
PHYSICAL REVIEW B 15 FEBRUARY 1999-IVOLUME 59, NUMBER 7
Magnetic anisotropy in density-functional theory
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Magnetic anisotropy is discussed in the context of density-functional theory. A formula for the magnetic
torque is derived. This formula includes the effects of the spin part of the exchange-correlation energy. All
relativistic effects are taken into account, but assumptions are made for the direction of the spin magnetic
moment. The nature of the torque is analyzed by expanding the formula in terms of inverse powers of the speed
of light. This analysis shows how to include the effects of the spin-dependent part of the exchange-correlation
potential together with the spin-orbit coupling. We find that extra terms exist in addition to the standard
spin-orbit coupling.@S0163-1829~99!14803-3#
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I. INTRODUCTION

Numerical calculations of the magnetic anisotropy ene
are not easy. Early calculations show varying results due
lack of convergence of the Brillouin-zone integrations. W
the availability of fast computers and large disks this limi
tion has been eliminated. If these calculations are nowad
performed with sufficient care, numericalprecision should
not be an issue.

Density-functional theory1 is the basis for all currentab
initio work to calculate the magnetic anisotropy energy. T
origin of the magnetic anisotropy energy is a relativistic ph
nomenon: spin-orbit coupling.2 There are many ways spin
orbit coupling can be introduced into density-functional c
culations. Typically, several approximations are made in
procedure, and often these approximations are not well
plained. This leads to questions pertaining to theaccuracyof
the results.

In order to calculate the magnetic anisotropy energy
has to solve the fully relativistic Dirac equation for two di
ferent directions of the magnetic field, and compare the v
ues of the total energy. Such a procedure is demanding f
a numerical perspective, since it involves subtracting la
numbers to obtain the small value of the magnetic anisotr
energy. Therefore, this procedure is often approximated
using second-order perturbation theory for the change in
ergy and/or by using the Pauli equation, which includes sp
orbit coupling in second-order in an expansion in terms
the inverse speed of light. It is not clear how these appro
mations affect the accuracy of the results, especially for
bic materials where second order effects cancel due to
high symmetry.

In this paper we systematically derive how one can c
culate the magnetic anisotropy energy in density-functio
theory. We have discussed the basic theory behind the
culation of magnetic anisotropy before.3 In this paper we use
the general theory to derive an expression for the magn
torque. We restrict ourselves to a discussion of spin-o
coupling as a part of the Dirac equation. A discussion
relativistic effects in and other corrections to the exchan
correlation potential used in the calculations~local-density
approximation1! is outside the scope of this paper.
PRB 590163-1829/99/59~7!/4699~9!/$15.00
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II. DENSITY-FUNCTIONAL THEORY

The problem we consider is the calculation of the to
energy of a system of electrons in the presence of an exte
Coulomb potential~provided by the nuclei! and an external
magnetic field. Although for our discussions it is sufficient
consider a uniform external magnetic field only, we will sta
with the general case. The interaction with the external fie
is of the form

Li5e:c̄~x!gmc~x!Am
ext~x!:,

which couples the external fields to the conserved fo
current

J m~x!52ce:c̄~x!gmc~x!:.

For details and the necessary field theory background
refer to Refs. 4 and 5. An overview of density funtion
aspects of relativistic field theories was given in Ref. 6. T
last paper also has many useful references to older w
Once we know the interaction with the external world we c
construct a density-functional theory based on the c
strained minimization of Levy7 and Lieb.8 Note that this ap-
proach is different from Ref. 6. There are formal problem
due to renormalization and gauge invariance. For the purp
of this paper these effects are much easier to treat in
constrained minimization approach. These problems hav
be treated correctly, of course, when we need to calculate
exchange and correlation energy itself. There are quest
about the existence of the minimum in the constrained m
mization. We avoid that question, however, since we use
fact that the interacting system has a ground state. There
we do not need to address these problems in the cur
paper.

The result is that we are able to find the total energy of
ground state of this system by minimizing the function
E@r(rW), jW(rW)# of the charge densityr(rW) and the current den
sity jW(rW). This functional is given by

E@r~rW !, jW~rW !#5Tni@r~rW !, jW~rW !#1UH@r~rW !#1Exc@r~rW !, jW~rW !#

1E vext~rW !r~rW !d3r 2
1

cE AW ext~rW !• jW~rW !d3r ,
4699 ©1999 The American Physical Society
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4700 PRB 59H. J. F. JANSEN
whereTni is the kinetic energy of a system of noninteracti
electrons with the given charge and current density,UH is
the classical Coulomb energy of the charge density, andExc
is the correction term needed to make this a true equa
We will not address the question how to calculate this te
which commonly but erroneously is called exchang
correlation energy. The last two terms are the interact
with the external fields.

