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Hubbard-gap tunneling in disordered quantum-dot chains
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In a Hubbard chain under an overall confining potential, electron tunneling through a Hubbard gap in the
center of the chain can be expected even when disorder is introduced into the chain. Two kinds of randomness,
in on-site single-particle energy and in on-site electron-electron interaction, are considered not only separately,
but simultaneously. Because of the randomness in on-site single-particle energy, the variance of the tunneling
amplitude has a peak when the degree of randomness changes. This peak is caused by the interplay between
single-electron tunneling and Hubbard-gap tunneling in the chain where the Fermi statistics of electrons are
important. On the other hand, the effect of randomness in on-site electron-electron interaction is similar to that
in the potential barrier of single-electron tunneling. These effects of randomness on Hubbard-gap tunneling are
important in determining the electronic structures of tunneling-coupled quantum dots.
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[. INTRODUCTION systems in two dimensions under a strong magnetic field are
similar to quantum systems in one dimension. Note that we

The nature of correlated electrons in low-number dimenhave integrable quantum models in one dimendiof® An
sion structures with disorder has been an active field of reexample is a many-body model with tidgype interaction in
search in recent decades, for example, the fractional quantuome dimensiod? and another example is the Hubbard model
Hall effect in a two-dimensional space under a magnetiin a one-dimensional lattic@ 2’
field!=* and quantum dots in disordered semiconductots.  In the third step, we return to the fractional quantum Hall
The coexistance of a strong correlation between electronsffect, in which we have extra plateauso, when electron-
and disorder presents important problems of “complex” electron interaction strongly affects electronic structures in
guantum systems, which are realized in solid-statéwo dimensions under a magnetic field. Because the interac-
materials>° tion between composite fermions in two dimensions under a

Let us review a way of understanding the fractional quan-nagnetic field is weak, the composite fermions can be inde-
tum Hall effect, which consists of three stépdhe first step  pendent. Therefore, the fractional quantum Hall effect in two
considers wave functions of a single electron runningdimensions with disorder can be understood as the integer
through a disordered medium in a magnetic fiélThe sec- quantum Hall effect of composite fermions in two dimen-
ond step considers the electronic states of correlated elesions with disorder. Thus, the key to this way of understand-
trons in a uniform space without disordért In the third  ing the fractional quantum Hall effect is the decomposition
step, these two systems are unified into a single system iof correlated electron systems into almost independent par-
which correlated electrons are in a disordered medium. ticles.

In the first step, we see that a single electron in a disor- There is another kind of decomposition of correlated elec-
dered medium can diffuse without spin-orbit interactionstron systems in a Hubbard chain under an overall confining
when the number of dimensions is larger than t&& potential?®?° In general, the overall confining potential de-
Therefore, all wave functions of noninteracting electrons instroys the integrability of an infinite Hubbard chain. How-
two dimensions are localized by randomness when spin-orbiver, under a certain strength of confining potential, Mott
interactions are abseht!® However, when a magnetic field insulating electrons and electron tunneling through the Mott
is introduced in two-dimensional space, only the state in thénsulating electrons can be useful in understanding the elec-
center of each Landau level becomes extended and the statenic states of the Hubbard chain under an overall confining
carries a nondissipative current in a bulk sample. When theotential. In another words, the Hilbert space of the multi-
Fermi energy is located between the energies of the extendedectron system is approximately decomposed into Mott in-
states, Hall plateaus are seendn,. This is the integer sulating states with antiferromagnetic spin correlation and a
quantum Hall effect® single electron that tunnels through the Mott insulating elec-

