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Ground-state phase diagram of the one-dimensional dimerizettJ model at quarter filling
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The ground state of the one-dimensional dimerizedmodel at quarter filling is studied by a Lanczos
exact-diagonalization technique on small clusters. We calculate the charge gap, spin gap, binding energy,
Tomonaga-Luttinger-liquid parameter, Drude weight, anomalous flux quantization, etc. We thereby show that
the two types of dimerization, i.e., a dimerization of hopping integral and a dimerization of exchange interac-
tion play a mutually competing role in controlling the ground state of the system and this leads to the
emergence of various phases including the Mott insulating, Tomonaga-Luttinger-liquid, and spin-gap-liquid
phases. The ground-state phase diagram of the model is given on the parameter space of the dimerizations.
[S0163-18299)02507-2

l. INTRODUCTION L o
H=—t, > (c| cj,+H.c)—t, > (C,Cio+H.C)
There are a number of low-dimensional correlated elec- e e
tron systems described by the Hubbard antl models at nin;
guarter-filling. One of the examples is the Bechgaard salts +J1<i2j) (Si'SJ_ 4
(TMTSF),X and (TMTTF),X with X=PF,, CIO,, Br, etc.,
where there are three electrons in the two highest-occupied ~r g ) _
molecular-orbitals of a dimerized molecule, e.g.,Wheré ¢;,=c¢j,(1—n;_,) is the constrained electron-
(TMTTF),, and the system is &t filling in terms of elec- ~Creation operator at siteand spino(=T,|), S is the spin-
trons, which corresponds to the quarter-filling in terms ofz Operator, andy is the electron-number operator; hereafter
holes! In this system, dimerization of the molecules is We refer to the fermionic particle as “electron,” which cor-
known to play an essential role: depending primarily on the'esponds to, e.g., the hole in the organic compounds. We use
strength of dimerization, there appears a variety of electronighe 1D lattice shown in Fig. 1{ij) stands for nearest-
phases, such as antiferromagnetic insulating, paramagnefi¢ighbor bonds with parametetisandJ; and(kl) for those
metallic, and superconducting phaseome theoretical cal- With parameters, (=t;) andJ, (=J;). The model tends
culations of the dimerized Hubbard models have been dont® the usual homogeneotis) model when there is no dimer-
to clarify the nature of this systefir. ization (t,=t, andJ;=J,), a concept that has been the fo-
Another example is the transition-metal oxide N&¢  cus of a considerable amount of reseatit>whereas in the
which is reported to be a quarter-filled ladder system, exhiblimit of strong dimerization, the model represents an assem-
iting a spin-Peierls-like phase transition accompanied by &®ly of isolated dimers. We retain the relations between pa-
charge orderingd®> This system may also be regarded as arameterst and J obtained from perturbation, i.e.J;
dimerized system at quarter filling if we may assume that=4t3/U and J,=4t5/U, in order to reduce the number of
two V ions on each rung of the ladder form a dimer parameters, wher# is the corresponding on-site Hubbard
molecule®® The CuQ chains of PrBaCu;0; are also re- interaction. We thereby keep a relatidp/J,= (t,/t,)%. We
ferred to as a one-dimensiondlD) system around quarter thus have three independent parameters, and if wetake
filling. " Effects of the lattice dimerization on the correlated a unit of energy, we are left with two parameters, for which
electron systems in two dimensions have also been studied ime will take parameters representihgand J dimerization
connection with cuprate superconductivity, where the spin{for which a specific definition is given belgw
gap phenomena abovig have attracted much attention. The
simplest possible model that exhibits a spin gap that can ! !
survive against hole doping may be a dimerizedi model L :
with an alternating exchange interaction, where an enhance- —O—O_H)_O-
ment of the singlet superconducting correlation has been Y by Jy !
suggested. ! '
Motivated by such developments in the field, we study in  FiG. 1. Schematic representation of the 1D dimerized
this paper the 1D dimerizedJ model at quarter filling, of model. The nearest-neighbor bonds have eithendJ; (thin solid
which not very much is known so far. The model we study isline) or t, andJ, (bold ling). The unit cells, each of which contains
defined by the Hamiltonian, two sites, are indicated by dashed lines.
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We employ a Lanczos exact-diagonalization technifue,
which is used to obtain energies of the ground state and a
few low-lying excited states. We denote the number of lat-
tice sites byNg and the numbers of up- and down-spin elec-
trons byN; and N, respectively. The electron density is
then given byn=(N;+N)/Ng, so thatn=1 represents the
half-filled system. Here we restrict ourselves to the case of
n=1/2, i.e., quarter-filling. We use the finite-size systems of
sizes 4, 6, and 8 unit cell®r 8, 12, and 16 sites, respec-
tively). In order to achieve a systematic convergence to the
thermodynamic limit, we choose periodic boundary condi-
tion for N;+N,=4m+2 and antiperiodic boundary condi-
tion for N;+N,=4m wherem s an integer.

