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Exploring level statistics from quantum chaos to localization with the autocorrelation
function of spectral determinants
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~Received 8 September 1998!

The autocorrelation function of spectral determinants~ASD! is used to characterize the discrete spectrum of
a phase coherent quasi-one-dimensional, disordered metal wire as a function of its lengthL at finite, weak
magnetic field. An analytical function is obtained, depending only on the dimensionless conductanceg
5j/L, wherej is the localization length, the scaled frequencyx5v/D, whereD is the average level spacing
of the wire, and the global symmetry of the system. A metal-insulator crossover is observed, showing that
information on localization is contained in the disorder averaged ASD.@S0163-1829~99!05107-3#
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I. INTRODUCTION

Since the pioneering work of Anderson on localization,1 it
was realized by Mott and Twose,2 that all states in an infinite
one-dimensional chain are localized at arbitrary disor
strength, at zero temperature. They could show that solut
of the corresponding Schro¨dinger equation at points at a dis
tancex are with a probabilityP5 exp@2x/(4l)# in resonance,
wherel is the mean free path. Thus, its exponential decre
gives a localization length of the order ofl. Later on, Thou-
less argued that this statement can be extended to a
disordered wire, and he found that the localization length
given byj5(p/3)Ml , wherel is the elastic mean free path
and M5SkF

2/p is the number of transverse channels, w
the Fermi wave vectorkF , and the cross section of the wir
S.3 This was proven rigorously for a matrix ofM chains,
whenM is small, by Andersonet al., Weller et al., and then
by Dorokhov by solution of a Fokker-Planck equation,4 cal-
culating the transmission probability through the wire. In t
limit of a thin wire, where the motion of the electrons
diffusive in all directions on small length scales, the proof
complete localization at zero temperature was given by E
tov and Larkin with a field theoretical method, obtaining
exponential decrease of the density-density correlation fu
tion in space, in the zero-frequency limit. They discovered
addition that the localization length depends on the glo
symmetry of the wire.5,6 The localization length was found t
be given byLc5(1/3)bMl , whereb51,2,4 for orthogonal,
unitary, and symplectic symmetry, which corresponds to
magnetic field, weak magnetic field, and strong spin-o
interaction, respectively.

The density autocorrelation function was recently stud
for the total spectrum as a function of the length of the m
soscopic wire by Altland and Fuchs.7 Because of the com
plexity of the problem, they did not obtain a closed analyti
expression for arbitrary frequency, but succeeded to d
numerical analysis in the unitary regime. Additional info
mation on the level statistics of the wire as a function of
length was found in the metal-insulator-crossover regime

In this paper we argue that in order to study the le
statistics, it is enough to calculate the simpler autocorrela
function of spectral determinants~ASD!. This function con-
PRB 590163-1829/99/59~7!/4799~4!/$15.00
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tains information on the spectrum, but its complexity is r
duced so that it can be calculated analytically more eas
We will show that it provides a useful tool to study localiz
tion and could be used in situations that have been unac
sible to other analytical methods.

The paper is organized as follows. In the first part t
characterization of level statistics by an autocorrelation fu
tion is reviewed, and the ASD is defined. In the second p
the result for the disorder averaged ASD for a quasi-o
dimensional wire in a weak magnetic field is presented a
discussed for various regimes in the frequency-length pla
Information on the metal-insulator crossover is obtained.
conclude with a discussion of the results and the potentia
the ASD as a tool to study Anderson localization.

II. LEVEL STATISTICS AS CHARACTERIZED BY AN
AUTOCORRELATION FUNCTION

The crossover from a metal to an insulator in a fin
coherent, disordered metal particle is accompanied b
change in the statistics of the discrete energy levels.6 This
can be studied by calculating a disorder averaged autoco
lation function between two energies at a distancev in the
energy-level spectrum. Then, considering a quasi-o
dimensional disordered metal wire with cross sectionS, a
map as a function of its lengthL and the energyv can be
drawn as in Fig. 1. Here,D51/(nSL) is the total mean leve
spacing with the average density of statesn5mkF /(p2\2)
53n/(2eF). n5N/V is the numberN of electrons per vol-
umeV5SL. eF is the Fermi energy, andm is the electron
mass.Dc51/(nSj) is the local mean level spacing, when th
length of the wireL exceeds its localization lengthj.

The Thouless energyEc5p2\D/L2 is defined through
the diffusion time across the lengthL, tc52p\/Ec when the
diffusion is free, as obtained from the classical diffusi
equation] tn5D]x

2n, wheren is the electron density. The
classical diffusion constantD in three dimensions is relate
to the elastic mean free timet by D5vF

2t/3. g1 is the
energy that limits the universal~ergodic! regime of noninte-
grable ballistic quantum billiards.8,9 Sinceg1 depends on the
exact boundary conditions, it may change as a function oL
in a continuous but nonmonotonous way as indicated in F
4799 ©1999 The American Physical Society
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1. This map has been explored by considering the autoco
lation function of density of states, see Refs. 6 and 7
references therein.

