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Scattering of vibrational waves in perturbed two-dimensional multichannel asymmetric
waveguides as on an isolated step
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We investigate the scattering of vibrational waves at the step interface between two structurally different
waveguides, namely, one and two coupled atomic layers occupying the half spaces on either side of the step.
The model presented is also instructive for the study of the scattering of surface phonons by random isolated
steps in vicinal surfaces. The complexity of the scattering of vibrational waves, in contrast with coherent
electron transport, which in part may be attributed to the vector character of the vibrational fields, is further
enhanced in the present study owing to the intrinsic asymmetry of the system normal to the step as well as to
its two-dimensional extended character. A detailed discussion of the reflection and transmission spectra is
presented for the scattering processes in the two possible geometries normal to the step.
[S0163-182698)01747-0

[. INTRODUCTION theoretical and experimental study of the dynamics of disor-
dered surface®:1 The presence of defects on surfaces, as,
Diffraction and localization phenomena in disorderedfor example, random steps, is important to their electronic
low-dimensional systems have long been of theoretical interand vibrational properties.
est for systems that can yield useful information with well-  The problem of the dynamics g@friodic steps in vicinal
defined mathematical propertitThese systems are now of surfaces has been addres$&d®and in a recent work we
renewed interest owing to advances in technology that pempresent a precursor model for the study of the dynamics of a
mit the construction of devices at the nanometric scale. Mostandom isolated surface step. In these studies, the vicinal
of the recent research has been oriented towards the study sifirfaces are treated as effectively low-dimensional systems,
electronic scattering in quasi-one-dimensional systems, theith the distinctive feature of a direction either normal to the
basic motivation being the need to understand the limitationaverage periodic surfacé&!* or, when considering an iso-
that structural disorder, or other kinds of disorder, may havédated step® in the direction normal to the step edge. Our
on the physical properties of microelectronics devices. result® are in qualitative agreement with previous wbrk
Interest in the understanding of electronic transport pheand demonstrated that the breakdown of translational sym-
nomena, multiple scattering, and quantum interference imetry normal to the step edge gives rise to several branches
disordered low-dimensional mesoscopic systems has begrarallel to the step, other than the Rayleigh branch on the
early?=® In contrast, the study of vibrational phenomena inordered surface.
such systems has not received the attention it deserves, evenlin the present paper, we investigate the scattering of vi-
though scattering in one-dimensional disordered atomidrational waves on an isolated step in crystallographic
chains® and in quasi-one-dimensional waveguitieas been waveguides in the harmonic approximation. The mono-
studied. atomic step is treated as the perturbed interface between two
There are strong similarities between electronic scatteringlabs, the first consisting of two coupled atomic layers and
and the scattering of vibrational waves since, mathematicallyhe other of a single atomic layer, occupying two half spaces
speaking, we just replace the Sctiimger equation by the on either side of the step as shown in Fig. 1. The model is
dynamical equation. The scattering of the vibrational wavegjuasi-two-dimensional, where the distinctive feature is a di-
is, however, more complicated as one is confronted with theection normal to the step edge. The complexity in the
scattering of vector fields instead of scalar fields, as in theresent vibrational study is enhanced, as compared to previ-
electronic case. ous work concerning quasi-one-dimensional waveguitgs
Parallel to the interest in low-dimensional disordered methe need to treat the increased dimensionality. Also, the sys-
soscopic systems there is also an increasing interest in them of an isolated step edge is a more general case since it
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FIG. 1. A schematic representation of an isolated infinite step 1y
defect, modeled as the interface between the single atomic layer ant
the two coupled atomic layers, in two separate half spaces. The 05l
system is crystallographically simple square and simple cubic in the
two half spaces, respectively.
i ‘
. . . . 0
consists of two structurally different waveguides leading to @) 4 T

an intrinsic asymmetry between the two distinct half spaces
on either side of the interface step. The model that is pre-  ,5 : —
sented is consequently also instructive for the study of the _
scattering of surface phonons by random isolated steps in ¢ =m/d 6
vicinal surfaces. 2t S
In Sec. Il, we present the dynamics and propagating char-
acteristics of the two perfect waveguides in the half spaces to
the left and right of the monoatomic step, introducing the
essential features of the formalism we need later on. Sectior®
lll presents the algebraic formalism for scattering at an iso- 1l
lated defect and in particular at the isolated infinite step. In
Sec. IV, we give typical examples for the scattering of waves
in the two asymmetric geometries, for waves incoming at 0.5
different angles of incidence with respect to the step edge, )
from the simple plane onto the double plane and in the op- : ‘ ‘ ‘ ‘ |

