with spins are localized or delo-
calized can be determined by the behavior ofGi , j

s ( iÞ j ).
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Note thatGi , j
↑ is equal toGi , j

↓ when an even number of elec
trons is confined in our Hubbard chain, so they are deno
by Gi , j . This is the result of the rotational invariance of th
ground state having the total spin 0. Note that 2Gj , j5Gj , j

↑

1Gj , j
↓ is the density of electrons at thej th site in the ground

state.
Figure 1 shows the equal-time Green’s functionGi , j when

U516, uj50, V50.4, andv j50. Note that we concentrat
on an eight-electron system in a thirteen-site chain unde
overall confining potential. In the chain, seven electrons c
stitute a Mott insulator in the center of the chain and the r
of electrons can tunnel through the Hubbard gap of the M
insulator. In the center of the chain, where a quasi-Mo
Hubbard gap appears,Gi , j decays rapidly asu i 2 j u increases.
The exponential decay of the Green’s function indicates t
the fermionic excitation is massive due to the quasi-Mo
Hubbard gap. The valueG24,j is large whileu j 14u<1, on
the other hand, decays rapidly whenj .22 again. Further,
G24,j has a considerable value atj 54. This behavior of the
equal-time Green’s function indicates electron tunnel
from the j 524 site to thej 54 site through a Hubbard ga
in the center of the chain. Thus, the amplitude of Hubba
gap tunneling for an eight-electron system in a thirteen-
chain is

p5U G24,4

G24,24
U. ~3!

Figure 2 shows the equal-time Green’s functionG24,j when
U52,3,4,...,16 is taken, and the rest of the parameters are
same as in Fig. 1. Though Hubbard-gap tunneling is w
indicated byG24,j whenU>8, wavy behavior of the equal
time Green’s function whenU,8 indicates that the elec
tronic state of the chain is metallic. In the following sectio
randomness will be introduced in sites that havej 523,
22,...,3 because we intend to analyze the effects of diso
on Hubbard-gap tunneling from thej 524 site to thej 54.
Note that if we introduced randomness inu j u54 sites, the
effect of off-resonance between thej 54 site and the
j 524 site would strongly reduce the tunneling amplitud

FIG. 1. The equal-time Green’s functionGi , j without random-
ness whenV50.4 andU516 are taken. The absolute value
G24,4 is large, thoughuG24,j u (22< j <2) is very small. This is a
sign of Hubbard-gap tunneling.



si
.
o

m

-
le
a
in

re

ved
th
dot
een

As

e
de-

the
icle
ter-
the
t if
gle-
ran-
site

of
tem
of
the
en-
tion

ling

4954 PRB 59RYUICHI UGAJIN
Let us consider the degree of randomness in on-
electron-electron interaction and in single-particle energy
simple estimation suggests that the ground-state energy
single electron in a quantum dot is

Ṽ5
\2

2meR
2 , ~4!

and the energy of electron-electron interaction is

Ũ5
e2

4pe0e rR
, ~5!

whereR is the diameter of each quantum dot. If we assu
that the fluctuation in electron-electron interaction, i.e.,dŨ

and the fluctuation in single-particle energy, i.e.,dṼ origi-
nate from the fluctuation in the diameter of quantum dotsdR,
we find that

dṼ5
4pe0e r\

2

mee
2

dŨ

R
. ~6!

The valuesme50.067m0 , e r510.9, for GaAs result in

dṼ58.631029
dÛ

R
, ~7!

where the units of theSyste`me Internationalare used. When
R is much larger than 10 nm,dV̂, i.e., randomness in single
particle energy, can be ignored. This is the case where e
trons are confined by a depletion region of
semiconductor.39–44 These quantum dots are considered
Sec. III A, whereuj ( j 523,22,...,3) is randomly distrib-
uted andv5 j50. In our calculation, random variables a
taken to be in a range ofr, so

2
r

2
,uj,

r

2
~8!

will be taken for j 523,22,...,3.
WhenR is much smaller than 10 nm,dŨ can be ignored.

