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Diagrammatic exciton-basis valence-bond theory of linear polyenes
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Understanding the photophysics ofp-conjugated polymers requires a physical understanding of the excited
states involved in the photophysics. Detailed physical understanding is difficult because of the extensive
configuration interaction that occurs within realistic theoretical models for these systems. We develop a dia-
grammatic exciton-basis valence-bond representation that is particularly suitable for the intermediate magni-
tude of the Coulomb interactions in these systems. We present detailed comparisons of our exact exciton-basis
treatment and previous approximate approaches, focusing on the specific many-body and single-particle inter-
actions that have been ignored in the past, and the consequences thereof. Following this, we present the results
of exact numerical calculations for the noninteracting band limit, the limit of isolated dimers interacting
through Coulomb interactions, and for the Pariser-Parr-Pople Ohno Coulomb interactions with two different
bond-alternation parameters for the ten-carbon linear polyene. Simple pictorial descriptions of the eigenstates
relevant in photophysics are obtained in each case, and taken together, these results provide a systematic
characterization of both low- and high-energy excited states in linear chainp-conjugated systems for realistic
parameters. Two different quantities, the number of effective excitations within the exciton basis, and the
particle-hole correlation length for the one-excitation eigenstates are defined and calculated for further quan-
titative comparisons between the eigenstates. A pictorial description of optical nonlinearity is obtained thereby.
For both small and large bond alternation, it is found that the two-photon state that dominates third order
optical nonlinearity in the low-energy region is the lowest even parity one-excitation state with a larger
particle-hole correlation length than the 1Bu exciton. The reason for the dominance by thismAg state can be
understood within the exciton basis from the nature of the current operator. It is shown that the relationship
between the correlatedmAg and the correlated 1Bu is identical to that between the uncorrelated 2Ag and the
uncorrelated 1Bu . In the high-energy region of the spectrum evidence for stable biexcitons is found from the
nature of the singlet-singlet two-excitation wave functions.@S0163-1829~99!01408-3#
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I. INTRODUCTION

The effect of electron-electron interactions on the ene
spectra ofp-conjugated polymers continues to be a topic
current interest.1,2 Recent discussions in this area ha
largely centered on the band versus exciton character o
lowest optical state, and the associated effects on the ph
physics of the experimental systems.3,4 Although there is
now a broad consensus that the optical 1Bu state in
p-conjugated polymers is an exciton, there is no gene
agreement on the magnitude of the exciton binding ene
as well as excitonic effects on the photophysics. The prim
reason for this is that electron-electron interactions in
experimental systems are intermediate in magnitude, w
the on-site Coulomb interaction~the Hubbard interaction!
being close to four times the one-electron hopping integ
between neighboring carbon atoms.5,6 Direct theoretical de-
terminations of exciton binding energies and excitonic
fects on the photophysics then are difficult, because of
many-body nature of the Coulomb-correlatedp-electron
Hamiltonian.
PRB 590163-1829/99/59~7!/4822~17!/$15.00
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Theoretical approaches to understanding the excited s
energy spectra ofp-conjugated polymers have in many cas
focused on the available nonresonant and resonant nonli
spectroscopic experimental results.7–14 Broadly speaking,
these approaches can be classified as~a! approximate long-
chain calculations that include the configuration interact
~CI! among a subset of the one-electron configurations,15–17

and~b! exact, or full configuration-interaction~FCI! calcula-
tions for short chains18–23 ~we do not attempt to make fine
distinctions between the FCI calculations and the multiref
ence double-CI calculations of Beljonneet al.,24 which in-
corporate the most important high-order CI terms. The ch
lengths reached by this method are roughly about twice
of the FCI calculations, and the advantages as well as di
vantages of this technique are comparable to those of the
calculations!. The approximate calculations miss the low e
ergy even parityAg states that occur below the 1Bu state in
linear polyenes25 as well as any possible biexciton state
Furthermore, within these approaches the energy of
conduction-band threshold~the Hartree-Fock band gap! is
independent of the Hubbard interaction. This result is clea
4822 ©1999 The American Physical Society
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incorrect. On the other hand, although short-chain calc
tions can give the correct ordering of excited states in
low-energy region, the energies of excited states found to
important in nonlinear optics in these calculations are s
very far from their long-chain limiting values. As a cons
quence, there exist fundamental disagreements over th
terpretations of the physical natures and energy location
the excited states that dominate nonlinear spectroscopy26,27

Very recently, the density-matrix renormalization group28

~DMRG! approach has been used to understand some o
same excited eigenstates. At the moment, however, sev
of the DMRG results, as obtained by different practici
groups29–31seem to be different in their detailed prediction
and further progress in this promising area would be nec
sary before definitive conclusions are reached. Furtherm
it has until now not been possible to probe excited states
are near twice the energy of the 1Bu ~Refs. 21 and 32! using
the DMRG approach~see, however, note added at the end
the paper!.

In the present paper, we report a new approach to e
short-chain calculations that focuses on thewave functions,
rather than energetics. The goal of this work is to develo
pictorial, physical characterization of excited states, in p
ticular, those eigenstates that are most relevant to the ph
physics. Although the FCI nature of our calculations lim
us to short chains, we believe that by focusing on the w
functions we can bypass the disadvantages usually assoc
with short-chain calculations. As we discuss here, wheth
particular eigenstate evolves into a localized exciton or
localized bandlike state as the chain length is progressi
increased can be determined by careful inspection of
eigenstate in question, provided the right basis space is u
This is particularly true if proper care is exercised in co
paring the eigenstates of the full Pariser-Parr-Pople~PPP!
Hamiltonian5,6 with those of limiting band and localize
models, whose eigenstates are already understood physi
This is precisely the approach taken here. One argument
can be given against such short-chain calculations is
because of confinement effects associated with short ch
excitonic effects are exaggerated in short chain calculat
~since, for example, there always is an energy gap betw
the optical 1Bu and higher excited states in short chains!. We
do not believe this to be a serious problem. A recent w
has shown that although exciton formation is conditio
when only nearest-neighbor intersite Coulomb interaction
retained, the optical state is necessarily an exciton when
intersite Coulomb interactions are long range,33 as indeed
they are within the PPP model.5,6

The intermediate magnitude of the Coulomb interactio
in p-conjugated systems implies that standard CI calcu
tions are not suitable for the physical interpretation of eig
states that is our goal. For PPP interactions, even in s
chains, extensive configuration interaction occurs among
fundamental one-electron molecular orbital~MO! basis func-
tions. As a consequence, a given excited state eigenstate
superposition of numerous MO configurations, such that
simple physical picture that describes the band limit of z
Coulomb interactions is lost entirely. This is particularly tr
for high-energy excited states that occur considerably ab
the 1Bu exciton. An alternate approach to CI, using config
ration space valence-bond~VB! basis functions, has bee
-
e
e

ll

in-
of

he
ral

,
s-
e,
at

f

ct

a
r-
to-

e
ted
a
-
ly
e

ed.
-

lly.
at
at
ns,
ns
en

k
l
is
he

s
-
-
rt
e

is a
e
o

ve
-

used by Soos and coworkers2,34,35to understand the physica
characteristics of the lowest eigenstates for realistic Coulo
correlations, and by us for understanding nonlinear spect
copy in the limit of infinite on-site Coulomb interaction.19,21

High-energy excited states for realistic Coulomb interactio
are very complex even within the standard VB approa
once again, precisely for the reason that such eigenstate
superpositions of many simple VB diagrams. On the ot
hand, therequirement for a theory within which simple
physical characterization of eigenstates could be obtaine
clear from both the MO and VB approaches to CI. Spec
cally, eigenstates should be superpositions of afewdominant
basis functions that are themselves easy to interpret ph
cally. This is the logic that has gone into our development
the diagrammatic exciton-basis VB approach to eigenst
of the PPP model. The basis states here arehybridsof MO
and configuration space VB functions, and are therefore id
for the case of intermediate Coulomb interactions. A br
presentation of the diagrammatic exciton-basis method
been made previously.36 We give here a complete discussio
of the transformation of the Hamiltonian to the excito
space, physical interpretations of the eigenstates in sim
limiting cases as well as in realistic cases and a picto
interpretation of nonlinear absorption. Although our focus
on the PPP interactions, we also present a brief discussio
the evolution of the eigenstates as the Coulomb interact
are varied from weak to strong.

The exciton-basis VB approach that we present here is
extension of the molecular exciton approach to linear po
enes, as originally formulated by Simpson,37 within which a
linear polyene is visualized as coupled ethylenic two-le
units. Within the original Simpson approach, there is
electron-hole delocalization between the units, and opt
excitation is to a tightly-bound Frenkel exciton, which ca
however, form an exciton band due to exciton migratio
Furthermore, all interunit many-body interactions betwe
the dimeric units are neglected. Unless electron-hole delo
ization between the units and the many-body Coulomb in
actions are incorporated, the Simpson model can apply o
to molecular aggregates.38,39 Over the years, different inves
tigators have gone beyond the simplest exciton picture
describe realp-conjugated systems.40–48 However, as we
discuss later, in nearly all of these cases important o
electron as well as many-body interactions that occur in
standard Pariser-Parr-Pople~PPP! Hamiltonian5,6 for conju-
gated systems were ignored. As a consequence, the re
obtained within these approaches are of limited value~see
below!. The two exceptions to this are the works by Ohmi
et al.42 and Mukhopadhyayet al.46 Ohmineet al. carried out
a singles-CI calculation of long polyene systems within t
exciton approach, without ignoring any term in the PP
model. Because of the neglect of higher order CI, howev
accurate results for the even parityAg states could not be
obtained. In contrast, Mukhopadhyayet al. carried out their
FCI calculations using the configuration space VB appro
in the limit of artificially large bond alternation, and calcu
lated overlaps with the simplest basis functions within t
exciton representation. This approach cannot be extende
the case of realistic bond alternation, where there is con
erable configuration mixing. The resultant physical descr
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4824 PRB 59M. CHANDROSS, Y. SHIMOI, AND S. MAZUMDAR
tion, while still of value, is thus not applicable to the case
realistic polyenes.

