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Scattering of vibrational waves in perturbed two-dimensional multichannel asymmetric
waveguides as on an isolated step
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We investigate the scattering of vibrational waves at the step interface between two structurally different
waveguides, namely, one and two coupled atomic layers occupying the half spaces on either side of the step.
The model presented is also instructive for the study of the scattering of surface phonons by random isolated
steps in vicinal surfaces. The complexity of the scattering of vibrational waves, in contrast with coherent
electron transport, which in part may be attributed to the vector character of the vibrational fields, is further
enhanced in the present study owing to the intrinsic asymmetry of the system normal to the step as well as to
its two-dimensional extended character. A detailed discussion of the reflection and transmission spectra is
presented for the scattering processes in the two possible geometries normal to the step.
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I. INTRODUCTION

Diffraction and localization phenomena in disorder
low-dimensional systems have long been of theoretical in
est for systems that can yield useful information with we
defined mathematical properties.1 These systems are now o
renewed interest owing to advances in technology that
mit the construction of devices at the nanometric scale. M
of the recent research has been oriented towards the stu
electronic scattering in quasi-one-dimensional systems,
basic motivation being the need to understand the limitati
that structural disorder, or other kinds of disorder, may h
on the physical properties of microelectronics devices.

Interest in the understanding of electronic transport p
nomena, multiple scattering, and quantum interference
disordered low-dimensional mesoscopic systems has b
early.2–5 In contrast, the study of vibrational phenomena
such systems has not received the attention it deserves,
though scattering in one-dimensional disordered ato
chains,6 and in quasi-one-dimensional waveguides7 has been
studied.

There are strong similarities between electronic scatte
and the scattering of vibrational waves since, mathematic
speaking, we just replace the Schro¨dinger equation by the
dynamical equation. The scattering of the vibrational wa
is, however, more complicated as one is confronted with
scattering of vector fields instead of scalar fields, as in
electronic case.

Parallel to the interest in low-dimensional disordered m
soscopic systems there is also an increasing interest in
PRB 590163-1829/99/59~7!/4933~10!/$15.00
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theoretical and experimental study of the dynamics of dis
dered surfaces.8–13 The presence of defects on surfaces,
for example, random steps, is important to their electro
and vibrational properties.

The problem of the dynamics ofperiodic steps in vicinal
surfaces has been addressed,13–15 and in a recent work16 we
present a precursor model for the study of the dynamics
random isolated surface step. In these studies, the vicin
surfaces are treated as effectively low-dimensional syste
with the distinctive feature of a direction either normal to t
average periodic surface,13,14 or, when considering an iso
lated step,16 in the direction normal to the step edge. O
results16 are in qualitative agreement with previous work15

and demonstrated that the breakdown of translational s
metry normal to the step edge gives rise to several branc
parallel to the step, other than the Rayleigh branch on
ordered surface.

In the present paper, we investigate the scattering of
brational waves on an isolated step in crystallograp
waveguides in the harmonic approximation. The mon
atomic step is treated as the perturbed interface between
slabs, the first consisting of two coupled atomic layers a
the other of a single atomic layer, occupying two half spa
on either side of the step as shown in Fig. 1. The mode
quasi-two-dimensional, where the distinctive feature is a
rection normal to the step edge. The complexity in t
present vibrational study is enhanced, as compared to pr
ous work concerning quasi-one-dimensional waveguides7 by
the need to treat the increased dimensionality. Also, the
tem of an isolated step edge is a more general case sin
4933 ©1999 The American Physical Society
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4934 PRB 59A. VIRLOUVET et al.
consists of two structurally different waveguides leading
an intrinsic asymmetry between the two distinct half spa
on either side of the interface step. The model that is p
sented is consequently also instructive for the study of
scattering of surface phonons by random isolated step
vicinal surfaces.

In Sec. II, we present the dynamics and propagating c
acteristics of the two perfect waveguides in the half space
the left and right of the monoatomic step, introducing t
essential features of the formalism we need later on. Sec
III presents the algebraic formalism for scattering at an i
lated defect and in particular at the isolated infinite step
Sec. IV, we give typical examples for the scattering of wav
in the two asymmetric geometries, for waves incoming
different angles of incidence with respect to the step ed
from the simple plane onto the double plane and in the
posite sense.