Section III B analyzes this case, wherev j ( j 523,22,...,3)

FIG. 2. The equal-time Green’s functionG24,j without random-
nessV50.4 andU52,3,4,...,16 are taken. WhenU>8, Hubbard-
gap tunneling is present.
te
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e
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is randomly distributed anduj50. Again, random variables
are taken to be in a range ofr, so

2
r

2
,v j,

r

2
~9!

will be taken for j 523,22,...,3. In a quantum dot withR
;10 nm, dṼ is comparable withdÛ. Fabricating semicon-
ductor quantum dots on the order of this size can be achie
using state-of-the-art technology. Using epitaxial grow
techniques of compound semiconductors, a quantum
confined by a herostructure on the order of 10 nm has b
fabricated.45–47 Whiskers of GaAs~Ref. 48! and of silicon49

have been used to fabricate a quantum wire of this size.
suggested by the above expressions, the sign ofdV̂ is the
same as that ofdŨ, resulting in a correlation between th
degree of randomness in single-particle energy and the
gree of randomness in electron-electron interaction. If
size of quantum dots becomes smaller, the single-part
energy as well as the energy due to electron-electron in
action becomes larger. Note that the correlation between
degrees of the two kinds of randomness is not presen
impurities in semiconductors cause randomness in sin
particle energy. Section III C analyzes systems that have
domness both in on-site single-particle energy and in on-
electron-electron interaction. A system wherev j and uj ( j
523,22,...,3) are randomly distributed and their degrees
randomness have no correlation, is compared to a sys
where v j5uj are randomly distributed, but the degrees
randomness are correlated. In this section, the effect of
correlation between randomness in on-site single-particle
ergy and randomness in on-site electron-electron interac
is discussed.

The tunneling amplitudep will be statistically averaged in
a whole random ensemble. We have numerical resultp when
we takeuj andv j as an ensemble, sop is a function ofuj and
v j . The nth set of the random variables is denoted byuj

(n)

andv j
(n) , so we write the tunneling amplitude as

p~n!5p~uj
~n! ,v j

~n!!. ~10!

The number of random samples is taken to beNs5200, so
we write the statistical average forp,

^p&5
1

Ns
(
n51

Ns

p~n!, ~11!

wherep(n) is the tunneling amplitude of thenth set of ran-
dom variables. We also define the variance of the tunne
amplitudep as

^dp&5A^p2&2^p&2, ~12!

where

^p2&5
1

Ns
(
n51

Ns

@p~n!#2. ~13!
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III. RESULTS

A. Randomness in on-site electron-electron interaction

The Mott-Hubbard gap is useful to describe a Mott ins
lator in which the upper Hubbard band is empty and
lower Hubbard band is fully occupied by electrons. T
width of the gap, i.e., the energy at the bottom of the up
Hubbard band minus the energy at the top of the lower H
bard band, isD5Ueff2Teff , whereUeff is the on-site energy
due to electron-electron interaction andTeff is the bandwidth
of a single electron.38 In Hubbard-gap tunneling, the heigh
of the tunneling barrier is approximately proportional toD
minus the Fermi energy. WhenV induces a Hubbard gap i
the center of the chain, the left-hand and right-hand si
should have the discrete excitation spectra of a single e
tron. There is a single electron located to the left of t
Mott-insulating electrons in the center of the chain in t
eight-electron stateuL& and there is a single electron locate
to the right of the Mott-insulating electrons in the eigh
electron stateuR&. The ground state of our chain without ra
domness can be written as the bonding state of these m
electron states: (uL&1uR&)/&, where there is resonan
tunneling between the right-hand side and the left-hand s
The energy ofuL& and uR&, which depends on the strength
overall confining potentialV, can be thought of as the Ferm
energy of both ends of our chain. Because the barrier he
for Hubbard-gap tunneling is the energy difference betw
the energy at the bottom of the upper Hubbard band and
Fermi energy of the left and right sides, the barrier height
be modulated byV.