In contrast to the earlier work,40–45,47,48the present calcu
lations using the exciton-basis VB diagrams are exact.
retain all terms within the full PPP Hamiltonian, and o
calculations are then carried out using the exciton repre
tation directly. There is, however, a price to pay. Because
the FCI nature of our calculations, they are necessarily l
ited to short chains~specifically, to the case of the 10-carbo
chain!. Since our aim, however, is to obtain benchma
qualitative results that provide physical insight, and again
which approximate long-chain calculations~including the
DMRG approach! can be tested in the future, we believe th
this is a small price to pay. This is especially because
focus is on wave functions, and not on energies. As we sh
here, even though the energies of the short-chain polye
are very far from their infinite chain values, the physic
natures of the variousclassesof wave functions~viz., local-
ized exciton states, delocalized bandlike states, biexc
states, etc.! are already visible at short chain lengths with
the diagrammatic exciton-basis VB theory.

In Sec. II we present a complete discussion of the ba
space and the transformation of the PPP Hamiltonian in
form that is suitable for direct calculations of exact eige
states using the exciton-basis VB diagrams. The spe
terms that have been neglected in the past within the
proximate exciton-basis calculations40,43–45,47,48and their im-
portance are discussed. In Sec. III, we present the rele
results for the two limiting cases of the simple one-elect
Hückel model for polyenes and for the case of PPP Coulo
interactions with zero interunit electron-transfer. The seco
scenario is related, but is not identical to, model Hamil
nians that are used to discuss molecular aggregates.38,39 Our
goal is to obtain a complete picture of the evolution of t
eigenstates as various interactions are incorporated, and
two limiting cases serve very well towards that purpose.
Sec. IV, we discuss the complete PPP model, for two diff
ent bond alternation parameters, corresponding to the c
of linear polyenes and polysilanes. The physical insight t
is obtained for the wave functions relevant in the photoph
ics here leads directly to a qualitative picture of the domin
nonlinear optical channels, as is shown in Sec. V. In Sec.
we discuss the evolution of wave functions as a function
the strength of the Coulomb parameters. The conclusion
emerges from our work is thatprovided the intersite Cou
lomb interactions are strong enough to give excitons, the
relationship between the optically relevant eigenstates
well as the dominant nonlinear optical channels are alm
independent of the actual magnitudes of the Coulomb par
eters. Only the actual configurations that describe a partic
wave-function change continuously as the overall wave fu
tion evolves, but this is to be expected.

II. THE PPP HAMILTONIAN AND THE EXCITON BASIS

We discuss in this section the construction of the excit
basis valence-bond~VB! diagrams, and the transformation
the PPP Hamiltonian from the atomic representation into
exciton representation.
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A. The atomic basis

The PPP model is commonly written within the atom
representation

H52 (
^ i j &,s

t i j ~cis
† cj s1cj s

† cis!1U(
i

ni↑ni↓

1(
i , j

Vi j ~ni21!~nj21!, ~1!

where^& implies nearest neighbors,cis
† creates an electron o

spin s on thepz orbital of carbon atomi, nis5cis
† cis is the

number of electrons with spins on atomi, andni5(snis is
the total number of electrons on atomi. The parametersU
andVi j are the on-site and long-range Coulomb interactio
respectively, whilet i j is the one-electron hopping matrix e
ement. In the case of linear polyenes and polyacetyle
t i j 5t(16d) whered is a rigid bond alternation paramete
Within the Ohno parameterization of the PPP Hamiltonian49

t52.4 eV,U511.13 eV, and theVi j are obtained from the
relationship

Vi j 5
U

A110.6117Ri j
2

, ~2!

whereRi j is the distance in Å between carbon atomsi and j.

B. Exciton-basis VB diagrams

We begin by transforming the site operators in Eq.~1! to
the creation and annihilation operators for the ethyle
bonding and antibonding MO’s,

ai ,l,s
† 5

1

A2
@c2i 21,s

† 1~21!~l21!c2i ,s
† #, ~3!

ai ,l,s5
1

A2
@c2i 21,s1~21!~l21!c2i ,s#, ~4!

whereai ,l,s
† (ai ,l,s) creates~annihilates! an electron of spin

s in the bonding (l51) or antibonding (l52) MO of eth-
ylene unit i. Many-electron configurations are then of th
form P i ,l,sai ,l,s

† u0&, where u0& is the vacuum. Instead o
working directly with this particular representation, we co
struct VB diagrams that are linear combinations of the ma
electron exciton-basis configurations, as the VB represe
tion allows block diagonalization of the Hamiltonian int
different total spinS subspaces.

The VB exciton basis is best understood from illustratio
We therefore begin with a description of the simplest bui
ing blocks of the correlated wave functions of long cha
within the VB exciton basis. The VB exciton bases for et
ylene are trivial, and consist of only three diagrams,~i! dou-
bly occupied bonding MO, empty antibonding MO,~ii ! sin-
gly occupied bonding MO, singly occupied antibonding M
and ~iii ! doubly occupied antibonding MO, empty bondin
MO. The complications encountered in the many-unit ca
are first encountered in the case of the two-unit case~buta-
diene!. We illustrate the exciton basis by discussing t
exciton-basis VB diagrams for the two-unit case in detail
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In Fig. 1 we show the VB exciton diagrams for the simp
two-unit oligomer. The diagram~a! in Fig. 1 is the product
wave function of the ground states of two noninteract
units, which we refer to hereafter as the Simpson grou
state. All other VB exciton diagrams are one- , two-, .
2N-electron excitations from the Simpson ground state o
N-unit chain. In our description of eigenstates we will g
back and forth between CI theory involving MO basis fun
tions and the exciton-basis VB diagrams. In order to dis
guish between MO and exciton-VB configurations we w
use the following nomenclature. MO configurations excit
from the Hückel ground state will be referred to asne-nh
~for n electron–n hole excitations!, while exciton-VB dia-
grams will be described asn excitations. With this nomen
clature in place, we now describe the remaining basis fu
tions in Fig. 1 below. A bond connecting two MO’si andj is
the spin-singlet linear combination 221/2(ai ,l,↑

† aj ,l8,↓
†

2ai ,l,↓
† aj ,l8,↑

† )u0&, as in configuration space VB theory. Th
intraunit excitation in diagram~b! and the interunit excitation
in diagram ~c! are both singly excited with respect to th
Simpson ground state~a!. All diagrams of the type~c!, in
which charge transfer from one unit to another has occur
are hereafter referred to as CT. Although for both~b! and~c!
we show a single diagram, mirror-plane symmetry is
sumed and each diagram also represents the diagram
would be obtained by reflection about the symmetry pla
passing through the center of the chain. In addition to mirr
plane symmetry, diagrams in the exciton basis may be
lated by charge-conjugation symmetry,50 in which double oc-
cupancies and vacancies are interchanged. As an examp
Fig. 2 we show the completeAg basis state~i.e., with all
symmetry related diagrams! corresponding to diagram~e! in
Fig. 1 @see below for more discussion of diagram~e!#. The
‘‘plus’’ linear combination of diagram~b! and its mirror-
plane counterpart occurs only in the opticalBu subspace,

FIG. 1. Exciton-basis diagrams forN52. Bonding and anti-
bonding MO’s of the coupled two-level systems are occupied b
1, and 2 electrons. Singly occupied MO’s are paired as sin
bonds. Mirror-plane and charge-conjugation symmetries are
sumed~see text!.

FIG. 2. Linear combination of exciton-basis VB diagrams th
are related by mirror-plane and charge-conjugation symmetry.
particular linear combination shown forms a single basis function
the Ag subspace.
d

a

-
-

d

c-

d,

-
hat
e
r-
e-

, in

while linear combinations of~c! and its reflected version oc
cur in both theAg andBu subspaces.

The next group of diagrams in Fig. 1,~d! through ~h!,
consist of two excitations from the Simpson ground state~a!.
Diagram~d! has one doubly excited unit, while diagram~e!
involves both two excitation and CT. CT between the bon
ing MO’s couples~e! and ~f!. Note that~f! is distinct from
~g!, although the orbital occupancies of~f! and ~g! are the
same. The diagrams beyond~g! in Fig. 1 have little relevance
in the physical descriptions of optical processes, althou
their inclusion in calculationsis important for accurate ener
gies and wave functions.

Before proceeding further we note three interesting f
tures of diagrams~ f ! and ~g! in Fig. 1. First, the two dia-
grams are not orthogonal, and the corresponding overlap
tegral ^ f ug&521/2. Second, the linear combination2u f &
2ug& is equivalent to a ‘‘crossed’’ diagram, in which th
bonding~antibonding! MO of a given unit is bonded to the
antibonding~bonding! MO of a neighboring unit@see Fig.
3~a!#. This diagram will be relevant in the context of biexc
ton wave functions with large bond alternation. The th
interesting feature of these diagrams is that the linear c
bination 2u f &1ug&5TT, whereTT implies a pair of triplet
(S51) excitations localized on different units that a
coupled to form an overall spin singlet@see Fig. 3~b!#,

TT52(
s

ai ,1,s
† ai ,2,s

† aj ,1,2s
† aj ,2,2s

† 1
1

A2

3~ai ,1,↑
† ai ,2,↓

† 1ai ,1,↓
† ai ,2,↑

† !
1

A2
~aj ,1,↑

† aj ,2,↓
† 1aj ,1,↓

† aj ,2,↑
† !.

