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Dynamics of coherent hole-population transfer between valence subbands
in diamond- and zinc-blende-type semiconductors

A. Dargys
Semiconductor Physics Institute, A. Gosˇtauto 11, 2600 Vilnius, Lithuania

~Received 6 May 1998; revised manuscript received 18 August 1998!

The time-dependent Schro¨dinger equation for the valence band that describes the hole dynamics in infrared
~IR! laser fields is considered within Luttinger-Kohn Hamiltonian formalism. A unitary transformation matrix
that substantially simplifies the initially overdetermined problem was found. For nonparabolic and spherical
bands, the problem was reduced to three differential equations that describe the hole population transfer
dynamics between heavy, light, and spin-orbit split-off subbands. The importance of a three-band approach in
the analysis of ultrafast hole dynamics is discussed. The obtained results may be useful in analyzing the
response of the hole population to a single ultrashort IR laser pulse of arbitrary shape or a combination of
pulses.@S0163-1829~99!04807-9#
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I. INTRODUCTION

The response of holes inp-type semiconductors to exte
nal perturbations is usually treated within the degene
valence-band formalism. The most popular valence-b
Hamiltonian forms for semiconductors of diamond and zin
blende structures are either 434 or 636 Luttinger-Kohn
matrices.1–3 As it is usual, spin splitting due to lack of inver
sion symmetry in the zinc-blende semiconductors is
glected. This results in a double degeneracy of all subba
The interest in degenerate valence bands stems from
factors. First, because of the complex structure of
valence-band Hamiltonians, it is always desirable to fin
unitary transformation that brings the Hamiltonian and
related Schro¨dinger system to a simpler form that is mo
suitable for either numerical calculations or further analyti
simplification of the problem. With this in mind, a number
transformations were proposed.4–8

Second, with the advent of ultrashort-pulse optical sp
troscopy, where pulse parameters such as amplitude, c
time, center frequency, temporal width, type of chirping, e
become accessible to the experimenter, there emerges a
sibility of quantum control of the evolution of the wave fun
tion of the system under study~see, for example, Refs. 9 an
10 and literature cited therein!. Population transfer usingp
pulses or adiabatic passage by pulse chirping, when afte
optical pulse the final population resides almost entirely i
particular excited level, are well known in atom
physics.11–13The coherent phenomena in photoexcited se
conductors were considered, for example, in Refs. 14
and reviewed recently in Refs 19 and 20. The Coulomb c
relations between electron-hole pairs determine a typ
time scale on which the coherent phenomena can be
served in the case of photoexcitation of semiconductors.
discussed in Ref. 19, the coherent contribution to the con
ered phenomenon can be evaluated by means of a d
numerical integration while the incoherent one by a conv
tional Monte Carlo simulation. The approach where total d
namics is divided into coherent and incoherent parts w
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used earlier in treating intravalence band infrared~IR!
absorption21 and hot hole noise.22

The purpose of this paper is to show how the three-b
time-dependent and overdetermined 636 Schrödinger sys-
tem for the valence-band envelope wave function of d
mond and zinc-blende semiconductors can be simplifi
Earlier,4,23 we described a simple parabolic two-band mod
in the infinite spin-orbit interaction limit and used it to ex
plain the transparency ofp-type germanium in intense CO2
and NH3 laser fields21 and to predict tunnel noise in
semiconductors.22 As we shall see below, at least a thre
band model is required to describe fast-hole transitions to
spin-orbit split-off valence subband or, what is not so e
dent, to include valence-band nonparabolicity correctly.
the next two sections, we present the transformed Sc¨-
dinger equation and the required transformation matrix.
nally, in Sec. IV we discuss the obtained results and g
some illustrative examples.