One important question is which charge and current d
sities are allowed in this expression. The answer is e
Once we have stated the set of many-body state vectors
for minimization of the total energy, the allowed charge de
sity and current density are simply in a set derived from
master set of these state vectors. It is clear that we h
r(rW)>0 and¹W • jW50. The last equality is due to the fact th
we only consider time-independent external potentials.
course we could minimize over time-dependent charge d
sities, but we know that the ground-state density is time
dependent. Therefore, we restrict ourselves to tim
independent densities only.

In our previous paper,3 we investigated the effects of rela
tivistic corrections to the Coulomb interaction. By includin
the electromagnetic fields due to the electrons in quant
form, one observes that the electron-electron interactio
modified: in addition to the normal 1/r interaction we need
to include the Breit interaction, which leads directly to
magnetic dipole-dipole interaction and causes the shape
isotropy. This will also affect the crystalline anisotropy, b
in many cases the effects are small.

III. MAGNETIC ANISOTROPY

According to Chikazumi9 magnetic anisotropy means th
dependence of the internal energy on the direction of
spontaneous magnetization. A large contribution to this
ergy is due to the shape of the sample, as discussed in
same book. Here we are interested only in the interactio
the direction of the magnetization with the crystalline geo
etry.

Measuring the magnetic anisotropy energy is not with
problems. The only way to change the direction of the m
netization is to apply an external field and to rotate the fi
with respect to the crystalline axes. The field should
strong enough that the magnetization is fully saturated. T
does lead, however, to a field dependence of the energy,
one should extrapolate to zero field. This might not be ea
On the other hand, the situation is simple in a theoret
discussion. We force the magnetization density to hav
particular directionM̂0 and calculateEgs(M̂0) with zero ex-
ternal field.

According to the standard treatment in electr
magnetism,10 the current density can be separated in a f
density and a magnetic density. Since we have zero exte
field there is no free current. The magnetic current has z
divergence and hence we can write

jW~rW !5c¹W 3MW ,

which defines the magnetization densityMW . The term de-
scribing the interaction with the external field is now simp
y.
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2E d3r BW ext~rW !•MW ~rW !

where we assume that the sample is finite. Without this
sumption it would be hard to define an external field.

The definition ofMW is not unique. We can always add th
gradient of a scalar field¹W g(rW) to obtain the same curren
density. This does not change the interaction energy, thou
Since¹W •BW ext50, and since the sample is finite, the integr

E d3r BW ext~rW !•¹W g~rW !

is equal to a surface integral at infinity and hence is zero
The direction of the magnetization is given by the dire

tion of

MW 05E d3r MW ~rW !

We make the reasonable assumption that the magnetiza
density decays to zero outside the sample. In that case
fact that the magnetization density is not unique does
alter the overall magnetizationMW 0 , and the problem of find-
ing the magnetic anisotropy energy is well defined.

We are now able to specify the magnetic anisotropy
ergy in density functional theory. By definition we have

Egs~M̂0!5 min
R~M̂0!

HTni@r~rW !,MW ~rW !#1UH@r~rW !#

1Exc@r~rW !,MW ~rW !#1E vext~rW !r~rW !d3r J ,

where the minimization is carried out over all charge den
ties, and all magnetization densities compatible w
*d3r MW (rW) parallel toM̂0 .

IV. LOCAL-SPIN-DENSITY APPROXIMATION

The exact form of the exchange-correlation functional
not known. Most calculations are performed using the loc
spin-density approximation~LSDA!. In this approximation
we use the exact energy density for a homogeneous elec
gas,ehom(r,s), with electron densityr and spin densitys to
approximate the exchange-correlation energy by

Exc
LSDA5E d3r ehom„r~rW !,s~rW !….