Let us turn to the second step, in which electrons ardrons. When an even number of electrons are confined in a
correlated in two dimensions, particularly under a strongsymmetric chain, there is electron tunneling through the
magnetic field. It is useful to introduce composite fermionsHubbard gap. If asymmetry is introduced into the chain, the
in two dimensions under a magnetic fiéftiUsing the com-  tunneling amplitude is strongly suppress&dVhen an odd
posite fermions, correlated electrons in two dimensions unaumber of electrons is confined in a symmetric chain, there
der a magnetic field can be expressed as almost independeasino electron tunneling through the Hubbard gap, though we
fermions with a flux of “virtual magnetic fields.” An exter- know that asymmetry in an odd-number chain enhances the
nal magnetic field causes Landau-level splitting, resulting irtunneling amplitude. These effects due to the number of
a reduction of the degree of freedom for quanta, so quanturalectrons have been clarified by the calculations of eight-,
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nine-, and ten-electron chains in Ref. 31. Note that the abso- S G
lute value of the tunneling amplitude decreases as the num- G
ber of the electrons confined in the chain increases. This is 4 L SN
because the length of the tunneling barrier, i.e., Mott insulat- Gij
ing electrons, increases as the number of electrons increases. "“""‘4 0o
In the present paper, we analyze the effect of disorder on ) 4 e . a a G2
Hubbard-gap tunneling. The effect of disorder is important & P M 'G' M
not only in analyzing the result of experiments because of o .0 600 ¢:J$
the inevitable disorder in experimental situations, e.g., disor- Ao G
dered quantum-dot chaif$put for analyzing multielectron S S SV S AP WD §
effects on Hubbard-gap tunneling. ) O &,J;
v v AR Gk 2 4
G_ .
Il. MODEL OF OUR QUANTUM-DOT CHAINS 440900000909 %6'16
Let us consider a chain of 13 sites of a single orbital in 6-5-4-3-2-10123456
each quantum dot, which is described by a Hubbard-type J
model: FIG. 1. The equal-time Green’s functid®; ; without random-
L1 L ness when=0.4 andU=16 are taken. The absolute value of
- G_,4is large, thoughG_,;| (—2<j=<2) is very small. This is a
_ at a 02 a ; i
H= _tj;L U:EH CirrCJ+1U+J.ZL (Qj7+v)h; sign of Hubbard-gap tunneling.

L o Note thatG/ ; is equal toG/; when an even number of elec-
+_ZL (U+uphyhy +H.c, (1) trons is confined in our Hubbard chain, so they are denoted
= by G; j. This is the result of the rotational invariance of the

wheref;,=¢&/,&;, andf;=f;; +7;, . &/, creates an electron ground state having the total spin 0. Note théi;2= G
at thejth site with spino. t is the transfer between adjacent + Gj is the density of electrons at tfj¢h site in the ground
sites.U +u; is the strength of on-site electron-electron inter- statg. _
action and2j2+v; is the on-site potential energy of a single  Figure 1 shows the equal-time Green’s funct@yy when
electron at theth site. Wher{) >0, electrons in the Hubbard U=16,u;=0, =0.4, andv;=0. Note that we concentrate
chain are confined by an overall parabolic potential. WherPn an eight-electron system in a thirteen-site chain under an
we introduce randomness in our Hubbard chajrand/ory; overall confining potential. In the chain, seven electrons con-
are treated as random numbgtdn this paper we analyze stitute a Mott insulator in the center of the chain and the rest
the system of eight electrons in a chain having 6 andt of electrons can tunnel through the Hubbard gap of the Mott
=1. The eigen energy of the eight-electron ground sate insulator. In the center of the chai_n, Wh_erg a quasi-Mott-
and its eigenvectof¥ ;) were calculated using the Lanczos Hubbard gap appears;; ; decays rapidly af —j| increases.
method®* The ground state of our eight-electron chain hasThe exponential decay of the Green's function indicates that
tota' Sp|nS:0 because there iS no poss|b|||ty Of ferromag_ the fermioniC eXCitation iS maSSiVe due to the quasi'MOtt'
netism in single-band Hubbard systenEhis has been nu- Hubbard gap. The valu&_,; is large while|j+4[<1, on
merically checked when six electrons are considered in #&e other hand, decays rapidly whgr —2 again. Further,
chain with parabolic confinemeffl) S=0 indicates that the G-4; has a considerable value jat 4. This behavior of the
z component of the total spi8, is also zero. equal-time Green’s function indicates electron tunneling
Let us review the electronic states of our Hubbard chairffom thej = —4 site to thej =4 site through a Hubbard gap
without randomness. Wheﬁzo, the electron gas has an in the center of the chain. Thus, the amplitude of Hubbard-
almost constant density over the chain. Because the densi§iaP tunneling for an eight-electron system in a thirteen-site
of electrons is smaller than that of half-filled electrons, ourchain is
electronic system is a metal of correlated electrons, i.e., a
Luttinger liquid3®~3" As the confining potential becomes _| G-a4a
stronger, i.e.{) becomes larger, the density of the center P G_4-4
region becomes higher. When the density of the center re- i
gion reaches that of half-filled electrons, a Mott-Hubbard gag /9Ure 2 shows the equal-time Green’s functi®n,; when
appears with an antiferromagnetic spin correlaffon. U= 2,3,4,._..,16_ is taken, and the rest of the parameters are the
Hubbard-gap tunneling between the left of the center and th§@Me as in Fig. 1. Though Hubbard-gap tunneling is well
right is seen in the chain through the Hubbard gap inducedldicated byG_,; whenU=8, wavy behavior of the equal-
by the overall confining potentiaf The tunneling effect is time Green’s function whetJ <8 indicates that the elec-
analyzed using the equal-time Green’s function of thelfONIC state of the cham is metalhg:. In'the followmg section,
ground statéW ): randomness will be introduced in sites that hgwe—3,