~5!

Equation ~5! can be proved by simply writing out th
formal expression for diagrams~f! and ~g!. There are three
distinct terms in Eq.~5!. These correspond to (Sz

i , Sz
j )

5(11,21);(21,11); and ~0, 0! excitations on the indi-
vidual units, whereSz

i is thez component of the spin on uni
i.

The exciton-basis VB diagrams for chains longer than t
units are similarly obtained by considering all possible ex
tations out of the corresponding Simpson ground state,
constructing the appropriate singlet linear combinations. T
possibility of multiple excitations out of the Simpson groun
state introduces only two qualitatively new features. Firs
multiple electron-hole excitations in long chains can lead
diagrams of the typeTTT,TTTT, etc., which like theTT
diagrams consist of multiple intraunit triplet excitations th
combine to give an overall singlet.46 An example of aTTT
diagram for the three-unit case is shown in Fig. 4~a!. Sec-

,
et
s-

t
e

n

FIG. 3. Linear combination of exciton-basis VB diagrams th
give a ~a! crossed diagram, and~b! a TT diagram.
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ondly, more complicated versions of the 2:1 linear combi
tion of the type in Fig. 3~b! are now possible, as is shown
Fig. 4~b!. As in the case of Fig. 3~b!, it is easily proved by
writing out the formal expressions for the two diagrams
the left that the 2:1 combination is equivalent to two triple
which however, are no longer localized on individual uni
We shall refer to this combination asTT^ CT.

C. Transformation of the PPP Hamiltonian

We now show the complete transformation of the P
Hamiltonian into the exciton basis, using the operators
Eqs. 3 and 4. We rewrite the PPP Hamiltonian in the follo
ing form:

H5Hintra
CT 1Hinter

CT 1Hee ~6!

Hee5HU1HV . ~7!

In Eq. ~6!, Hintra
CT and Hinter

CT describe the one-electro
charge transfer within and between neighboring ethyl
units, respectively, andHee contains the terms describing th
Coulomb interactions among thep electrons.

The intraunit charge-transferHintra
CT is written as

Hintra
CT 52t1(

is
~c2i 21,s

† c2i ,s1c2i ,s
† c2i 21,s!. ~8!

In the above,t15t(11d) is the matrix element correspond
ing to the hopping of electrons within a dimeric unit. For
chain with 2N carbon atoms,Hintra

CT describesN uncoupled
two-level systems, and the solutions ofHintra

CT are theN-fold
degenerate bonding and antibonding MO’s of a single eth
enic unit.Hintra

CT is diagonal within this representation.

Hintra
CT 52t1 (

i ,l,s
~21!~l21!ai ,l,s

† ai ,l,s . ~9!

The remaining terms of the PPP Hamiltonian are now writ
in terms of the exciton-basis operators. The interunit char
transfer term is given by

Hinter
CT 52

1

2
t2 (

i ,l,l8,s
~21!~l21!

3@ai ,l,s
† ai 11,l8,s1ai 11,l8,s

† ai ,l,s#, ~10!

where t25t(12d) is the hopping matrix element betwee
dimer units. Note thatHinter

CT contains three kinds of terms
which correspond to electron transfer between~i! the bond-
ing MO’s of neighboring units (l5l851), ~ii ! the anti-
bonding MO’s of neighboring units (l5l852), and ~iii !

FIG. 4. ~a! A TTT exciton-basis VB diagram,~b! linear combi-
nation of exciton-basis VB diagrams corresponding toTT^ CT.
-

,
.

P
n
-

e

l-

n
e-

between the bonding MO of one unit and the antibond
MO of a neighboring unit (lÞl8). With our phase conven
tion for the exciton-basis operators@Eqs. ~3! and ~4!#, the
matrix element corresponding to the CT between the a
bonding MO of thei th unit and either MO of the (i 11)th
unit is negative, although the magnitudes of all CT mat
elements are the same.

The on-site Coulomb interaction is written as

HU5
U

2 F (
i ,l,l8

Ni ,l,↑Ni ,l8,↓

1(
i

(
l1Þl2

(
l3Þl4

ai ,l1 ,↑
† ai ,l2 ,↑ai ,l3 ,↓

† ai ,l4 ,↓G .

~11!

In the above,Ni ,l,s5ai ,l,s
† ai ,l,s is the occupation within

MO l of the i th unit. This term contains both density-densi
correlations and two electron hops involving MO’s within
unit.

The intersite electron-electron interaction is more comp
cated than the on-site term, and is written as

HV5
1

2(i , j (
m,n

Vi jmn~n i ,m21!~n j ,n21!, ~12!

wheren i ,m is the number of electrons on themth atom (m
51,2) of thei th dimer unit, and is given by

n i ,m5(
s,l

(
l1Þl2

1

2
@Ni ,l,s2~21!mai ,l1 ,s

† ai ,l2 ,s#, ~13!

andVi jmn is the Ohno potential between atomm on unit i and
atomn on unit j. From Eqs.~12! and~13!, HV contains three
kinds of terms: density-density correlations, two-electr
hops, and products of density and electron hopping betw
MO’s.

As discussed above, several groups have obtai
limited results within simplified exciton-basi
Hamiltonians.43–45,47,48Within these simplified models the
electron hopping between the bonding MO of one unit a
the antibonding MO of a neighboring unit inHinter

CT (lÞl8
in Eq. 10! is ignored. Furthermore, only the density-dens
correlation terms withinHU andHV are retained, and term
containing two-electron hops and products of density a
electron hop are discarded. Within these approximations
number of excitations from the Simpson ground state
comes a true quantum number. The ground state within
simplified models43–45,47,48is therefore the Simpson groun
state. Similarly, all one excitations are completely decoup
from two excitations, which are again decoupled from high
excitations, and so on. Although such block diagonalizatio
make numerical simulations of relatively long chains po
sible@and even analytic results can be obtained in the limit
HV50 ~Refs. 40 and 47!#, such simplification is achieved a
the cost of ignoring terms in the PPP Hamiltonian that are
comparable magnitude to those that are retained. Impor
low-lying correlated states~for example, the true 2Ag state!
are therefore missed within such calculations. Furtherm
as we discuss later, the description of the true biexciton s
is different from that obtained within the simple models.
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Since our primary concern is the description of sta
reached by linear and nonlinear optical excitations, we a
transform the dipole operator to the exciton basis. In
atomic representation, the dipole operator is

m̂5(
i

nixi , ~14!

wherexi is the position of atomi. In Eq. ~14!, we have taken
the electronic charge as well as the lattice spacing to be 1
simplicity. Previous work has shown that for the Ohno p
rameterization differences in dipole couplings that arise fr
explicitly including the bond alternation in the expression
m̂ is tiny ~bond alternation can lead to large differences
dipole moments, but this is a consequence of the differ
natures of the eigenstates of the dimerized Hamiltonian,
not of modifyingm̂).34,35Within the exciton basis, the dipol
operator is transformed to

m̂5 (
i ,l,s

~2N24i 12!Ni ,l,s1(
i ,s

(
l1Þl2

ai ,l1 ,s
† ai ,l2 ,s ,

~15!

where 2N is the total chain length. For a physical picture
the couplings introduced by optical excitation betwe
eigenstates, it is also useful to discuss the current oper
ĵ 5 i @H,m̂#, where H is the Hamiltonian and@ . . . # is the
commutator. Within the atomic basisĵ is given by

ĵ 5 i(
i

t i ,i 11~xi 112xi !~ci ,s
† ci 11,s2ci 11,s

† ci ,s!. ~16!

Within the exciton basis, this is transformed to the followi
expression:

ĵ 5 i t 1(
i ,s

~ai ,2,s
† ai ,1,s2ai ,1,s

† ai ,2,s!

2 i ~ t2/2!(
i ,s

(
l,l8

~ai ,l,s
† ai 11,l8,s2ai 11,l8,s

† ai ,l,s!.

~17!

From the commutation relationship between the dip
and the current operators, one further obtains the follow
relationship:51

^Caum̂uCb&5
1

DE
^Cau ĵ uCb&, ~18!

whereDE is the energy difference between the eigensta
From Eq.~17!, the current operator induces electron transf
between the bonding or antibonding MO’s of neighbori
units. From Eq.~18!, transition dipole moments are large
when the transfers induced by the current operator are
tween neighboring MO’s with thesamel. For transfers be-
tween lÞl8,DE is larger, and the dipole coupling i
smaller. This concept will be very useful in understandi
the large differences in transition dipole couplings betwe
excited eigenstates of the PPP model~see below!.

We now proceed to the results of calculations within t
exciton basis. Our calculations are for N5 5, for which we
construct and solve exactly the full CI matrices for theAg
s
o
e

or
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r

nt
d

tor

e
g

s.
s
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andBu subspaces. The physical natures of the optically
evant eigenstates are then discussed in terms of the dom
exciton-basis VB diagrams. We will begin with results fro
the Hückel model, which includes hopping between t
dimer units, but sets all electron-electron interactions to ze
Following this, we will present results from the opposi
limit, in which interunit hopping is disallowed, but the fu
electron-electron interactions are retained. These
complementary limiting cases will make the results of calc
lations within the full Hamiltonian~i.e., with full interdimer
hopping and electron-electron interactions! easier to under-
stand and interpret. Due to the excessively large numbe
eigenfunctions of the full PPP Hamiltonian, we will be r
stricting our discussions to those states that are relevan
the nonlinear optical properties of conjugated systems. Th
states are the 1Ag ground state, the 1Bu optical state, and the
even-parity mAg state~s! most strongly coupled to the
1Bu .15–23 We will additionally discuss the low-energyTT
states, as well as the higher energy bound and free t
exciton states in the correlated models.

