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Dynamics of coherent hole-population transfer between valence subbands
in diamond- and zinc-blende-type semiconductors
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The time-dependent Schiimger equation for the valence band that describes the hole dynamics in infrared
(IR) laser fields is considered within Luttinger-Kohn Hamiltonian formalism. A unitary transformation matrix
that substantially simplifies the initially overdetermined problem was found. For nonparabolic and spherical
bands, the problem was reduced to three differential equations that describe the hole population transfer
dynamics between heavy, light, and spin-orbit split-off subbands. The importance of a three-band approach in
the analysis of ultrafast hole dynamics is discussed. The obtained results may be useful in analyzing the
response of the hole population to a single ultrashort IR laser pulse of arbitrary shape or a combination of
pulses[S0163-182@9)04807-9

I. INTRODUCTION used earlier in treating intravalence band infrar@R)
absorptioR® and hot hole nois&

The response of holes jmtype semiconductors to exter- _ 1h€ Purpose of this paper is to show how the three-band
nal perturbations is usually treated within the degeneratdMme-dependent and overdeterminedt & Schralinger sys-
valence-band formalism. The most popular valence-ban{f™ for the valence-band envelope wave function of dia-
Hamiltonian forms for semiconductors of diamond and zinc-mon.oI f‘;‘;’ zmc-ble_nde ser_nlconductors_can be simplified.
blende structures are either<dt or 6x6 Luttinger-Kohn Earlier,"~> we described a simple parabolic two-band model
matrices:— As it is usual, spin splitting due to lack of inver-

in the infinite spin-orbit interaction limit and used it to ex-
. . ; ) . lain the transparency gi-type germanium in intense GO
sion symmetry in the zinc-blende semiconductors is negnd NH, Iase? fieldgl q;n)(/jp tog predict tunnel noiseq in
glected. This results in a double degeneracy of all SUbband§emiconductor%? As we shall see below, at least a three-
The interest in degenerate valence bands stems from t

: W9and model is required to describe fast-hole transitions to the
factors. First, because of the complex structure of thespin-orbit split-off valence subband or, what is not so evi-

valence-band Hamiltonians, it is always desirable to find jent, to include valence-band nonparabolicity correctly. In
unitary transformation that brings the Hamiltonian and thethe next two sections, we present the transformed “Schro

related Schrdinger system to a simpler form that is more ginger equation and the required transformation matrix. Fi-
suitable for either numerical calculations or further analyticalnally, in Sec. IV we discuss the obtained results and give
simplification of the problem. With this in mind, a number of some illustrative examples.
transformations were proposéd

Second, with the advent of ultrashort-pulse optical spec-
troscopy, where pulse parameters such as amplitude, center |, TRANSFORMED SCHRO DINGER EQUATION
time, center frequency, temporal width, type of chirping, etc. _ _ ) ) )
become accessible to the experimenter, there emerges a pos-'N @nalyzing the intervalence population dynamics, as will
sibility of quantum control of the evolution of the wave func- P€ S€en, it is convenient to go over to a basis in which the
tion of the system under studgee, for example, Refs. 9 and Lut_tmger—Koh_n Hamlltonlan IS a diagonal matrix anq de-
10 and literature cited thereinPopulation transfer using scn_bes '_[he dispersion laws of lighit)( heavy_(h), and spin-

. . - orbit split-off (s) hole subbands. Such a basis appears natural

pulses or adiabatic passage by pulse chirping, when after th

; ) . ; : - "Ifone starts with a hole, that initially with certainty was in a
optical pulse the final population resides almost entirely in abarticular subband. and one wants to know the hole transi-
particular excited level, are well known in atomic !

hvsicsll-13Th h h in oh ited .tion probability to other subbands after an external field or
physics.”“The coherent phenomena in photoexcited semiyqger radiation was switched on. The other reason to go over