II. THE ISOLATED STEP HALF SPACES

A. Propagating modes

Our structural model is based on two coupled se
infinite atomic layers interfacing with a single semi-infini
atomic layer, as shown in Fig. 1, with nearest- and ne
nearest-neighbor interactions. These interactions are con
ered as the same in both half spaces of the system wit
loss of generality, lettingr denote their ratio. Moreover, w
allow for a modification of the strain field in the step regio
by the parameterl, which denotes the ratio of these modifie
force constants to the constants of the system outside the
region. The step region is defined as the gray area in Fig
For simplicity, we take the same distancea between adjacen
masses in the different Cartesian directionsx,y,z.

The matching method17 that we employ in this paper ha
previously been extended to study wave scattering by
lated defects in quasi-one-dimensional disordered me
scopic systems.6,7 The matching method allows one to de
with both aspects of localized modes and of scattering
waves at defects within the same mathematical framewo

The equation of motion of an atoml at the variable fre-
quencyv is given as usual in the harmonic approximation18

by

v2m~ l !ua~ l ,v!52 (
l 8Þ1

(
b

K~ l ,l 8!S r ar b

d2 D
3@ub~ l ,v!2ub~ l 8,v!#, ~1!

FIG. 1. A schematic representation of an isolated infinite s
defect, modeled as the interface between the single atomic laye
the two coupled atomic layers, in two separate half spaces.
system is crystallographically simple square and simple cubic in
two half spaces, respectively.
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for (a,b)P$x,y,z%, wherem[m( l) is the atomic mass for
sites l, ua( l,v) is the displacement field along thea direc-
tion, r a the corresponding cartesian component of the rad
vector between atomsl and l8, d is the distancell 8, and
K( l,l8) is the force constant betweenl and l8. In this repre-
sentation thex andy axes are taken, respectively, normal a
parallel to the infinite step edge in Fig. 1. Thez axis, not to
be confused with the phase factors introduced later, is n
mal to the plane of thex andy axes.

The dynamics of propagating modes is described by
traveling wave solutions of Eq.~1! in each half space. Typi-
cal results are presented in Fig. 2 as a function of the w
vectors (fx ,fy), wherefx5akx , a is the interatomic dis-
tance andkx is the one-dimensional reciprocal lattice wa
vector in the direction normal to the step edge.

In Figs. 2~a! and 2~b!, the bulk waveguide phonons ar
presented forfy5p/4, for the single atomic layer and th
two coupled atomic layers, respectively. The quantityfy
5aky , where ky is the one-dimensional reciprocal lattic
wave vector in the direction parallel to the step edge. Fig
2~a! illustrates the propagating modes for the single atom
layer, and Fig. 2~b! for the two coupled atomic layers. Th

p
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FIG. 2. ~a! The dispersion branches for the propagating mo
or phonons for the single atomic layer (p1) with fx running over
the Brillouin zone@0,p#, for the case offy5p/4. ~b! The disper-
sion branches for the propagating modes or phonons for the cou
atomic layers (p2), with fx running over the Brillouin zone@0,p#,
for the case offy5p/4.
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PRB 59 4935SCATTERING OF VIBRATIONAL WAVES IN . . .
quantities (fx ,fy) determine the angle of incidence of th
incoming wave with respect to the step edge.V is the dimen-
sionless frequency given byV25v2/v0

2, wherev0 is a char-
acteristic lattice frequency given byv0

25K( l ,l 8)/m, for l
and l8 as nearest neighbors.

The propagating modes in Fig. 2~a! are two branches tha
correspond to different polarizations. Mode 1 correspond
polarizations for the atomic movements that are in ph
along thex and y directions in the atomic plane, wherea
mode 2 corresponds to polarizations out of phase along t
directions.

In Fig. 2~b!, we have six modes. The polarization of mo
1 is slightly different from the other modes, it is along thez
direction, the movements of the coupled atoms in the t
atomic planes being in phase. Modes 3 and 5 are predo
nantly polarized along thex direction normal to the step, th
atoms on the two atomic planes being out of phase. Mode
4, and 6 are predominantly polarized along thex direction,
the atoms on the planes being in phase. It is noted that
total frequency rangesV for the groups of modes~3,5! and
~2,4,6! are approximately the same and fall in the ran
@;0.25,;2.1#. These polarizations are typical for other va
ues offy .