—2,...,3 because we intend to analyze the effects of disorder
Gi(rj:<\Ifo|eiTa_6jo_|\lfo>, (2)  on Hubbard-gap tunneling from tfje= —4 site to thej =4.
’ Note that if we introduced randomness|iji=4 sites, the
because whether electrons with spirare localized or delo- effect of off-resonance between the=4 site and the
calized can be determined by the behaviorGff; (i+#]j). j=—4 site would strongly reduce the tunneling amplitude.

. 3




4954 RYUICHI UGAJIN PRB 59

T is randomly distributed and;=0. Again, random variables
/ ‘\ H
+* — . 16 are taken to be in a range ofso
al k4
G Tenaaas 3 2Rl r r
[ ® R 4 —=<v <z
LNk NS e e ST 2°VIT2 ©)
% *
R ok Tk et
3 9 Se ¢ P 10 will be taken forj=—3,—2,...,3. In a quantum dot witR
G = aneue 2 2K ~10 nm, dV is comparable witidU. Fabricating semicon-
) ,&“ e ’| b 6 ductor quantum dots on the order of this size can be achieved
," using state-of-the-art technology. Using epitaxial growth
P06 "o otegeee 4 techniques of compound semiconductors, a quantum dot
Lot - confined by a herostructure on the order of 10 nm has been
A AT 4 Tk daaa i fabricated™>~*” Whiskers of GaAqRef. 48 and of silicor{®
6-5-4-3-2-10123456 have been used to fabricate a quantum wire of this size. As

’ suggested by the above expressions, the sigd%ﬁs the

FIG. 2. The equal-time Green’s functi@.,; without random-  same as that ofiU, resulting in a correlation between the
ness(1=0.4 andU=2,3,4,...,16 are taken. Whéh=8, Hubbard-  gegree of randomness in single-particle energy and the de-
gap tunneling is present. gree of randomness in electron-electron interaction. If the

. . __Size of quantum dots becomes smaller, the single-particle

Let us consider the degree of randomness in ON-site,qorqy a5 well as the energy due to electron-electron inter-
electron-electron interaction and in single-particle energy. A, tioy hecomes larger. Note that the correlation between the
simple estimation suggests that the ground-state energy Ofc?egrees of the two kinds of randomness is not present if

single electron in a quantum dot is impurities in semiconductors cause randomness in single-
52 particle energy. Section lll C analyzes systems that have ran-

V= 5, (4) domness both in on-site single-particle energy and in on-site

2meR electron-electron interaction. A system whereand u; (j

and the energy of electron-electron interaction is =—3,-2,..,3) are randomly distributed and their degrees of
randomness have no correlation, is compared to a system

e? wherev;=u; are randomly distributed, but the degrees of

~ i . -
U= Amese, R’ (3 randomness are correlated. In this section, the effect of the

. . correlation between randomness in on-site single-particle en-
whereR is the diameter of each quantum dot. If we assumeergy and randomness in on-site electron-electron interaction

that the fluctuation in electron-electron interaction, iddJ, is discussed.

and the fluctuation in single-particle energy, i@V origi- The tunneling amplitudg will be statistically averaged in
nate from the fluctuation in the diameter of quantum dtits @ Whole random ensemble. We have numerical regswioen
we find that we takeu; andv; as an ensemble, sas a function ofu; and

vj. Thenth set of the random variables is denoted Wy

N Amregeh? dU andv{™, so we write the tunneling amplitude as

(6)

me’ R
=p(u'™ pm
The valuesm,=0.067n,, €,=10.9, for GaAs result in p(n)=p(ui™.vj™). (10
5 d0 The number of random samples is taken toNae= 200, so
dV=8.6x10"° R (7)  we write the statistical average for

where the units of th&ystene Internationalre used. When

N
. 1 3
Ris much larger than 10 nndlV, i.e., randomness in single- (p)= N Z p(n), 11
particle energy, can be ignored. This is the case where elec- sn=t

trons are confined by a depletion region of a
y P g wherep(n) is the tunneling amplitude of theth set of ran-

semiconductor?~** These quantum dots are considered ind b lso define th . f th i
Sec. lll A, whereu; (j=—3,—2,...3) is randomly distrib- 4OM variables. We also define the variance of the tunneling
amplitudep as

uted andv=j=0. In our calculation, random variables are
taken to be in a range of so
r r (8py="(p*)—(p)*, (12

— S<uj<s ®)

2 2 where

will be taken forj=-3,—-2,...,3.

