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Exploring level statistics from quantum chaos to localization with the autocorrelation
function of spectral determinants
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The autocorrelation function of spectral determingdSD) is used to characterize the discrete spectrum of
a phase coherent quasi-one-dimensional, disordered metal wire as a function of itsUeatdfinite, weak
magnetic field. An analytical function is obtained, depending only on the dimensionless condugtance
=¢/L, whereé is the localization length, the scaled frequemeyw/A, whereA is the average level spacing
of the wire, and the global symmetry of the system. A metal-insulator crossover is observed, showing that
information on localization is contained in the disorder averaged ASD163-18209)05107-3

I. INTRODUCTION tains information on the spectrum, but its complexity is re-
duced so that it can be calculated analytically more easily.
Since the pioneering work of Anderson on localizattan, We will show that it provides a useful tool to study localiza-
was realized by Mott and Two<ehat all states in an infinite tion and could be used in situations that have been unacces-
one-dimensional chain are localized at arbitrary disordefible to other analytical methods. .
strength, at zero temperature. They could show that solutions The paper is organized as follows. In the first part the
of the corresponding Schuinger equation at points at a dis- characterization of level statistics by an autocorrelation func-
tancex are with a probabilitP = ex —x/(41)] in resonance, 10N 1S reviewed, and the ASD is defined. In the second part
wherel is the mean free path. Thus, its exponential decreasie result for the disorder averaged ASD for a quasi-one-
gives a localization length of the order bfLater on, Thou- imensional wire in a weak magnetic field is presented and

less argued that this statement can be extended to a th scussgd for various regimes in the frequen.cy—length plane.
. . o . Information on the metal-insulator crossover is obtained. We
disordered wire, and he found that the localization length is

given by &= (m/3)MI, wherel is the elastic mean free path, conclude with a discussion of the results and the potential of

) ' the ASD as a tool to study Anderson localization.
and M =S/ is the number of transverse channels, with

the Fermi wave vectokg, and the cross section of the wire
Ss This was proven rigOfOUSly for a matrix ofl Chains, Il. LEVEL STATISTICS AS CHARACTERIZED BY AN
whenM is small, by Andersort al, Welleret al, and then AUTOCORRELATION EUNCTION
by Dorokhov by solution of a Fokker-Planck equatfoeal- ] ) o
culating the transmission probability through the wire. In the ~The crossover from a metal to an insulator in a finite
limit of a thin wire, where the motion of the electrons is coherent, disordered metal particle is accompanied by a
diffusive in all directions on small length scales, the proof ofchange in the statistics of the discrete energy le¥ahis
complete localization at zero temperature was given by Efec@n be studied by calculating a disorder averaged autocorre-
tov and Larkin with a field theoretical method, obtaining an'ation function between two energies at a distancén the
exponential decrease of the density-density correlation func€nergy-level spectrum. Then, considering a quasi-one-
tion in space, in the zero-frequency limit. They discovered indimensional disordered metal wire with cross sect®ra
addition that the localization length depends on the globaMap as a function of its length and the energy. can be
symmetry of the wiré:® The localization length was found to drawn as in Fig. 1. Here =1/(»SL) is the total mean level
be given byL .= (1/3)BMI, where=1,2,4 for orthogonal, ~SPacing with the average density of statesmkg/(w?%?)
unitary, and symplectic symmetry, which corresponds to ng=3n/(2€g). n=N/V is the numbeN of electrons per vol-
magnetic field, weak magnetic field, and strong spin-orbitimeV=SL. g is the Fermi energy, anah is the electron
interaction, respectively. massA.=1/(vS¢) is the local mean level spacing, when the

The density autocorrelation function was recently studiedength of the wireL exceeds its localization length
for the total spectrum as a function of the length of the me- The Thouless energf = w°AD/L? is defined through
soscopic wire by Altland and FucAsBecause of the com- the diffusion time across the lengtht.=277%/E. when the
plexity of the problem, they did not obtain a closed analyticaldiffusion is free, as obtained from the classical diffusion
expression for arbitrary frequency, but succeeded to do &quations;n=Dazn, wheren is the electron density. The
numerical analysis in the unitary regime. Additional infor- classical diffusion constar in three dimensions is related
mation on the level statistics of the wire as a function of itsto the elastic mean free time by D=v§r/3. v, is the
length was found in the metal-insulator-crossover regime. energy that limits the universétrgodig regime of noninte-

In this paper we argue that in order to study the levelgrable ballistic quantum billiard&® Sincey; depends on the
statistics, it is enough to calculate the simpler autocorrelatioexact boundary conditions, it may change as a functioh of
function of spectral determinan¢&SD). This function con- in a continuous but nonmonotonous way as indicated in Fig.
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w ; larger than oneM =SK/7>1, in order to find out if this
relatively simple function does contain information about the
Y metal-insulator crossover.
Ballistic lIl. FROM QUANTUM CHAOS TO LOCALIZATION:
' THE FREQUENCY-LENGTH PLANE
— The Hamiltonian is given by
A Ee 1 H=(p—q/cA)2/(2m)+V(x) 3)
Diffusive )