1.5

posite sense. o " 4 n
Il. THE ISOLATED STEP HALE SPACES FIG. 2. (a) The dispersion branches for the propagating modes
_ or phonons for the single atomic laygpX) with ¢, running over
A. Propagating modes the Brillouin zone[0,r], for the case ofp,= /4. (b) The disper-

Our structural model is based on two coupled semi-Sion branches for the propagating modes or phonons for the coupled
infinite atomic layers interfacing with a single semi-infinite atomic layers §2), with ¢, running over the Brillouin zong0,],
atomic layer, as shown in Fig. 1, with nearest- and next{o" the case oip,= /4.
nearest-neighbor interactions. These interactions are consid-
ered as the same in both half spaces of the system withofior («,) e {X,y,z}, wherem=m(l) is the atomic mass for
loss of generality, letting denote their ratio. Moreover, we sitesl, u,(l,») is the displacement field along thedirec-
allow for a modification of the strain field in the step region tion, r, the corresponding cartesian component of the radius
by the parametex, which denotes the ratio of these modified vector between atombk and I’, d is the distancdl’, and
force constants to the constants of the system outside the st&{l,l’) is the force constant betweérand!’. In this repre-
region. The step region is defined as the gray area in Fig. kentation thex andy axes are taken, respectively, normal and
For simplicity, we take the same distarebetween adjacent parallel to the infinite step edge in Fig. 1. Thaxis, not to
masses in the different Cartesian directiongz be confused with the phase factors introduced later, is nor-

The matching methdd that we employ in this paper has mal to the plane of the andy axes.
previously been extended to study wave scattering by iso- The dynamics of propagating modes is described by the
lated defects in quasi-one-dimensional disordered mesdraveling wave solutions of Eq1) in each half space. Typi-
scopic system$’ The matching method allows one to deal cal results are presented in Fig. 2 as a function of the wave
with both aspects of localized modes and of scattering ofiectors (,,¢,), where ¢,=ak,, a is the interatomic dis-
waves at defects within the same mathematical frameworktance and, is the one-dimensional reciprocal lattice wave

The equation of motion of an atoimat the variable fre- vector in the direction normal to the step edge.

quencyw is given as usual in the harmonic approximatfon In Figs. Za) and Zb), the bulk waveguide phonons are
by presented fowp, = 7r/4, for the single atomic layer and the
two coupled atomic layers, respectively. The quantity
5 _ | Talp =aky, wherek, is the one-dimensional reciprocal lattice
o M(Duy(l,w)= _|§1 % K| )(?) wave vector in the direction parallel to the step edge. Figure

2(a) illustrates the propagating modes for the single atomic
X[ug(l,w)—ug(l’", )], (1) layer, and Fig. &) for the two coupled atomic layers. The
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quantities ¢, ¢,) determine the angle of incidence of the where the coefficientd,, andA; are functions of}, ¢y, r,
incoming wave with respect to the step ed@es the dimen-  andX. Both phase factor doubletsz™* andz’, z’ ~* can be
sionless frequency given Y= wZ/wg, wherewg is a char-  shown to verify symmetrically the polynomials, owing to the
acteristic lattice frequency given by3=K(l,I")/m, for | Hermitian nature of the bulk dynamics or reversal time
andl’ as nearest neighbors. symmetry}”1® To satisfy the evanescent conditiofg< 1

The propagating modes in Fig(& are two branches that and|z’|<1, however, only six physically acceptable solu-
correspond to different polarizations. Mode 1 corresponds ttions for z and two forz', are retained from the roots of Egs.
polarizations for the atomic movements that are in phasé4) and (5). Together these constitute in the sp4€k ¢},
along thex andy directions in the atomic plane, whereas the set of evanescent modés(i),z'(j)}, i{1,2 and
mode 2 corresponds to polarizations out of phase along thege={1,2,3,4,5,6. The evanescent fields are then rigorously
directions. determined in the two waveguides each in its half space.