~ NS
WhenR is much smaller than 10 nndU can be ignored. (p?)= i > [p(n)]2. (13)
Section Il B analyzes this case, wherg(j=—3,-2,...,3) Ns n=1
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Ill. RESULTS 0.7 T T T Y T

A. Randomness in on-site electron-electron interaction

The Mott-Hubbard gap is useful to describe a Mott insu-

lator in which the upper Hubbard band is empty and the A 04 F ¢
lower Hubbard band is fully occupied by electrons. The Vo3 .
width of the gap, i.e., the energy at the bottom of the upper ool U= g
Hubbard band minus the energy at the top of the lower Hub- o1k J
bard band, i\ = U4—Tesr, WhereU g is the on-site energy N

due to electron-electron interaction afg is the bandwidth 0_3 25 2 -15 -1 05 0
of a single electror® In Hubbard-gap tunneling, the height logyo(r)

of the tunneling barrier is approximately proportional Ao 04

minus the Fermi energy. Whe induces a Hubbard gap in : oo T

the center of the chain, the left-hand and right-hand sides 0.35

should have the discrete excitation spectra of a single elec- 03

tron. There is a single electron located to the left of the 2025

Mott-insulating electrons in the center of the chain in the & 02

eight-electron statft.) and there is a single electron located 0.15

to the right of the Mott-insulating electrons in the eight- 0.1

electron statéR). The ground state of our chain without ran- 0.05

domness can be written as the bonding state of these multi- 0 =

electron states: |()+|R))/v2, where there is resonant 3 25 -2 15 -1 05 0

1
tunneling between the right-hand side and the left-hand side. o817

The energy ofL) and|R), which depends on the strength of FIG. 3. (a The average tunneling amplitude(p)
overall confining potentiaf), can be thought of as the Fermi =(|G_,4/G_,_4|) and(b) its variance as a function of the degree
energy of both ends of our chain. Because the barrier heigh'»tf randomness when the on-site electron-electron interaction is ran-
for Hubbard-gap tunneling is the energy difference betweelomly distributed(} is fixed at 0.4 andJ is taken to be 4,6,8,...,16.
the energy at the bottom of the upper Hubbard band and the
Fermi energy of the left and right sides, the barrier height carzero value. These behaviors suggest that the Luttinger liquid
be modulated by). is not sensitive to randomness in on-site electron-electron
When we introduce randomness in on-site electroninteraction.
electron interaction in a region near the center of the chain, As we investigate Hubbard-gap tunneling, we are inter-
the effect of the randomness on Hubbard-gap tunneling iested in the results whean=8, as suggested in Fig. 2 of Sec.
similar to that of a fluctuation in the barrier height on single-Il. The tunneling amplitudé€p) whenU =8 is largest in Fig.
electron tunneling, as suggested by the above discussion 8fa) and decreases slightly asincreases. As the mean
Hubbard-gap tunneling. Note that the effect of randomnesstrength of electron-electron interaction, ild.increases, the
in a tunneling barrier is small in single-electron tunneling. Avalue(p) decreases over the whole range of randomness. We
lower barrier encourages tunneling and a higher barrier dissee that the tunneling amplitudg) decreases asincreases
courages tunneling. Therefore, the degree of randomness irnthenU=8. As U becomes larger, the decregge becomes
tunneling barrier has a little effect on the amplitude of more pronounced. This is because the barrier of Hubbard-
single-electron tunneling. An analysis in single-electron tun-gap tunneling becomes higher as the electron-electron inter-
neling is given in the appendix, which shows that fluctua-action becomes stronger. Thougs decreases slightly as
tions in the barrier height enhance the tunneling amplitude.increases{ ép) increases sharply asincreases, as seen in
In Fig. 3, the tunneling amplitudép) and its variance Fig. 3(b). This means that randomness in on-site electron-
(op) are plotted as a function of lggr), wherer is the electron interaction hardly affects the mean rate of Hubbard-
degree of randomness, as defined in Sec. Il. In these figuregap tunneling, though the fluctuation of the tunneling rate is
Q is taken to be 0.4 and is taken to be 4,6,8,...,16. When enlarged. This tendency is similar to that in a single-electron
U =4, (p) is small and almost constant over the whole ranggunneling through a potential barrier. Note th@ip) in-
of randomness. Whed =6, {p) is slightly larger than when creases rapidly when lggr) exceeds-1, particularly in the
U =4, and remains almost constant over the whole range afurve whenU =16.
randomness. At the same time, fluctuation of the tunneling In Fig. 4, the tunneling amplitud¢p) and its variance
amplitude(sp) is very small even when a high degree of (Jp) are plotted as a function of lgg{r), where() is taken
randomness is introduced. Note that the vakgsand(sp)  to be 0.1,0.2,...,0.7 and is fixed at 16. Comparing the tun-
whenU =4 and 6 are very different from others wherhas  neling amplitudgp) whenU =4 and()=0.4 in Fig. 3a), we
a larger value, as suggested in Sec. Il. When our Hubbardonclude that the electronic state of the chain having 0.1
chain has these parameters, the electronic structure of os£(2=<0.2 is that of a Luttinger liquid. The confining poten-
chain is similar to that of a Luttinger liquid, i.e., a metal of tial of the chain is so weak that a quasi-Hubbard-gap could
correlated electrons. Note that over the whole range of ranrot be induced in the center of the chain. Note thép)
domnesgp) is almost independent of lggr) and(sp) is  whenQ=0.1 is so small that one cannot see it in Fig)4
almost zero. Only when lgg(r) exceeds-1, (Sp) has non- and (5p) remains very small even whef=0.2. We are
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tunneling  amplitude(p)