The spin density is defined as the expectation value of
operator

SW~rW !5:c†~rW !
1

2
SW c~rW !:.

The matrixSW is very simple in the Pauli-Dirac represent
tion: 13sW . The magnetization density due to the spins
given by

MW spin~rW !522mBsW~rW !.
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Even though the local-spin-density approximation is quit
severe approximation, it is remarkable how well calcula
results describe experimental data for transition metals.
rare-earth materials the situation is not very good, howe

The definition of the magnetic anisotropy energy in t
local-spin-density approximation is simple. We have sho
before3 that the leading terms in the magnetization dens
are due to spin and orbital angular momentum. Since in
local-spin-density approximation the exchange-correlat
energy only depends on the spin density, we have to trea
spin density separately. One solution is to find the functio
that relates the ground-state spin and orbital densities. Th
hard. The other approach is to vary the spin and orbital~or
total! magnetization densities separately. This leads to
following form:

Egs~M̂0!5 min
R8~M̂0!

HTni8 @r~rW !,MW orb~rW !,MW spin~rW !#1UH@r~rW !#

1Exc@r~rW !,s~rW !#1E vext~rW !r~rW !d3r J ,

where the noninteracting kinetic energy is now the grou
state kinetic energy of a system on noninteracting electr
with a given charge, spin, and orbital moment density.

We see that in the local-spin-density approximation
orbital magnetization is only present in the noninteract
kinetic energy. Therefore, we can perform the minimizat
over the orbital moments and redefine the noninteracting
netic energy as the kinetic energy of a system of nonin
acting electrons with spin densitysW(rW) and direction of the
total magnetization alongM̂0 . Hence we have

Egs~M̂0!5 min
R~M̂0!

HTni@r~rW !,sW~rW !,M̂0#1UH@r~rW !#

1Exc@r~rW !,s~rW !#1E vext~rW !r~rW !d3r J ,

where the notation is similar to the one we used before.
We see that in the local-spin-density approximation

energy dependence on the direction of the magnetizatio
completely within the noninteracting kinetic energy. This
clearly incorrect. In rare-earth materials exchange effe
lead to the formation of orbital moments, and obviously t
exchange-correlation energy must depend on the directio
the magnetization. Hund’s second rule is a direct con
quence of this dependence. In transition metals where
orbital angular momentum is almost quenched, one has s
hope that this approximation is not too severe.Ab initio cal-
culations of the magnetic anisotropy energy, however, fai
reproduce the experimentally observed easy axis in nic
Most likely, the reason for this is the neglect of the effe
leading to Hund’s second rule, although it is possible t
other commonly made approximations are the cause. Th
approximations are discussed in the following sections.

V. NONINTERACTING KINETIC ENERGY, SPIN ONLY

In many transition metals the orbital moment is sma
typically a few percent of the total moment. In such a cas
a
d
or
r.

n
y
e
n
he
l
is

e

-
ns

e
g

i-
r-

e
is

ts
e
of
e-
he

e

o
l.

s
t
se

,
it

is reasonable to approximate the direction of the total m
netization by the direction of the spin magnetization. Th
will only lead to small corrections in the magnetic anisotro
energy. Note that when we need to study rare-earth mate
this correction becomes large, and in that case we need to
the correct definition of the direction of the total magnetiz
tion density. ReplacingM̂0 by the direction of the spin mag
netic moment enables us to simplify the calculations. T
approximation is used in all density-functional calculatio
of the magnetic anisotropy energy. It ignores the fact that
total magnetization and the spin magnetization do not h
to be parallel.

Our aim is to calculate the noninteracting kinetic energ
This energy follows from

Tni@r~rW !,sW~rW !#5min
Tc

^Cu E d3r H0~rW !uC&,

where the Hamiltonian is defined by

H0~rW !5:c†~rW !F\c

i
aW •¹W 1bmc2Gc~rW !:.

The minimization is over all state vectors corresponding
the charge and spin densities which are specified. The di
tion M̂0 now follows directly from the integral of the spin
density.

We need to solve the Dirac equation

F\c

i
aW •¹W 1bmc22eve f f~rW !1mBBW e f f~rW !•SW Gc~rW !5ec~rW !,

The effective potential is related to the charge and spin d
sity by

ve f f~rW !5
dUH

dr
1

dExc

dr
1vext~rW !,

and the effective magnetic induction follows from

BW e f f~rW !51
1

2mB

dExc

dsW
1BW ext~rW !.

In the local-spin-density approximation the exchang
correlation energy only depends on the magnitude of
spin, and we have

BW e f f
LSDA~rW !51

1

2mB

dExc
LSDA

ds
ŝ~rW !1BW ext~rW !.