: whereq is the electron charge,the velocity of light, andA
A ; the vector potential due to an external magnetic fizd(x)
! is a Gaussian distributed random function,

Lepvel repulsioni h Localized

- A 5(x—x")
: - L (V(X))=04V(X)V(x'))= ~ sl

4

FIG. 1. The map of the energy-level spectrum of a quasi-one- L . o
dimensional conductor as a function of its lengtand character- Which models randomly distributed, uncorrelated impurities

ized by an autocorrelation function at two points of the spectrum, 4N the wire.

distancew away from each other. The ASD can be calulated for such a Hamiltonian as a
function of the length of the wire and energy difference.

1. This map has been explored by considering the autocorrd-ne unitary limit is considered, where the magnetic flux

lation function of density of states, see Refs. 6 and 7 andhrough the wire¢, exceeds/L/£g.

references therein. The ASD can be written in terms of Grassmannian func-

Here we will restrict ourselves to the ASD, as defined bytional integrals. This allows us to perform the impurity aver-
aging as a Gaussian integral. The resulting interacting theory

Clw) of Grassman fields can be decoupled by a transformation,
Clw)==—, (1) introducing a functional integral over ax2-matrix Q. Next,
C(0) the Grassmann fields can be integrated out. The integral over

Q can be simplified fore<<1/7 to an integral over gapless
fluctuations around the saddle point, which have the action
of an O3) nonlinearc model

where

C(w)=(de(E+Lw—H)de(E—1w—H)). )

2

+iKTrAQ}, (5)

H is the Hamiltonian of the considered system, & a F[Q]= gf g_ﬂg-rr i

central energy. It contains only information about the spec-

trum not on the wave functions of the mesoscopic system. . . L B B
This function was recently obtained for the Wigner- with the nonlinear constrain@”=1. Hereg=E./A=¢/L,

Dyson random matrice€GUE 1 GOE!! CUE, COE!2 and which has the physical meaning of the dimensionless con-

_ 2 : ot
crossovel!) and successfully used to characterize the specductanceg=G/(e“/h) of the wire, as long as the Einstein

trum of nonintegrable quantum systems, such as a Siné_?lation , 0 the diffusion ~constantD holds, G
billiard,** for energiesw<y,, where the average over the _(77,/4)6 v(SIL)D. ThE,’ derivation is given in Ref. 14. A
energyE had to be done in order to obtain a universal func-nonlinearo model for disordered electron systems had been

tion. derived in Ref. 15 foiN replicas using a functional integral
In the following, it is obtained for free electrons in a over conventional numbers, in Ref. 16 for Grassmann vari-

random potential in a finite system, which can be used foPP!€S; and then for superfieltls. _
the study of a disordered mesoscopic metal of which at least ©100Sing a representation of the mat@x the integrals
one dimension exceeds the mean free pafihe ASD can be  ¢@n be performed by means of the transfer-matrl_x method.
calculated analytically and shown to agree with the one forl NUS: th‘i problem can be reduced to the solution of the
Wigner-Dyson random matrices, when the dimensions of th&auatior?
system do not exceed a localization length This is ex- q
pected, since a disordered metal particle is an example of a e _p
nonintegrable physical system and should therefore have the L9 dZPZ()\) HIAPAM), ©
same energy level statistics as, for example, the Sinai bil- »
liard, for frequencies not exceeding the Thouless energy, th@ith the boundary conditiorP (\)=1. Here —1<\<1,0
ergodic regime, where a particle has time enough to cover~-2<L, and the Hamilton operator is
the whole sample uniforml}?

Here we will derive the ASD for the more general case, 1 90T 2
when one dimension may exceed the localization leggth HIM==1mg g+ 5 A (1=A0)dy @)
guasi-one-dimensional conductor, of lengtland cross sec-
tion S where the number of transverse channels is much The ASD is then given by




PRB 59 EXPLORING LEVEL STATISTICS FROM QUANTW . . . 4801

F

NN
WA

\ \\\\\‘\‘\:“ 0.8
\ RN

\\‘\\‘\\‘\\\\\\\\\\\\\\‘

AMHKHHHW

W 0 \\

\\\‘ \\\\\\\\\\\\\\

\\\\\
\\\\\\\\
A 0.6

RN
\\‘\\\‘\\\\

R A
\\\\\:\\\\\\\\\‘\\‘\\\\\\‘\“
\\ \\\\\‘\\\\\\ R

\\
\\‘\\‘

t

2 4 6 8 10

FIG. 3. F(t), as a function of the scaled length of the wire

10 =1/g=L/¢.
FIG. 2. The ASD as a function of scaled frequemxey /A and . 1
the parameter=1/g=L/¢. C(x)= sin(x) exd — 77_ 2 (13)
X 6 g
1t herex=w/A, which f % red to th It ob-
Cla)==1" drP)\). 8 wherex=w/A, which for g—o reduces to the result o
() f olM) ® tained with the unitary Wigner-Dyson ensemble of random
matricest!