III. NUMERICAL RESULTS: LIMITING CASES

A. U5Vij 50

Although the band limit of zero electron correlation
well understood, discussions of the eigenstates within
exciton basis is nevertheless useful, since it helps us un
stand the evolution of the delocalized 1Bu into a localized
exciton when electron correlations are included. Similar e
lutions of excitedAg states are also of interest. In particula
we will show later that physically, the 2Ag state of the band
limit and the mAg state for the Ohno parameters are ve
similar, thereby providing an intuitive understanding of t
large dipole coupling between the correlated 1Bu and the
mAg .15–23

Our exact numerical results are forN55 and with d
50.1. The 1Ag ground state is shown in Fig. 5~a!, where we
have included exciton-basis VB diagrams that make
strongest contributions. As seen in Fig. 5~a!, the Hückel
ground state has the largest contribution from the Simp
ground state, with additional contributions from diagram
with nearest-neighbor CT. Ground-state stabilization is d
primarily to CT between neighboring units.

The optical 1Bu state and the 2Ag state are shown in Figs
5~b! and 5~c!. Both the 1Bu and the 2Ag ,1e-1h excitations
in the MO representation, are seen to be primarily one e
tations with additional weaker contributions from two exc
tations in the exciton basis. The two-excitation contributi
to the 1Bu and the 2Ag is a direct consequence of the on
excitation CT contribution to the 1Ag @see Fig. 5~a!#. In spite
of the significant contributions by diagrams that are two e
citations with respect to the Simpson ground state, we w
show below that the eigenstates are true one excitations
respect to thetrue 1Ag eigenstate.

The delocalized band nature of the 1Bu is clear from the
wave function shown in Fig. 5~b!. Note, for example, that al
one excitations contribute nearly equally to the wave fu
tion, with the exception of the diagram with nearest-neighb
CT near the center of the chain~with coefficient 0.39! and
the two diagrams in which the both the electron and the h
are at the chain ends~each with coefficients20.12). The
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FIG. 5. Dominant contributions to the important Hu¨ckel wave functions within the exciton basis. Here, and in all subsequent figures,
one diagram corresponding to the full set related by mirror-plane and charge-conjugation symmetries are shown. The 1Bu and 2Ag are one
excitation relative to the exact 1Ag , in spite of considerable two-excitation contributions~relative to the Simpson ground state! to these wave
functions~see text!. The 2Ag is seen to be related to the 1Bu by charge transfer between MO’s with the samel. The two-excitation 3Ag is
seen to be uncorrelated.
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large contribution by the chain-center CT diagram and
small contributions by the two diagrams with electron a
hole at chain ends are both consequences of the finite
effects associated with an open short chain. The chain-ce
CT diagram is coupled to the largest number of diagra
through one application ofHCT

inter , and is therefore the mos
‘‘favorable’’ diagram in a finite chain. Similarly, the dia
grams with a singlet bond terminating on the ends of
chain are coupled to the least number of other CT diagra
by HCT

inter , and are least favorable. In the long chain lim
this distinction between CT diagrams vanishes, and all Fr
kel and CT diagrams will contribute equally to the 1Bu wave
function.

The Hückel 2Ag can be simply characterized as a C
eigenstate with respect to the the 1Bu eigenstate. There is
almost a one-to-one correspondence between the exciton
sis diagrams of the 2Ag and the 1Bu : each diagram of the
former can be obtained by one application of the bondi
to-bonding or antibonding-to-antibonding terms inHCT

inter on
a suitable diagram of the 1Bu . Among allAg states, the 2Ag
has the largest dipole coupling with the 1Bu in the Hückel
limit.20 This large dipole coupling of the 2Ag is a direct
consequence of its CT character with respect to the 1Bu . As
discussed above, the nature of the current operator@see Eqs.
~17! and ~18! and the discussion following them# dictates
that the dipole coupling is largest between eigenstates
consist of many-electron configurations related by CT
tween MO’s with thesamel. Since the Hu¨ckel 1Bu and
2Ag are related precisely by such CT, the large dipole c
pling between them is easy to understand.

In the MO basis, both the Hu¨ckel 1Bu and 2Ag are 1e-1h
excitations with respect to the 1Ag . In the exciton basis
however, the number of excitations is no longer a good qu
tum number. In spite of this, it is still possible to gain qua
e

ize
ter
s

e
s

n-

ba-

-

at
-

-
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tative understanding of the nature of excited states from
act calculations of the number of excitationshs for each state
s, where

hs5K (
i ,s

ai ,2,s
† ai ,2,sL

s

2K (
i ,s

ai ,2,s
† ai ,2,sL

1Ag

. ~19!

hs measures the true number of excitations, relative to
exact 1Ag , for states. Our calculatedh1Bu

and h2Ag
are

0.865 and 0.804, respectively. The numbers are underst
ably not exactly 1.0, but are nevertheless close to this.
point out two important features. First, the one-excitati
character of the 1Bu and the 2Ag could have been antici
pated from the natures of the dominant exciton basis
diagrams for these eigenstates~Fig. 5!. Second, within the
exciton basis,h2Ag

is slightly smaller thanh1Bu
, although

both are 1e-1h states within the MO basis. We will see late
that in the correlated case, the 1Bu and theAg state to which
it is most strongly coupled both havehs values that are close
to 1.

For the subset of eigenstates that are predominantly
excitation with respect to the exact 1Ag(hs close to 1!, we
define another physical quantity that is used to distingu
between individual members of the subset. This is the av
age bond lengthbs of the CT bonds in the one-excitatio
contributions to the states,

bs5(
i

ci
2l iY (

i
ci

2 , ~20!

wherel i is the length~in units! of the bond in a given one
excitation diagram andci is the coefficient of that diagram in
the eigenfunction. Weak contributions by diagrams with tw
and higher excitations are therefore ignored in the ab
definition. This is reasonable, since, as mentioned abo
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comparisons ofbs values will be limited to states that hav
hs close to 1. The magnitude ofbs then gives a measure o
the particle-hole separation in the one-excitation eigenst
The lengthl i of Frenkel~i.e., intraunit! diagrams is taken to
be 0.5, since the electron-hole separation in those diagram
one atom, or one half of a unit. Within the Hu¨ckel model, the
calculated bond lengthsb1Bu

and b2Ag
are 1.44 and 2.83

respectively, confirming that the 2Ag is related to the 1Bu by
charge transfer.

With d50.1 andN55, the lowest two-excitation eigen
state is the 3Ag , which has exactly twice the energy of th
uncorrelated 1Bu . The strongest contributions to this sta
are shown in Fig. 5~d!. The dominant two-excitation charac
ter of this state is seen both from comparison to the 1Bu and
the 2Ag , as well as from the calculatedh3Ag

of 1.73. Fur-
thermore, examination of the wave function indicates co
parable contributions by configurations in which the two e
citations are close to each other and those in which
electrons and holes are well separated. We will show in
next section that Coulomb interactions dramatically alter
character of the lowest two excitation.

B. PPP–Ohno Coulomb interactions, t250

We now turn to the effects of Coulomb interactions sta
in the limit t250, but t152.4 eV. Partial results for some o
the eigenstates in this limit have also been discussed
Mukhopadhyayet al.46 This limit is complementary to the
analysis of the Hu¨ckel model in the above. We will show
that the lowest wave functions in this limit are easily clas
fiable into the basicTT and CT diagrams discussed in Se
II. In addition, we will introduce the concept of two excita
tions that are singlet singlet~SS!, which refers to pairs of
singlet excitations. The optically relevant SS states are
ones containing two bound or independent excitons, and
discussion in this context has parallels with the literature
two-exciton states in molecular aggregates.38,39

In Fig. 6 we show the optically relevantN55 wave func-
tions for the Ohno parameterization of the Coulom
interactions,49 in increasing order of energy. The groun
state in Fig. 6 is again dominated by the Simpson grou
state. Sincet250, CT diagrams do not contribute to the 1Ag
in this limit. The major effect of Coulomb interactions he
is the contribution from diagrams with doubly excited uni
Equation~11! shows that this is primarily an effect of th
on-site interactionU.

FIG. 6. Dominant contributions to the optically important wa
functions witht250 in order of increasing energy~see text!.
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Within the Hückel model~see above!, the 2Ag was a CT
state higher in energy than the 1Bu . In contrast, the 2Ag

here is lower in energy than the 1Bu , and is entirely com-
posed ofTT excitations@see Fig. 3~b! and the discussion in
the previous section#. The 2Ag is the lowest of a narrow
‘‘band’’ of TT eigenstates (2Ag27Ag) that occur below the
1Bu . The classification of the 2Ag and the lowest even par
ity states asTT has previously been discussed by a num
of authors.36,46,52–54

The 1Bu itself is a pure Frenkel exciton in this limit, a
shown in Fig. 6. The relative signs of the diagrams in Fig
identify the 1Bu as thek50 Frenkel exciton, wherek refers
to the center of mass momentum of the exciton. Simila
the 2Bu is the lowestkÞ0 Frenkel exciton. With mirror-
plane and charge-conjugation symmetry, we expect,
find, a total of three Frenkel excitons in the opticalBu sub-
space ofN55. In the long-chain limit, these states are part
the exciton band.15,33,43

Above the Frenkel excitons are theAg andBu CT states.
In the absence oft2 , there is no energy splitting betweenAg

and Bu eigenstates with the same orbital occupancies,
each CT state is therefore doubly degenerate. We show
lowest pair of CT states, the 8Ag and 4Bu , in Fig. 6, where
as usual the diagram obtained by application of mirror-pla
symmetry is not shown~the relative signs between these tw
diagrams distinguish betweenAg andBu symmetry!. As with
the TT states, the CT states form a band of states wh
energies increase with electron-hole separation. These hi
energy CT diagrams have not been included in Fig. 6, as t
provide no additional understanding.