II. TRANSFORMED SCHRÖ DINGER EQUATION

In analyzing the intervalence population dynamics, as w
be seen, it is convenient to go over to a basis in which
Luttinger-Kohn Hamiltonian is a diagonal matrix and d
scribes the dispersion laws of light (l ), heavy~h!, and spin-
orbit split-off ~s! hole subbands. Such a basis appears nat
if one starts with a hole, that initially with certainty was in
particular subband, and one wants to know the hole tra
tion probability to other subbands after an external field
laser radiation was switched on. The other reason to go o
to the energy representation is that in real situations, du
interaction of holes with an incoherent phonon bath,
holes populate light and heavy hole subbands before l
radiation is applied, not some intermediate energy states
are a mixture of the pure light hole, heavy hole, or split-o
subband states. Of course, due to collisions of holes w
phonons and a finite hole lifetime, the subbands are so
what smeared: the smaller the hole coherence length an
time is, the larger the subband smearing will be. In the f
lowing, the dynamical mixing of the valence subbands
4888 ©1999 The American Physical Society
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PRB 59 4889DYNAMICS OF COHERENT HOLE-POPULATION . . .
strong coherent laser fields will be treated in the wave-ve
space, when the laser electric fieldF(t) is linearly polarized.
For convenience we shall assume that the field is paralle
hole wave-vector componentkz . The electric field will be
treated classically, i.e., its quantum nature will be neglec
Such an approximation is fully satisfactory, if the field am
plitude is larger than a few volts per centimeter.23 The hole
transitions between the subbands will be described by
Schrödinger equation for the six-component envelope st

vectorcW :
t
th
le

s-

u

r

to

d.

e
e

i
]cW

]t
5S Ĥ01

F~ t !

i

]

]kz
DcW . ~1!

Atomic units ~a.u.! will be used: 1a.u.(energy)527.2
eV, 1a.u.(time)52.42310217 s, 1a.u.~electric field!55.14
3109 V/cm, 1a.u.(wave vector)51.893108 cm21. In Eq.
~1!, Ĥ0 is the Luttinger-Kohn Hamiltonian.1,2 In the general
case,Ĥ0 is characterized by three parameters:g1 , g2 , and
g3 . In the spherical approximation (g25g3), the case con-
sidered in this paper,Ĥ0 is
~2!
re

y be
ub-

lit-
where P5(g1/2)(kx
21ky

21kz
2)[(g1/2)k2, Q5(g2/2)(kx

2

1ky
222kz

2), L52 iA3g2kz(kx2 iky), and M5g2(A3/
2)(kx2 iky)

2.
In Eq. ~2!, D is the spin-orbit split-off energy. In contras

to the general case, in the spherical approximation
Hamiltonian ~2! can be diagonalized to a relatively simp
diagonal matrix. The wave-vector dependence of heavyEh ,
light El , and split-off Es subband energy in this case a
sumes the form

Eh5
k2

2
~g122g2!, ~3!

El5
1

2
~D1g1k21g2k22r !, ~4!

Es5
1

2
~D1g1k21g2k21r !, ~5!

where

r 5~D222g2Dk219g2
2k4!1/2. ~6!

Figure 1 showsEh , El , andEs versusk calculated from
Eqs. ~3!–~6!, where a relatively strong nonparabolicity ofl
and s subbands can be seen. Here, and in the subseq
e

ent

calculations, the following parameters typical to InP we
used: D50.003 97 a.u. (50.108 eV),g155,g251.9. In
the zero spin-orbit interaction limit, whenD50, Eh , andEl
reduce to a fourfold-degenerate parabolic band andEs to a
doubly degenerate parabolic band. These new bands ma
viewed, respectively, as new heavy- and light-mass s
bands. In the opposite limit of strong interactionEl and Es
reduce toEl'

1
2 @(g112g2)k229k4g2

2/2D# and Es'
1
2 @2D

1g1k219k4g2
2/2D#. In the limit D→` the latter describes

the parabolic bands as well.

FIG. 1. Dispersion curves of heavy, light, and spin-orbit sp
off subbands of InP in spherical approximation.
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4890 PRB 59A. DARGYS
The unitary transformation matrixT̂ needed to diagonal
ize the Luttinger-Kohn Hamiltonian will be presented in t
next section. Using the transformation matrix, the Sch¨-
dinger system~1! can be reduced to24

i
]wW

]t
5F Ĥ0d1

F

i
S T̂

]T̂1

]kz
1

]

]kz
D GwW , ~7!

where T̂1 is Hermitian of T̂ and wW is the new transformed
state vector:wW 5T̂cW . The new HamiltonianĤ0d is the diag-
onal matrix

Ĥ0d5diag$El ,El ,Eh ,Eh ,Es ,Es% ~8!

the elements of which are given by Eqs.~3!–~5!. As it is
known, in the absence of degeneracy a unitary transfor
tion matrix can be found from normalized eigenvectors t
correspond to their respective eigenvalues~dispersion laws!
of the considered Hamiltonian.25 However, in the genera
case, for example, when energy states are degenerate~in our
case they are doubly degenerate! this is not true. In the fol-
lowing section, we shall show how the required transform
tion matrix can be constructed.