=(|G_44/G_4_4) and(b) its variance as a function of the degree =(|G_44/G_4_4|) and(b) its variance as a function of the degree
of randomness when the on-site electron-electron interaction is raref randomness when the single-particle energy is randomly distrib-

domly distributed () is taken to be 0.1,0.2,...,0.7 akdis fixed at

16.

reminded that this behavior ¢f5p) is similar to that of the
chain havingu=4 andQ=0.4, as shown in Fig.(®). As
the strength of the confining potential, i.e} becomes
strong, {p) and (Sp) become just as in a chain having

uted.() is fixed at 0.4 andUJ is taken to be 4,6,8,...,16.

i.e.,j=0. Next we place a pair of electrons with spi | at

SDW at
|(DN,0' NC—N,O’

At At At
Cinr1-o CNo1-oCN .0l 0),

|i|=1, place a pair of electrons with=1 at|j|=2, and so
on. This state is written as

(14)

Hubbard-gap tunneling. Though the tunneling amplitggle  where N+ 1 is the number of electrons. Note that an elec-

when Q>0.5 is slightly larger thar{p) when ) =0.4, the
variance at logy(r)~—1 becomes larger a€) increases

tron with spin o cannot tunnel through the region from
j=—N to j=N because electrons with spinexist in this

from 0.4. As() becomes larger, the Fermi energy of bothregion. On the other hand, if an even number of electrons is
sides of the center increases, resulting in the large tunnelingonfined in the chain, the above discussion does not apply
amplitude. This interpretation is supported by the fact thabecause the ground state has total spin 0 and becomes rota-
the tunneling amplitudgp) when Q=0.7 is enhanced at tjonally invariant. In this electronic system, Hubbard-gap
logio(r)~—1, as seen in Fig.(d). As discussed in the ap- tunneling can be seen. It should be noted that when asym-
pendix, the tunneling amplitude of a single electron throughmetry is introduced in the chain, Hubbard-gap tunneling can
a potential barrier is enlarged by randomness within a poterse seen when an odd number of electrons are confined in the
tial barrier. The term appearing in the appendix that makesiubbard chairf® Moreover, the effect of the double occu-
the tunneling stronger is proportional to the inverse of thepancy in sites near the center is important in determining the
barrier height minus the energy of a particle. Therefore, thislectronic structure of a chain having Hubbard-gap tunnel-
effect has a large contribution to the tunneling amplitudeing. This is because no electrons can tunnel through a doubly
when the Fermi energy of both sides in our Hubbard chain isccupied site, as stated in Pauli’s principteChus, the birth

of doubly occupied sites due to an increase of the confining
potential, stops Hubbard-gap tunneling in the Hubbard chain.
We conclude that Fermi statistics are important in under-

large, i.e. Q) is large.

