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Magnetic anisotropy in density-functional theory
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Magnetic anisotropy is discussed in the context of density-functional theory. A formula for the magnetic
torque is derived. This formula includes the effects of the spin part of the exchange-correlation energy. All
relativistic effects are taken into account, but assumptions are made for the direction of the spin magnetic
moment. The nature of the torque is analyzed by expanding the formula in terms of inverse powers of the speed
of light. This analysis shows how to include the effects of the spin-dependent part of the exchange-correlation
potential together with the spin-orbit coupling. We find that extra terms exist in addition to the standard
spin-orbit coupling[S0163-182609)14803-3

I. INTRODUCTION II. DENSITY-FUNCTIONAL THEORY

N ical calculat fth i isot The problem we consider is the calculation of the total
umerical caicufations of the magnetic anisotropy energyenergy of a system of electrons in the presence of an external

are not easy. Early calculations show varying results due to g, ,omp notentialprovided by the nucléiand an external
lack of convergence of the Brillouin-zone integrations. With 5 gnetic field. Although for our discussions it is sufficient to

the availability of fast computers and large disks this limita-.qnsider a uniform external magnetic field only, we will start

tion has been eliminated. If these calculations are nowadaygith the general case. The interaction with the external fields
performed with sufficient care, numericpfecisionshould s of the form

not be an issue.
Density-functional theoryis the basis for all currerab £i=e:E(x) 7”¢(X)A2Xt(x)i,
initio work to calculate the magnetic anisotropy energy. The ]
origin of the magnetic anisotropy energy is a relativistic phe-Wh'Ch couples the external fields to the conserved four-
nomenon: spin-orbit couplingThere are many ways spin- current
orbit coupling can be introduced into density-functional cal- —
culations. Typically, several approximations are made in this THX) = —cerp(x) y*p(X):.

procedure, and often these approximations are not well ex=or details and the necessary field theory background we
plained. This leads to questions pertaining todlseuracyof  refer to Refs. 4 and 5. An overview of density funtional
the results. aspects of relativistic field theories was given in Ref. 6. The
In order to calculate the magnetic anisotropy energy ondast paper also has many useful references to older work.
has to solve the fully relativistic Dirac equation for two dif- Once we know the interaction with the external world we can
ferent directions of the magnetic field, and compare the valeonstruct a density-functional theory based on the con-
ues of the total energy. Such a procedure is demanding frotrained minimization of Levyand Lieb® Note that this ap-
a numerical perspective, since it involves subtracting larg@roach is different from Ref. 6. There are formal problems
numbers to obtain the small value of the magnetic anisotropglu€ to renormalization and gauge invariance. For the purpose
energy. Therefore, this procedure is often approximated b@f this paper these effects are much easier to treat in the
using second-order perturbation theory for the change in erfonstrained minimization approach. These problems have to
ergy and/or by using the Pauli equation, which includes spin-be treated correctly, of course, when we need to calculate the

orbit coupling in second-order in an expansion in terms ofeXchange and correlation energy itself. There are questions

the inverse speed of light. It is not clear how these aploroXi_about the existence of the minimum in the constrained mini-

mations affect the accuracy of the results, especially for cuMZation. We avoid that question, however, since we use the

bic materials where second order effects cancel due to th@Ct that the interacting system has a ground state. Therefore

high symmetry. we do not need to address these problems in the current
In this paper we systematically derive how one can calpa‘_)l_?]r' Itis th bl find th | fth
culate the magnetic anisotropy energy in density-functional e resultist atiwe are able to N t'e'tota energy o the
theory. We have discussed the basic theory behind the cadifound state of this system by minimizing the functional
culation of magnetic anisotropy befotén this paper we use E[p(r),j(r)] of the charge density(r) and the current den-
the general theory to derive an expression for the magnetisity j(r). This functional is given by
torque. We restrict ourselves to a discussion of spin-orbit o o ) o
coupling as a part of the Dirac equation. A discussion ofE[p(r),j(r)]=Tn[p(r),j(r)]+Unlp(r)]+Exlp(r),j(r)]
relativistic effects in and other corrections to the exchange- 1
correlation potential used in the calculatiofiscal-density +J S s g __J' R T3
approximatiod) is outside the scope of this paper. Vex(1)p(r)dr Aex(1)-J(N)d°r,
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whereT,,; is the kinetic energy of a system of noninteracting e . .

electrons with the given charge and current dengity, is _f d%r Bey((r)-M(r)

the classical Coulomb energy of the charge density,Bpd

is the correction term needed to make this a true equalitywhere we assume that the sample is finite. Without this as-
We will not address the question how to calculate this termsumption it would be hard to define an external field.

which commonly but erroneously is called exchange- The definition ofM is not unique. We can always add the

correlation energy. The last two terms are the interactiorbradiem of a scalar fieIﬁg(F) to obtain the same current

witgthe. external fields. hich ch g g density. This does not change the interaction energy, though.
_one Important qyestpn IS which charge an current enSinceﬁéext: 0, and since the sample is finite, the integral
sities are allowed in this expression. The answer is easy.