When we introduce randomness in on-site electr
electron interaction in a region near the center of the ch
the effect of the randomness on Hubbard-gap tunnelin
similar to that of a fluctuation in the barrier height on sing
electron tunneling, as suggested by the above discussio
Hubbard-gap tunneling. Note that the effect of randomn
in a tunneling barrier is small in single-electron tunneling.
lower barrier encourages tunneling and a higher barrier
courages tunneling. Therefore, the degree of randomness
tunneling barrier has a little effect on the amplitude
single-electron tunneling. An analysis in single-electron tu
neling is given in the appendix, which shows that fluctu
tions in the barrier height enhance the tunneling amplitud

In Fig. 3, the tunneling amplitudêp& and its variance
^dp& are plotted as a function of log10(r ), where r is the
degree of randomness, as defined in Sec. II. In these figu
V is taken to be 0.4 andU is taken to be 4,6,8,...,16. Whe
U54, ^p& is small and almost constant over the whole ran
of randomness. WhenU56, ^p& is slightly larger than when
U54, and remains almost constant over the whole rang
randomness. At the same time, fluctuation of the tunne
amplitude^dp& is very small even when a high degree
randomness is introduced. Note that the values^p& and^dp&
whenU54 and 6 are very different from others whenU has
a larger value, as suggested in Sec. II. When our Hubb
chain has these parameters, the electronic structure of
chain is similar to that of a Luttinger liquid, i.e., a metal
correlated electrons. Note that over the whole range of r
domnesŝ p& is almost independent of log10(r ) and ^dp& is
almost zero. Only when log10(r ) exceeds21, ^dp& has non-
-
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zero value. These behaviors suggest that the Luttinger liq
is not sensitive to randomness in on-site electron-elec
interaction.

As we investigate Hubbard-gap tunneling, we are int
ested in the results whenU>8, as suggested in Fig. 2 of Se
II. The tunneling amplitudêp& whenU58 is largest in Fig.
3~a! and decreases slightly asr increases. As the mea
strength of electron-electron interaction, i.e.,U increases, the
value^p& decreases over the whole range of randomness.
see that the tunneling amplitude^p& decreases asr increases
whenU>8. As U becomes larger, the decrease^p& becomes
more pronounced. This is because the barrier of Hubba
gap tunneling becomes higher as the electron-electron in
action becomes stronger. Though^p& decreases slightly asr
increases,̂ dp& increases sharply asr increases, as seen i
Fig. 3~b!. This means that randomness in on-site electr
electron interaction hardly affects the mean rate of Hubba
gap tunneling, though the fluctuation of the tunneling rate
enlarged. This tendency is similar to that in a single-elect
tunneling through a potential barrier. Note that^dp& in-
creases rapidly when log10(r ) exceeds21, particularly in the
curve whenU516.

In Fig. 4, the tunneling amplitudêp& and its variance
^dp& are plotted as a function of log10(r ), whereV is taken
to be 0.1,0.2,...,0.7 andU is fixed at 16. Comparing the tun
neling amplitudêp& whenU54 andV50.4 in Fig. 3~a!, we
conclude that the electronic state of the chain having
<V<0.2 is that of a Luttinger liquid. The confining poten
tial of the chain is so weak that a quasi-Hubbard-gap co
not be induced in the center of the chain. Note that^dp&
whenV50.1 is so small that one cannot see it in Fig. 4~b!,
and ^dp& remains very small even whenV50.2. We are

FIG. 3. ~a! The average tunneling amplitudê p&
5^uG24,4/G24,24u& and~b! its variance as a function of the degre
of randomness when the on-site electron-electron interaction is
domly distributed.V is fixed at 0.4 andU is taken to be 4,6,8,...,16
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reminded that this behavior of^dp& is similar to that of the
chain havingU54 andV50.4, as shown in Fig. 3~b!. As
the strength of the confining potential, i.e.,V becomes
strong, ^p& and ^dp& become just as in a chain havin
Hubbard-gap tunneling. Though the tunneling amplitude^p&
when V.0.5 is slightly larger than̂p& when V50.4, the
variance at log10(r );21 becomes larger asV increases
from 0.4. As V becomes larger, the Fermi energy of bo
sides of the center increases, resulting in the large tunne
amplitude. This interpretation is supported by the fact t
the tunneling amplitudêp& when V50.7 is enhanced a
log10(r );21, as seen in Fig. 4~a!. As discussed in the ap
pendix, the tunneling amplitude of a single electron throu
a potential barrier is enlarged by randomness within a po
tial barrier. The term appearing in the appendix that ma
the tunneling stronger is proportional to the inverse of
barrier height minus the energy of a particle. Therefore,
effect has a large contribution to the tunneling amplitu
when the Fermi energy of both sides in our Hubbard chai
large, i.e.,V is large.