We will examine the ground-state properties by calculat-
ing the charge gap, spin gap, Luttinger liquid parameters,
anomalous flux quantization, etc., as a function of the dimer-
ization strength. We will thereby show that the competition
between the two types of dimerization leads to various . 1
ground-state phases such as a Mott insulating phase, Dlty
Tomonaga-Luttinger-liquid phase, spin-gap-liquid phase, etc.
The ground-state phase diagram of the model is thereb%r
given.

This paper is organized as follows: In Sec. Il, we presen
the calculated charge and spin gaps and clarify the mech
nism of the insulator-metdbr superconductgitransition. In

FIG. 2. (a) Charge gap\./t, as a function ofd,/t,. (b) Per-
bation estimate of the charge gap compared with exact-
tdiagonalization data.

iiubbard-like interaction of the dimer. The value Ofjmer
Sec. lll, we calculate the Tomonaga-Luttinger-liquid proper—Can be ei'ther positive or negative depending on yvhether the
ties of the model and also discuss a possibility of singlei}""‘lue"‘]/t is smaller or larger than 2. The competing effects

superconductivity. In Sec. IV we present a phase diagram (?f the two types of dimerization may thus be explained in the

the system by summarizing the results given in Secs. Il an mit of strong dimerization. Now let us examine vv_heth_er t_he
IV. Conclusions are given in Sec. V competition between the effects of two types of dimerization

in the 1D system can lead to the insulator-métal super-
conductoy transition. For this purpose we calculate the
charge gap, spin gap, and binding energy.

In this section, we calculate the charge gap, spin gap, and
binding energy of the model, and discuss the mechanism of A. Charge gap
insulator-metalor superconductorransition of the system.
First let us introduce two parameters for dimerization; i.e.,

II. INSULATOR-METAL TRANSITION

The charge gap may be defined by

glse strength of dimerization in the hopping integral defined Ac:%{[EO(NT+ IN)—Eo(N;,N))]
—[Eo(N;,N)—Eo(N;=1N )]}, 4
'fd:tz_tl 2 whereEy(N;,N,) is the ground-state energy of the system

th with N, up-spin andN, down-spin electrons. This expres-
which we callt dimerization, and the strength of dimeriza- sion is evaluated for clusters of sizes of 8, 12, and 16 sites;

tion in the exchange interaction defined as throughout the paper we use a linear extrapolation of the
calculated data for these clusters with respect b, 1th or-

~ Ja—J der to estimate the value at the infinite system size. It is not

Ja= t, 3 quite sufficient as a finite-size analysis to use only three dif-

. o ferent system sizes, but because all the data presented behave
which we callJ dimerization. We also taka, /t, as a mea-  fajrly monotonically as the system size changes and also be-
sure of the strength aof dimerization because if we kedg  cause the proposed physical picture is intuitively quite clear
constant &0) thenJ,/t,>J4. These are the key parameters as explained above, we expect that the extrapolated results
that control the electronic state of the system;ttdeneriza- should correctly reflect the true thermodynamic limit at least
tion has the effect leading to the repulsive interaction amonglualitatively. Employing a more sophisticated scaling for-
electrons that act when different spins come in a singlénula, using data for larger size systems, will be required to
dimer, and theJ dimerization has the effect promoting the obtain more convincing results; however, this will be left for
spin-singlet formation between spins coming in a singlefuture work. The purpose of this paper is to examine and
dimer. These effects manifest themselves in the electronipresent the overall behavior of our model, of which even a
state of an isolated-J dimer with an electron. The single- rough feature is not known so far.
particle gap of the dimer is given &$ym,e=2t—J, Wheret The calculated results fak; as a function of the andJ
andJ are the hopping and exchange parameters of the singimerizations(i.e., t4 and J,/t,) are shown in Fig. @),
bond, and thusUgy.., may be regarded as the effective where we note some unphysical small negative values, which
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are due to the errors of the finite-size scaling. Let us first see
the case where there is no dimerization t, and J;
=J,), i.e., the homogeneous-d model. A number of
studie$®~*3 have shown that there is no charge ghgit,