B. Evanescent modes

The evanescent vibrational fields in the single atom
layer and in the two coupled layers, away from the s
region, are described, respectively, by the phase factor d
blets (z8( i ),z8( i )21) and (z( j ),z( j )21), going from one site
to its nearest neighbors or vice versa along the direction
mal to the step edge. Here,i and j label the solutions in the
semi-infinite single~two coupled! atomic layers. The evanes
cent vibrational fields in each half space are given by
evanescent solutions of the equations of motion, determ
by the conditions thatuz8( i )u,1 anduz( j )u,1, respectively.

Using Eq.~1!, the atomic motion on a site (nxny) outside
the step region, in the single atomic layer, can be expres
as

@V2I2N~fy ,z8,r ,l!#uu8&5u0&. ~2!

A similar set of equations is obtained for the two coupl
atomic layers for the sites (nxnynz), wherenz takes on two
different valuesnz andnz21 for the two distinct inequivalen
atomic layers, as

@V2I2M ~fy ,z,r ,l!#uu&5u0&. ~3!

The detailed expressions of the dynamical matrices a
function of fy , r, l, andz ~z8! are given in the Appendix.

The nontrivial solutions for the matrices in Eqs.~2! and
~3!, require that the determinants, det@V2I2N(fy ,z8,r ,l)#
and det@V2I2M (fy ,z,r ,l)#, vanish. This gives rise to two
characteristic secular equations in each half space, of 12
grees inz and four inz8, respectively, that may be express
in the polynomial form as

A01A1z1A2z21A3z31A4z41A5z51A6z6

1A7z71A8z81A9z91A10z
101A11z

111A12z
1250, ~4!

A081A18z81A28z821A38z831A48z8450, ~5!
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where the coefficientsAn andAn8 are functions ofV, fy , r,
andl. Both phase factor doubletsz, z21 andz8, z821 can be
shown to verify symmetrically the polynomials, owing to th
Hermitian nature of the bulk dynamics or reversal tim
symmetry.17,19 To satisfy the evanescent conditionsuzu,1
and uz8u,1, however, only six physically acceptable sol
tions forz and two forz8, are retained from the roots of Eq
~4! and ~5!. Together these constitute in the space$V,fy%,
the set of evanescent modes$z( i ),z8( j )%, i P$1,2% and
j P$1,2,3,4,5,6%. The evanescent fields are then rigorous
determined in the two waveguides each in its half spa
Another alternative and equally elegant procedure to ca
late these factors has been proposed in Ref. 7.

The solutions of Eqs.~4! and ~5! when uz8( i )u51 and
uz( j )u51 correspond effectively to propagating waves in t
bulk of the two half spaces that are described by real w
vectors. Both propagating and evanescent solutions
needed to describe the scattering solutions in the presen
defects such as the isolated step.

III. SCATTERING AT THE STEP

Since the perfect semi-infinite layers do not couple b
tween different eigenmodes they may be considered as
fect waveguides, and we can treat the scattering problem
each eigenmode separately. Consider, for example, the
of an incoming propagating wavei, whereuz8( i )u51, inci-
dent from the single atomic plane (p1) onto the step in the
direction of the double atomic planes (p2). The resulting
scattered waves, due to theelastic scattering at the isolated
step, are composed of reflected and transmitted parts, w
gives rise to vibrational fields in both half spaces. The C
tesian componentsa of the displacement field for an atom
outside the step region, i.e., outside the gray area of Fig
can then be expressed using the matching approach.17,19,7For
an atomic site in the single atomic layer as the sum of
incident wave and a superposition of the eigenmodes of
perfect simple square waveguide, at the same frequency

ua8 ~nxny!5A8~a,i !@z8~ i !#2nx

1 (
i 851

2

@z8~ i 8!#nxRii 8
1

~p1/p2!A8~a,i 8!. ~6!

For an atomic site in the coupled layers, this is given as

ua~nxnynz!5(
j 51

6

@z~ j !#2nxRi j
2~p1/p2!A~a, j ,nz!. ~7!

The quantitiesRii 8
1 (p1/p2) denote, for the present case, t

reflection coefficients for scattering elastically the given
cident wavei into the i 851,2 eigenmodes of the (p1) half
space, at the same frequency. Similarly,Ri j

2(p1/p2) are the
transmission coefficients due to this incident wave into
j 51,2, . . . ,6eigenmodes of the (p2) half space. The coef
ficientsA(a, j ,nz) andA8(a,i 8), denote the relative weight
ing factors, or polarizations, associated to the differ
atomic displacementsua andua8 on their sites in the two half
spaces17,19,7at the frequency of the scattering process.