B. Randomness in on-site single-particle energy

In a Hubbard chain without randomness, we know that
amplitude of Hubbard-gap tunneling strongly depends
whether the number of electrons in the chain is even
odd.28 Note that, when the number of electrons is odd,
ground states degenerate; one of the ground states ha
total spin↑ and the other has the total spin↓. To construct a
ground state like the spin-density-wave state,50 we must
place an electron with spins5↑ at the center of the chain

FIG. 4. ~a! The average tunneling amplitudê p&
5^uG24,4/G24,24u& and~b! its variance as a function of the degre
of randomness when the on-site electron-electron interaction is
domly distributed.V is taken to be 0.1,0.2,...,0.7 andU is fixed at
16.
ng
t
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s

e
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e
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e
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i.e., j 50. Next we place a pair of electrons with spins5↓ at
u j u51, place a pair of electrons withs5↑ at u j u52, and so
on. This state is written as

uFN,s
SDW&; ĉ2N,s

† ĉ2N11,2s
†

¯ ĉN21,2s
† ĉN,s

† u0&, ~14!

where 2N11 is the number of electrons. Note that an ele
tron with spin s cannot tunnel through the region from
j 52N to j 5N because electrons with spins exist in this
region. On the other hand, if an even number of electron
confined in the chain, the above discussion does not ap
because the ground state has total spin 0 and becomes
tionally invariant. In this electronic system, Hubbard-g
tunneling can be seen. It should be noted that when as
metry is introduced in the chain, Hubbard-gap tunneling c
be seen when an odd number of electrons are confined in
Hubbard chain.30 Moreover, the effect of the double occu
pancy in sites near the center is important in determining
electronic structure of a chain having Hubbard-gap tunn
ing. This is because no electrons can tunnel through a do
occupied site, as stated in Pauli’s principle.31 Thus, the birth
of doubly occupied sites due to an increase of the confin
potential, stops Hubbard-gap tunneling in the Hubbard ch
We conclude that Fermi statistics are important in und
standing Hubbard-gap tunneling because the tunneling
rier consists of electrons as well as tunneling particles.

In Fig. 5, the tunneling amplitudêp& and its variance
^dp& are plotted as a function of log10(r ), whereV is fixed
as 0.4 andU is taken to be 4,6,8,...,16. The tunneling amp
tudes whenU54 and 6 are similar to those withU54 and 6
in Fig. 3~a!. As suggested in the previous section, an el
tronic system like the Luttinger liquid is stable in the face
randomness. On the other hand, whenU>8, the tunneling

n-

FIG. 5. ~a! The average tunneling amplitudê p&
5^uG24,4/G24,24u& and~b! its variance as a function of the degre
of randomness when the single-particle energy is randomly dis
uted.V is fixed at 0.4 andU is taken to be 4,6,8,...,16.
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PRB 59 4957HUBBARD-GAP TUNNELING IN DISORDERED . . .
amplitude is very different from that in Fig. 3~a!. The tun-
neling amplitude^p& decreases rapidly when log10(r ) ex-
ceeds 21.5, the amplitude of Hubbard-gap tunneling
strongly reduced by randomness in single-particle ene
Let us turn to deviation in the tunneling amplitude, i.
^dp&. Recall that̂ dp& increases as log10(r ) when Hubbard-
gap tunneling is present, as seen in Figs. 3~b! and 4~b!. In
Fig. 5~b!, however, we see peaks in^dp& whenU.8. Note
that ^dp& starts to increase at smallerr as the strength o
on-site electron-electron interaction, i.e.,U becomes larger
On the other hand, the strong reduction of the tunneling a
plitude ^p& causes the reduction of^dp& because the latter i
a variance of the former. Therefore, we have peaks in^dp&.