Here we will restrict ourselves to the ASD, as defined

C~v!5
C̄~v!

C̄~0!
, ~1!

where

C̄~v!5^det~E1 1
2 v2H !det~E2 1

2 v2H !&. ~2!

H is the Hamiltonian of the considered system, andE is a
central energy. It contains only information about the sp
trum not on the wave functions of the mesoscopic system

This function was recently obtained for the Wigne
Dyson random matrices~GUE,10 GOE,11 CUE, COE,12 and
crossover11! and successfully used to characterize the sp
trum of nonintegrable quantum systems, such as a S
billiard,11 for energiesv,g1 , where the average over th
energyE had to be done in order to obtain a universal fun
tion.

In the following, it is obtained for free electrons in
random potential in a finite system, which can be used
the study of a disordered mesoscopic metal of which at le
one dimension exceeds the mean free pathl. The ASD can be
calculated analytically and shown to agree with the one
Wigner-Dyson random matrices, when the dimensions of
system do not exceed a localization lengthj. This is ex-
pected, since a disordered metal particle is an example
nonintegrable physical system and should therefore have
same energy level statistics as, for example, the Sinai
liard, for frequencies not exceeding the Thouless energy,
ergodic regime, where a particle has time enough to co
the whole sample uniformly.13

Here we will derive the ASD for the more general cas
when one dimension may exceed the localization lengthj, a
quasi-one-dimensional conductor, of lengthL and cross sec
tion S where the number of transverse channels is m

FIG. 1. The map of the energy-level spectrum of a quasi-o
dimensional conductor as a function of its lengthL and character-
ized by an autocorrelation function at two points of the spectrum
distancev away from each other.
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larger than one,M5SkF
2/p@1, in order to find out if this

relatively simple function does contain information about t
metal-insulator crossover.

III. FROM QUANTUM CHAOS TO LOCALIZATION:
THE FREQUENCY-LENGTH PLANE

The Hamiltonian is given by

H5~p2q/cA!2/~2m!1V~x!, ~3!

whereq is the electron charge,c the velocity of light, andA
the vector potential due to an external magnetic fieldB.V(x)
is a Gaussian distributed random function,

^V~x!&50,̂ V~x!V~x8!&5
D

t

d~x2x8!

2pSL
, ~4!

which models randomly distributed, uncorrelated impurit
in the wire.

The ASD can be calulated for such a Hamiltonian as
function of the length of the wireL and energy differencev.
The unitary limit is considered, where the magnetic fl
through the wire,f, exceedsAL/jf0 .

The ASD can be written in terms of Grassmannian fun
tional integrals. This allows us to perform the impurity ave
aging as a Gaussian integral. The resulting interacting the
of Grassman fields can be decoupled by a transformat
introducing a functional integral over a 232-matrixQ. Next,
the Grassmann fields can be integrated out. The integral
Q can be simplified forv,1/t to an integral over gaples
fluctuations around the saddle point, which have the ac
of an O~3! nonlinears model

F@Q#5
p

4E dx

SLFg TrS ¹

p/L
QD 2

1 i
v

D
Tr LQG , ~5!

with the nonlinear constraintQ251. Hereg5Ec /D5j/L,
which has the physical meaning of the dimensionless c
ductanceg5G/(e2/h) of the wire, as long as the Einstei
relation to the diffusion constant D holds, G
5(p/4)e2n(S/L)D. The derivation is given in Ref. 14. A
nonlinears model for disordered electron systems had be
derived in Ref. 15 forN replicas using a functional integra
over conventional numbers, in Ref. 16 for Grassmann v
ables, and then for superfields.6

Choosing a representation of the matrixQ, the integrals
can be performed by means of the transfer-matrix meth
Thus, the problem can be reduced to the solution of
equation,14

2Lg
d

dz
Pz~l!5Ĥ@l#Pz~l!, ~6!

with the boundary conditionPL(l)51. Here21,l,1,0
,z,L, and the Hamilton operator is

Ĥ@l#52 ipg
v

D
l1

p

2
]l~12l2!]l . ~7!

The ASD is then given by

-
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C~v!5
1

2E21

1

dlP0~l!. ~8!

While we did not succeed to find an exact analytical solut
of this initial value problem, the function

Px~l!5 expS i
v

D
glH expFpS x

L
21D Y gG21J D

3expFp

2 S v

D D 2

g2E
1/g

x/~Lg!

ds$exp@p~s21/g!#21%2G
~9!

is a good approximation whenv2,D2g, for arbitraryg, and
becomes exact forg→0 whenv2.D2/g.

Thus, the ASD is obtained as

C~v!5
sin~Agpv/D!

Agpv/D
expF2BgS v

D D 2G , ~10!

with

Ag5
g

pFexpS 2
p

g D21G ~11!

and

Bg5
g2

4 F2 expS 2
2p

g D14 expS 2
p

g D231
2p

g G . ~12!