conductors were considered, for example, in Refs. 14-1§, he energy representation is that in real situations, due to
and reviewed recently in Refs 19 and 20. The Coulomb coripteraction of holes with an incoherent phonon bath, the
relations between electron-hole pairs determine a typicaholes populate light and heavy hole subbands before laser
time scale on which the coherent phenomena can be ohgadiation is applied, not some intermediate energy states that
served in the case of photoexcitation of semiconductors. Agre a mixture of the pure light hole, heavy hole, or split-off
discussed in Ref. 19, the coherent contribution to the considsubband states. Of course, due to collisions of holes with
ered phenomenon can be evaluated by means of a direphonons and a finite hole lifetime, the subbands are some-
numerical integration while the incoherent one by a convenwhat smeared: the smaller the hole coherence length and/or
tional Monte Carlo simulation. The approach where total dy-time is, the larger the subband smearing will be. In the fol-
namics is divided into coherent and incoherent parts watowing, the dynamical mixing of the valence subbands in
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space, when the laser electric fiéldt) is linearly polarized. -
For convenience we shall assume that the field is parallel to bk
hole wave-vector componett,. The electric field will be Atomic units (a.u) will be used: 1 ,(energy)=27.2
treated classically, i.e., its quantum nature will be neglectedeV, 1, ,(time)=2.42x10"%" s, 1, ,(electric field=5.14
Such an approximation is fully satisfactory, if the field am- X10° V/cm, 1,,(wave vector}1.89x10° cm™*. In Eq.

plitude is larger than a few volts per centimetéThe hole (1), H, is the Luttinger-Kohn Hamiltoniah? In the general
transitions between the subbands will be described by th@ase,ﬂo is characterized by three parameteys; v,, and

Schralinger equation for the six-component envelope statey,. In the spherical approximationy¢= ys), the case con-

vector sidered in this papeH, is

()

strong coherent laser fields will be treated in the wave-vector o ( . F() 4 )
—={H, _

| =
ot

P+Q L M 0 L —iim

2
L* P-Q 0 M —i\20 i\/-;-L

M* 0 P-Q ~-L —i\/-%-L* -i\20

°m>
]

: ) 2
i

0 M* —-L* P+Q —iV2M* ——L*
V2

—LL* l\/Z—Q i\/.i_L i\/EM P+A 0
iZM* “'\/g‘L* 20 —=0 0 P+A

where P=(y,/2)(K2+ k§+ k?)=(y1/2)k?, Q=(v,/2)(k>  calculations, the following parameters typical to InP were
+k§—2k§), L=—i\/§yzkz(kx—iky), and M=1y,(y/3/ used: A=0.00397 a.u. £0.108 eV)y;=5,57,=1.9. In
2) (ky—iky)2. the zero spin-orbit interaction limit, whek=0, Ej,, andE,

In Eq. (2), A is the spin-orbit split-off energy. In contrast reduce to a fourfold-degen_erate parabolic band Bpdo a
to the general case, in the spherical approximation thgoubly degenerate parabolic band. These new bands may be
Hamiltonian (2) can be diagonalized to a relatively simple viewed, respectively, as new heavy- and light-mass sub-

diagonal matrix. The wave-vector dependence of hdayy badnds. Itn éhi i)ppos;iLtg Iimli(tz(ifgsgog/gzgnteraztigmjgdZEAS

light E,, and split-off E; subband energy in this case as-'c ucze 0 ‘|‘~22[(71 72) IR ] and Bs~3[ )

sumes the form + 7y, k“+9k™y5/2A7]. In the limit A— the latter describes
the parabolic bands as well.

k2
En=5(y1—272), ©) Energy
2 001}
1
Ei=5(A+ y1K%+ y,k2=r), (4)
_1 2 2 008t
ES_E(A+ ’ylk +’)/2k +r), (5)
where
r=(A%—2y,Ak?+9y3k*) 2, (6) \\ /Wove
' ' ' " vector
Figure 1 shows,,, E;, andE, versusk calculated from -0.04 0 0.04
Egs. (3)—(6), where a relatively strong nonparabolicity lof FIG. 1. Dispersion curves of heavy, light, and spin-orbit split-

and s subbands can be seen. Here, and in the subsequestt subbands of InP in spherical approximation.
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The unitary transformation matriX needed to diagonal- elimination of variables or by methods used in algebraic
ize the Luttinger-Kohn Hamiltonian will be presented in the computer packages, fails due to the linear dependence of the
next section. Using the transformation matrix, the Sehroequations. This is largely connected with the presence of the

dinger systen(1) can be reduced 8

where T+ is Hermitian of T and ¢ is the new transformed
state vectorp=T¢. The new HamiltoniarH o4 is the diag-

onal matrix

. F

?—ﬁ+ +
ok, = Ik,

d

>

¢7

Hoa=diag(E| ,E| ,E,Ep,Es,Eq}
the elements of which are given by Eq8)—(5). As it is

(@)

8

square root6) in dispersion laws. If an arbitrary algorithm is
used, the dispersion lawd) and (5) generate very compli-
cated intermediate results, intractable for further calculations.