While we did not succeed to find an exact analytical solution  (2) In the strongly localized regimg<1, one obtains
of this initial value problem, the function

sin(gx
o X Clw)= "o )exr{ —gﬂxz). (14
PX(A)zex%iKg)\[ex%w([—l)/g —1]) 9x
, Rescalingx=(g/7) w/A=(1/m)w/ A, we note the similar-
m )\ , (XY B 2 ity to Eq. (13).
Xex;{i(x) g J;,g dsiexd m(s—1/g)] -1} This result shows clearly that the correlations between

energy levels belonging to states that are spatially separated
) by more than the localization lengthare weak. As a result,
the ASD shows only correlations with the period of twice the
effective local energy level spacingA. of energy levels
whose wave functions overlap spatially.
As g—0 the function is dominated by the Gaussian fac-

is a good approximation when?< AZ2g, for arbitraryg, and
becomes exact fog—0 whenw?>A?/g.
Thus, the ASD is obtained as

. SiA, mwlA) L[ 2 . torinTE?S'g(:) E:)O?xactly agy—0, andw?>A?/g.
(@)= pmwia A Blz) | 1O 9=ap
. simexp(—zrt) —1]
th = =
T _ir_ _
Ag:% exp( _ 5) _1} a1 s exp— 1[ — exp( — 2rt)
+4exg —wt)—3+2xt]} (15
and is shown, wherg=1/g=L/¢. The ASD is decaying from
2 o o one to zero as the frequency is held constanbatA . and
Bg:g_ - exr{ — _) +4 exp( -3+ —|. (12)  one varies the length of the witeor the parametetrin Fig.
4 g 9 3, compare with Fig. 1.
Figure 2 shows a plot of the ASD as a function of the IV. DISCUSSION

scaled frequencx and the scaled length=L/é=1/g. A

clear damping of the amplitude of oscillations accompanied In summary, the ASD is established as a tool to study the

by a shift of their phase is seen. level statistics of disordered metals. An analytical expression
This shows that there is an effect of localization on levelis obtained for the ASD of a quasi-one-dimensional disor-

correlations. At smalleg, the oscillations are damped more dered mesoscopic wire. At frequencies below the mean level

strongly, and the envelope approaches a Gaussian decayisgacingA the ASD approaches one like a Gaussian for any

function. value of the conductancg, and there is no information on
To see this in more detail, let us consider approximationgocalization in this regime. This was pointed out by Efétov
of Eqg. (10) in various regimes of interest. when studying the weakening of level repulsion by localiza-

(1) In the metallic regimag>1 for x<g we obtain tion. It was stressed there that the noncompact degrees of
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freedom are needed to describe localization that way. Here it The functionF(t) may serve as a parameter characteriz-
is shown that the information is rather contained in the largéng localization: it is 1 in the metallic regime and 0 when all
frequency correlations. The ASD shows a crossover to gtates at all energies are localized. It decays to approximately
strong damping of the correlations as the length of the wire} when the length of the wire coincides with the localization
exceeds the localization leng#) accompanied by the con- |engthL = ¢.

vergence of the period of the strongly damped oscillations to |y addition, recently it has been shown that the ASD can
the constant ZA;. Thus, the wire can be thought of as contain information not only on a metal-insulator crossover,
effectively separated into localization volumes, as obtainegy,t also on a metal-insulator-transition, as demonstrated with

earlier in Refs. 17 and 7. . ~_the Anderson model on a Bethe lattite.
One may argue that, since the averaging over the impurity

potential was done before normalization, the resulting func-
tion might contain different information than the one ob-
tained by normalizing for a given impurity potential before
doing the averaginf The goal of this paper is, however, to  The author would like to thank Uzy Smilansky for draw-
show that level statistics can be characterized with the siming his attention to the ASD as a tool to study level statistics,
plest toolC(w). and Thomas Dittrich, Konstantin Efetov, Dietrich Klakow,

Now, it might become possible to address problems anab. E. Khmel'nitskii, Igor Lerner, Daniel Miller, VIadimir
Iytically, which could not be solved with the methods known Prigodin, and Klaus Ziegler for useful discussions, and Si-
so far, due to their complexity. While the ASD cannot con-mon Villain-Guillot for critical reading of the manuscript.
tain any information on the eigenfunctions of the system, weThis work was possible thanks to financial support by Min-
have seen that it contains enough information to characterizerva and support by the Max Planck Institute of Physics of
the energy-level statistics. Complex Systems in Dresden.
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