In Fig. 2(b), we have six modes. The polarization of mode Another alternative and equally elegant procedure to calcu-
1 is slightly different from the other modes, it is along the late these factors has been proposed in Ref. 7.
direction, the movements of the coupled atoms in the two The solutions of Egs(4) and (5) when |z’ (i)|=1 and
atomic planes being in phase. Modes 3 and 5 are predomjz(j)|=1 correspond effectively to propagating waves in the
nantly polarized along the direction normal to the step, the bulk of the two half spaces that are described by real wave
atoms on the two atomic planes being out of phase. Modes Xgctors. Both propagating and evanescent solutions are
4, and 6 are predominantly polarized along thdirection, needed to describe the scattering solutions in the presence of
the atoms on the planes being in phase. It is noted that théefects such as the isolated step.
total frequency rangef for the groups of mode&3,5) and

(2,4,6 are approximately the same and fall in the range . SCATTERING AT THE STEP
[~0.25/~2.1]. These polarizations are typical for other val- ) S
ues of ¢, . Since the perfect semi-infinite layers do not couple be-

tween different eigenmodes they may be considered as per-
fect waveguides, and we can treat the scattering problem for
each eigenmode separately. Consider, for example, the case
The evanescent vibrational fields in the single atomicof an incoming propagating wavie where|z' (i)| =1, inci-
layer and in the two coupled layers, away from the stepjent from the single atomic plang@Z1) onto the step in the
region, are described, respectively, by the phase factor dowirection of the double atomic planepZ). The resulting
blets @'(i),z’ (i) ") and (j),z(j) ), going from one site  scattered waves, due to teéastic scattering at the isolated
to its nearest neighbors or vice versa along the direction nofstep  are composed of reflected and transmitted parts, which
mal to the step edge. Hereand] label the solutions in the  gjyes rise to vibrational fields in both half spaces. The Car-
semi-infinite singlgtwo coupled atomic layers. The evanes- tesian components of the displacement field for an atom
cent vibrational fields in each half space are given by theyytside the step region, i.e., outside the gray area of Fig. 1,
evanescent solutions of the equations of motion, determinegy, then be expressed using the matching apprdd@f For
by the conditions thaliz’(i)| <1 and|z(j)|<1, respectively. a1 atomic site in the single atomic layer as the sum of the
Using Eq.(1), the atomic motion on a sitewn,) outside  jncident wave and a superposition of the eigenmodes of the
the step region, in the single atomic layer, can be express&ghfect simple square waveguide, at the same frequency

B. Evanescent modes

as
, , u,(nyny)=A"(a,i)[z' ()] ™
[Q2—=N(ey,,2',r,\)]|u’)y=|0). (2 Y , (2]
A similar set of equations is obtained for the two coupled + 2 [2/ (iR, (plp2)A (a,i’). (6)
atomic layers for the sitesa(nyn,), wheren, takes on two Y "

different valuesn, andn,_ for the two distinct inequivalent F tomic site in th led | this is ai
atomic layers, as or an atomic site in the coupled layers, this is given as

6

[QZI—M(¢y,Z,r,)\)]|U>:|0> (3) Ua(nxnynz):21 [Z(j)]_"XRJ(pllpZ)A(a,j,nz) (7)
i=

The detailed expressions of the dynamical matrices as a

vl sonons o e mepioes g T GUBMUISE, (R L52) denct, o e present case, e
(3), require that the determinants, H@el “N(dy.2 T N)] reflection coefficients for scattering elastically the given in-

and deit0)?! —M(d,.z.r,\)], vanish. This gives rise to two cident wavei into thei’=1,2 eigenmodes of thep) half

characteristic secular equations in each half space, of 12 d(?_pace,_at _the same _frequency. Slmlla_Flyj,_(pllpZ) are the
. S . ransmission coefficients due to this incident wave into the
grees inz and four inz’, respectively, that may be expressed. ~ .
in the polynomial form as J_—_1,2, ce ,E_Selgenmodes qf thepR) half space. The c_oef—
ficientsA(a,j,n,) andA’(«,i’), denote the relative weight-
Ao+ Az+ A 22+ AgZe+ Az + AgZ®+ AgZ® ing factors, or polarizations, associated to the different
. o o 10 " " atomic displacements, andu/, on their sites in the two half
TAZ +AGZ + AgZ + AgiZ + A1z +A12=0, (4)  space¥®’at the frequency of the scattering process.
o ara . nrra Let |R) denote the basis vector for the reflection and
Aot A1Z' +AZ "+ Az + A2 " =0, () transmission coefficients in a constructed space | endhat
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composed by the displacements of a set of irreducible atomiplitudes of the multichannel waveguides, although they do
sites in the step region considered as an infinite defect. Theot contribute to energy transfer.
equations of motion for the step, coupled to the rest of the We can further define reflection and transmission prob-
system, can then be rewritten in terms of the vectorabilities for a given eigenmode at the scattering frequegcy
[JU),IR)]. by the following expressions:

The necessary minimum set of sites defining the vector
|U) are indicated in Fig. 1 by the lettefs), (d), (e), in virtue
of the high-symmetry direction along the direction of the
step. Taking(d) as the origin, their coordinates are as fol-
lows: (c) =(0,0,+1), (d) =(0,0,0),(e) =(+1,0,0). Using
the transformations connecting the displacement fields in ti=2>, t;(pl/p2). (12)
Egs. (3), (6), and(7), we obtain a square lineanhomoge- !
neoussystem of equations of the form

ri=2, ri(plip2), (11)

it
I

In order to describe the overall transmission of meso-
2] _ N _ scopic disordered multichannel systems at a given frequency
[O% =D (y,r 2 2(), 2 (DILHU) IR = = [1H), (®) Q, it is useful to define a total transmission probabilitf())
where the vector-|IH), mapped appropriately onto the ba- by
sis vectors, regroups the inhomogeneous terms describing
the incoming wave. )

Note that all the sites in the step region have three degrees o({1;plip2)= ; tij(p1/p2),
of freedom for their atomic displacements, since we allow _ _ _
for next-nearest-neighbor interactions between thgn,) where the sum is carried out over all propagating modes at
sites on the step edge of the two coupled atomic layers witthe frequency(). The transmission probabilities((2) per
the sites (i) of the single atomic layer, in this region. The €igenmode i, and the total transmission probability
size of the vectofU) depends on the minimum set of atomic ({};p1/p2), are important for calculating experimentally
sites above that is necessary for a description of the pefmeasurable quantities.
turbed step region. The dimensions of the matrix ER). The case of a propagating wave incident from the half
depends on this and on the size|BY. space p2) onto the step in the direction of the half space

The solutions of Eq(8) yield the displacementiJ) of ~ (p1) can be treated in a similar manner. Again, the elastic
the irreducible set of atomic sites in the step region, as welgcattering at the isolated step gives rise to vibrational fields
as the reflection and transmission coefficieR{s (p1/p2) I both half spaces. The analysis, however, is somewhat

- : : licated in this geometry because of the multiplic-
andR;; (p1/p2) at the scattering frequendy, which deter- more comp .
mine the Cartesian displacements of the atoms in the unpe\ly.Of elgenmode_s in the double-p_lane half-spapéXwave- .
turbed regions of the two half spaces away from the perg_mde. The notations for the relative reflection and transmis-
turbed step region sion amplitudes, and the reflection and transmission

The scattering behavior is usually described in terms Oprobabmtles per eigenmode, for this geometry rest un-

the scattering matrix, whose elements are given by the rel:f-hanged except for replacingl/p2 wherever it occurs by

tive reflection and transmission amplitudes (p1/p2) and p2/pl, tiniha”a;;g'r:g the Ollntdlces SR, corf:fc.télétwng

tij(p1/p2), at the scattering frequenéy. In order to obtain re§p?c 0 he retiec '03 ag.ﬁ rant_smls?c:jn coefhicisntan

unitarity of the scattering matrix, the scattered waves have tg , 1or each eigenmode difiraction study. - .

be normalized with respect to their group velocity. 'I_'he interference phenomena d[scussed in this paper are
In the following we concentrate on the discussion of theder'ved from the dynamical equations in the harmonic ap-

reflection and transmission probabilities for a wave incidenp_rOXimation’ which can be applie_d to any length scale,_ pro-
from the (p1) half space onto the step in the direction of vided that the phase coherence is not destroyed by dissipa-

(p2) half space. They are given by the absolute squares &'ve effgcts. The result; presented a}pply, hgnce, _equally to
the respective matrix elements of the scattering matrix. Ex: efect mduced .effects N MACTOSCopIC two—d|r’_nen3|onal Sys-
plicitly, for waves incoming in the eigenmodefrom the tems. This provides a mean at the macroscopic scale of balls

(pl) half space, the relative reflection amplitudes are a_nd springs, by which one can definitely probe the transmis-
' sion resonances.