Let us explain why the strong reduction takes place in
tunneling amplitude. When the single-particle energy of
j th site is slightly lower than the single-particle energy of t
( j 21)th site and of the (j 11)th site, an electron is apt to s
at the j th site. Let us put other electrons in this region. B
cause of the large energy due to electron-electron interac
electrons other than the electron located at thej th site are
located at sites other than thej th site. However, there is a
small probability of a double occupancy at thej th site. When
the difference in single-particle energy between thej th site
and the neighboring sites becomes larger, the probability
double occupancy at thej th site increases. When our Hub
bard chain has randomness in single-particle energy, sev
sites that have locally minimum energy possibly have up
down electrons and they may be doubly occupied si
Therefore, the effect due to randomness in single-part
energy is similar to that due to asymmetry in the Hubb
chain without randomness. Double occupancy at any
drastically reduces Hubbard-gap tunneling; the reductio
governed by the prohibition rule derived from the Fermi s
tistics.

In Fig. 6, the tunneling amplitudêp& and its variance
^dp& are plotted as a function of log10(r ), whereV is taken
to be 0.1, 0.2,...,0.7 andU is fixed at 16. Thougĥdp& with
V50.1 in Fig. 6~a! is similar to that withV50.2 in Fig.
4~a!, we see that̂dp& with V50.2 in Fig. 6~a! is different
from that withV50.2 in Fig. 4~a!. ^dp& with V50.2 in Fig.
4~a! is almost constant, but̂dp& with V50.2 in Fig. 6~a!
decreases when log10(r ) exceeds21.5. This means that a
Luttinger liquid with V50.2 is sensitive to the randomne
in single-particle energy but not to the randomness
electron-electron interaction. When there is randomnes
single-particle energy, all wave functions of a single elect
are localized in one dimension, as in the Anderson local
tion postulate. We know the localization length may be d
pendent on the degree of impurity scattering. Therefore,
tunneling amplitude may be affected by the localizati
length of our Hubbard chain, which has randomness
single-particle energy. WhenV.0.2, ^dp& has a peak a
log10(r );21.2, as in Fig. 5~b!. It is notable that the tunnel
ing amplitude^p& when V50.7 is enhanced in the regio
where log10(r );21.5, as seen in Fig. 6~a!. In Fig. 4~a!, ^p&
whenV50.7 is enhanced where log10(r );21.

C. Randomness in both on-site parameters

In a chain of 10-nm quantum dots embedded in a b
semiconductor, fluctuation in the size of these quantum d
y.
,
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causes randomness in both single-particle energy and on
electron-electron interaction, as noted in Sec. II. Note t
there exists a correlation between the degree of random
in single-particle energy and the degree of randomnes
on-site electron-electron interaction when the two kinds
randomness originate from fluctuations in the size of qu
tum dots. However, the degree of randomness in the sin
particle energy of each quantum dot is possibly independ
of the degree of randomness in the on-site electron-elec
interaction of each quantum dot, when impurities distribu
in a semiconductor cause randomness in the single-par
energy of quantum dots.

In Fig. 7, the tunneling amplitudêp& and its variance
^dp& are plotted as a function of log10(r ), where there is a
correlation between the degree of randomness in sin
particle energy and the degree of randomness in on-
electron-electron interaction, sov j5uj for j 523,22,...,3 is
randomly distributed. In Fig. 8, the tunneling amplitude^p&
and its variancêdp& are plotted as a function of log10(r ),
where there is no correlation between the degree of rand
ness in single-particle energy and the degree of random
in on-site electron-electron interaction, sov j is randomly dis-
tributed for j 523,22,...,3 anduj is also randomly distrib-
uted for j 523,22,...,3. Note that the value ofv j is inde-
pendent of the value ofuj in each ensemble. In both figure
V is fixed at 0.4 andU is taken to be 4,6,8...,16.