B. Randomness in on-site single-particle energy

standing Hubbard-gap tunneling because the tunneling bar-

In a Hubbard chain without randomness, we know that theier consists of electrons as well as tunneling particles.

amplitude of Hubbard-gap tunneling strongly depends on

In Fig. 5, the tunneling amplitudép) and its variance

whether the number of electrons in the chain is even of dp) are plotted as a function of legr), where(Q is fixed
0dd?® Note that, when the number of electrons is odd, theas 0.4 andJ is taken to be 4,6,8,...,16. The tunneling ampli-
ground states degenerate; one of the ground states has tlhueles wherd =4 and 6 are similar to those with=4 and 6

total spin] and the other has the total spinTo construct a
ground state like the spin-density-wave st&teye must

in Fig. 3(@). As suggested in the previous section, an elec-
tronic system like the Luttinger liquid is stable in the face of

place an electron with spic=1 at the center of the chain, randomness. On the other hand, whée8, the tunneling
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amplitude is very different from that in Fig.(8. The tun- 0.8 — T
neling amplitude{p) decreases rapidly when lgfr) ex- 07k
ceeds —1.5, the amplitude of Hubbard-gap tunneling is 06 |
strongly reduced by randomness in single-particle energy. 0.5
Let us turn to deviation in the tunneling amplitude, i.e., 2 04
(6p). Recall tha{ 5p) increases as lgg(r) when Hubbard- v 03
gap tunneling is present, as seen in Figh) &nd 4b). In '
Fig. &b), however, we see peaks {@#p) whenU>8. Note 0.2
that (Sp) starts to increase at smalleras the strength of 01
on-site electron-electron interaction, i.&l,becomes larger. s 25 2 a5 4 o5 o
On the other hand, the strong reduction of the tunneling am- ' log,o(r) '
plitude (p) causes the reduction ¢8p) because the latter is
a variance of the former. Therefore, we have peaks5i). 0.7 T T T T
Let us explain why the strong reduction takes place in the o6 ® o 2507

tunneling amplitude. When the single-particle energy of the
jth site is slightly lower than the single-particle energy of the
(j —1)th site and of thej(+ 1)th site, an electron is apt to sit
at thejth site. Let us put other electrons in this region. Be-
cause of the large energy due to electron-electron interaction,
electrons other than the electron located at jttiesite are
located at sites other than tligh site. However, there is a o
small probability of a double occupancy at tfih site. When 3 25 2 45 -1
the difference in single-particle energy between gtiesite log o(r)
and the neighboring sites becomes larger, the probability of a
double occupancy at thgh site increases. When our Hub- ~ FIG. 6. (8 The average tunneling amplitude(p)
bard chain has randomness in single-particle energy, several(|G-44/G-4,-4l) and(b) its variance as a function of the degree
sites that have locally minimum energy possibly have up an@f randqmness when the single-particle energy is randomly distrib-
down electrons and they may be doubly occupied sitesit€d-€2is takento be 0.1,0.2,...,0.7 alis fixed at 16.
Therefore, the effect due to randomness in single-particle
energy is similar to that due to asymmetry in the Hubbardcauses randomness in both single-particle energy and on-site
chain without randomness. Double occupancy at any sitelectron-electron interaction, as noted in Sec. Il. Note that
drastically reduces Hubbard-gap tunneling; the reduction ishere exists a correlation between the degree of randomness
governed by the prohibition rule derived from the Fermi sta-in single-particle energy and the degree of randomness in
tistics. on-site electron-electron interaction when the two kinds of
In Fig. 6, the tunneling amplitudép) and its variance randomness originate from fluctuations in the size of quan-
(6p) are plotted as a function of lgg{r), whereQ is taken  tum dots. However, the degree of randomness in the single-
to be 0.1, 0.2,...,0.7 and is fixed at 16. Thougsp) with  particle energy of each quantum dot is possibly independent
0=0.1 in Fig. Ga) is similar to that withQ2=0.2 in Fig.  of the degree of randomness in the on-site electron-electron
4(a), we see thatsp) with Q=0.2 in Fig. &a) is different interaction of each quantum dot, when impurities distributed
from that withQ)=0.2 in Fig. 4a). {Sp) with 0 =0.2 in Fig.  in a semiconductor cause randomness in the single-particle
4(a) is almost constant, butsp) with Q=0.2 in Fig. §a) energy of quantum dots.
decreases when lggfr) exceeds—1.5. This means that a In Fig. 7, the tunneling amplitudé¢p) and its variance
Luttinger liquid with Q=0.2 is sensitive to the randomness (5p) are plotted as a function of lggr), where there is a
in single-particle energy but not to the randomness incorrelation between the degree of randomness in single-
electron-electron interaction. When there is randomness iparticle energy and the degree of randomness in on-site
single-particle energy, all wave functions of a single electrorelectron-electron interaction, $g=u; for j=—-3,-2,...,3 is
are localized in one dimension, as in the Anderson localizarandomly distributed. In Fig. 8, the tunneling amplituge
tion postulate. We know the localization length may be de-and its variance 5p) are plotted as a function of lggr),
pendent on the degree of impurity scattering. Therefore, thevhere there is no correlation between the degree of random-
tunneling amplitude may be affected by the localizationness in single-particle energy and the degree of randomness
length of our Hubbard chain, which has randomness irin on-site electron-electron interaction, spis randomly dis-
single-particle energy. Whef2>0.2, (6p) has a peak at tributed forj=—3,—2,...,3 andy; is also randomly distrib-
log,o(r)~—1.2, as in Fig. &). It is notable that the tunnel- uted forj=—3,-2,...,3. Note that the value of; is inde-
ing amplitude(p) when (1=0.7 is enhanced in the region pendent of the value afj in each ensemble. In both figures,
where logy(r)~—1.5, as seen in Fig.(8). In Fig. 4a), (pp)  Q is fixed at 0.4 andJ is taken to be 4,6,8...,16.
when=0.7 is enhanced where Igfr)~ — 1. We see that Fig. 7 is almost identical to Fig. 5 in Sec.
Il B where only single-particle energy is randomly distrib-
uted. On the other hand, Fig. 8 is different from Fig. 7,
particularly when the large) (=8) causes Hubbard-gap tun-
In a chain of 10-nm quantum dots embedded in a bulkneling. The tunneling amplitudg) whenU=8 in Fig. 8a)
semiconductor, fluctuation in the size of these quantum dotgzmains constant up to lggfr) ~ — 0.5, then decreases. This