(13

Uir
rii (pl/ip2)= v—'il R (pl/p2)|? 9 IV. RESULTS AND DISCUSSION

and the relative transmission amplitudes The functional behaviors of the different modes may be
presented in the and Z' planes by the curve$)(z) and
vj, Q(z'), on and inside the unit circle. These become very
tij(p1/ p2):;|Rij (p1/p2) 2. (10 intricate even for only two modé€Ssin the present paper, we
' have eight modes to follow in the complex plane and it is not
Note thatv is the group velocity of the eigenmodewhich ~ convenient to present them graphically.

is put equal to zero for evanescent modes in the two For our numerical calculations presented below we have
waveguides. choserr =0.05, considering that next-nearest-neighbor inter-
The evanescent modes are necessary for a complete dastions to be much weaker than the nearest-neighbor ones,

scription of the overall dynamics and of the scattering am-and A =1.05, which accounts for the relative hardening of



PRB 59 SCATTERING OF VIBRATIONAL WAVES IN . .. 4937

the force constants in the step region. Clearly, the details of 25

the force constants do not matter in this numerical calcula-

tion used to illustrate qualitative trends and results for pho- -

non transport. The same type of resonances we consider and 2

wish to draw attention to in this numerical calculation will

arise whatever the choice of the force constants. /"
The dynamics of propagating modes is described by the 15l

traveling wave solutions of Eq1) in each half space. The

results presented in Fig. 2 as a function of the wave vector Q

¢,=ak,, wherek, is the one-dimensional reciprocal lattice

wave vector in the direction normal to the step edge have

been briefly discussed already in Sec. Il. In Fig&) 2and

2(b) the bulk waveguide dispersion branch@g¢,), are

P1

window

presented for both the single atomic layer and the two 0.5 m
coupled atomic layers, for the dimensionless wave vectors b2
¢y=ak,= /4, wherek, is the one-dimensional reciprocal RR'
lattice wave vector in the direction parallel to the step edge. 0 . ’
The propagating modes in Fig(&2 are two branches that 0 4 ™
correspond to polarizations for the atomic movements that
are in phase and out of phase along thendy directions in FIG. 3. The Rayleigh step localized dispersion brandResR,
the atomic plane, respectively. as a function of the wave vectaf, in the direction of high sym-

The six modes in Fig. ®) correspond to essentially three metry of the system along the step eqrfeandp2 denote the bulk
types of polarizations. Mode 1, slightly different from the continuum phonon band limits for the single and coupled two
other modes, is polarized along tkedirection, the move- atomic layers, respectively.
ments of two coupled atoms in different layers being in

phase. Modes 3 and 5 are predominantly polarized along the,nsjational symmetry in the direction normal to the step.

X d|rect|on' normal to the step, the atoms on the two atomicp,q branche®, and R, are in qualitative agreement with

ﬁljlr?ﬂes bellng ogt olf phatsr?. héllpdets 2, A;,handtB are prigomfhe theoretical results of Ref. 14, although a detailed com-
y poarized along the direction, the atoms on the parison shows that the nature of the modes is not the same in

planes being in phase. The total frequency ranges aldng . .
the two studies. In the cited work the authors label two of the
for the groups of mode3,5 and(2,4, for the two coupled branches as primary and secondary Rayleigh modes, the

?atl?]g\:[:wlg?lzesr,swazri]Iapproxmately the same, falling in thesec_onc.iallry being a .backfolded excitation owing tp the
Note for example, in Fig. @) that the two branches 1 and per|od|C|t3_/ of their vicinal surface. In our case there is no
2 for the single atomic layer are degeneratedor=0 and such folding, rather the_Rl andR2 branches arise because
at the Brillouin-zone boundaries, which turns out to be thethe isolated monoatomic step provokes the breakdown of
case for all values ofp,. Note also the existence around translational symmetry normal to the step edge, and thus
Q=15 of a dispersionless “mode” for the two coupled 9ives rise to new branches propagating parallel to yet local-
atomic layers, which interacts only weakly with the crossingized normal to the stef?.
optical branches of the two different branches.
The systems of Eqg4) and(5) may be solved for wave-
like propagating solutions, which gives the phonon bulk A. Scattering of waves incident
band limits for the single atomic layer denoted by the curves from the single-plane waveguide