Let uR& denote the basis vector for the reflection a
transmission coefficients in a constructed space, anduU& that
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4936 PRB 59A. VIRLOUVET et al.
composed by the displacements of a set of irreducible ato
sites in the step region considered as an infinite defect.
equations of motion for the step, coupled to the rest of
system, can then be rewritten in terms of the vec
@ uU&,uR&].

The necessary minimum set of sites defining the vec
uU& are indicated in Fig. 1 by the letters~c!, ~d!, ~e!, in virtue
of the high-symmetry direction along the direction of t
step. Taking~d! as the origin, their coordinates are as fo
lows: ~c! 5(0,0,11), ~d! 5(0,0,0), ~e! 5(11,0,0). Using
the transformations connecting the displacement fields
Eqs. ~3!, ~6!, and ~7!, we obtain a square linearinhomoge-
neoussystem of equations of the form

@V2I 2D„fy ,r ,l,z~ j !,z8~ i !…#@ uU&,uR&] 52uIH &, ~8!

where the vector2uIH &, mapped appropriately onto the b
sis vectors, regroups the inhomogeneous terms descri
the incoming wave.

Note that all the sites in the step region have three deg
of freedom for their atomic displacements, since we all
for next-nearest-neighbor interactions between the (nxnynz)
sites on the step edge of the two coupled atomic layers w
the sites (nxny) of the single atomic layer, in this region. Th
size of the vectoruU& depends on the minimum set of atom
sites above that is necessary for a description of the
turbed step region. The dimensions of the matrix Eq.~8!
depends on this and on the size ofuR&.

The solutions of Eq.~8! yield the displacementsuU& of
the irreducible set of atomic sites in the step region, as w
as the reflection and transmission coefficientsRii 8

1 (p1/p2)
andRi j

2(p1/p2) at the scattering frequencyV, which deter-
mine the Cartesian displacements of the atoms in the un
turbed regions of the two half spaces away from the p
turbed step region.

The scattering behavior is usually described in terms
the scattering matrix, whose elements are given by the r
tive reflection and transmission amplitudesr ii 8(p1/p2) and
t i j (p1/p2), at the scattering frequencyV. In order to obtain
unitarity of the scattering matrix, the scattered waves hav
be normalized with respect to their group velocity.

In the following we concentrate on the discussion of t
reflection and transmission probabilities for a wave incid
from the (p1) half space onto the step in the direction
(p2) half space. They are given by the absolute square
the respective matrix elements of the scattering matrix.
plicitly, for waves incoming in the eigenmodei from the
(p1) half space, the relative reflection amplitudes are

r ii 8~p1/p2!5
v i 8
v i

uRii 8
1

~p1/p2!u2 ~9!

and the relative transmission amplitudes

t i j ~p1/ p2!5
vj

vi
uRij

2~p1/p2!u2. ~10!

Note thatvs is the group velocity of the eigenmodes, which
is put equal to zero for evanescent modes in the
waveguides.

The evanescent modes are necessary for a complete
scription of the overall dynamics and of the scattering a
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plitudes of the multichannel waveguides, although they
not contribute to energy transfer.

We can further define reflection and transmission pr
abilities for a given eigenmode at the scattering frequencyV,
by the following expressions:

r i5(
i 8

r ii 8~p1/p2!, ~11!

t i5(
j

t i j ~p1/p2!. ~12!

In order to describe the overall transmission of me
scopic disordered multichannel systems at a given freque
V, it is useful to define a total transmission probabilitys(V)
by

s~V;p1/p2!5(
i , j

t i j ~p1/p2!, ~13!

where the sum is carried out over all propagating mode
the frequencyV. The transmission probabilitiest i(V) per
eigenmode i, and the total transmission probabilit
s(V;p1/p2), are important for calculating experimental
measurable quantities.