<dp>

C. Randomness in both on-site parameters
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FIG. 7. (@ The averaged tunneling amplitudgp) FIG. 8. (@ The averaged tunneling amplitudgp)
=(|G_44/G_4_4|) and(b) its variance as a function of the degree =(|G_,,/G_,_,|) and(b) its variance as a function of the degree
of randomness when randomness in the size of quantum dots caussfs randomness both in single-particle energy and in on-site
randomness both in on-site electron-electron interaction and imlectron-electron interaction. Note that there is no correlation be-
single-particle energy. Note that the degree of randomness ifween randomness in single-particle energy and randomness in on-
single-particle energy is correlated to the degree of randomness iite electron-electron interactiof). is fixed at 0.4 andJ is taken to
on-site electron-electron interactidi.is fixed at 0.4 andJ is taken  be 4,6,8,...,16.
to be 4,6,8,...,16.

When there is no correlation between the two kinds of ran-
domness however, one may compensate the other. We sup-
pose that when the degree of randomness is small the com-
pensation works well so the tunneling amplitude is almost
constant, but there is less compensation as the degree of
randomness becomes larger. The strong effect of randomness
in single-particle energy suggests that there is a rapid de-
crease in the tunneling amplitude as the degree of random-
ness increases.

behavior of the tunneling amplitude is different fro¢p)
whenU =8 in Fig. 7@), where the value gradually decreases
as logq(r) increases. When we turn our attention to the tun-
neling amplitude whek) >8, we see the more rapid decrease
of Hubbard-gap tunneling in Fig(8& caused by the random-
ness. The tunneling amplitude whelr= 10 starts to decrease
at logo(r)~ —1; the tunneling amplitude when= 12 starts
to decrease at lgg(r) ~ —1.5; the tunneling amplitude when
U =14 starts to decrease at lgfr) ~—1.8; and so on. We
have seen that as lggr) increases the tunneling amplitude
decrea}ses smqothly in Fig(a¥ and that in Fig. &3), the IV. SUMMARY
tunneling amplitude falls off suddenly at valugwhich de-
pends on the strength of electron-electron interaction. The We have investigated the effect of randomness on
above result suggests that the degree of correlation betwedtubbard-gap tunneling in a Hubbard chain under an overall
the two kinds of randomness has an effect on Hubbard-gagonfining potential. Two kinds of randomness—in on-site
tunneling. single-particle energy and in on-site electron-electron
As discussed previously, the effect of double occupancynteraction—are considered not only separately but simulta-
caused by randomness in single-particle energy is crucial ineously. Because of the randomness in on-site single-particle
determining the behavior of Hubbard-gap tunneling in disor-energy, the variance of the tunneling amplitude has a peak
dered quantum-dot chains. When randomness in singlevhen the degree of randomness changes. This peak is caused
particle energy and randomness in electron-electron interady the interplay between single-particle tunneling and
tion originate from fluctuations in the size of quantum dots, aHubbard-gap tunneling in a Hubbard chain where the Fermi
smaller dot has larger single-particle energy and larger Coustatistics of electrons have a strong influence. The effect of