p1, and those for the two coupled atomic layers denoted by |, this section we present some results for the case of the

the curves?2, respectiyely, in. Fig. 3. We note the Presencegcattering of an incoming propagation eigenmode wave
of a small and thin window in the bulk continuum, which where|z'(i)|=1, andi can be 1 and 2, incident from the

becomes larger when increases. Note that thp2 con- ; : ; o

. o ingl mic planef1) onto th in the direction of th

tinuum is similar to the projection of bulk phonon bands forS gletato cpa ef(1) onto the step in the direction of the
double atomic planesp).

n f r | on a Miller low-index surface. This simili ) . .
an fec crystal on a Miller lo dex surface s similitude Numerical results may be obtained for a variety &f

may be made stronger by adjusting appropriately the value of

r. and illustrates the usefulness of a low-dimensional apyalues. We have investigated the evolution of these results

proach for this kind of surface problem. and found that it is relatively smooth for scattering studies
Knowledge of the modes that are localized on the isolated©m #¢y=0 t0 ¢y =. _ _

infinite step and that propagate parallel to the step edge is !N Fig. 4@ we present the relative reflection and trans-

important in principle for a complete description of the scat-mission amplitudes;; andr ;, as a function of the scattering

tering of waves on the step edge. The dispersion RayleigHrequency(), for the guided modé=1 indicated in Fig. 2,

like branches of these phonon modes are given in Fig. 3 aghen this is incident from the single plane onto the double

the curvesR; andR,, lying as they should outside the con- plane with a,= 7/4 component. Note that these reflection

tinuum of both half spaces. These branches, which may bamplitudes span the whole range of frequencies of the given

made to appear and to disappear as a function of the numetdranch, beginning a$,=0 and ending at,= . Since the

cal values attributed toand\, arise due to the breakdown of two branches 1 and 2 in this case are degenerate at these
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FIG. 4. (a) The relative reflection amplitudes; andr 1, into the single layer modes 1 and 2, due to the scattering at the step defect of
the single layer mode 1 wave; the casefgf= 7/4. (b) The relative transmission probabilities, t,3, andt,s into the coupled layers modes
1, 3, and 5, due to the scattering at the step defect of the single layer mode 1 wave; the ¢asert4. (c) The relative transmission
amplituded ,, tq4, andt,ginto the coupled layers modes 2, 4, and 6, due to the scattering at the step defect of the single layer mode 1 wave;
the case okp,= /4. (d) The partial reflectiorr,, and transmissiot,, probabilities, associated to the scattering at the step defect of the
single layer mode 1 wave; the casedf= m/4.

points in the reciprocal space, they are also completely out ahe two coupled atomic layers half space. They also show
phase, which explains why,; andr 1, at the corresponding coupling to the embeddeR1 mode neaf)=0.4. The en-
frequencies are at antipodes as in Figa)4lt is likely that  semble of these resonances are recurrent in Figs-6(d).

the Rayleigh-like localized modR1 embedded in the con- The resonance in the range 1.91Q < 1.945, which ap-
tinuum couples to this scattering process giving rise to gears for the relative transmission amplitudgsandt,s as
resonance structure near the frequeficy 0.4. Note that the \ye|| as in the relative reflection amplitudes, at a peakof
evanescent eigenmodesrmalto the step edge, which char- _ 1 935 has the features of a Fano resonance, i.e., its pres-

acterize the displacement field of the Rayleigh-like modegce indicates coupling with a resonant defect state embed-
themselves propagatingarallel to the step edge, do contrib- ded in the continuum.

ute intrinsically under Eqg6) and(7) towards the complete

S ; In Fig. 4d) we present the reflection and transmission
description of the scattering process. g. 4d) P

bprobabilitiesrl and t; as a function of the frequenc@.