The case of a propagating wave incident from the h
space (p2) onto the step in the direction of the half spa
(p1) can be treated in a similar manner. Again, the ela
scattering at the isolated step gives rise to vibrational fie
in both half spaces. The analysis, however, is somew
more complicated in this geometry because of the multip
ity of eigenmodes in the double-plane half-space (p2) wave-
guide. The notations for the relative reflection and transm
sion amplitudes, and the reflection and transmiss
probabilities per eigenmode, for this geometry rest u
changed except for replacingp1/p2 wherever it occurs by
p2/p1, and arranging the indicesi, i8, j, j8 correctly with
respect to the reflection and transmission coefficientsR1 and
R2, for each eigenmode diffraction study.

The interference phenomena discussed in this paper
derived from the dynamical equations in the harmonic
proximation, which can be applied to any length scale, p
vided that the phase coherence is not destroyed by diss
tive effects. The results presented apply, hence, equall
defect induced effects in macroscopic two-dimensional s
tems. This provides a mean at the macroscopic scale of b
and springs, by which one can definitely probe the transm
sion resonances.

IV. RESULTS AND DISCUSSION

The functional behaviors of the different modes may
presented in thez and z8 planes by the curvesV(z) and
V(z8), on and inside the unit circle. These become ve
intricate even for only two modes.7 In the present paper, we
have eight modes to follow in the complex plane and it is n
convenient to present them graphically.

For our numerical calculations presented below we h
chosenr 50.05, considering that next-nearest-neighbor int
actions to be much weaker than the nearest-neighbor o
and l51.05, which accounts for the relative hardening
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PRB 59 4937SCATTERING OF VIBRATIONAL WAVES IN . . .
the force constants in the step region. Clearly, the detail
the force constants do not matter in this numerical calcu
tion used to illustrate qualitative trends and results for p
non transport. The same type of resonances we conside
wish to draw attention to in this numerical calculation w
arise whatever the choice of the force constants.

The dynamics of propagating modes is described by
traveling wave solutions of Eq.~1! in each half space. The
results presented in Fig. 2 as a function of the wave ve
fx5akx , wherekx is the one-dimensional reciprocal lattic
wave vector in the direction normal to the step edge h
been briefly discussed already in Sec. II. In Figs. 2~a! and
2~b! the bulk waveguide dispersion branchesV(fx), are
presented for both the single atomic layer and the t
coupled atomic layers, for the dimensionless wave vec
fy5aky5p/4, whereky is the one-dimensional reciproca
lattice wave vector in the direction parallel to the step ed

The propagating modes in Fig. 2~a! are two branches tha
correspond to polarizations for the atomic movements
are in phase and out of phase along thex andy directions in
the atomic plane, respectively.

The six modes in Fig. 2~b! correspond to essentially thre
types of polarizations. Mode 1, slightly different from th
other modes, is polarized along thez direction, the move-
ments of two coupled atoms in different layers being
phase. Modes 3 and 5 are predominantly polarized along
x direction normal to the step, the atoms on the two atom
planes being out of phase. Modes 2, 4, and 6 are predo
nantly polarized along thex direction, the atoms on the
planes being in phase. The total frequency ranges alonV
for the groups of modes~3,5! and~2,4,6! for the two coupled
atomic layers are approximately the same, falling in
range@;0.25,;2.1#.

Note for example, in Fig. 2~a! that the two branches 1 an
2 for the single atomic layer are degenerate forfx50 andp
at the Brillouin-zone boundaries, which turns out to be
case for all values offy . Note also the existence aroun
V51.5 of a dispersionless ‘‘mode’’ for the two couple
atomic layers, which interacts only weakly with the crossi
optical branches of the two different branches.

The systems of Eqs.~4! and~5! may be solved for wave
like propagating solutions, which gives the phonon bu
band limits for the single atomic layer denoted by the cur
p1, and those for the two coupled atomic layers denoted
the curvesp2, respectively, in Fig. 3. We note the presen
of a small and thin window in the bulk continuum, whic
becomes larger whenr increases. Note that thep2 con-
tinuum is similar to the projection of bulk phonon bands f
an fcc crystal on a Miller low-index surface. This similitud
may be made stronger by adjusting appropriately the valu
r, and illustrates the usefulness of a low-dimensional
proach for this kind of surface problem.