Once we have stated the set of many-body state vectors used
for minimization of the total energy, the allowed charge den- f d3r Bey(r)- Vg(r)

sity and current density are simply in a set derived from the

master set of these state vectors. It is clear that we havig equal to a surface integral at infinity and hence is zero.
p(F)>0 and§~f=0. The last equality is due to the fact that ~ The direction of the magnetization is given by the direc-
we only consider time-independent external potentials. Ofion of
course we could minimize over time-dependent charge den-
sities, but we know that the ground-state density is time in-
dependent. Therefore, we restrict ourselves to time-

independent densities only. W ke th bl _ hat th o
In our previous papetwe investigated the effects of rela- e make the reasonable assumption that the magnetization

tivistic corrections to the Coulomb interaction. By including 9€nSity decays to zero outside the sample. In that case the
the electromagnetic fields due to the electrons in quantizeffCt that the magnetization density is not unique does not
form, one observes that the electron-electron interaction iglter the overall magnetizatiavl,, and the problem of find-
modified: in addition to the normal L/interaction we need ing the magnetic anisotropy energy is well defined.

to include the Breit interaction, which leads directly to a We are now able to specify the magnetic anisotropy en-
magnetic dipole-dipole interaction and causes the shape afrgy in density functional theory. By definition we have
isotropy. This will also affect the crystalline anisotropy, but

in many cases the effects are small. Egs(|\7|o)= min {Tni[p(F),M(F)]+UH[P(F)]
R(Mg)

mozf o M ()

IIl. MAGNETIC ANISOTROPY

According to Chikazunlimagnetic anisotropy means the + Exc[P(r)'M(r)HJ Uext(r)P(r)dsf},
dependence of the internal energy on the direction of the o . .
spontaneous magnetization. A large contribution to this enVNere the minimization is carried out over all charge densi-
ergy is due to the shape of the sample, as discussed in tfi§S: and all magnetization densities compatible with
same book. Here we are interested only in the interaction of d° M (r) parallel toMy.
the direction of the magnetization with the crystalline geom-
etry. IV. LOCAL-SPIN-DENSITY APPROXIMATION

Measuring the magnetic anisotropy energy is not without i i i
problems. The only way to change the direction of the mag- The exact form of the_exchange-correlatlon _functlonal is
netization is to apply an external field and to rotate the field0t known. Most calculations are performed using the local-
with respect to the crystalline axes. The field should beSPin-density approximatiofL.SDA). In this approximation
strong enough that the magnetization is fully saturated. Thi¥/é use the exact energy density for a homogeneous electron
does lead, however, to a field dependence of the energy, aS@S:€nom(p,S), With electron density and spin densitg to
one should extrapolate to zero field. This might not be easy2PProximate the exchange-correlation energy by

On the other hand, the situation is simple in a theoretical

discussion. We force the magnetization density to have a ELSDA:J d3r ehom(P(F) s(r))
~ ~ XC ! b
particular directionM, and calculatéE (M) with zero ex-
ternal field. The spin density is defined as the expectation value of the

According to the standard treatment in electro-gperator
magnetisnt’ the current density can be separated in a free
density and a magnetic density. Since we have zero external . 1. .
field there is no free current. The magnetic current has zero S(T)Zil//T(f)EE P(r):.
divergence and hence we can write

The matrixs is very simple in the Pauli-Dirac representa-
(N =cVXM, tion: 1X . The magnetization density due to the spins is
given by
which defines the magnetization denshy. The term de- R R .
scribing the interaction with the external field is now simply Mpin(r)=—2ugs(r).
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Even though the local-spin-density approximation is quite das reasonable to approximate the direction of the total mag-
severe approximation, it is remarkable how well calculatechetization by the direction of the spin magnetization. This
results describe experimental data for transition metals. Fowill only lead to small corrections in the magnetic anisotropy
rare-earth materials the situation is not very good, howeverenergy. Note that when we need to study rare-earth materials
The definition of the magnetic anisotropy energy in thethis correction becomes large, and in that case we need to use
local-spin-density approximation is simple. We have showrthe correct definition of the direction of the total magnetiza-
beforé that the leading terms in the magnetization densitytjon density. Replacin§/, by the direction of the spin mag-
are due to spin and orbital angular momentum. Since in th@etic moment enables us to simplify the calculations. This
local-spin-density approximation the exchange-correlationypproximation is used in all density-functional calculations
energy only depends on the spin density, we have to treat thsf the magnetic anisotropy energy. It ignores the fact that the
spin density separately. One solution is to find the functionaotal magnetization and the spin magnetization do not have
that relates the ground-state spin and orbital densities. This {g pe parallel.
hard. The other approach is to vary the spin and ori¢éal Our aim is to calculate the noninteracting kinetic energy.
total) magnetization densities separately. This leads to thehjs energy follows from
following form:

X I . 3 Talp(1),S(1)]=min(¥| | d® Ho(r)|¥),
Egs(Mo): m[n Tni[p(r)uMorb(r)uMspin(r)]+UH[P(r)] Ty
R'(Mo) where the Hamiltonian is defined by

+Exc[p(F>,s<F>]+f vexmpu*)d?*r],

Ho(r)=:4"(r) W(r):.

hc. .
i—a'V—F,Bmcz

where the noninteracting kinetic energy is now the ground-

state kinetic energy of a system on noninteracting electron$€ minimization is over all state vectors corresponding to
with a given charge, spin, and orbital moment density. the charge and spin densities which are specified. The direc-

We see that in the local-spin-density approximation thetion Mg now follows directly from the integral of the spin
orbital magnetization is only present in the noninteractingdensity.
kinetic energy. Therefore, we can perform the minimization We need to solve the Dirac equation
over the orbital moments and redefine the noninteracting ki- he
net_lc energy as thg klne_tlc ene_rgya of a syfstem_ of noninter- .—a~V+/3mcz—eveff(r)+MBBeff(r)~2}¢(r)=e¢(r),
acting electrons with spin densig(r) and direction of the !

total magnetization aloniyl,. Hence we have The effective potential is related to the charge and spin den-
sity by
EgS(MO):Rr(nl\;n) Thilp(r),s(r),Mo]+Uy[p(r)] (F)— 5UH+5Exc+ F)
0 Uetill) = 5p Sp Vexdl),
+Exc[P(F)aS(F)]+j vext(F)P(F)d3f}, and the effective magnetic induction follows from

where the notation is similar to the one we used before. R Eve - -
We see that in the local-spin-density approximation the Ber(r) =+ 5 — = +Bex(I).
energy dependence on the direction of the magnetization is b8 35
completely within the noninteracting kinetic energy. This is|n the local-spin-density approximation the exchange-

clearly incorrect. In rare-earth materials exchange effectgorrelation energy only depends on the magnitude of the
lead to the formation of orbital moments, and obviously thespin, and we have

exchange-correlation energy must depend on the direction of

the magnetization. Hund’s second rule is a direct conse- . R LSPA L L.
' iti BLPPAT) = + —— ——§(1) + BT
guence of this dependence. In transition metals where the et () 2us 0 s( ext(l)-
orbital angular momentum is almost quenched, one has some
hope that this approximation is not too seveb.initio cal-  In the local-spin-density approximation all we need to know

culations of the magnetic anisotropy energy, however, fail taabout the system is the local-spin density. Since the local-
reproduce the experimentally observed easy axis in nickekpin-density approximation is based on the homogeneous
Most likely, the reason for this is the neglect of the effectselectron gas there is no information about the direction. The
leading to Hund’s second rule, although it is possible thanatural connection between the exchange-correlation poten-
other commonly made approximations are the cause. Thesdi&l and the effective magnetic field is given by the previous
approximations are discussed in the following sections.  formula. The local direction of the effective magnetic field is
parallel to the spin direction. This is used in calculations of
V. NONINTERACTING KINETIC ENERGY, SPIN ONLY noncolinear magnetism. . o
At this point, however, we are still in the same situation
In many transition metals the orbital moment is small,as the experimentalists. The only way to point the spin mag-
typically a few percent of the total moment. In such a case inhetization in a certain direction is when we apply a field
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large enough to pull it completely into that direction. What Hence if we want to calculate the energy difference between
we really want to do is to prescribe the net direction of thehigh-symmetry directions this formula gives the correct dif-

spin magnetization. One possibility is to use Lagrange mulferences. We can therefore udg as a parameter allowing a

tipliers. This is not easy. When one tries to write the forms Ofcontinuous path between high-symmetry directionsééf

the expressions for conserving the direction of the spin dendoes not correspond to a high-symmetry direction, the en-

sity, it requires the norm of the spin density and hence some E (B i | L h .
quadratic expression. ergy Eq4(Bo) is only an approximation to the true magnetic