In the local-spin-density approximation all we need to kno
about the system is the local-spin density. Since the lo
spin-density approximation is based on the homogene
electron gas there is no information about the direction. T
natural connection between the exchange-correlation po
tial and the effective magnetic field is given by the previo
formula. The local direction of the effective magnetic field
parallel to the spin direction. This is used in calculations
noncolinear magnetism.

At this point, however, we are still in the same situati
as the experimentalists. The only way to point the spin m
netization in a certain direction is when we apply a fie
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4702 PRB 59H. J. F. JANSEN
large enough to pull it completely into that direction. Wh
we really want to do is to prescribe the net direction of t
spin magnetization. One possibility is to use Lagrange m
tipliers. This is not easy. When one tries to write the forms
the expressions for conserving the direction of the spin d
sity, it requires the norm of the spin density and hence so
quadratic expression.

An alternative to using Lagrange multipliers is to ma
the assumption that the direction of the exchange-correla
field is always along the directionB̂0 . Hence we write

BW e f f~rW !51
1

2mB

dExc
LSDA

ds
B̂01BW ext~rW !.

This modifies the way we define the exchange-correla
energy. All currentab initio density-functional calculations
of the magnetic anisotropy energy use this approach. O
ously, this is an approximation. If we now perform our ca
culations without external magnetic field the only directi
in the problem is the directionB̂0 . The Dirac equations to
solve are

F\c

i
aW •¹W 1bmc22eve f f~rW !1mBBe f f~rW !B̂0•SW Gc~rW !5ec~rW !

where the effective potential is related to the charge and
density by

ve f f~rW !5
dUH

dr
1

dExc

dr
1vext~rW !

as before, and the effective magnetic induction is given

Be f f~rW !51
1

2mB

dExc
LSDA

ds
.

The Dirac equations we have to solve here reduce to
normal spin-dependent Schro¨dinger equation in the nonrela
tivistic limit. In that limit the spin is always alongB̂0 , and
for the self-consistent spin density we havesW(rW)5B̂0s(rW).
For the full Dirac equation above the resulting spin density
not necessarely parallel to the directionB̂0 of the exchange-
correlation field. Since we have made the assumption, h
ever, that the magnetization is mainly spin, the deviatio
will be small. This means that we can useB̂0 as a good
approximation to the direction of the magnetization, a
hence we have achieved our goal of specifying this direct

The density-functional expression for the magnetic anis
ropy energy can now be written in the form

Egs~B̂0!5min
r,s

HTni@r~rW !,s~rW !,B̂0#1UH@r~rW !#

1Exc@r~rW !,s~rW !#1E vext~rW !r~rW !d3r J .

In addition to the previous arguments it is useful to real
that whenB̂0 is along a high-symmetry direction~in terms of
the crystalline electrostatic potential!, the spin and orbital
moment will both be parallel toB̂0 . This means thatEgs(B̂0)
does represent the magnetic energy for those directi
t
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Hence if we want to calculate the energy difference betw
high-symmetry directions this formula gives the correct d
ferences. We can therefore useB̂0 as a parameter allowing
continuous path between high-symmetry directions. IfB̂0
does not correspond to a high-symmetry direction, the
ergy Egs(B̂0) is only an approximation to the true magnet
energy.

Once we have found the self-consistent solution it is e
to show that~see Appendix A!

]Egs

]B̂0

~B̂0!5
]Tni

]B̂0

~rsc~rW !,ssc~rW !,B̂0!5
]

]B̂0
(
occ

en ,

where the sum over the occupied states may include a Fe
Dirac or other type of distribution function. If we are not
self-consistency, extra forces play a role. Therefore, we c
not integrate the last equation directly since the se
consistent charge and spin density will change. Also, we
obtain additional forces if our basis for the calculation
incomplete and dependent on the direction of the field.

VI. ROTATIONS IN SPIN SPACE

The analysis of the Dirac equation is easier to follow
we separate the wave function into large and small com
nentsL andS. We obtain

\c

i
sW •¹W S1@mc22eve f f~rW !1mBBe f f~rW !B̂•sW #L5eL,

\c

i
sW •¹W L1@2mc22eve f f~rW !1mBBe f f~rW !B̂•sW #S5eS,

where the sigma matrices now are the standard t
dimensional Pauli matrices. The effective field is now alo
an arbitrary directionB̂. As shown in Appendix B, we can
relate this direction to a reference directionB̂0 by

B̂0•B̂5cos~u! and B̂03B̂5sin~u!n̂.