Knowledge of the modes that are localized on the isola
infinite step and that propagate parallel to the step edg
important in principle for a complete description of the sc
tering of waves on the step edge. The dispersion Rayle
like branches of these phonon modes are given in Fig. 3
the curvesR1 andR2 , lying as they should outside the con
tinuum of both half spaces. These branches, which may
made to appear and to disappear as a function of the num
cal values attributed tor andl, arise due to the breakdown o
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translational symmetry in the direction normal to the ste
The branchesR1 and R2 are in qualitative agreement wit
the theoretical results of Ref. 14, although a detailed co
parison shows that the nature of the modes is not the sam
the two studies. In the cited work the authors label two of
branches as primary and secondary Rayleigh modes,
secondary being a backfolded excitation owing to t
periodicity of their vicinal surface. In our case there is n
such folding, rather theR1 andR2 branches arise becaus
the isolated monoatomic step provokes the breakdown
translational symmetry normal to the step edge, and t
gives rise to new branches propagating parallel to yet lo
ized normal to the step.16

A. Scattering of waves incident
from the single-plane waveguide

In this section we present some results for the case of
scattering of an incoming propagation eigenmode wavi,
where uz8( i )u51, and i can be 1 and 2, incident from th
singlet atomic plane (p1) onto the step in the direction of th
double atomic planes (p2).

Numerical results may be obtained for a variety offy

values. We have investigated the evolution of these res
and found that it is relatively smooth for scattering stud
from fy50 to fy5p.

In Fig. 4~a! we present the relative reflection and tran
mission amplitudesr 11 andr 12 as a function of the scatterin
frequencyV, for the guided modei 51 indicated in Fig. 2,
when this is incident from the single plane onto the dou
plane with afy5p/4 component. Note that these reflectio
amplitudes span the whole range of frequencies of the gi
branch, beginning atfx50 and ending atfx5p. Since the
two branches 1 and 2 in this case are degenerate at t

FIG. 3. The Rayleigh step localized dispersion branchesR1 , R2

as a function of the wave vectorfy in the direction of high sym-
metry of the system along the step edgep1 andp2 denote the bulk
continuum phonon band limits for the single and coupled t
atomic layers, respectively.



ect of
s

1 wave;
f the
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FIG. 4. ~a! The relative reflection amplitudesr 11 andr 12 into the single layer modes 1 and 2, due to the scattering at the step def
the single layer mode 1 wave; the case offy5p/4. ~b! The relative transmission probabilitiest11, t13, andt15 into the coupled layers mode
1, 3, and 5, due to the scattering at the step defect of the single layer mode 1 wave; the case offy5p/4. ~c! The relative transmission
amplitudest12, t14, andt16 into the coupled layers modes 2, 4, and 6, due to the scattering at the step defect of the single layer mode
the case offy5p/4. ~d! The partial reflectionr 1 , and transmissiont1 , probabilities, associated to the scattering at the step defect o
single layer mode 1 wave; the case offy5p/4.
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points in the reciprocal space, they are also completely ou
phase, which explains whyr 11 and r 12 at the corresponding
frequencies are at antipodes as in Fig. 4~a!. It is likely that
the Rayleigh-like localized modeR1 embedded in the con
tinuum couples to this scattering process giving rise to
resonance structure near the frequencyV50.4. Note that the
evanescent eigenmodesnormal to the step edge, which cha
acterize the displacement field of the Rayleigh-like mod
themselves propagatingparallel to the step edge, do contrib
ute intrinsically under Eqs.~6! and~7! towards the complete
description of the scattering process.

These relative reflection amplitudes register, as is
served in Fig. 4~a!, rapid variations in the range of frequen
cies 0,V,0.5, which corresponds to the onset of nonze
relative transmission amplitudest1 j (V) via the waveguide
mode branchesj 51,3,5 and j 52,4 of the double atomic
plane half space, as may be observed in Figs. 4~b! and 4~c!,
respectively. The onset and the disappearance of the tr
mission amplitudes correspond to the frequency range of
existence of these guided modes as propagating wave
may be shown with reference to Fig. 2~a!.

Further, these reflection amplitudes, as well as the co
sponding transmission amplitudes, as may be seen in F
4~c! and 4~d!, show important resonance variations arou
the frequenciesV50.8 and 1.5. These resonances may
interpreted as due to the coupling with the dispersionl
‘‘modes,’’ which appear in Fig. 2~a! near these frequencie
and describe the flat parts of the branchesj 52,3,5 and 4,6 in
of
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the two coupled atomic layers half space. They also sh
coupling to the embeddedR1 mode nearV50.4. The en-
semble of these resonances are recurrent in Figs. 6~a!–6~d!.