=0 in the entire region ofl,/t, (except in the region of
phase separationOur result is consistent with this. In case
where there is dimerization, the charge gap opens as seen in
Fig. 2(@). At J,/t,—0 the system is equivalent to the 1D
dimerized Hubbard model &t— o, so that the dimerization
gap of the sizeAp=2(t,—t,) opens at the Brillouin zone
boundary, which is the charge gap. In other words, the sepa- FIG. 3. Spin gap\¢/t, as a function ofl, /t,.

ration between the lowest unoccupi¢antibonding band

and the highest completely occupigabnding band is given  which the spin gap opens. We find that the spin gap remains
by Ap. In the real-space picture, there is one electron pefinite in the region betweerd,/t,=(J,/t,)S"*% and the
dimer, i.e., the number of electrons is equal to the number dfargerJ,/t, value at which the phase separation occurs. We
dimers, and by regarding the dimer as a site one may have &fjso find that with increasingfy, the critical strength
effective half-filled band with the effective Coulomb repul- (letz)ipin becomes smaller and at the same tithgt, in-

sion of Ugs=Ap. We thus have a Mott insulator due 10 reases. This means that the spin gap is enhanced by increas-

dimerization. o , ing thet dimerization.
With increasingd dimerizationJ, /t,, we find thatA./t, We note that the relatiomgltz)spi”>(J2/tz)Cha'gealwayS
decreases and becomes zero at a vale,=(J,/t,)"%% F y

charde . holds. This suggests that there exist two types of metallic
where the gap closesJ{/t,)¢" % represents the critical regions in the model; one is the phase where there are both
;trength of] dimeriz_ation at which a t.ransition from insulqt- gapless spin and gapless charge modes, and the other is the
ing phase to metallitor superconductingohase occurs. This  phase where there is a gap only in the spin excitation, which
may be explained as follows: In the insulating phasegre the so-called Tomonaga-Lutting@L.) liquid region and
(Ac/t;>0), the effective repulsioll ¢ is given by the dif-  spin-gap liquid region, respectively. We will discuss this fur-
ference between loss of the kinetic energy and gain in thener in Sec. III.
exchange interaction when one brings two electrons into a A simple picture may be given to the case of strahg
dimer, i.e., Uegg=2(t;—t;)—Jz. Thus, with increasing dimerization where the spin-gap formation is ensured. When
Ja2/ty, the measure of the gafdey decreases, and at some an even number of electrons exist, in the lowest-order per-
value of J,/t, the charge gap closes. In the small yrbation oft,/J,, two electrons with opposite spins always
J-dimerization limit, we may use the perturbation theory make a pair on the dimerized bond and gain the singlet for-
with respect toJ,/t, (or J;/t;).° After a straightforward — mation energy 3,/4. The electrons hop only as a pair tun-

calculation we obtain the result for the charge gap: neling through the virtual pair breaking in the forth order of
t,/J, or t,/J,. The effective Hamiltonian is then of the
Ae=2(t,—ty) 1—'”—2(ﬁ+2)|nM (5 form
¢ 2 1 o tl t2 t2_t1 ' ~
Her= —t(s/si+5+ H.0), (7)

In the limit of J,—0 andJ;—0, this expression reduces to
A.=2(t,—t;), which is equal toAp defined above. We where
compare the exact-diagonalization data with this analytical
expression in Fig. ®) where we find a good agreement. T -

With increasingd, /t, further, we find that at soma, /t, S :E(Cncwu_cucwn) ()
value the charge gap starts to increase afsee Fig. 2a)],
at which point the spin gap opens as we will see below. Thiss the singlet Bose operator at sitéeven numberand
is becausé\ . reflects the effect of the singlet binding energy
in the charge-gapless region. " ( ) t2 )tit%