We see that Fig. 7 is almost identical to Fig. 5 in Se
III B where only single-particle energy is randomly distrib
uted. On the other hand, Fig. 8 is different from Fig.
particularly when the largeU ~>8! causes Hubbard-gap tun
neling. The tunneling amplitudêp& whenU58 in Fig. 8~a!
remains constant up to log10(r );20.5, then decreases. Th

FIG. 6. ~a! The average tunneling amplitudê p&
5^uG24,4/G24,24u& and~b! its variance as a function of the degre
of randomness when the single-particle energy is randomly dis
uted.V is taken to be 0.1,0.2,...,0.7 andU is fixed at 16.



es
n

se
-
e

n

e

Th
e

g

nc
l
or
gl
ra
,
o
e
tw
r
b
a

gy

an-
sup-
om-
ost
e of
ness
de-
om-

on
rall
ite
on
lta-
ticle
eak
used
nd
rmi
t of
ter-

e-
ard-
nic
pled

e
au

s
ss

e
site
be-
on-

4958 PRB 59RYUICHI UGAJIN
behavior of the tunneling amplitude is different from̂p&
whenU58 in Fig. 7~a!, where the value gradually decreas
as log10(r ) increases. When we turn our attention to the tu
neling amplitude whenU.8, we see the more rapid decrea
of Hubbard-gap tunneling in Fig. 8~a! caused by the random
ness. The tunneling amplitude whenU510 starts to decreas
at log10(r );21; the tunneling amplitude whenU512 starts
to decrease at log10(r );21.5; the tunneling amplitude whe
U514 starts to decrease at log10(r );21.8; and so on. We
have seen that as log10(r ) increases the tunneling amplitud
decreases smoothly in Fig. 7~a! and that in Fig. 8~a!, the
tunneling amplitude falls off suddenly at valuer, which de-
pends on the strength of electron-electron interaction.
above result suggests that the degree of correlation betw
the two kinds of randomness has an effect on Hubbard-
tunneling.

As discussed previously, the effect of double occupa
caused by randomness in single-particle energy is crucia
determining the behavior of Hubbard-gap tunneling in dis
dered quantum-dot chains. When randomness in sin
particle energy and randomness in electron-electron inte
tion originate from fluctuations in the size of quantum dots
smaller dot has larger single-particle energy and larger C
lomb energy, but a larger dot has smaller single-particle
ergy and smaller Coulomb energy. Therefore, these
kinds of randomness must have the same sign in orde
produce the effect of double occupancy. Recall that dou
occupancy takes place at a site that has relatively sm
single-particle energy and relatively small Coulomb ener

FIG. 7. ~a! The averaged tunneling amplitudê p&
5^uG24,4/G24,24u& and~b! its variance as a function of the degre
of randomness when randomness in the size of quantum dots c
randomness both in on-site electron-electron interaction and
single-particle energy. Note that the degree of randomnes
single-particle energy is correlated to the degree of randomne
on-site electron-electron interaction.V is fixed at 0.4 andU is taken
to be 4,6,8,...,16.
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When there is no correlation between the two kinds of r
domness however, one may compensate the other. We
pose that when the degree of randomness is small the c
pensation works well so the tunneling amplitude is alm
constant, but there is less compensation as the degre
randomness becomes larger. The strong effect of random
in single-particle energy suggests that there is a rapid
crease in the tunneling amplitude as the degree of rand
ness increases.