The resonance in the range 1.911,V,1.945, which ap-
pears for the relative transmission amplitudest15 and t16 as
well as in the relative reflection amplitudes, at a peak ofV
51.935, has the features of a Fano resonance, i.e., its p
ence indicates coupling with a resonant defect state em
ded in the continuum.

In Fig. 4~d! we present the reflection and transmissi
probabilities r 1 and t1 as a function of the frequencyV.
These are obtained from Eqs.~11! and~12!. The sum of both
is unity for all frequencies, as is required from theunitarity
condition.

In Figs. 5~a! and 5~b!, we illustrate the scattering study fo
fy5p. We note in particular the disappearance of the c
pling to certain eigenmodes in the double plane (p2) due to
the shifting of the modes in this waveguide. A particul
feature is the absence of the resonance in the transmis
and reflection spectra at the peak frequencyV51.935, for
fy values other thanp/4, which must be due to symmetr
considerations.

Results for scattering from the eigenmode branchi 52,
may be also obtained in a similar manner. The relative a
plitudes for scattering from the modesi 52 are fairly similar
to those for scattering fromi 51. We have checked the reso
nance at the peak frequencyV51.935 when scattering from
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FIG. 5. ~a! The same as in Fig. 4~a! for the case offy5p. ~b!
The same as in Fig. 4~d! for the case offy5p.
8,
pho-
the i 51 and 2 modes, for different values offy . This reso-
nance seems to exist only forfy'p/4.

B. Scattering of waves incident
from the double-plane waveguide

In this section, we present some results for an incom
propagating eigenmode wavej, incident from the double
atomic planes (p2) onto the step in the direction of th
single atomic plane (p1). Hereuz( j )u51, andj can be any
one out of the six available modesj 51,2,3,4,5,6 in the (p2)
double atomic planes.

In this case there are six modes that can contribute
order to illustrate this we present our results in Fig. 6 for t
j 52 mode, i.e., for the relative reflection and transmiss
amplitudes r 2 j 8(p2/p1) and t2i(p2/p1), and for the
reflection r 25( j 8r 2 j 8(p2/p1), and transmission
t25( i t2i(p1/p2) probabilities, as a function of the scatte
ing frequencyV.

In Figs. 7~a!–7~e!, we present the total transmission pro
abilitiess(V;p1/p2) for waves incident from the (p1) onto
the (p2) half spaces for, respectively,fy50, p/4, p/2, 3p/4,
p. The total transmission probabilities for waves incide
from the (p2) onto the (p1) half spaces are given in Figs
8~a! and 8~b! for just fy5p/4 andp, to limit the number of
figures. These two latter results are, however, sufficien
illustrate the differences between the total transmission pr
abilities in the two geometries. In both sets of Figs. 7 and
the dashed histograms represent the total hypothetical
defect
f

s mode
f the
FIG. 6. ~a! The relative reflection probabilitiesr 22 andr 24 into the coupled layers modes 2 and 4, due to the scattering at the step
of the coupled layers mode 2 wave; the case offy5p/4. ~b! The relative reflection amplitudesr 21, r 23, andr 25 into modes 1, 3, and 5 o
the coupled layers, due to the scattering at the step defect of the coupled layers mode 2 wave; the case offy5p/4. ~c! The relative
transmission amplitudest21 and t22 into the single layer modes 1 and 2 due to the scattering at the step defect of the coupled layer
2; the case offy5p/4. ~d! The partial reflectionr 2 , and transmissiont2 , probabilities, associated to the scattering at the step defect o
coupled layers mode 2 wave; the case forfy5p/4.
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FIG. 7. ~a! The total transmission probability from the single layer into the two coupled layers due to the scattering at the step d
the single layer waves. The dashed histogram represents the total hypothetical phonon transmission capacity for the two coupled
the dashed and dotted histogram that for the single layer. These results are for case offy50. ~b! As in ~a! for the case offy5p/4. ~c! As
in ~a! for the case offy5p/2. ~d! As in ~a! for the case offy53p/4. ~e! As in ~a! for the case offy5p.
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non transmission capacity for the two coupled layers, and
dashed and dotted histograms those for the single laye
the frequencies of interest and for a given choice of thefy
component. The resonances due to coupling of incom
waves to the step defect induced states embedded in the
tinuum may be observed in Figs. 7 and 8, as illustrated
previous figures.