3

T ©

B. Spin gap and binding energy 21

is the effective hopping parameter of the boson. The Hamil-

tonian Eq.(7) may be derived in the same way as the effec-
A=E(N;+ 1N, —1)—Eo(N;,N,). (6) tive Hamiltonian of the attractive Hubbard model in the

s ! . [ strong-coupling limit*®

The calculated results fohs as a function of the and J We also calculate the binding energy defined as

dimerizations are shown in Fig. 3. When there is no dimer-

ization, the results oligained are consistent with a recent re- Ag=[Eo(N;+1N —1)—Eq(N;,N))]

sult for thet-J model:* In a smallJ,/t, limit we haveA

—0 because there is no spin correlation in the system. With ~2AEo(Ny+1N)=Eo(Ny N, (10

increasingJ, /t, with a fixed strength of dimerization, we  which is negative if two electrons minimize their energy by

find that the spin gap opens at sodg't, value, which we  producing a bound state, and indicates a possible supercon-

define as J,/t,)P", the critical strength of dimerization at  ductivity. This value is meaningless unless the system is me-

The spin gap may be defined by
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Thus, in the region wittK ;> 1, the singlet spin correlation
dominates over thekZ-CDW correlation.

The relations between the correlation exporiepand the
low-energy behavior of the model given below are useful for
the evaluation ofK,; first, the parameteK, is obtained
from the charge compressibility and charge velocity ;. as

K,==v¢k. (14

The charge velocity may be determined by
FIG. 4. Binding energy\g/t, as a function ofl, /t,. N
| e ve=5_(Exs-0~Eo). (15
tallic or J,/t,>(J,/t,)"9% In Fig. 4, we show calculated

results forAg as a function of),/t,, where we findAg  whereE; s_ is the energy of the lowest charge mddeea-
~0 for all values of Tg>0 until J,/t,=(J,/t,)®" is  Sured from the ground-state enerfy) at a neighboring
reached, and at this critical poifts starts to decrease sud- POINt. The inverse compressibility is given by

denly. This means that a bound state of two holes is formed 2

. ; ; ) - 1 1 9°Eq

in the entire region of the spin-gap phase and the binding =

energy is enhanced ds/t, is increased. We also note that at n’c Ns gn

constantl, /t, the value ofAg increases with increasing of 2

14; i.e., the singlet binding energy is enhanced by the =N—{[EO(NT+1,NL+1)—EO(NT,Nl)]
dimerization. s

—[Eo(N; ,N))—Eo(N;=1N, -1} 1. (16

The parameteK, is also related to the Drude weigbt the
i _ . . weight of the zero-frequency peak in the optical conductivity
It is well known that the 1D interacting fermion systems o, , and may be obtained by considering the curvature of the

may be related to the Fermi-gas model in the continuumyround-state energy level as a function of the threaded
limit, where there are two different regimes, the Tomonagaf|yx:19-22

Luttinger (TL) regime and Luther-EmeryLE) regime. As

for liquid phases, the essential difference between the two Ng 9%(Eop)

lies in the spin degrees of freedom; the TL liquid region is DZZUCKPZE aPp2
characterized by the liquid phase with both a gapless spin

mode and a gapless charge mode, whereas in the LE-liquigquations(14)—(17) provide us with independent conditions

region the charge degrees of freedom is described by the TN K, , v¢, andD, which can be used to_evaluat_e the TL-

liquid but the spin degrees of freedom have a gapich we  liquid parameter and to check the consistency in the TL-
call the spin-gap liquid region hereAccording to the TL  liquid relations.

liquid theory'®~*® various combinations of the parameters
K, and K, describe the critical exponents of correlation
functions of the system. In the absence of magnetic field, the The calculated results for the TL-liquid parameigy are
dimerizedt-J model is isotropic in spin space, so thé;  shown in Fig. %a) as a function ofl, /t, for various strength

lll. LUTTINGER-LIQUID BEHAVIOR

17

A. Tomonaga-Luttinger-liquid parameter

=1 holds, and we are left with the only parameley. of t dimerization where the 8-, 12-, 16-site clusters are used
In the TL region, the spin and charge correlation functionsalthough the cluster-size dependence<gfis small.
show a power-law dependence as A limiting case ofJ,/t,—0 may be considered first. The
_ ground state can be obtained by using the first-order degen-
(SFSE, )~ e2ke Kyt Ko (11)  erate perturbation theory aroudg=J,=0, where the wave
function is the same as that in th#&t—c dimerized Hub-
and bard model, i.e., a product of the state of spinless fermions

i i describing the charge degrees of freedom localized at each
— @liker e K +K 4ikgr /4K A . .