These relative reflection amplitudes register, as is o .
served in Fig. 4a), rapid variations in the range of frequen- Thesg are obtained from qu‘l). and(l?). The sum (.)f b.Oth
is unity for all frequencies, as is required from theitarity

cies 0<(<0.5, which corresponds to the onset of nonzero 2
relative transmission amplitudesg;((}) via the waveguide condltlpn. . .
mode branche§=1,3,5 andj=2,4 of the double atomic In Figs. 5a) anq 5b), we |Ilustrate-the scattering study for
plane half space, as may be observed in Figs) and 4c), ¢_y= . We n_ote in part|cular_ the disappearance of the cou-
respectively. The onset and the disappearance of the trangling to certain eigenmodes in the double plap@) due to
mission amplitudes correspond to the frequency range of thhe shifting of the modes in this waveguide. A particular
existence of these guided modes as propagating waves, #@ature is the absence of the resonance in the transmission
may be shown with reference to FigaR and reflection spectra at the peak frequeticy 1.935, for
Further, these reflection amplitudes, as well as the corre¢, values other thamr/4, which must be due to symmetry
sponding transmission amplitudes, as may be seen in Figsonsiderations.
4(c) and 4d), show important resonance variations around Results for scattering from the eigenmode branei?,
the frequencie€2=0.8 and 1.5. These resonances may beanay be also obtained in a similar manner. The relative am-
interpreted as due to the coupling with the dispersionlessglitudes for scattering from the modes 2 are fairly similar
“modes,” which appear in Fig. @) near these frequencies to those for scattering fro=1. We have checked the reso-
and describe the flat parts of the branche®,3,5 and 4,6 in  nance at the peak frequenfy=1.935 when scattering from
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thei=1 and 2 modes, for different values &f,. This reso-
nance seems to exist only fa,~ /4.

B. Scattering of waves incident
from the double-plane waveguide

In this section, we present some results for an incoming
propagating eigenmode waye incident from the double
atomic planes [§2) onto the step in the direction of the
single atomic planedl). Here|z(j)|=1, andj can be any
one out of the six available mode¢s 1,2,3,4,5,6 in the§2)
double atomic planes.

In this case there are six modes that can contribute. In
order to illustrate this we present our results in Fig. 6 for the
j=2 mode, i.e., for the relative reflection and transmission
amplitudes ry;,(p2/pl) and ty(p2/pl), and for the
reflection  ry=X;:r5(p2/pl), and transmission
t,=2;t,5(pl/p2) probabilities, as a function of the scatter-
ing frequency().

In Figs. 1a)—7(e), we present the total transmission prob-
abilities o(Q);p1/p2) for waves incident from thep(l) onto
the (p2) half spaces for, respectivelp, =0, 7/4, 7/2, 3ml4,

7. The total transmission probabilities for waves incident
from the (2) onto the p1) half spaces are given in Figs.
8(a) and 8b) for just ¢, = 7/4 and, to limit the number of
figures. These two latter results are, however, sufficient to
illustrate the differences between the total transmission prob-
abilities in the two geometries. In both sets of Figs. 7 and 8,
the dashed histograms represent the total hypothetical pho-

1

r=0.05
08 + A =1.05
: gy =7/d

0.6 +

04 +

0.2 + A g

0 0.5 1

r=0.06
A=1.05
dy =7/
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0.4 +

0.2 +

0 0.5 1 15 2 25
(d) Q

FIG. 6. (a) The relative reflection probabilities, andr,, into the coupled layers modes 2 and 4, due to the scattering at the step defect
of the coupled layers mode 2 wave; the caseghpf /4. (b) The relative reflection amplitudes,, r,3, andr,s into modes 1, 3, and 5 of
the coupled layers, due to the scattering at the step defect of the coupled layers mode 2 wave; thepgase/4f (c) The relative

transmission amplitudets; andt,, into the single layer modes 1 and 2 due to the scattering at the step defect of the coupled layers mode

2; the case ofp,= w/4. (d) The partial reflectiom,, and transmissioty,, probabilities, associated to the scattering at the step defect of the

coupled layers mode 2 wave; the case dge= /4.
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FIG. 7. (a) The total transmission probability from the single layer into the two coupled layers due to the scattering at the step defect of
the single layer waves. The dashed histogram represents the total hypothetical phonon transmission capacity for the two coupled layers, and
the dashed and dotted histogram that for the single layer. These results are for ¢gselotb) As in (a) for the case otp,=w/4. (c) As
in (@) for the case okpy= /2. (d) As in (a) for the case oip,=3 /4. (€) As in (a) for the case olp,= 7.