lomb energy, but a larger dot has smaller single-particle enthe degree of randomness on on-site electron-electron inter-
ergy and smaller Coulomb energy. Therefore, these tweaction is similar to the effect of barrier height on single-
kinds of randomness must have the same sign in order telectron tunneling. These effects of randomness on Hubbard-
produce the effect of double occupancy. Recall that doublgap tunneling are important in determining the electronic
occupancy takes place at a site that has relatively sma#itructures of tunneling-coupled nanostructures, e.g., coupled
single-particle energy and relatively small Coulomb energyquantum dots.
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ri2
Q=—f /dv exp(—a\Vo+v—E).
2

s (A8)

We have an expression f@y:

APPENDIX
When a single particle tunnels through a potential barrier, 1 (ri2 Z Cm v \™
the WKB method gives a good approximation of the tunnel- Q= T f—r/zdv exg —avVo— Emzfo mr Vo—E| |

ing amplitude>! We consider a quantum particle that tunnels
through a potentiaV(x) in one dimension. When a single

tunneling barrier is considere®(x) can be taken as

Vo, where O=x=d

Ve = [ 0 elsewhere, (A1)

whered is the width of the tunneling barrier. Let us define
the valueq, which is proportional to the tunneling amplitude

through a potential barrier as

(A2)
0

q(E):ex;{—% fddx\/Zme[V(x)—E] ,

whereE is the energy of a quantum particle ang, is its

mass. Randomness over a tunneling barrier can be intro- r

duced using a single-particle potentigli(x):

where O=x=<d/N
where d/Ns=x=<2d/N

V0+Ul
V0+U2
ViaigX)=1 ¢ (A3)
Vo+uvy Where d(N—1)/N=x=<d

0 otherwise,

wherev; is randomly distributed from-r/2 tor/2 andN is
an integer. Let us denote the tunneling amplitedehen a
guantum particle runs through a potential barrigg(x).

The tunneling amplitudeg can be written as

N
Q(E)ZQ(E,U]_,Uz,...,UN):eX[{—a'jZl \/m},
(A4)
where

2d
a=+/2

Mg m . (A5)

(A9)

where the sequencg, is determined byc,,,;=(3—m)cy,
andcy=1, so that

CrX™
m! -’

TFx=3
m=0

(A10)

When the mean height of the barrier is large, ireg(Vq
—E), we obtain the correction on the orderdf as

1 r/2
Q~—f dv exp{—a\/VO—E
2

1
1 2Ve-E) ")

=r
2 —pBri2
:eﬁr —e pr e_aV/VO_E
Br
v—g| . . (BD? (Br)*
_ ~—aVg—E
=e *WY0TE 1+ 52 1920+ , (A11)
where
B=—— (A12)
2Wo,—E’
We now have an expression fa),
v—g . . (BN
— a—aNVo—E
(gy=e" "N 1+ o | T
—exd — 22 vy B[ 14 T
=exp — 7 V2me(Vo— E) 1202 (Vo—E) N
e (A13)

Let us introduce the average of the tunneling amplitude in

the random distribution as

N
1 ri2
(@ f_rlzdvldvz...vaexp( ~a3 m) ,

(AB)

whenN is large andr is small. The first term in the above
expression is common in an analysis of tunneling amplitude
using the WKB method and the second term is a correction
that reflects the degree of randomness in a tunneling barrier.
The correction is positive, so a weak randomness, i.e., a
smallr, slightly enhances the tunneling amplitude. Note that

when there is no spatial correlation in randomness. This exthe correction is proportional tovp—E) ~1. Therefore, the

pression is reduced into
(y=QN", (A7)

where

correction becomes smaller as the barrier becomes higher. It
is remarkable that the effect of off resonance between the
initial and final states strongly reduces the tunneling ampli-
tude, resulting in the Anderson localization of electrons in a
random potential.
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