Beyond the CT states are six nearly degenerateTTT
states. These states are not shown, as triple excitations
not relevant for optical processes. The next higher energyAg
state that is optically relevant is the 18Ag ~see Fig. 6!, which
is a two excitation consisting primarily of doubly excite
units. Doubly excited units must necessarily involve two s
glet excitations, and thus we classify the 18Ag as a singlet
singlet, or SS, state. Within the Hu¨ckel model, the lowest
two excitation occurs at twice the energy of the 1Bu , the
lowest one excitation. The lowest two excitations here
the TT states, whose very low energies are consequence
spin-spin correlations. Even upon exclusion ofTT states, we
find the lowest SS two excitation the 18Ag to be considerably
below 23E(1Bu), whereE(1Bu) is the energy of the 1Bu
state. With our parameters here,E(1Bu)52.64t1 and
E(18Ag)54.24t1 . We can thus classify the 18Ag as abound
state of singlet excitons, or biexciton. This classification
verified by our identification of the 36Ag as the lowestfree
SS state as shown in Fig. 6, where we see that the 3Ag
consists of two separate Frenkel excitons. In the long-ch
limit, there will be a band of such free two-exciton state
The energy of the 36Ag is 5.41t1 , almost exactly twice the
1Bu energy, and we thus can classify the 36Ag as the thresh-
old of the two-exciton continuum.21,38,39,44,45

The exciton-basis diagrams not only give a pictorial d
scription of the eigenstates, but also provide a physical b
for understanding the relative magnitudes of the dipole c
plings between them. In Table I we have shown the m
relevant dipole couplings for linear and nonlinear absorpt
in this limit. Within Eq. ~17! the current operator consists o
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~i! intraunit ‘‘vertical’’ excitation, and~ii ! interunit CT. Un-
like the Hückel case, only the first term contributes in th
t250 limit. We therefore expect a strong dipole couplin
between the 1Ag and the 1Bu , as these states differ by sing
vertical excitations. Further dipole excitation from the 1Bu
can only lead to a pair of singlet excitations, and thus
expect~and find! that the states previously identified as S
by their wave functions~i.e., the 18Ag and 36Ag) are both
strongly dipole coupled to the 1Bu . One important result is
that the dipole coupling between the 2Ag and the 1Bu is
identically zero in the limitt250. This is easily understood
From the expression for the current operator, direct dip
excitation of the 1Bu generates only the two excitations th
are analogs of the diagrams~d! and ~g! of Fig. 1. Then,

^1Buum̂uTT&5^guTT&5^gu2 f 1g&50, since ^gug&51 and
^ f ug&521/2. Thus, theTT diagrams play no role in optica
processes in the limitt250. We will show below that with
t2Þ0, both the 1Bu and the 2Ag mix with CT configurations
and their dipole coupling no longer vanishes. However, i
clear that any dipole coupling between the 2Ag and the 1Bu
has to originate almost entirely from the CT components
the 2Ag , and the two-excitation components make no co
tribution. This has been pointed out previously within co
figuration interaction calculations using the MO basis,20 as
well as in other recent exciton-basis calculations in the
gime of large bond alternation,46 but the present results ar
particularly transparent.

Within the t250 limit the effects of Coulomb interaction
are clear. The single excitations are split into Frenkel ex
tons and higher energy CT diagrams. Similarly, the m
relevant doubly excited states are split into the much d
cussed low-energyTT states52,53and higher energy SS state
The SS states themselves are split into bound biexciton
free two-exciton states. In addition to these, there exist
excitations with separated or uncorrelated electron and
pairs. These states can never be reached in nonlinear op
absorption experiments, and are thus irrelevant to our dis
sions here. For the same reason three and four excita
have been not discussed, although all these eigenstate
obtained in our calculations. We can summarize the en
getic ordering of the relevant states as

TT,F,CT,TTT,BX,2X, ~21!

TABLE I. Normalized dipole couplings~electronic charge5 1,
lattice constant5 1! betweenAg states and the 1Bu (k50 exciton!
and 2Bu ~lowestkÞ0 exciton! for N55, for t250. All excitedAg

states below the 18Ag , the lowest biexciton, have zero dipole co
pling with the one-exciton states 1Bu and the 2Bu . The 19Ag is the
lowest nonzerok biexciton. Two-exciton continuum states~see text!
above the threshold state, the 36Ag , are not shown. In the long
chain limit, Ag states that have large nonzero dipole couplings w
the 1Bu will have zero dipole coupling with the 2Bu and vice versa.

Ag state ^kAgum̂u1Bu& ^kAgum̂u2Bu&

1 1.0 0.561
2 0.0 0.0
18 0.806 0.151
19 0.195 0.713
36 0.903 0.527
e

le

s

f
-
-

-

i-
t
-

nd
o
le
cal
s-
ns
are
r-

whereF are Frenkel exciton states, andBX and 2X are biex-
citon and two-exciton continuum states, respectively.

IV. NUMERICAL RESULTS: COMPLETE HAMILTONIAN

We now discuss numerical results forN55 with the full
PPP–Ohno Hamiltonian witht2Þ0. We choose two differen
parameter sets,~a! d50.07, corresponding to trans
polyacetylene and~b! d50.3, believed to describe the po
ysilanes within the Sandorfy-C model~we ignore the fact
that U/t in silicon-based systems may be somewhat sma
than that in carbon based systems; our purpose here
compare the effects of large and small bond alternat
only!.22,23 The addition of nonzerot2 causes admixing be
tween the basic exciton-basis VB diagrams that characte
the t250 wave functions, and the analysis of wave functio
necessarily become more complicated. From Eq.~21!, there
are two possible consequences of such admixing. First,
admixing is weak~i.e., all wave functions can still be class
fied aspredominantly TT, CT, etc.! and the principal conse
quence of nonzerot2 is a reordering of energy states, esp
cially at the boundaries between any two neighboring clas
of states. The second possibility is that the admixing betw
different classes of states is strong, and classification of
eigenstates becomes more involved.

A. d50.07

For weak bond alternation, we will see that in all cases
admixing is weak, and energy reordering is the principal
sult of the addition of nonzerot2 . Dominant contributions to
the optically relevant wave functions for this case are sho
in Figs. 7 and 9. Relevant energies, normalized transit
dipole moments, and other wave-function characteristics
summarized in Table II.

1Ag : The 1Ag , shown in Fig. 7~a!, is still dominated by
the Simpson ground state, with now nonzero contributio
from both nearest-neighbor CT diagrams~as in the Hu¨ckel
ground state! as well as doubly excited units~as in thet2
50 ground state!.

1Bu : The 1Bu @see Fig. 7~b!# is now an admixture of
Frenkel excitons and CT diagrams. In contrast to the Hu¨ckel
1Bu , however, the contributions by CT diagrams decre
rapidly as the length of the CT bond increases. This decre
is strong enough that the contribution by the diagram wit
CT bond between third neighbors is less than half that of
CT diagram with a bond between nearest neighbors~note
that these have the same weight in the Hu¨ckel 1Bu), and the
diagram with the longest CT bond makes no perceptible c
tribution to the wave function. This is a strong signature
the localized exciton character of the 1Bu .42 One interesting
feature of the 1Bu exciton is that the contribution by th
Frenkel exciton diagram is smaller than that by diagra
with nearest-neighbor CT, a feature that had been obse
earlier within an exact solution to the exciton problem in t
U→` limit.33 The calculated average bond length for t
Frenkel and CT contributions to the 1Bu exciton is b1Bu

50.98, halfway between thet250 bond length of 0.5, and
the Hückel length of 1.44. The relatively largeb1Bu

implies
that all two-exciton states are at relatively high energy co

h
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FIG. 7. Dominant contributions to theN55 optically relevant wave functions ford50.07 within the exciton basis. The 1Bu and 2Bu are
excitons, and the 3Bu is the lowest charge-transferBu state~see text!. The nearly 2:1 contributions of the terms within the parentheses in
2Ag indicate these to beTT or TT^ CT. Only the diagrams that make larger contributions to additionalTT or TT^ CT contributions are
shown in some cases. Similarly, the small CT contributions are not shown. The 6Ag , which is themAg here is predominantly CT~see text
and Fig. 8!, with smallh6Ag

and largeb6Ag
.
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pared to 23E(1Bu) in short chains.21 This does not neces
sarily preclude the identification of biexciton states, as
show below.

2Bu : The 2Bu , shown in Fig. 7~c!, is still the lowestk
Þ0 exciton, as can be seen by comparing the relative s
of the diagrams with those in the exact 1Bu for the complete
Hamiltonian~see Fig. 7! as well as with the 2Bu correspond-
ing to t250 ~see Fig. 6!. The calculated bond length ofb2Bu

is 0.725, slightly smaller thanb1Bu
, further indicating its

exciton character.

TABLE II. The energies~in units of utu52.4 eV! and wave-
function characteristics of excited states of the PPP-Ohno Ha
tonian shown in Fig. 7, ford50.07. All transition dipole moments

are normalized with respect tô1Agum̂u1Bu&.