Below, the algorithm used to find the transformation matrix

T is outlined briefly and only the final result is given.

Because of spherical symmetry ldf, andHq, it is con-
venient to reduce the matrix equatiblygT=TH, to spheri-

cal coordinatek, ©, ande: k,=ksin® cose, ky
=ksin® sing, k,=k cos®. Then representing the transfor-

mation matrix as a product of two matrices

known, in the absence of degeneracy a unitary transforma- :FI'ARDE, 9
tion matrix can be found from normalized eigenvectors thabvhere
correspond to their respective eigenvaldéspersion laws
of the considered Hamiltonigi. However, in the general [ 1 e i¢ g i2e g-i3¢ goie g=i2¢]
case, for example, when energy states are degen@natar v Cie ize i
case they are doubly degenejatsis is not true. In the fol- e 1 e e 1 e
lowing section, we shall show how the required transforma- gize gl 1 e ie  gle 1
tion matrix can be constructed. T,= gide  gi2ze  glo 1 gi2e  gie |
_ . i .
lll. THE TRANSFORMATION AND FIELD MATRICES e 1 e e’ 1 e
. oA . . e'?e el¢ 1 e’le  g¢ 1
The Luttinger-Kohn Hamiltoniai; and the diagonalized - " (10

Hamiltonian Hyy are related by the transformatioH g

='T'I:|O'T"1. To find the matrix elements of we used an
equivalent formH o4 T=TH, along with the unitarity prop-

the azimuthal anglep can be eliminated from the above
matrix equations altogether. A close inspection of the result-
ing matrix equation shows that after equating the rows of the

erty of T. In this way, the obtained 36 algebraic equationssimplified matrix equation it is possible to construct six in-
for the unknown elements;; are not independent. There- dependent subsystems. In addition, it appears that the sub-
fore, the problem reduces to how to find a linearly indepensystems thus obtained, are similar in pairs and, therefore, it is
dent set forT;; elements from 36 coupled complex algebraicenough to solve only three of them. A straightforward but
equations. The formulation as it stands is simple. Nonethelengthy calculation wittMATHEMATICA gives the following
less, a straightforward attack by standard methods, e.g., Hynal result:

V3cos@sin® ix'(1+3cos20) 3x72sin20 i3x 3sin2@  xls; 0
Sy 251 251 § \/Er
i\Bxsin2@ 3sin20 ix (143 cos20) 3x 2cos®sin® 0 x5,
- Sy 251 251 § 2r
x2sin® 0 ﬁsin@ ix"lcos® 0 0
. 262y, 2%y, Ky,
T k272 s
ix’cos ® \/gx2 sin ® 0 sin @ 0 0
kz‘)’z 2k2 Y2 2k2’)’2
V3xcos@sin®  i(1+3cos20) 3x"1sin20 iV3x " 2sin20 S,
52 2s, 25y 2 J2r
i\3x%sin20@ 3xsin20 i(1+3¢cos20)  B3x 'cos® sin® 0 55
S2 252 252 82 \/Er

11
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where x"=exp(ng), si=(k?>y,—A+r)r, and s3=(A 1 1 0 0 0 0]
—k2y,+1)r. The matrix T is unitary, i.e., T(T)"=1. It o 0 1 1 0 o

should be noted that the concrete formTofis not unique.

The transformatior(11) brings the Luttinger-Kohn Hamil- ilo o 0o 0o 1 1

tonian to the form(8). Other forms of T will give different — (20)
diagonalized Hamiltonians, e.g., d{&, ,E; ,E, ,E, ,Eg,Eg}, V2|1 -1 0 0 0 0O

diag{Es,E| s Eh ,Eh ,E| ,Es}, etc.

Now it is possible to transform the field operator 06 0 1 -10 0
(1h)(TaT*/ok,+dlok,) to an energy representation using 0 0 0 0 1 -1
the standard operator equatiagtiok,=cos® d/dk—(sin®/ - -
K)olo©.