V. CONCLUSIONS

In the present paper we have developed an approach
allows us to treat the scattering of vibrational waves in p
turbed multichannel two-dimensional systems in an effici
manner by solving the dynamical equations directly for sc
tering boundary conditions. It should be emphasized that
case of vibrational waves, which has not yet been sufficie
treated in the literature for such systems, is more com
cated than the electron case, the essential difference b
e
at

g
on-
n

at
-
t

t-
e

ly
i-
ing

that the wave functions in the Schro¨dinger equation are com
plex scalars, whereas the vibrational amplitudes are comp
vectors. Our present work provides a basis study of interf
ence phenomena involving polarizable vector waves in tw
dimensional waveguides.

The algebraic approach presented in this paper can
generalized in principle to the scattering of vibrational wav
in two-dimensional infinite structures with defects that bre
the symmetry in two-dimensional space, based on the pr
dent work11 that generalizes the matching procedure to su
systems.

Our numerical results in this study show that in spite
their different character, the scattering of vibrational wav
has some features in common with the scattering of elec
waves, and can be described in terms of basically the s
interference phenomena, namely Fabry-Pe´rot oscillations
and Fano-like resonances. Fabry-Pe´rot oscillations are due to
the interference between multiply reflected waves in the p
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turbed region; they are relatively absent in this work. Fa
resonances appear in the spectra and are usually evok
describe the interference between propagating transm
modes and local step-edge defect modes that are embe
in the continuum. The transmission spectra in tw
dimensional systems can thus be regarded as fingerprin
their specific defect structure, and may therefore be used
their characterization.

It should be noted that the interference phenomena
cussed in this paper are derived from the dynamical eq
tions in the harmonic approximation, which can be applied
any lengthscale provided that the phase coherence is no
stroyed by dissipative effects. The results presented ap

FIG. 8. ~a! The total transmission probability from the couple
layers into the single layer due to the scattering at the step defe
the coupled layers waves. The dashed histogram represents the
hypothetical phonon transmission capacity for the two coupled
ers, and the dashed and dotted histogram that for the single l
These results are for case offy5p/4. ~b! As in ~a! for the case of
fy5p.
o
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ed
ded
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ly,

hence, equally to defect induced effects in macroscopic t
dimensional systems.

APPENDIX

The equations of atomic motion on the site (nxny) in the
bulk of the monoatomic layer can be expressed by

@V2I2N~fy ,z8,r ,l!#uu8&5u0& ~A1!

with

uu8&5S U8x~nx ,ny!

U8y~nx ,ny! D ~A2!

and

@N#5S N~1! N~3!

N~3! N~2!
D , ~A3!

where

N~1!5V21~z81z821!~11r cosfy!22r 22,

N~2!5V21cosfy@21r ~z81z821!#22r 22, ~A4!

N~3!5 ir sinfy~z82z821!.

The equations of atomic motion on the sites (nxnynz) in
the bulk of the two coupled atomic layers can also be
pressed in a resumed form as

@V2I2M ~fy ,z,r ,l!#uu&5u0& ~A5!

with

uu&5S Ux~nx ,ny ,nz!

Uy~nx ,ny ,nz!

Uz~nx ,ny ,nz!

Ux~nx ,ny ,nz21!

Uy~nx ,ny ,nz21!

Uz~nx ,ny ,nz21!

D ~A6!

and

of
otal
-
er.
@M #5S M ~1! M ~4! 0 M ~5! 0 M ~6!

M ~4! M ~2! 0 0 M ~7! M ~8!

0 0 M ~3! M ~6! M ~8! M ~9!

M ~5! 0 2M ~6! M ~1! M ~4! 0

0 M ~7! 2M ~8! M ~4! M ~2! 0

2M ~6! 2M ~8! M ~9! 0 0 M ~3!

D , ~A7!

where
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M ~1!52~z1z21!~11r cosfy!1213r ,

M ~2!52cosfy@21r ~z1z21!#1213r ,

M ~3!52r 11,

M ~4!5 i ~z2z21!r sinfy ,

M ~5!5
r

2
~z1z21!,
-

tte

r,
M ~6!52
r

2
~z2z21!,

M ~7!5r cosfy ,

M ~8!52 ir sinfy ,

M ~9!5
r

2
~z1z2112 cosfy!11. ~A8!
sc.

ev.
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