Using the result from Appendix B,

e2~ i /2!un̂•sW ~B̂0•sW !e1~ i /2!un̂•sW 5B̂•sW ,

we obtain

\c

i
sW •¹W S1@mc22eve f f~rW !

1mBBe f f~rW !e2~ i /2!un̂•sW ~B̂0•sW !e1~ i /2!un̂•sW #L5eL,

\c

i
sW •¹W L1@2mc22eve f f~rW !

1mBBe f f~rW !e2~ i /2!un̂•sW ~B̂0•sW !e1~ i /2!un̂•sW #S5eS.

We define the spin-rotated wave functions by

L85e1~ i /2!un̂•sW L andS85e1~ i /2!un̂•sW S.

For these rotated wave functions we have

L8†L81S8†S85L†L1S†S,
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and, using the identities from Appendix B,

L8†sW L81S8†sW S85L†$n̂~ n̂•sW !

1cos~u!@sW 2n̂~ n̂•sW # !2sin~u!n̂3sW L

1S†@ n̂~ n̂•sW !#1cos~u!@sW 2n̂~ n̂•sW !#

2sin~u!n̂3sW %S.

This shows that the spin-rotated wave functions have
same charge density but a spin density that is rotated in
opposite way from the effective field.

The Dirac equations are now equivalent to

\c

i
e1~ i /2!un̂•sW sW •¹W e2~ i /2!un̂•sW S8n

1@mc22eve f f~rW !1mBBe f f~rW !B̂0•sW #L85eL8,

\c

i
e1~ i /2!un̂•sW sW •¹W e2~ i /2!un̂•sW L8

1@2mc22eve f f~rW !1mBBe f f~rW !B̂0•sW #S85eS8.

Using the relation from Appendix B, we find

e1~ i /2!un̂•sW ~sW •¹W !e2
i
2 un̂•sW 5sW •¹W 1@cos~u!21#@~sW •¹W !

2~ n̂•¹W !~ n̂•sW !#

2sin~u!sW •~ n̂3¹W !.

We now define the operatorR(u) by

R~u!5@cos~u!21#@~sW •¹W !2~ n̂•¹W !~ n̂•sW !#

2sin~u!sW •~ n̂3¹W !,

and find, for the Dirac equations,

\c

i
sW •¹W S81

\c

i
R~u!S8

1@mc22eve f f~rW !1mBBe f f~rW !B̂0•sW #L85eL8,

\c

i
sW •¹W L81

\c

i
R~u!L8

1@2mc22eve f f~rW !1mBBe f f~rW !B̂0•sW #S85eS8.

This shows that the wave functions for an arbitrary direct
of the effective field are related in a simple way to the wa
functions for the reference field directionB̂0 . The wave
functions are given byL and S. The last set of formulas
shows that it is more convenient to work with wave fun
tions L8 andS8 which are rotated back to the original refe
ence direction. Since the Dirac equation is only invaria
under simultaneous rotations of spin and space, the bac
tation leads to an additional termR(u) in the equations. This
term represents the spin-orbit interaction. It essentially
tates the gradients back in the same way. If we change
coordinate system torW8 which is rotated back in the sam
way as the spin this term disappears, but now we hav
e
he

n
e

t
ro-

-
ur

a

rotation in the effective fields, which is much harder to de
with. The physics in the last scenario is very simple, rotat
the magnetic field in one direction can also be achieved
rotating the sample in the opposite direction.

For a calculation of the torque we only need a rotati
over small angles. In that case we can approximate

R~Du!'2DusW •~ n̂3¹W !.

Note that this is not an approximation of the effects of sp
orbit coupling. We are still retaining spin-orbit coupling i
all orders. The Dirac equations are now given by

\c

i
sW •¹W S82

\c

i
DusW •~ n̂3¹W !S8

1@mc22eve f f~rW !1mBBe f f~rW !B̂0•sW #L85eL8,

\c

i
sW •¹W L82

\c

i
DusW •~ n̂3¹W !L8

1@2mc22eve f f~rW !1mBBe f f~rW !B̂0•sW #S85eS8.

First-order perturbation theory gives, for the change in
ergy of the state,

De52
\c

i
DuE d3r @L0†sW •~ n̂3¹W !S01S0†sW •~ n̂3¹W !L0#,

whereL0 andS0 refer to the solution at the reference field
At this point we are able to make contact with densi

functional theorem via the force theorem~Appendix A! and
we find that the change in energy due to a rotation of
magnetic field around a directionn̂ is given by

dEgs

du
5n̂•tW ,

with

tW51
\c

i (
occ

E d3r @Lk
0†~sW 3¹W !Sk

01Sk
0†~sW 3¹W !Lk

0#.