State Energy ^kAgum̂u1Bu& hs bs

1Ag 0.00 1.0 0 1.05
2Ag 1.58 0.13 1.72 N/A
1Bu 1.83 N/A 0.79 0.98
3Ag 2.16 0.081 1.55 N/A
4Ag 2.33 0.19 1.73 N/A
5Ag 2.78 0.014 1.66 N/A
2Bu 2.79 N/A 0.83 0.72
6Ag 2.88 1.64 1.28 1.97
3Bu 2.94 N/A 1.29 2.02
e

ns

3Bu : The 3Bu , shown in Fig. 7~d!, is the first CTBu
state with greater electron-hole separation than the 1Bu ex-
citon. This is clear from comparison with the 1Bu and 2Bu
wave functions. The one-excitation character of the 3Bu is
seen from the calculatedh3Bu

~see Table II!. It is therefore
appropriate to calculate the bond lengthb3Bu

. The magnitude
of the b3Bu

~2.02!, compared to that ofb1Bu
~0.98! further

indicates the charge-transfer character of the 3Bu . For t2
50, the thirdBu state was the highest Frenkel exciton, a
the lowestBu state of CT character appeared above this~see
Sec. III!. The effect of nonzerot2 on the lowest eigenstate
of the Bu subspace is then easy to understand: there
reordering of energies~due to energy stabilization by CT!
among the highestkÞ0 Frenkel exciton and the lowest C
state, but actual mixing of the diagrams is small enough t
the basic characterization of eigenstates persists. Nonzet2
simply increases the bandwidth of the exciton, such that
highest exciton state can occur above the lowest CT st
The actual quantum number of the lowestBu state with
greater electron-hole separation than the 1Bu exciton, as well
as the width of the band of lowest excitons, will of cour
depend on the chain length and the details of the Coulo
potential. However, it is clear that forN55 with the Ohno
parameters, the smallest possible quantum number for aBu
state with continuum character is 3. This has strong impli
tions in our discussion of themAg state below.

2Ag : The 2Ag @see Fig. 7~e!#, which still occurs below
the 1Bu ~see Table II!, is now a mixture of a number ofTT
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and TT^ CT diagrams. The wave function also has we
contributions from one-excitation CT diagrams~not included
in Fig. 8! which leads to small nonzero dipole coupling wi
the 1Bu .20,46It is important to note that the 2Ag here and the
Hückel 2Ag have very different characters. In their semin
work on the evolution of eigenstates with the increase in
level of CI between MO basis functions, Schulte
et al.42,52,53 implied that with increasing CI the Hu¨ckel
1e-1h 2Ag progressively admixes with more and more
2e-2h MO configurations to give the final state below th
1Bu . From our results, thecharacterof the eigenstate, rathe
than its quantum number, is more relevant for monitoring
evolution of eigenstates as a function of increasing Coulo
correlations. From Eq.~21! and Fig. 7~e!, a more appropriate
description of this evolution is that the correlated 2Ag actu-
ally evolves from high-energy 2e-2h states, which mix
weakly with CT diagrams ast2 is increased. There is a subt
but important difference between the two formulations
this evolution. As we show below, adifferent Ag state, the
much discussedmAg , evolves from the Hu¨ckel 2Ag .

mAg : The 2Ag here is still the lowest of a ‘‘band’’ ofTT
states. The first non-TT Ag state~for N55 with the PPP–
Ohno parameterization! is the 6Ag , shown in Fig. 7~f!. The
6Ag has previously been identified as themAg from its
strong dipole coupling to the 1Bu ~Refs. 22 and 36! ~see Fig.
8, inset!, as well as its strong contribution to third-order no
linear optical processes. ThemAg has been classified as a
even-parity exciton by us,19,20 and as a biexciton by Soo
et al.22,23 The classification by Sooset al. was based on the
assumption thatAg states can be broadly classified ase
21h62e22h, with the ‘‘minus’’ combination correspond
ing to a ‘‘band’’ of low-energy states that begin from th
2Ag and the ‘‘plus’’ combination corresponding to a diffe
ent ‘‘band’’ of states beginning from themAg . As is evident
from our discussion of the 2Ag above, this classification is
simplistic, primarily because there exist many differe

FIG. 8. The number of excitations from the correlated grou
state for the lowest eight excitedAg states, ford50.07. The nor-
malized dipole couplings of the same states to the 1Bu are given as
an inset. The 6Ag , identified as themAg from its dipole coupling, is
seen to be a one-excitation CT state~see text!. The dashed line
indicates the number of excitations for the 3Bu.
k

l
e

e
b

f

t

classes of 2e-2h states~see Sec. III B and Ref. 21! for non-
zero Coulomb interactions. The exciton basis allows us
determine both the relative location and the precise natur
the mAg state.

From Fig. 7~f!, themAg does have non-negligible contr
butions from two-excitation exciton-basis VB diagrams, b
the wave function is clearly dominated by one-excitation C
diagrams with, on average, longer CT bonds than the 1Bu .
The apparent two-excitation character of themAg is, with
respect to the Simpson ground state,not the correlated
ground state. The classification of themAg as a one excita-
tion can be made more quantitative by the actual calcula
of the number of excitationshmAg

in Eq. ~19! ~note that this

definition is with respect to the correlated exact 1Ag). In Fig.
8 we have plottedhs for the first eightAg states. The numbe
of excitations in the low-energy states is large (;1.5
21.7), indicating theirTT character. This number is smalle
than the 2 expected for pureTT states, because of admixin
with CT configurations. The number of excitations dro
sharply at the 6Ag . Note thaths for 6Ag ~1.28! is nearly the
same for the 3Bu ~1.29!, identified above as the lowest C
Bu state. Additionally,hs for the correlated 6Ag and 3Bu ,
while greater than the value of 0.804 for the Hu¨ckel 2Ag
~because of the greater contributions from two excitations
the former two states!, is still substantially lower than thehs
of 1.73 for the lowest Hu¨ckel 2e-2h state, the 3Ag . Both of
these identify themAg as a one-excitation relative to th
correlated 1Ag . The one-excitation character of themAg in-
dicates thatbmAg

is an appropriate quantity for characterizin

the mAg . The calculated average bond lengthbmAg
is 1.99,

which is to be compared againstb1Bu
of 0.98, and which is

nearly identical tob3Bu
~2.02!. Once again, thedifference

between the bond lengths of the correlatedmAg and the 1Bu
on the one hand, and that between the Hu¨ckel 2Ag and the
1Bu on the other~see Sec. III A! are comparable. Taken
together, all of the above give a precise characterization
the mAg , viz., the relationship between the correlatedmAg
and the correlated 1Bu is identical to that between the un
correlated 2Ag and the uncorrelated 1Bu . In both cases, the
Ag state in question is charge transfer with respect to
1Bu . The correlatedmAg therefore evolves from the uncor
related 2Ag as the electron correlations are ‘‘switched on.

SS States: In Fig. 9 we show the wave functions of th
three lowest SS states for the PPP–Ohno Hamiltonian.

d

FIG. 9. Dominant exciton basis contributions to the SS states
d50.07. The 14Ag is a biexciton, while the 19Ag and 25Ag are
two-exciton continuum states.
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14Ag is clearly related to the 18Ag with t250, with three
minor differences, all consequences of nonzerot2 . First, the
14Ag shown here is the lowestkÞ0 biexciton. Thek50
biexciton within the complete Hamiltonian, though discer
ible as such, is at slightly lower energy and is strongly mix
with the highest energyTTT diagrams. A second differenc
between the 14Ag here and the 18Ag with t250 is the addi-
tion of interunit charge transfer, leading to contributions
localized two excitations in which one of the two excite
electrons or holes has migrated to a neighboring unit@see
Figs. 1~e! and 9#. Finally, the 14Ag in Fig. 9 has contribu-
tions from one-excitation CT diagrams. The 19Ag and 25Ag
here are both similar to the 36Ag with t250, in that these
wave functions are dominated by contributions that are
independent excitons. Once again, weak one-excitationCT
contributions are seen. The widths of the individual excito
in these two-exciton states are considerably smaller than
width of the 1Bu exciton in Fig. 7~b!, which is a finite size
effect that is understandable: the N55 chain simply does no
have enough physical space to accommodate two opt
excitons. Since the energy of the 1Bu exciton is lowered
considerably by the electron-hole delocalization contribut
to its width, the small widths of the individual excitons in th
finite chain two-exciton states imply that the energies of
two-exciton states in short chains would be considera
above 23E(1Bu).20 Thus, even as our short-chain calcul
tions are exact, no signature of exciton-exciton binding c
be obtained from the energetic consideration which is va
in the long-chain limit, viz., two-exciton states below
3E(1Bu) are bound. Precisely because of this, an altern
criterion based on transition dipole couplings~see below!
was developed in Ref. 20. The advantage of the pre
exciton-basis calculation over our previous work lies in th
from the pictorial descriptions of the two-exciton states,
bound biexciton nature of the 14Ag and the free two-exciton
character of the 19Ag and the 25Ag are obvious. The absenc
of delocalized two-exciton diagrams in the 14Ag on the one
hand, and the absence of the localized two excitations in
19Ag and the 25Ag on the other, indicates that CI does n
lead to the appreciable mixing of localized and delocaliz
two-exciton diagrams. This, in turn, is a distinct signature
the bound biexciton character of the 14Ag .