(Ninj ()~ @7KFA/r ™ R e /r ™, (120 gimer and the state describing the spin system. The
respectively. We see that, fir, <1, 2ke-SDW or X-CDW  2Kke-SDW correlation is dominant here: there is no chance
(where SDW is spin-densit§ wave and CDW is charge-for superconductivity. Note that even if the additional three-

density wavg are enhanced and diverged, whereasHKgr site terms are present, which are obtained through the
>1, pairing fluctuations dominate. In the spin-gap liquid re-Schrieffer-Wolff transformation to derive the dimerized

gion, on the other hand, the spin gap opens and th&0del from the dimerized Hubbard model, they do not bring
2k-SDW correlation decays exponentially. Because theédny change in the wave function in the first-order perturba-
contribution from spin excitations vanishes, the critical ex-tion. Consequently, the dimerizesJ model in theJ/t;
ponent of X-CDW also changes and the asymptotic form is—0 limit for any t4 values gives us the value &f,=1/2.
given by We note, however, that & /t,=0 with a finitet dimeriza-
tion, the charge gap is positive,/t,>0 and the system is a
(nini ) ~e? ke rkp, (13 Mott insulator.
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I . L] 0 ) I

(a) J2/t2 3 0 Jz/tz 2 3
[x1072 FIG. 6. Drude weighD as a function ofl, /t.
—TZ] 4T .
3.0 2.0 1T . .
o o 12 =hc/e. The functionEy(®) (or the Drude weight and super-
2.5 / 10 fluid density also yields information on the phenomenon of
5ol 0.80——=] 2 Y 5=025 anomalous flux quantization; one may simply include the
R -‘2*- R0 ] effect of a constant vector potential along the ring by the
~1st / 1 ‘-l PN gauge transformation
1ot 0.60 I . o ap At i
r of | ng_wjgeuqi, Cja—>Cer_”¢ (18)
0.5 A =025
it =20 where
00008 06 04 02 000 \/1 R
oy T Tees T r 27 @ 19
¢_ Ns (I)O. ( )

FIG. 5. (@) TL-liquid parametelK , as a function ofl,/t,. (b)
Contour map forK, on the ¢,/t,,J,/t;) plane where the dotted The existence of minima at intervals of half a flux quantum,
line is the boundary between the finite spin-gap and gapless regionghich is the anomalous flux quantization, clearly indicates
(left pane) and distance dependence of the charge and spin cor-the existence of pairing in the thermodynamic limit if the
relation functions where dotted lines are from E¢kl) and (12) minimum at¢= 7 decreases with increasing the system size.
(right pane). In Fig. 7, we show the calculated results for the flux quanti-

zation for various parameter values in the 8-, 12-, and 16-site

With increasing, /t,, at anyt,, K, increases, and in the clusters to see the system-size dependence. We find that for

intermediate strength of,/t, (and for a rather smalfy), t4=0 (i.e., the uniform-J mode), the anomalous flux quan-
there appears the region wik),> 1 where the superconduct- tization is not observed, but it occurs in the region where the
ing correlation is the most dominant. In tleology, this  binding energy is negative. At any strengthtafimerization
means the region af,<0 is effectively realized due to the we find that the anomalous flux quantization occurs for ap-
attraction interaction caused by tlalimerization. propriate strength of dimerization.

In Fig. 5b), we show the contour map fd, on the In order to check the consistency of the TL-liquid rela-
parameter spacetq(/t,,J,/t,) where the contour lines are tions, we compare the charge velocity obtained by two inde-
drawn by using a spline interpolation. We find that, for apendent methods: one is from E45), and the other is from
fixedJ,/t,, K, decreases axdimerization increases. But as the relation
shown above the spin gap are enhanced by the increase of
dimerization, so that the phase with bat>0 andK ,>1 is _ D

: X . ve=\— (20
realized in a reasonably wide range of the parameter values. TK
We thus confirm that the singlet superconducting phase in-
deed exists. We also find that the calculated spin and char
correlation functions fit very well with Eqg11) and(12) as
seen in Fig. ).

rived from Egs(14) and(17). The result is shown in Fig.
, where we find that the reasonable consistency is indeed
achieved.