Note again that in this formula we have not used any form
perturbation expansion in powers of the effective spin-or
coupling. It is valid in general, under the assumptions
plained in the previous sections.

VII. APPROXIMATING THE TORQUE

In Sec. VI, we derived a formula for the magnetic torq
on a crystal in density-functional theory. It is clear that t
second term in this expression is the complex conjugate
the first, so we only need to consider

tW512 Re
\c

i (
occ

E d3rL k
†~sW 3¹W !Sk ,

where Re indicates the real part of the expression. We h
dropped the superscript zero and now calculate the torque
an arbitrary directionB̂. The small componentS can be
eliminated by inverting the Dirac equation, which leads to
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tW512 Re
\c

i (
occ

E d3rL k
†~sW 3¹W !@ek1mc21eve f f2mBBe f fB̂•sW #21

\c

i
sW •¹W Lk .

It is useful to consider the non-relativistic limit of this equation, which should give zero torque. The energy eigenvalu
contain the rest mass energy, and hence we have

tW0512 Re
\c

i (
occ

E d3r L k
†~sW 3¹W !

1

2mc2

\c

i
sW •¹W Lk522 Re

\2

2m (
occ

E d3rL k
†~sW 3¹W !sW •¹W Lk .

Using the relation derived at the end of Appendix B, we find

n̂•tW0522
\2

2m (
occ

ReE d3r L k
†n̂•~sW 3¹W !~sW •¹W !Lk522

\2

2m (
occ

Rei E d3rL k
†@~ n̂•sW !D2~ n̂•¹W !~sW •¹W !#Lk50,

since the integral is real~all operators are Hermitian! and therefore the prefactori makes the expression purely imaginary. No
that in this expression we have used the wave functionsLk which are solutions of the Dirac equation. In order to find the or
of magnitude of the expression, we subtract a termtW0 from the torque, and after rearranging terms we find

tW522 Re
\2

2m (
occ

E d3r L k
†~sW 3¹W !@mc22ek2eve f f1mBBe f fB̂•sW #@ek1mc21eve f f2mBBe f fB̂•sW #21sW •¹W Lk .

We can see that this expression scales as 1/2mc2, and therefore we obtain a small number without having to subtract l
terms. If we now evaluate the leading order of this term in an expansion in the inverse speed of light we obtain

tW'22 Re
\2

4m2c2 (
occ

E d3r L k
†~sW 3¹W !@mc22ek2eve f f1mBBe f fB̂•sW #sW •¹W Lk .

This expression shows how the magnetic effective field has to be included into a spin-orbit coupling calculation
following the same argument that showed that the classical limit of the torque is zero, we can show that the termmc22ek
gives zero for the integral. Therefore we can write

tW'2 Re
\2

4m2c2 (
occ

E d3r L k
†~sW 3¹W !@eve f f2mBBe f fB̂•sW #sW •¹W Lk .

The real part is now evaluated by adding the Hermitian conjugate of the expression, taking into account that both de
give a minus sign:

tW'
\2

4m2c2 (
occ

E d3r L k
†$~sW 3¹W !@eve f f2mBBe f fB̂•sW #sW •¹W 1sW •¹W @eve f f2mBBe f fB̂•sW #~sW 3¹W !%Lk .
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After some vector algebra we find that the torque splits i
three terms. The first of the three integrals, involving t
effective potential, simplifies to

tW v5
\2

4m2c2 (
occ

E d3r L k
†$ isW 3~@¹W eve f f#3¹W !%Lk .

The potential energy related to this torque is

Upot52
\2

4m2c2 (
occ

E d3r L k
†$ isW •~@¹W eve f f#3¹W !%Lk ,

which can be derived by considering the changes in ene
as a function of small changes in the angle between the
and the lattice. This is the standard expression for the eff
of spin-orbit coupling as included in most calculations th
do not use the full Dirac equation.11 The additional terms are
generally ignored in such calculations. This casts doubt
many of the density-functional calculations that have be
performed to obtain the magnetic anisotropy energy.
o

y
in
ts
t

n
n

The termtW v is zero if one uses the nonrelativistic form o
the wave function in a material with inversion symmetry.
order to evaluate this integral we have to use the wave fu
tions obtained from the full Dirac equation with a magne
field, as described above. This will be discussed in a follo
ing paper.