III. THE TRANSFORMATION AND FIELD MATRICES

The Luttinger-Kohn HamiltonianĤ0 and the diagonalized
Hamiltonian Ĥ0d are related by the transformationĤ0d

5T̂Ĥ0T̂21. To find the matrix elements ofT̂ we used an
equivalent formĤ0dT̂5T̂Ĥ0 along with the unitarity prop-
erty of T̂. In this way, the obtained 36 algebraic equatio
for the unknown elementsTi j are not independent. There
fore, the problem reduces to how to find a linearly indep
dent set forTi j elements from 36 coupled complex algebra
equations. The formulation as it stands is simple. None
less, a straightforward attack by standard methods, e.g.
a-
t

-

s

-

e-
by

elimination of variables or by methods used in algebr
computer packages, fails due to the linear dependence o
equations. This is largely connected with the presence of
square root~6! in dispersion laws. If an arbitrary algorithm i
used, the dispersion laws~4! and ~5! generate very compli-
cated intermediate results, intractable for further calculatio
Below, the algorithm used to find the transformation mat
T̂ is outlined briefly and only the final result is given.

Because of spherical symmetry ofĤ0 andĤ0d , it is con-
venient to reduce the matrix equationĤ0dT̂5T̂Ĥ0 to spheri-
cal coordinatesk, Q, andw: kx5k sinQ cosw, ky
5k sinQ sinw, kz5k cosQ. Then representing the transfo
mation matrix as a product of two matrices

T̂5T̂w t̂ , ~9!

where

T̂w53
1 e2 iw e2 i2w e2 i3w e2 iw e2 i2w

eiw 1 e2 iw e2 i2w 1 e2 iw

ei2w eiw 1 e2 iw eiw 1

ei3w ei2w eiw 1 ei2w eiw

eiw 1 e2 iw e2 i2w 1 e2 iw

ei2w eiw 1 e2 iw eiw 1

4 ,

~10!

the azimuthal anglew can be eliminated from the abov
matrix equations altogether. A close inspection of the res
ing matrix equation shows that after equating the rows of
simplified matrix equation it is possible to construct six i
dependent subsystems. In addition, it appears that the
systems thus obtained, are similar in pairs and, therefore,
enough to solve only three of them. A straightforward b
lengthy calculation withMATHEMATICA gives the following
final result:
~11!
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PRB 59 4891DYNAMICS OF COHERENT HOLE-POPULATION . . .
where xn5exp(inw), s1
25(k2g22D1r )r , and s2

25(D

2k2g21r )r . The matrix T̂ is unitary, i.e., T̂(T̂)151̂. It
should be noted that the concrete form ofT̂ is not unique.
The transformation~11! brings the Luttinger-Kohn Hamil-
tonian to the form~8!. Other forms ofT̂ will give different
diagonalized Hamiltonians, e.g., diag$Eh ,Eh ,El ,El ,Es ,Es%,
diag$Es ,El , Eh ,Eh ,El ,Es%, etc.

Now it is possible to transform the field operat
(1/i )(T̂]T̂1/]kz1]/]kz) to an energy representation usin
the standard operator equation]/]kz5cosQ ]/] k2(sinQ/
k)]/] Q.

All the above described manipulations bring the syst
~1! to another system of six coupled differential equations
degenerate bands. Further simplifications are possible if
notes that one more transformation can be performed u
the following diagonal matrix:

T̂d5diag$ei3w/2,eiw/2,e2 iw/2,e2 i3w/2,eiw/2,e2 iw/2%. ~12!