. . IV. PHASE DIAGRAM
B. Drude weight and flux quantization

The calculated results for the Drude weight defined in Eq. BY summarizing the result; for a number of quantities
(17) are shown in Fig. 6. We find that, asdimerization obtained in the previous sections, we now draw the phase

increases, the dependencedn J,/t, becomes stronger, diagram of the 1D dimerizett model at quarter-filling on
and in the strongt-dimerization limit, D approaches the the paramgter space ofand J dimerizations. The result is
value 0 around the phase-separation point. The numeric&oWn in Fig. 9. L
technique used here is to thread the cluster ring with adlux . When the value o0,/t, (or Fhe strength of d'me”zf""

and study the functional form of the ground-state energyiOM IS Very large, the system is phase-separated, which oc-
with respect to the threaded fluEy(®). In general Eo(®)  curs around,/t,=3 whent;—0 and extends to the lardg
consists of a series of parabola, corresponding to the curvéggion. The critical strength af,/t, is almost independent

of the individual many-body state&,(®). This envelope of t4. The phase separated region is determined by the con-
exhibits a periodicity of 1 in units of the flux quantudn,  dition x<0. Whent dimerization is dominant ovel dimer-
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FIG. 7. Energy differenc&y(¢) — Ey(0) as a function of an external fluk for various parameter values. The results for the 8-, 12-, and
16-site clusters are shown to confirm the minimum structuré-atr develops with increasing system size.

ization, we find that the system becomes a Mott insulatoryery rough features are known so far. We should, however,
where the phase boundary is determined from the calculateabte that the phase boundary are determined from small-
values of the charge gap. On the other hand, whdimer-  cluster data for a very limited number of system sizes, i.e., 8,
ization is dominant ovet dimerization, the system becomes 12, and 16 sites with a simple extrapolation to the infinite
metallic or superconducting. We note that there always apsystem, which should therefore be seen with some caution
pears the region of the TL-liquid phase between the region oélthough we believe that the result is valid at least qualita-
the Mott insulating phase and the region of the spin-gapively. A more sophisticated method such as the
liquid phase. The phase boundary between the TL-liquid andenormalization-group analysis developed successfully in
spin-gap-liquid regions is determined from the calculatedRef. 13 for obtaining the phase diagram of the 1D homoge-
values of the spin gap although whether the spin-gap regioneoust-J model would be useful to provide more convincing
exists in the homogeneotis] model at quarter filling is not arguments on the phase diagram of the present dimetided
clear from our exact-diagonalization dafaln the limit of ~ model. We hope that our work presented in this paper will

strongt dimerization(i.e., t4— ), the model represents an Promote such a study in the near future.

assembly of isolated dimers and the system is an insulator in As for a possible correspondence of the phase diagram

the entire region o8, /t, unless the phase separation occursWith experiment, we may refer to a Bechgaard salt
We have thus established the overall phase diagram of thefMTTF),X where the dimerization strength ¢f=0.1 is

dimerizedt-J model at quarter-filling, of which not even reported and the Mott-insulator to metal transition induced
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FIG. 8. Charge velocity. as a function ofl,/t,. The solid
lines with symbols represent the value estimated from(Eg). and
the dashed lines with symbols represent the value estimated from
Eq. (20).

by pressure has been observéd: We could argue that our FIG. 9. Phase diagram of the 1D dimerized model at quarter

phase diagram includes this phase transition ardyaed.1  filling on the parameter space bandJ dimerizations. Dotted line
andJ,/t,=0.3, provided that the organic system can be deseparates the spin-gap-liquid region from the TL-liquid region. The
scribed by the dimerizettJ model with a reasonable range contour of constaniy is also shown by dashed lines.

of the parameter value't. ) o o )

We have also examined the phase diagram of the 2rpromoting the spin-singlet formation in a dimer. The result-
dimerizedt-J model at quarter-filling® and found that the N9 noticeable _f(_eatures we have o_btalned_are 'ghe following:
phase boundary between the Mott insulating phase and tH&) The competition betweenandJ dimerizations induce the
liquid phase has quite similar parameter dependence. Thigetal-insulator transitionii) There always appears the re-
suggests that, irrespective of the spatial dimensions, the sar@n of the TL-liquid phase between the region of Mott in-
mechanism discussed in Sec. IIA operates in the presestating phase and the region of the spin-gap-liquid phase.
insulator-metalor insulator-superconductatransition in the (i) _The spin gap _and _smglet binding energy are (_anhanced by
quarter-filled dimerized-J model. The main difference be- the increase of dimerizations. We have summarized the cal-
tween the 1D and 2D systems is that in 1D the transitiorfulated results as the phase diagram in the parameter space

from the Mott insulator is to the TL-liquid region whereas in Of dimerizations. ,
2D it is to the singlet superconducting region. Finally we would emphasize that the correlated electron

systems atand arounyl quarter-filling indeed exhibit inter-
esting properties as we have seen and further studies should
V. CONCLUSION be pursued in other quarter-filled systems from both theoret-
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