The second of the three terms in the torque is spin in
pendent. We obtain

tWB5mB

\2

4m2c2 (
occ

E d3r L k
†$ iB̂3~@¹W Be f f#3¹W !%Lk .

This term represents the fact that there is a torque when
orbital moment and the spin direction are not aligned. T
controling parameter is an integral over the derivative of
effective magnetic field, or the difference between spin-
and -down potentials. It represents a correction to the s
dard implementation of the spin-orbit coupling.

If we assume that the effective fields are spherical sy
metric, we obtain
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tW v52
\

4m2c2 (
occ

E d3r
1

r

deve f f

dr
Lk

†~sW 3LW !Lk

and

tWB52mB

\

4m2c2 (
occ

E d3r
1

r

dBe f f

dr
Lk

†~B̂3LW !Lk .

Since the spin density is opposite to the effective field, the second term reduces the magnetic anisotropy as calc
standard investigations. Estimates from atomic calculations show that this reduction can be 10–20 %.

The third term is more complicated:

tW35mB

\2

4m2c2 (
occ

E d3r L k
†$¹W 3@sW ~Be f fB̂•¹W !1Be f fB̂~¹W •sW !#2@~¹W •Be f fB̂!sW 1~¹W •sW !Be f fB̂#3¹W %Lk .

Integration by parts gives

tW35mB

\2

4m2c2 (
occ

E d3r Be f f$@sW 3~¹W Lk!#
†@~B̂•~¹W Lk!#1@B̂3~¹W Lk

†!#@~sW •~¹W Lk!#

1@~B̂•~¹W Lk
†!#@sW 3~¹W Lk!#1@~sW •~¹W Lk!#

†@B̂3~¹W Lk!#%.

The physical origin of this last term is not clear. It is proportional to the effective magnetic field. We can approximate th
when we assume that the exchange splitting is a constant, and that for the spin direction we only take the part paraB̂.
This gives

tW3'2mBBe f f
av \2

4m2c2 (
occ

E d3r @B̂3~¹W Lk!#
†~B̂•sW !@~B̂•~¹W Lk!#1c.c.
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This shows that states with linear momentum parallel or
thogonal to the direction of the effective field do not contr
ute. It should play a role in cubic materials, where symme
reduces the effects of the first two terms on the magn
anisotropy energy difference between high-symmetry dir
tions.

VIII. CONCLUSIONS

In this paper we have investigated the procedure for
culating the magnetic anisotropy energy using dens
functional theory. We have defined this energy by

Egs~B̂0!5min
r,s

HTni@r~rW !,s~rW !,B̂0#1UH@r~rW !#

1Exc@r~rW !,s~rW !#1E vext~rW !r~rW !d3r J .

This formula is only valid when the directionB̂0 is a good
approximation for the direction of the total magnetizatio
This requires the orbital magnetic moment to be almost co
pletely quenched, a situation that only arises in transit
metals. If, however, the directionB̂0 coincides with a direc-
tion of high symmetry in the crystal it will represent th
direction of the total magnetization in many cases even w
the orbital moment is not quenched. Hence the form
above can be used to calculate differences in magnetic
isotropy energy between high-symmetry directions.
r-

y
ic
-

l-
-

.
-

n

n
a
n-

Based on the formula for the magnetic anisotropy ene
we evaluated the magnetic torque. We found that the gen
expression is

tW512 Re
\c

i (
occ

E d3r L k
†~sW 3¹W !Sk ,

where we need the solutions to the Dirac equation. If
expand this expression in terms of powers of the square
the fine-structure constant~which is the inverse of the spee
of light! we find that in zeroth order the torque is zero. W
analyzed the first-order terms and found that there are th
contributions to the magnetic torque. The first one is
standard form of spin-orbit coupling used in all calculatio
based on Pauli theory. There are two additional terms, h
ever, which are related to the spin-dependent part of
exchange-correlation potential. This is an important devel
ment, since it was always unclear how to combine mag
tism and spin-orbit coupling in calculations. Our work show
that in the context of density-functional theory such a co
bination is possible.