All the above described manipulations bring the systenthe coupling between degenerate valence subbands can be
(1) to another system of six coupled differential equations fodifted off, i.e., the considered system of differential equations
degenerate bands. Further simplifications are possible if on@an be brought to a’83 block-diagonal system. One of the
notes that one more transformation can be performed usingvo subsystems thus obtained is
the following diagonal matrix:

f| E, 0 O

> i i30/2 Aipl2 A—ipl2 A—i3¢/2 Ai@l2 =gl 9

To=diag(e'3¢2,e'¥/2,g71¢/2 g7 13¢/2 glvl2 g=iel2y = (1) 2t =1 |0 B o
T eliminates the azimuthal angle in the transformed field
operator(this operator has the cylindrical symmetignd at fs 0 0 E
the same time preserves the diagonalityHyfy and, there- dy, dystdys distdig
fore, does not mix up the valence subbands. The transforma-
tion (12) brings the part=(1/i)TaT*/k, of the field op- +E| diptdyy  dyy dygtdag
erator to

distdyg d3stdss  dse

[ O d12 d13 dl4 d15 d16- f
|
d12 0 d14 dlS le dlS F 9
T (| 2Y)
R 13 dig O dy dzs ds z
d= , (13 fs
d14 IS d34 0 d36 d35
where f,, f,, andfg are state-vector components that de-
15 dig d35 dys O dsg scribe dynamics of hole population in light, heavy, and split-
. . off valence subbands. The other subsystem can be obtained
| dig dis dzs d35 dsg O | from Eq.(21) after complex conjugation and change of vari-
ables:t— —t, F——F.
where
6k°sin® 5 IV. DISCUSSION
dpp=———, (14 '
S1 It should be clear that now it is enough to solve only three
differential equations instead of the initial six. Furthermore,
3k sin 20 y, 3k cosO sin® y, in the obtained state vectdrformulation, the interpretation
137 is; v = s, ' and the assumption about the initial hole population in vari-
(15 ous subbands is straightforwaid;|? is theith band popu-
lation. The k, component can be related to the time-
o3 2 dependent electric field through a characteristic equation of
18k°A cos@ y5 h bsysten21).%% In our case, the characteristic equation
dlszT- die= —dy581 /5, (16) the Subsy : s ' : q
152 describes the Newton’s law fok, component:dk,/dt
=F(t). The component perpendicular kg is conserved in
day= —sin@®/2k, (17) the spherical approximation. With this in mind the partial

derivatives in Eq(21) may be replaced by the total deriva-
tive (i 9/ at,ial ok,)—id/dt, i.e., Eq.(21) can be reduced to a

d3s=d1351 /Sy, dze= —dysS1/5;, (18)  system of complex rate equations, in which the temis
describe the coupling between population state vectors.
d56=dlzsf/S§- (19) In the case of large spin-orbit interaction, the elements of

the coupling matrix can be developed in powers df,lthen
Finally, with the help of the transformation the field coupling matrix in Eq(21) becomes
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3 VB . 3+idcot® Ky,
2 2 ° 2 A
sin® 3. 1 - Kk?
F— %—e"") > —ﬁe'@% : (22)
3—i4 cot® k?y, _ﬁeiikzyz _3k4y§
\/E A A AZ

In the limit of infinite spin-orbit interaction{ —<°) the ma-  the population was achieved by tailorikg, andt,, of the

trix (22) reduces to that obtained earlier in Ref. 4 for two, pulse. To obtain 100% transfer, what would correspond to

heavy and light, parabolic subbands. pulse, inclusion of some frequency chirping is probably re-
Selection rules and intersubband transition couplingjuired. Figure 3 clearly demonstrates that in semiconductors

strengths, determined respectively byl;{+d;,), (d3s a nearly total hole transfer between subbands is possible if

+dge), and @di5+d;e terms in Eqg.(21), depend on the ultrashort laser pulses, consisting of only few periods, are

angle® between the electric fielf and the hole wave vec- Used. Calculations show that in the considered case the maxi-

N = N . 2 .
tor k. For ®=0, i.e., whenk and F are parallel, onlyl-s mum sébgr;%/popglaélodfqd durlr:g E)hSSIfE pltjltsﬁ doej nfotth
transitions are allowed. Fd® = /2, all transitions are al- ©X¢€€d Y.<70 and drops down to ©.957% al the end of the

lowed. For larged values the transitions between heavy- andpuallser']eTTg;’ ilrf1 (t)r?: t'rzr'gtf%rr?;dshg:j.tragrsglosrlzn(:g%' tﬁge
light-mass subbands will predominate, as can be seen frofn oY N€9 fager sy