T̂d eliminates the azimuthal angle in the transformed fi
operator~this operator has the cylindrical symmetry! and at
the same time preserves the diagonality ofH0d and, there-
fore, does not mix up the valence subbands. The transfor
tion ~12! brings the partd̂5(1/i )T̂]T̂1/]kz of the field op-
erator to

d̂53
0 d12 d13 d14 d15 d16

d12 0 d14 d13 d16 d15

d13* d14 0 d34 d35 d36

d14 d13* d34 0 d36 d35

d15* d16 d35* d36 0 d56

d16 d15* d36 d35* d56 0

4 , ~13!

where

d125
6k3 sinQg2

2

s1
2

, ~14!

d135
A3k sin 2Qg2

is1
, d1452

A3k cosQ sinQg2

s1
,

~15!

d155
i8k3D cosQg2

2

rs1s2
, d1652d12s1 /s2 , ~16!

d3452sinQ/2k, ~17!

d355d13s1 /s2 , d3652d14s1 /s2 , ~18!

d565d12s1
2/s2

2 . ~19!

Finally, with the help of the transformation
r
ne
ng

d

a-

i

A23
1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 21 0 0 0 0

0 0 1 21 0 0

0 0 0 0 1 21

4 ~20!

the coupling between degenerate valence subbands ca
lifted off, i.e., the considered system of differential equatio
can be brought to a 333 block-diagonal system. One of th
two subsystems thus obtained is

i
]

]tU f l

f h

f s

U5H F El 0 0

0 Eh 0

0 0 Es

G
1FF d12 d131d14 d151d16

d13* 1d14 d34 d351d36

d15* 1d16 d35* 1d36 d56

G
1

F

i

]

]kzJ U f l

f h

f s

U , ~21!

where f l , f h , and f s are state-vector components that d
scribe dynamics of hole population in light, heavy, and sp
off valence subbands. The other subsystem can be obta
from Eq.~21! after complex conjugation and change of va
ables:t→2t, F→2F.

IV. DISCUSSION

It should be clear that now it is enough to solve only thr
differential equations instead of the initial six. Furthermo
in the obtained state vectorfW formulation, the interpretation
and the assumption about the initial hole population in va
ous subbands is straightforward:u f i u2 is the i th band popu-
lation. The kz component can be related to the tim
dependent electric field through a characteristic equation
the subsystem~21!.26 In our case, the characteristic equatio
describes the Newton’s law forkz component: dkz /dt
5F(t). The component perpendicular tokz is conserved in
the spherical approximation. With this in mind the part
derivatives in Eq.~21! may be replaced by the total deriva
tive (i ]/]t,i ]/]kz)→ id/dt, i.e., Eq.~21! can be reduced to a
system of complex rate equations, in which the termsdi j
describe the coupling between population state vectors.

In the case of large spin-orbit interaction, the elements
the coupling matrix can be developed in powers of 1/D, then
the field coupling matrix in Eq.~21! becomes
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F
sinQ

k 3
3

2

A3

2
e2 iQ

31 i4 cotQ

A2

k2g2

D

A3

2
eiQ

1

2
2A3eiQ

k2g2

D

32 i4 cotQ

A2

k2g2

D
2A3e2 iQ

k2g2

D
23

k4g2
2

D2

4 . ~22!
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In the limit of infinite spin-orbit interaction (D→`) the ma-
trix ~22! reduces to that obtained earlier in Ref. 4 for tw
heavy and light, parabolic subbands.

Selection rules and intersubband transition coupl
strengths, determined respectively by (d131d14), (d35
1d36), and (d151d16) terms in Eq.~21!, depend on the
angleQ between the electric fieldFW and the hole wave vec
tor kW . For Q50, i.e., whenkW and FW are parallel, onlyl -s
transitions are allowed. ForQ5p/2, all transitions are al-
lowed. For largeD values the transitions between heavy- a
light-mass subbands will predominate, as can be seen f
Eq. ~22!.

Figure 2 shows the time dependence of the split-off s
band populationu f su2, when initially the hole with certainty
was in the heavy-hole subband27 with Q5p/2 and k
50.0259. Curve 1 corresponds to exact resonance, i.e., w
the laser frequency isv5El(k)2Eh(k)54.531023. The
steps correspond to half periods of the electric field. T
curve labeled ‘‘Off-resonance’’ shows the evolution ofu f su2,
when the laser frequency was detuned by 10% from the r
nance. The electric field amplitude for both cases wasF
51025 and the laser was turned on att50.