Future calculations will have to show how large the co
tributions of the additional terms are, but a rough estim
based on atomic calculations indicates changes on the o
of 10%. The formula for the torque presented above is v
useful for theoretical consideration, but is not suitable
practical calculations. In a following paper we will addre
the issue of how to calculate the torque and magnetic ani
ropy efficiently.
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APPENDIX A: FORCE THEOREM

We consider the density-functional expression

E@r~rW !,s~rW !,B̂0#5Tni@r~rW !,s~rW !,B̂0#

1UH@r~rW !#1Exc@r~rW !,s~rW !#

1E vext~rW !r~rW !d3r .

At self-consistency we have

05
dE

dr
5

dTni

dr
1

dUH

dr
1

dExc

dr
1vext

or
rm
-

th
sp

ar
io

en
,
.
n

dTni

dr
52ve f f .

Similarly, at self-consistency we have

dTni

ds
522mBBe f f .

In general we have

DE5
dE

dr
Dr1

dE

ds
Ds1

]E

]B̂0

DB̂0 ,

but at the self-consistent solution the first two terms are ze
Hence

dEgs

dB̂0

5
]E

]B̂0

5
]Tni

]B̂0

,

where the expressions at the right are calculated at s
consistency. The kinetic energy follows from
Tni@rsc ,ssc ,B̂0#5(
occ

E d3r cn
†~rW !S \c

i
aW •¹W 1bmc2Dcn~rW !

5(
occ

E d3r cn
†~rW !~en1eve f f2mBBe f fB̂0•S!cn~rW !.
the
The sum over occupied states can be weighted by a Fe
Dirac or other distribution function to include non-zero tem
perature or some broadening. Using the normalization of
charge of each state and the definitons of charge and
density, we obtain

Tni@rsc ,ssc ,B̂0#5(
occ

en2E d3r ve f f~rW !rsc~rW !

22mBE d3r Be f f~rW !B̂0•sW~rW !.

In general, for the change in kinetic energy we write

DTni5
dTni

dr
Dr1

dTni

ds
Ds1

]Tni

]B̂0

DB̂0 ,

where we have to include the changes in the spin and ch
density due to a change in the direction of the magnetizat
At self-consistency this reduces to

DTni52E ve f fDr2E 2mBBe f fDs1
]Tni

]B̂0

DB̂0 ;

from the expression of the kinetic energy in terms of eig
values, we find
i-

e
in

ge
n.

-

DTni5D(
occ

en2E d3r ve f f~rW !Drsc~rW !

22mBE d3rBe f f~rW !B̂0•DsW~rW !.

At this point again we have to use the assumption that
spin field is approximately parallel toB̂0 . As a result we can
approximate the change in kinetic energy by

]Tni

]B̂0

5
]

]B̂0
(
occ

en

which is the force theorem.

APPENDIX B: SPIN ROTATIONS

Two useful identies with Pauli spin matrices are

~AW •sW !~CW •sW !5AW •CW 1 isW •~AW 3CW !

and

UR5e2~ i /2!un̂•sW 5cosS 1

2
u D2 i sinS 1

2
u D n̂•sW .

These identities are needed to show that
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e2~ i /2!un̂•sW ~AW •sW !e1~ i /2!un̂•sW 5~ n̂•AW !~ n̂•sW !1cos~u!@~AW •sW !

2~ n̂•AW !~ n̂•sW !#

1sin~u!sW •~ n̂3AW !.

If the vectorAW is parallel ton̂, the second and third terms a
zero andAW •sW is unchanged. If the vectorAW is orthogonal to
n̂ we find that AW •sW is rotated to cos(u)(AW•sW )1sin(u)sW•(n̂
3AW ), which corresponds to a rotation ofAW aroundn̂ by an
angleu.

We define the rotation needed to transform the vectorB̂0

into an arbitrary vectorB̂ by the axis of rotationn̂ and the
angleu according to

B̂0•B̂5cos~u! and B̂03B̂5sin~u!n̂.
This leads to

e2~ i /2!un̂•sW ~BW 0•sW !e1~ i2!un̂•sW 5BW •sW .

Finally, some useful relations are

~AW •sW 3¹W !~sW •¹W !5~sW •¹W 3AW !~sW •¹W !

5~¹W 3AW !•¹W 1 isW •@~¹W 3AW !3¹W #

5 isW •@AW D2~AW •¹W !¹W #

~sW 3AW !~sW •BW !5BW 3AW 1 i ~BW 3sW !3AW

~sW •BW !~sW 3AW !5BW 3AW 2 i ~BW 3sW !3AW .
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