Eq. (22). spin-orbit split-off subband and the respective coupling

Figure 2 shows the time dependence of the split-off subterms associated with this subband even in the case of very
: 2 - : . short, femtosecond IR pulses. However, it should be noted
band populationfg|?, when initially the hole with certainty

was in the heavy-hole subbdidwith ®=/2 and k that in such a two-band approximation, the splitting energy

o : A does not vanish as can be seen by inspection of the matrix
=0.0259. Curve 1 corresponds to exact resonance, "e"WheerI‘ementsd das, (dystdyo). Negligible s-subband popu
the laser frequency iso=E,(k) — E;(k)=4.5x10"3. The -"MeNtSdsp, daq, (i3t 0ag). NEGIY . d pop
X - lation in this case is in a large part associated with a strong
steps correspond to half periods of the electric field. The . o ;
N Y . 5 coupling betweem andl subbands. Here, it is also important
curve labeled “Off-resonance” shows the evolution| &f %,

to remark that in the discussed two-band approximation, the

when the laser frequency was detuned by 10% from the reso- L )
nance. The electric field amplitude for both cases Was subband nonparabolicity and the subband coupling are taken

—10°5 and the laser was turned ontat 0 fully into account. In the standard two-band approximation,
B Figure 3 shows ne;\rll toltJaI transfer of.the hole populatio where at first one takes the limit—co and then only diago-

9 1y pop Thalizes the remaining Hamiltonian, the nonparabolicity is
from the heavy to the light-hole subbandmfype InP, when lost. This can also be seen from E@2), if the limit A
O =7/2 andk=0.0178, and when the hole was acted on by_m' is taken '
about three periods of Gaussian-shaped infrared-laser pulse Figure 4 shows the light and split-off subband populations

of the gn%ﬁla:‘.frequeﬁﬁy Iél’ as Sdrlﬁwr: ;]n I‘:che uppelznr left as a function of time when the hole initially was in the same
comer In the nigure. The pulse widih at hall maximiip g6 a5 jn Fig. 3, i.e., in the subband with the sameand
=0.126 ps and the maximum electric field amplitu€g of p but the laser now was tuned to has transition: o

; . 0 , :
the Gaussian envelope is 32 kV/cm. The transfer of 95% of_ E.(K)— E,(k)=0.0048. In this case after optimization of

ty, andFg it appeared possible to transfer as much as 82%

£ 5
® 2 El. Field
2 el
g ‘—3" 08
@ Resonance 2
01 T 06 Time
04
02 +
Off-resonance 02
0.0
0.0 } } -15000 -10000  -5000 0 5000 10000 15000
0 2000 4000 Time Time

FIG. 2. The probability to find the hole in the spin-orbit split-off FIG. 3. Transfer of hole population from heavy- to light-hole
subband at resonance and after laser was detuned by 10%. Thabband induced by ultrashott,,= 126 fs, IR laser pulse shown
sinusoidal electric field in both cases was switched on at the moin the upper-left corner. Electric field envelope amplitdggis 32
mentt=0. kvicm.
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FIG. 4. Split-off(s) and light(l) subband population induced by

ultrashortt,,=24.2 fs, IR laser pulse shown in the upper-left cor-

ner.F,=478 kV/cm.
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transfer a holdelectron to a higher energy subband without
exciting other valencéconduction subbands during the ac-
tion of the laser pulse. This property may be important if the
phonon emission rate from other subbands is larger than
from the final one.

In conclusion, the overdetermined time-dependent Schro
dinger system described by>® Luttinger-Kohn Hamil-
tonian was reduced to the much simpler systed), assum-
ing that the valence band is spherical, € y3) and that the
laser electric field is linearly polarized. The nonparabolicity
was included fully. The components of the wave function of
the reduced equation directly reflect the hole population in
the respective valence subbands, what may be advantageous
in analyzing the population dynamics under action of arbi-
trarily shaped ultrashort IR laser pulses, for example, linearly
or quadratically chirped pulses. Furthermore, the obtained
exact equations may be a starting point for further analytical

of the h-subband hole population to the split-off subband. 'tsimplifications. If needed, the warping of the subbands may

should be remarked here that, due to strbrigcoupling, the

light-hole population f,|? during laser excitation may reach
rather high(up to 37% in Fig. 4 intermediate values. To
have the hole population in thesubband close to 100% at

the end of the laser pulse, a more complicated shape of the
electric field, which may be found with the help of the quan-

tum optimal control theory;}° is required. In general, one
also would like to know whether in principle it is possible to

be included as a perturbation, by applying the transformation
matrix (11) to that part of the Hamiltonian, which describes
the nonsphericity of the valence band.
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