B. d50.3

Increasingd leads to competition between two differe
correlation effects. On the one hand,U/t1 decreases, and th
energies of theTT diagrams increase relative to the Frenk
and CT diagrams, pushing the 2Ag above the 1Bu . At the
same time, however, largerU/t2 leads to increased excito
binding, as interunit charge transfer becomes less ener
cally favorable. Within the exciton basis, the higher ene
of the lowestAg states causes strong mixing between
basic TT and CT diagrams, leading to eigenstates that
linear combinations of the type (CT1TT),(CT1TTT), etc.
We focus below on theAg states that are most strongly d
pole coupled to the 1Bu , as these are the states that are m
relevant for nonlinear optical processes. We do not show
1Bu explicitly, as it largely resembles the 1Bu state ford
50.07. The major difference is thatb1Bu

here is 0.91, as
compared to 0.98 in the previous case, implying a gre
-
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Frenkel contribution to the 1Bu wave function, and therefore
an increase in exciton binding energy with increasingd.

The energies, transition dipole couplings with the 1Bu ,hs
andbs for the states 2Ag –7Ag are shown in Table III. The
2Ag , 6Ag , and 7Ag are now all strongly dipole coupled t
the 1Bu . This is due to the large CT component in all th
wave functions, as shown in Fig. 10, where we show the 2Ag
and 7Ag for d50.3. These states are both~as are all of
2Ag212Ag) strong mixtures ofTT,TT^ CT, and CT dia-
grams ~note the nearly 2:1 contributions by the diagram
within the parentheses in Fig. 10!. We characterize the thre
states 2Ag , the 6Ag, and the 7Ag as predominantlyTT
1CT, which agrees with thehs values of nearly 1.5, inter-
mediate between that for purelyTT ~2.0! and purely CT
~1.0!. Unlike the smalld case, therefore, classification int
predominantlyTT or predominantly CT is no longer pos
sible. If one defines themAg now as the state that makes th
strongest contribution to third-order optical nonlinearit
identification of this state from dipole couplings, or from Fi
10, is thus no longer possible. However, it has previou
been shown that a large dipole coupling to the 1Bu does not
necessarily imply a strong contribution to third-order nonl
ear optical processes, because of cancellations arising
nonlinear pathways that involve the sameBu state and dif-
ferentBu states.20 We can then use the calculated two-phot
absorption to identify themAg , defined as above.

In Fig. 11 we show the calculated two-photon absorpt
~TPA! for N55 with d50.3. As expected, the contributio
from the 2Ag ~at 2\v/E(1Bu).1.05) is negligible,in spite
of its large dipole coupling to the1Bu ~see Table III!. This
simply requires that the energies of the twoBu states to
which the 2Ag is coupled are close to each other.20 The
strong TPA in Fig. 11 is to the 6Ag and the 7Ag . The TPA
calculations were also performed by ignoring one of the
two states but retaining the other~i.e., these modified calcu
lations were done twice!. In this fashion, it was determine
that the two states 6Ag and 7Ag contribute nearly equally to
the strong TPA, and therefore both of these exhibitmAg
behavior.

The above results then raise the following important
sue. In the smalld case (2Ag below the 1Bu), the charge-
transfer character of themAg is obvious from thehs values
of this state and neighboring states. For larged, the hs for
the 2Ag , the 6Ag , and the 7Ag are nearly the same. Thu
whether or not themAg states~s! can be considered as th

TABLE III. The energies~in units of utu52.4 eV! and wave-
function characteristics of the lowest seven excited statesd50.3.
The transition dipole couplings with the 1Bu are relative to

^1Agum̂u1Bu&.

Ag State Energy ^kAgum̂u1Bu& hs bs

1 0 1.0 0 1.0
2 2.66 0.81 1.49 1.52
3 2.99 0.14 1.48 1.06
4 3.31 0.40 1.83 1.14
5 3.60 0.14 1.81 1.30
6 3.69 0.97 1.69 1.71
7 3.79 0.98 1.56 2.61
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FIG. 10. Dominant contributions to the wave functions of the 2Ag , the 7Ag(mAg), and the 14Ag ~lowest biexciton! for d50.3. Both the
2Ag and the 7Ag are nowTT1CT, but the bond lengthb7Ag

is considerably larger thanb2Ag
and b1Bu

~see text!. Note the nearly 1:1
contribution by the diagrams within the parentheses in the 14Ag .
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lower threshold of the continuum band for larged cannot be
determined fromhs calculations. The very strong CT com
ponents in the states being considered, however, allow u
compare their bond lengthsbs , which are also included in
Table III. The very largeb7Ag

, compared to theb1Bu
of

~0.91!, indicates the charge-transfer character of the 7Ag . As
in the case of smalld, therefore, strong contribution to third
order optical nonlinearity are by a charge-transferAg state
and anyAg state that is proximate to this state. In contrast
the 7Ag , the particle-hole separation in the 2Ag is small, and
it contributes weakly to third-order processes. The char
transfer character of themAg , and the more localized behav
ior of the lower Ag states, ensures that theAg state that
makes the strongest contribution to third-order optical n
linearity also gives a lower limit for the exciton binding e
ergy in conjugated polymers.

In Fig. 10 we also show the wave function of the 14Ag ,
which is the lowest biexciton state ford50.3. In addition to

FIG. 11. Calculated TPA ford50.3.
to

o

e-

-

the doubly excited single unit, which characterizes the bi
citon at d50.07 ~see Fig. 9!, we find nonzero contribution
from the ‘‘crossed’’ diagrams of Fig. 3~a!. This is in contrast
to the work of Ishida,44 in which the biexciton consists solel
of diagrams of the type~g! in Fig. 1. The origin of the dis-
crepancy is as follows. Figure 1~g! corresponds to the linea
combination of the configuration-space configurations 20
2020, 0202, and 0220, where 0~2! indicates an empty~dou-
bly occupied! atom. Thus Fig. 1~g! obviously contributes
strongly to the biexciton wave functions. However, the
pulsive interaction due to neighboring atoms with the sa
charges is also extreme within this diagram. The binding t
occurs within the approximate calculations then has to be
artifact of the neglect of important terms within the full PP
Hamiltonian~see Sec. II C!. In contrast, the ‘‘crossed’’ dia-
gram in Fig. 3, can be viewed as the combination2(2u f &
1ug&)2ug&. This diagram has strongTT contributions, and
it is the configuration interaction with lower energyTT con-
figurations that stabilizes the true BX wave function relati
to diagram~g! alone.

The charge-transfer character of themAg , and the dem-
onstration that the true biexciton occurs at even higher
ergy, raises an interesting possibility in the context of thi
order optical nonlinearity in poly~di-n-hexyl-polysilane!
~PDHS!.23 The two-photon absorption~TPA! spectrum of
this material is characterized by a narrow, strong absorp
at 2\v51.2Eg ~whereEg is the optical gap!, with a weaker
broad feature starting at around 2\v51.5Eg .23 These have
previously been assigned to the 2Ag and themAg ,23 where
the authors characterized themAg as the biexciton. Addition-
ally, in order to fit the experimental spectrum these auth
introduced ad hoc linewidth parameters that were rather
tificial. Specifically, the linewidth of the 2Ag was taken to be
smaller than the linewidths of all other states by a factor
75. This gave a sharp TPA to the 2Ag , with a second intense
TPA to the remainingAg states, with overall relative inten
sity of the higher energy TPA considerably larger than t
observed in the experiment. Our calculated TPA in Fig.
and the discussion above presents an alternate interpret
that does not require this extreme narrow linewidth for t
2Ag . Since TPA to the 2Ag is rather weak, the low-energ
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FIG. 12. Schematic of nonlinear optical processes in the exciton basis. Configurations, rather than VB diagrams are show
consequence of the application of the current operator is clearer. Each configuration can be obtained by one application of th
operator to either of the two configurations to which it is linked by an arrow. The actual dipole coupling between the 1Ag and nBu

eigenstates is weak but nonzero~see text!.
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TPA can simply be assigned to themAg . The CT character
of this state, even ford50.3, explains its occurrence belo
the threshold of the continuum band.55 The cancellation ef-
fect in the nonlinear optical channels that reduces the TPA
Ag states in the vicinity of themAg ~see Fig. 11! increases
with chain length,20 and can therefore naturally explain th
narrow linewidth of the low-energy TPA in PDHS.23 High-
energy TPA is then assigned to the true biexciton states~see
Fig. 10! within our picture@the biexciton states in our calcu
lation are above 23E(1Bu) because of finite size effects
and are thus not shown in Fig. 11#.

To summarize this subsection, increasingd induces large
mixing between theTT and CT diagrams, and excited stat
that are linear combinations of these occur above the 1Bu .
The very lowest of theseAg states have CT bonds that a
short, and themAg , which occurs at slightly higher energy
is still the lowestAg state that is of charge-transfer charac
relative to the 1Bu . The true biexcitons are at even high
energy.

V. NONLINEAR OPTICAL CHANNELS

As has been emphasized by different groups, individ
third-order nonlinear optical channels for centrosymme
linear p-conjugated systems can be written as

1Ag→ jBu→kAg→ lBu→1Ag ,

where each arrow denotes a dipole-allowed process. In
event of exciton formation, significant contribution to th
overall nonlinearity requires that at least one ofj and l ~but
not necessarily both! is 1. Based on the natures of the wa
functions and the dipole couplings between them, we
able to describe the dominant nonlinear optical chann
qualitatively within the exciton basis. The case of smalld is
shown schematically in Fig. 12 where we have describ
each eigenstate by the most representative exciton-basis
to

r

l
c

he

re
ls

d
on-

figurations~rather than theS50 VB diagrams, since vertica
and interunit excitations are easier to visualize within t
Sz50 representation!, and where we have chosenj 51. Each
arrow in Fig. 12 represents both a forward~excitation! and a
reverse~deexcitation! process, and denotes the result of t
application of the current operator@Eq. ~17!# on either of the
configurations connected by the arrow.