non transmission capacity for the two coupled layers, and théhat the wave functions in the Scldinger equation are com-
dashed and dotted histograms those for the single layer, alex scalars whereas the vibrational amplitudes are complex
the frequencies of interest and for a given choice of #je  vectors Our present work provides a basis study of interfer-
component. The resonances due to coupling of incomingnce phenomena involving polarizable vector waves in two-
waves to the step defect induced states embedded in the catimensional waveguides.
tinuum may be observed in Figs. 7 and 8, as illustrated in The algebraic approach presented in this paper can be
previous figures. generalized in principle to the scattering of vibrational waves
in two-dimensional infinite structures with defects that break
the symmetry in two-dimensional space, based on the prece-
dent work?! that generalizes the matching procedure to such
In the present paper we have developed an approach thaystems.
allows us to treat the scattering of vibrational waves in per- Our numerical results in this study show that in spite of
turbed multichannel two-dimensional systems in an efficientheir different character, the scattering of vibrational waves
manner by solving the dynamical equations directly for scathas some features in common with the scattering of electron
tering boundary conditions. It should be emphasized that thevaves, and can be described in terms of basically the same
case of vibrational waves, which has not yet been sufficientlynterference phenomena, namely FabryePeoscillations
treated in the literature for such systems, is more compliand Fano-like resonances. FabryrdRescillations are due to
cated than the electron case, the essential difference beittlge interference between multiply reflected waves in the per-

V. CONCLUSIONS
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4 3 hence, equally to defect induced effects in macroscopic two-
” dy = dimensional systems.

APPENDIX

i The equations of atomic motion on the sitgif,) in the
; bulk of the monoatomic layer can be expressed by

] [021=N(¢y 2/, ) ]u')=[0) (A1)
0o 1i5 2 25 with
(a) Q
3 I I\ — U,X(nxany))
o lu >_(U’y(nx,ny) (A2)
and
_(N(l) N(3))
{ Nne na) ")
Nﬁ ﬁl where
K 0s : ’ . 28 N(1)=Q2+(z'+2' 1) (1+r cosg,) —2r—2,
(b) o

N2 ’ r=1\7__ _
FIG. 8. (a) The total transmission probability from the coupled N(2)=Q%+cos¢[2+r(2' +2'")]-2r—2, (A4)

layers into the single layer due to the scattering at the step defect of

the coupled layers waves. The dashed histogram represents the total N(3)=ir sin¢,(z' —2' —1).

hypothetical phonon transmission capacity for the two coupled lay- y

ers, and the dashed and dotted histogram that for the single layer. The equations of atomic motion on the sitesr(,n,) in
These results are for case ¢f=m/4. (b) As in (a) for the case of  {ha pulk of the two coupled atomic layers can also be ex-
py=. pressed in a resumed form as

turbed region; they are relatively absent in this work. Fano )

resonances appear in the spectra and are usually evoked to [ I—M(d;y,z,r,)\)]|u>=|0> (AS)
describe the interference between propagating transmittegii,

modes and local step-edge defect modes that are embedded

in the continuum. The transmission spectra in two-

dimensional systems can thus be regarded as fingerprints of Ux(nxsny,n)

their specific defect structure, and may therefore be used for Uy(ny,ny,n,)
their characterization. | Uzny,ny,ny)
It should be noted that the interference phenomena dis- ju)= Uy(ny,ny,n,_1) (A6)
cussed in this paper are derived from the dynamical equa- Uy(n,,Nny,N,_1)
tions in the harmonic approximation, which can be applied to Uy(n ny n,_ )
any lengthscale provided that the phase coherence is not de- 2y el
stroyed by dissipative effects. The results presented applynd
|
M(1) M(4) 0 M(5) 0 M(6)
M(4) M(2) 0 0 M(7) M(8)
0 0 M(3) M(6) M(8) M(9)
[M]= ; (A7)
M(5) 0 -M(6) M(1) M(4) 0
0 M(7) —M(8) M(4) M(2) 0
—M(6) —M(8) M(9) 0 0 M(3)

where
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__ -1
M(1) (z+z7)(1+r cosey) +2+3r, M(6)=—%(z—z‘1),

M(2)=—cos¢y[2+r(z+z 1) ]+2+3r,
M(7)=r cosey,

M(3)=2r+1,
M(4)=i(z—z Yrsing,, M(8)=—ir sing,,
M(5)=%(Z+z—1), M(9)=%(z+z‘1+2cos¢>y)+l. (A8)
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