Figure 3 shows nearly total transfer of the hole populat
from the heavy to the light-hole subband ofp-type InP, when
Q5p/2 andk50.0178, and when the hole was acted on
about three periods of Gaussian-shaped infrared-laser p
of the angular frequency 1023, as shown in the upper lef
corner in the figure. The pulse width at half maximumt1/2
50.126 ps and the maximum electric field amplitudeF0 of
the Gaussian envelope is 32 kV/cm. The transfer of 95%

FIG. 2. The probability to find the hole in the spin-orbit split-o
subband at resonance and after laser was detuned by 10%
sinusoidal electric field in both cases was switched on at the
ment t50.
,

g

m

-

en

e

o-

n

y
lse

f

the population was achieved by tailoringF0 and t1/2 of the
pulse. To obtain 100% transfer, what would correspond top
pulse, inclusion of some frequency chirping is probably
quired. Figure 3 clearly demonstrates that in semiconduc
a nearly total hole transfer between subbands is possib
ultrashort laser pulses, consisting of only few periods,
used. Calculations show that in the considered case the m
mum s-band populationu f su2 during the IR pulse does no
exceed 0.2% and drops down to 0.05% at the end of
pulse. Thus, if one is interested inh-l transitions only, one
may neglect in the transformed Schro¨dinger system~21! the
spin-orbit split-off subband and the respective coupli
terms associated with this subband even in the case of
short, femtosecond IR pulses. However, it should be no
that in such a two-band approximation, the splitting ene
D does not vanish as can be seen by inspection of the m
elementsd12, d34, (d131d14). Negligible s-subband popu-
lation in this case is in a large part associated with a str
coupling betweenh andl subbands. Here, it is also importa
to remark that in the discussed two-band approximation,
subband nonparabolicity and the subband coupling are ta
fully into account. In the standard two-band approximatio
where at first one takes the limitD→` and then only diago-
nalizes the remaining Hamiltonian, the nonparabolicity
lost. This can also be seen from Eq.~22!, if the limit D
→` is taken.

Figure 4 shows the light and split-off subband populatio
as a function of time when the hole initially was in the sam
state as in Fig. 3, i.e., in theh subband with the samek and
Q, but the laser now was tuned to ah-s transition: v
5Es(k)2Eh(k)50.0048. In this case after optimization o
t1/2 andF0 it appeared possible to transfer as much as 8

he
o-

FIG. 3. Transfer of hole population from heavy- to light-ho
subband induced by ultrashort,t1/25126 fs, IR laser pulse shown
in the upper-left corner. Electric field envelope amplitudeF0 is 32
kV/cm.
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of the h-subband hole population to the split-off subband
should be remarked here that, due to strongh-l coupling, the
light-hole populationu f l u2 during laser excitation may reac
rather high~up to 37% in Fig. 4! intermediate values. To
have the hole population in thes subband close to 100% a
the end of the laser pulse, a more complicated shape o
electric field, which may be found with the help of the qua
tum optimal control theory,9,10 is required. In general, on
also would like to know whether in principle it is possible

FIG. 4. Split-off ~s! and light~l! subband population induced b
ultrashort,t1/2524.2 fs, IR laser pulse shown in the upper-left co
ner.F05478 kV/cm.
in

.

h.

R.
v

t-

an

e,

er
t

he
-

transfer a hole~electron! to a higher energy subband withou
exciting other valence~conduction! subbands during the ac
tion of the laser pulse. This property may be important if t
phonon emission rate from other subbands is larger t
from the final one.

In conclusion, the overdetermined time-dependent Sch¨-
dinger system described by 636 Luttinger-Kohn Hamil-
tonian was reduced to the much simpler system~21!, assum-
ing that the valence band is spherical (g25g3) and that the
laser electric field is linearly polarized. The nonparabolic
was included fully. The components of the wave function
the reduced equation directly reflect the hole population
the respective valence subbands, what may be advantag
in analyzing the population dynamics under action of ar
trarily shaped ultrashort IR laser pulses, for example, linea
or quadratically chirped pulses. Furthermore, the obtai
exact equations may be a starting point for further analyt
simplifications. If needed, the warping of the subbands m
be included as a perturbation, by applying the transforma
matrix ~11! to that part of the Hamiltonian, which describe
the nonsphericity of the valence band.
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