In Fig. 12, optical absorption from the ground state lea
to the 1Bu exciton, which has both Frenkel and CT cont
butions. The creation of a second excitation on the same
neighboring unit can lead to either the 2Ag or the biexciton,
while the creation of a second exciton far from the first giv
the threshold of the two-exciton continuum. All of these pr
cesses involve either the first term in the expression for
current operator in Eq.~17! or the second term withl
Þl8. In addition to the above processes, CT to neighbor
units, corresponding tol5l8 in the second term of Eq.~17!,
gives themAg . The large dipole coupling between this sta
and the 1Bu ~for realisticd) is simply a consequence of Eq
~18!. We have shown in the previous sections that the w
function of the interactingmAg is nearly identical to that of
the Hückel 2Ag . The difference in the particle-hole separ
tion between the correlatedmAg and the 1Bu is also similar
to the same quantity between the uncorrelated 2Ag and the
1Bu . Excitation from themAg leads to further electron-hole
separation, leading to thenBu state, which has previously
been identified as the threshold state of the electron-h
continuum.19 Although Fig. 12 formally suggests a vanishin
dipole coupling between the 1Ag and thenBu , this is merely
a consequence of ignoring the small but nonzero contri
tions by diagrams with neighboring CT in thenBu ~or more
distant CT in the 1Bu) in the figure. In reality,̂ 1Agum̂unBu&
is nonzero, and leads to a weak nonlinear optical chan
1Ag→1Bu→mAg→nBu→1Ag , in addition to the strong
processes depicted in Fig. 12.15,16,19,20
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We do not give a separate figure for the case of larged.
Our discussions in Sec. IV make it clear that the only diff
ence in this case is that there exist only three distinct cla
of two-photon states, as opposed to four for smalld. TheTT
and CT states are not distinct here, and both the 2Ag and the
mAg areTT1CT.

Inspection of Fig. 12 and our eigenstates in Sec. IV
plains the qualitative similarity between the proposed mec
nisms for nonresonant nonlinear optical nonlinearity with
the singles-CI calculations15–17,43and within the short-chain
FCI calculations, as interpreted by us.18–21,36Essentially, the
strongest effects of CI are to cause the energy splittings
tween the Frenkel and CT one excitations on the one ha
andTT and SS two-excitations on the other. SinceTT states
do not have dipole coupling with the 1Bu , the characteriza-
tion of eigenstates as predominantly one and two excitat
is approximately true. Consequently, in the low-frequen
region where the contribution by high-energy SS states
weak, one excitations determine the nonresonant optical n
linearity.

VI. THE EVOLUTION OF WAVE FUNCTIONS

The above sections clearly indicate that while there e
only simple 1e-1h and 2e-2h Ag states at in the Hu¨ckel
limit, for moderate Coulomb interactions there occur fo
distinct classes of optically relevant two-photon states
small d. Although our interest lies in understanding the li
ear and nonlinear optical properties of conjugated polym
it is of theoretical interest to address the question of how
strong Coulomb interaction regime is reached from mode
interactions. The strong Coulomb interaction regime h
been discussed within theU→` limit before.20 The relevant
quantity for the characterization of wave functions is
longer the number of excitationshs across excitonic units, a
it is for moderate interactions, but ratherN2 , the number of
carbon atoms that are occupied by two electrons. The 1Ag in
the U→` limit is dominated by the configuration
. . . 111111 . . . ,where the numbers denote site occupanc
by electrons. The 1Bu , for large nearest-neighbor intersi
Coulomb interactions is the linear combinatio
~ . . . 112011 . . . ! – ~ . . . 110211 . . . !, while themAg is a
linear combination of~ . . . 112011 . . . ! 1 ~ . . . 110211 . . . !
and ~ . . . 1121011 . . . 1 . . . 1101211 . . . !, with relative
weights of the nearest-neighbor excitonic and the cha
transfer contributions determined by the actual details of
theoretical model being considered. Similarly, thenBu is
now an appropriate combination of~ . . . 1121011 . . . !
–~ . . . 1101211 . . . ! and ~ . . . 11211011 . . . !
– ~ . . . 11011211 . . . !. The 2Ag is a spin-wave state, and th
biexciton and the two-exciton continuum states are now
. . . 11202011 . . . configuration, and the configuration
. . . 112011 . . .12011 . . . , respectively. These are the on
kinds of two-photon states that are arrived at by two ap
cations of the current operator on the ground-state confi
ration. One then sees that the fundamental description
nonlinear optical channels is the same at at both mode
and strong Coulomb interactions.

The only difference between moderate and strong C
lomb interactions lies in the actual compositions of t
wave functions. This is best illustrated by the examinat
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of the mAg and the biexciton wave functions. As discuss
in the above, the configuration-space wave funct
~ . . . 11120111 . . . ! 1 ~ . . . 11102111 . . . ! makes a strong
contribution to the strongly correlatedmAg . However, pre-
cisely this same configuration describes the exciton-b
diagram with a doubly excited unit that constitutes the bie
citon in the moderate Coulomb interaction case~see the
14Ag in Fig. 10!. The configurations that describe themAg
and the biexciton then change continuously as the Coulo
correlation parameters are increased from moderate va
so much so that for strong correlations the doubly exci
dimer is a component of the themAg and not the biexciton.
Of course, all other wave functions change according
since the relationship between them continues to be as
gested in Fig. 12, but only between themAg and the biexci-
ton is there a continuous reshuffling of the same configu
tion.

VII. CONCLUSIONS

In conclusion, we have presented in detail a discussion
the energy spectrum and dominant nonlinear optical chan
for linear polyenes within a diagrammatic exciton-basis V
theory. The present exciton theory includes all interactio
within the PPP Hamiltonian. The chief advantage of th
technique is that physical, pictorial descriptions of exa
eigenstates are obtained, thereby making the relations
between the excited states clear, and allowing us to ext
the central concepts to the long-chain polymeric limit. O
most important result is that the relationship between
correlatedmAg and the 1Bu exciton is the same as betwee
the Hückel 2Ag and the 1Bu : in both cases theAg state in
question is obtained from the respective 1Bu by charge trans-
fer between MO’s of neighboring units that are either bo
bonding or both antibonding. The large dipole coupling b
tween the 1Bu and themAg is a simple consequence of th
nature of the current operator: charge transfers betwee
bonding ~antibonding! and an antibonding~bonding! MO,
though allowed, is less favored. Eigenstates that belong
classes other than CT are obtained from the 1Bu by precisely
such less favored charge-transfer processes. Our ea
work on this subject18 focused on short-range interaction
only, and had claimed that themAg is necessarily pinned
between the 1Bu and the 2Bu . With long-range interactions
this is not true, as the exciton band acquires greater widt
this case. Nevertheless, as discussed in Sec. IV, the lo
charge-transferBu state occurs above themAg . Even when
the 2Ag occurs above the 1Bu , the Ag state that makes the
largest contribution to the third-order optical nonlinearity
of charge-transfer character and is higher than the 2Ag . Al-
though the 2Ag in this case is no longer purelyTT, the
particle-hole separation is small in this state. This has a v
important consequence as far as the current discussion
excitonic effects inp-conjugated polymers are concerne
viz., the experimental determination of themAg must neces-
sarily give a lower limit for the excitonic binding energy
Whether themAg is closer to the 1Bu or to the band thresh
old has also been a topic of discussion. In our opinion, t
depends on the character of the 1Bu exciton itself. If the
Frenkel contribution to the 1Bu exciton is larger than the
nearest-neighbor CT contribution, due to large effect
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bond alternation, then the first step in the charge-tran
process costs the most energy, and themAg is expected to be
close to the band threshold. In systems where the rever
true ~as in the polyenes! the mAg should be closer to the
1Bu .

In addition to obtaining a physical description of the low
energyTT and CT states, the VB exciton theory also len
support to the previous ideas of stable biexcitons
p-conjugated polymers. The physical natures of the biex
ton are slightly different for small and large bond alternatio
Furthermore, the physical nature changes continuously w
increasing strength of the Coulomb interaction, while ma
taining the same relationship with the 1Bu exciton. Finally,
even though stable biexcitons might occur inp-conjugated
polymers, this does not necessarily imply that a high ene
photoinduced absorption ~PA!, seen in the
poly~para-phenylenevinylenes!12 is necessarily a transition
from the exciton to the biexciton. Although we had ma
such an assignment earlier,12,21 this should strictly be true
only in linear chain systems, for which the exciton-basis V
theory presented here clearly shows that there are only
classes ofAg states~viz., CT and bound SS! to which PA can
occur. Recent calculations for polyphenylenes within
exciton-basis VB theory has shown that although the lo
i-

e
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ke
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-
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e

m
n

er

is

s
n
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.
th
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y
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e
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energy excitations in these systems are similar to thos
linear chains, at higher energies there occur even parity st
whose counterparts do not exist in linear chains.56 A differ-
ent, and more plausible, interpretation of high-energy
seems possible. These results are presented elsewhere.57

We recently learned of the work by Shuai et al. on t
nonlinear optical response of long linear polyenes.58 The au-
thors use the DMRG approach to calculate the nonlinear
tical properties of polyenes that are twice the length inve
gated here, within the nearest-neighbor extended Hubb
Hamiltonian. The results pertaining to the 2Ag and themAg
are similar to our work. In addition, the calculated TPA spe
trum ~see Fig. 5 of Ref. 58! of octatetraene within the ex
tended Hubbard Hamiltonian is sparse, and weak TPA t
state whose energy is nearly 1.6 times that of themAg is
found. Whether or not this very high-energy two-phot
state is a biexciton state is clearly of interest.
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