IV. SUMMARY

We have investigated the effect of randomness
Hubbard-gap tunneling in a Hubbard chain under an ove
confining potential. Two kinds of randomness—in on-s
single-particle energy and in on-site electron-electr
interaction—are considered not only separately but simu
neously. Because of the randomness in on-site single-par
energy, the variance of the tunneling amplitude has a p
when the degree of randomness changes. This peak is ca
by the interplay between single-particle tunneling a
Hubbard-gap tunneling in a Hubbard chain where the Fe
statistics of electrons have a strong influence. The effec
the degree of randomness on on-site electron-electron in
action is similar to the effect of barrier height on singl
electron tunneling. These effects of randomness on Hubb
gap tunneling are important in determining the electro
structures of tunneling-coupled nanostructures, e.g., cou
quantum dots.

ses
in
in
in

FIG. 8. ~a! The averaged tunneling amplitudê p&
5^uG24,4/G24,24u& and~b! its variance as a function of the degre
of randomness both in single-particle energy and in on-
electron-electron interaction. Note that there is no correlation
tween randomness in single-particle energy and randomness in
site electron-electron interaction.V is fixed at 0.4 andU is taken to
be 4,6,8,...,16.
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APPENDIX

When a single particle tunnels through a potential barr
the WKB method gives a good approximation of the tunn
ing amplitude.51 We consider a quantum particle that tunne
through a potentialV(x) in one dimension. When a singl
tunneling barrier is considered,V(x) can be taken as

V~x!5 HV0

0
where 0<x<d

elsewhere, ~A1!

whered is the width of the tunneling barrier. Let us defin
the valueq, which is proportional to the tunneling amplitud
through a potential barrier as

q~E!5expF2
2

\ E
0

d

dxA2me@V~x!2E#G , ~A2!

whereE is the energy of a quantum particle andme is its
mass. Randomness over a tunneling barrier can be in
duced using a single-particle potentialVdis(x):

Vdis~x!55
V01v1 where 0<x<d/N
V01v2 where d/N<x<2d/N
A
V01vN where d~N21!/N<x<d
0 otherwise,

~A3!

wherev j is randomly distributed from2r /2 to r /2 andN is
an integer. Let us denote the tunneling amplitudeq when a
quantum particle runs through a potential barrierVdis(x).
The tunneling amplitudeq can be written as

q~E!5q~E,v1 ,v2 ,...,vN!5expF2a(
j 51

N

AV01v j2EG ,

~A4!

where

a5A2me

2d

\N
. ~A5!

Let us introduce the average of the tunneling amplitude
the random distribution as

^q&5
1

r N E
2r /2

r /2

dv1dv2¯dvNexpS 2a(
j 51

N

AV01v j2ED ,

~A6!

when there is no spatial correlation in randomness. This
pression is reduced into

^q&5QN, ~A7!

where
,

r,
-

o-

n

x-

Q5
1

r E
2r /2

r /2

dv exp~2aAV01v2E!. ~A8!

We have an expression forQ:

Q5
1

r E
2r /2

r /2

dv expF2aAV02E (
m50

`
cm

m! S v
V02ED mG ,

~A9!

where the sequencecm is determined bycm115( 1
2 2m)cm

andc051, so that

A11x5 (
m50

`
cmxm

m!
. ~A10!

When the mean height of the barrier is large, i.e.,r !(V0
2E), we obtain the correction on the order ofr 2 as

Q;
1

r E
2r /2

r /2

dv expF2aAV02ES 11
1

2~V02E!
v D G

5
ebr /22e2br /2

br
e2aAV02E

5e2aAV02EF11
~br !2

24
1

~br !4

1920
1¯ G , ~A11!

where

b5
a

2AV02E
. ~A12!

We now have an expression for^q&,

^q&5e2aNAV02EF11
~br !2

24 GN

1¯

5expS 2
2d

\
A2me~V02E! D S 11

med
2

12\2~V02E!

r 2

N D
1¯ , ~A13!

when N is large andr is small. The first term in the abov
expression is common in an analysis of tunneling amplitu
using the WKB method and the second term is a correc
that reflects the degree of randomness in a tunneling bar
The correction is positive, so a weak randomness, i.e
small r, slightly enhances the tunneling amplitude. Note th
the correction is proportional to (V02E)21. Therefore, the
correction becomes smaller as the barrier becomes highe
is remarkable that the effect of off resonance between
initial and final states strongly reduces the tunneling am
tude, resulting in the Anderson localization of electrons in
random potential.
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