Figure 2 shows a plot of the ASD as a function of t
scaled frequencyx and the scaled lengtht5L/j51/g. A
clear damping of the amplitude of oscillations accompan
by a shift of their phase is seen.

This shows that there is an effect of localization on le
correlations. At smallerg, the oscillations are damped mo
strongly, and the envelope approaches a Gaussian deca
function.

To see this in more detail, let us consider approximatio
of Eq. ~10! in various regimes of interest.

~1! In the metallic regimeg.1 for x!g we obtain

FIG. 2. The ASD as a function of scaled frequencyx5v/D and
the parametert51/g5L/j.
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C~x!5
sin~px!

px
expS 2

p3

6

1

g
x2D , ~13!

where x5v/D, which for g→` reduces to the result ob
tained with the unitary Wigner-Dyson ensemble of rando
matrices.11

~2! In the strongly localized regimeg!1, one obtains

C~v!5
sin~gx!

gx
expS 2

g

2
px2D . ~14!

Rescalingx̃5(g/p)v/D5(1/p)v/Dc , we note the similar-
ity to Eq. ~13!.

This result shows clearly that the correlations betwe
energy levels belonging to states that are spatially separ
by more than the localization lengthj are weak. As a result
the ASD shows only correlations with the period of twice t
effective local energy level spacingpDc of energy levels
whose wave functions overlap spatially.

As g→0 the function is dominated by the Gaussian fa
tor. Thus,C(v)50 exactly asg→0, andv2.D2/g.

In Fig. 3 a plot of

F~ t !5C~Dc!5
sin@exp~2pt !21#

exp~2pt !21

3exp$2 1
4 @2exp~22pt !

14exp~2pt !2312pt#% ~15!

is shown, wheret51/g5L/j. The ASD is decaying from
one to zero as the frequency is held constant atv5Dc and
one varies the length of the wireL or the parametert in Fig.
3, compare with Fig. 1.

IV. DISCUSSION

In summary, the ASD is established as a tool to study
level statistics of disordered metals. An analytical express
is obtained for the ASD of a quasi-one-dimensional dis
dered mesoscopic wire. At frequencies below the mean le
spacingD the ASD approaches one like a Gaussian for a
value of the conductanceg, and there is no information on
localization in this regime. This was pointed out by Efeto6

when studying the weakening of level repulsion by localiz
tion. It was stressed there that the noncompact degree

FIG. 3. F(t), as a function of the scaled length of the wiret
51/g5L/j.
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freedom are needed to describe localization that way. He
is shown that the information is rather contained in the la
frequency correlations. The ASD shows a crossover t
strong damping of the correlations as the length of the w
exceeds the localization lengthj, accompanied by the con
vergence of the period of the strongly damped oscillation
the constant 2pDc . Thus, the wire can be thought of a
effectively separated into localization volumes, as obtain
earlier in Refs. 17 and 7.

One may argue that, since the averaging over the impu
potential was done before normalization, the resulting fu
tion might contain different information than the one o
tained by normalizing for a given impurity potential befo
doing the averaging.18 The goal of this paper is, however, t
show that level statistics can be characterized with the s
plest toolC(v).

Now, it might become possible to address problems a
lytically, which could not be solved with the methods know
so far, due to their complexity. While the ASD cannot co
tain any information on the eigenfunctions of the system,
have seen that it contains enough information to characte
the energy-level statistics.
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The functionF(t) may serve as a parameter character
ing localization: it is 1 in the metallic regime and 0 when a
states at all energies are localized. It decays to approxima
1
2 when the length of the wire coincides with the localizatio
lengthL5j.

In addition, recently it has been shown that the ASD c
contain information not only on a metal-insulator crossov
but also on a metal-insulator-transition, as demonstrated w
the Anderson model on a Bethe lattice.14

ACKNOWLEDGMENTS

The author would like to thank Uzy Smilansky for draw
ing his attention to the ASD as a tool to study level statistic
and Thomas Dittrich, Konstantin Efetov, Dietrich Klakow
D. E. Khmel’nitskii, Igor Lerner, Daniel Miller, Vladimir
Prigodin, and Klaus Ziegler for useful discussions, and S
mon Villain-Guillot for critical reading of the manuscript
This work was possible thanks to financial support by Mi
erva and support by the Max Planck Institute of Physics
Complex Systems in Dresden.
-

*Electronic address: ketteman@idefix.mpipks-dresden.mpg.de
1P. W. Anderson, Phys. Rev.109, 1492~1958!.
2N. F. Mott and W. D. Twose, Adv. Phys.10, 107 ~1961!.
3D. J. Thouless, Phys. Rev. Lett.39, 1167~1977!.
4P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fish

Phys. Rev. B22, 3519~1980!; W. Weller, V. N. Prigodin, and
Y. A. Firsov, Phys. Status Solidi B110, 143 ~1982!; N. Dor-
okhov, Pisma Zh. E´ ksp. Teor. Fiz.36, 259 ~1982! @JETP Lett.
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