An alternative to using Lagrange multipliers is to makeenggy' have found the self _ ution it i
the assumption that the direction of the exchange-correlation ©Nc€ We have found the self-consistent solution it is easy
o LA . to show that(see Appendix A
field is always along the directioB,. Hence we write
LSDA 0Eqs A dT i > S A J
5 > 1 5E AgS(BO):?m(psc(r)vssc(r)vBO):TE €n,
9B, B

AL L
Beti(r)=+ 2in 55 Bot Bext(n). 9By oocc

This modifies the way we define the exchange-correlatioﬁg.here the sum over the occupied states may include a Fermi-

energy. All currentab initio density-functional calculations sé:i(éoor:s?;:]eer:ctypgx?rfza(jl‘lcjs:;f:tl(I)ar: f:nr(;'gn:r:]fe\:\’;oar;e \?v(()atgn-
of the magnetic anisotropy energy use this approach. Obvi= Y, play y '

ously, this is an approximation. If we now perform our cal- not !ntegrate the last gquation dir_ectly since the self-
culations without external magnetic field the only direction consistent charge and spin density will change. Also, we do

) i . A . . obtain additional forces if our basis for the calculation is
n lthe problem is the directioB,. The Dirac equations 10 jycomplete and dependent on the direction of the field.
solve are

VI. ROTATIONS IN SPIN SPACE

hc. . - U -
i_a'V+’Bmcz_ev"‘”(r)JF’MBB‘”f(r)BO'2 Ylr)=ey(r) The analysis of the Dirac equation is easier to follow if

. . .we separate the wave function into large and small compo-
where the effective potential is related to the charge and spifantsi andS We obtain

density by
hc. - an
—ra-VS+Dﬂ§—evﬂdr}+MBBﬂdﬂB-Uﬂ;=eL

. Uy OB

Vetf(r)= 5_p+ Sp +Uext(F)
. .. . . . AC. . . N
as before, and the effective magnetic induction is given by i—o-VL+[—mcz—eveff(r)Jr,uBBeff(r)B-a]S= €S,

1 5ELSDA
Borl(l) =+ o— — where the sigma matrices now are the standard two-

2ug s dimensional Pauli matrices. The effective field is now along
The Dirac equations we have to solve here reduce to th@n arbitrary directiorB. As shown in Appendix B, we can
normal spin-dependent Schiiager equation in the nonrela- relate this direction to a reference directiBg by
tivistic limit. In that limit the spin is always alonéo, and A XA -
for the self-consistent spin density we has@)=Bs(r). Bo-B=cog6) andBoxB=sin(f)n.
For the full Dirac equation above the rAesuIting spin density is Using the result from Appendix B,
not necessarely parallel to the directiBp of the exchange- L o
correlation field. Since we have made the assumption, how- e (i120n-0(B . g)et(il20n0=B. 5
ever, that the magnetization is mainly spin, the deviations\,Ne obtain
will be small. This means that we can uBg as a good
approximation to the direction of the magnetization, and #c. _ R
hence we have achieved our goal of specifying this direction. -0 VS+[MCE—eve(r)

The density-functional expression for the magnetic anisot-

ropy energy can now be written in the form +MBBeff(;)e—(ilz)oﬁ-&(éo_ 5_)e+(i/2)oﬁ-¢;]|_: el
Egs<éo)=an[Tni[p<F>,s<F),éo]+UH[p<F>] ?g.v*u[—mcz—eve”(r*)
P
R - - o o (i20n-0(R T\ at (26N ca_
+Exc[P(r)rS(r)]+J Uext(r)P(r)dsr]. + ugBeti(r)e” "By o) I ] S= €S

We define the spin-rotated wave functions by
In addition to the previous arguments it is useful to realize

that whenB,, is along a high-symmetry directigin terms of L'=e* (200 gnds' =e*(200g
the crystalline electrostatic potenjiathe spin and orbital
moment will both be parallel téo. This means thaEgS(Bo)

does represent the magnetic energy for those directions. L'’ +8'Ts' =LTL+S'S,

For these rotated wave functions we have
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and, using the identities from Appendix B, rotation in the effective fields, which is much harder to deal
. . L with. The physics in the last scenario is very simple, rotating
L'ToL'+STeS' =LMn(n-0) the magnetic field in one direction can also be achieved by
e A - . - rotating the sample in the opposite direction.
+cogd)[o—n(n-g])—sin(d)nX oL For a calculation of the torque we only need a rotation

frn = s A s over small angles. In that case we can approximate
+S'[n(n-o)]+cogf)[o—n(n-o)]

R(Af)~—Afa- (nXV).

—sin(@)nx g} S.
This shows that the spin-rotated wave functions have thé\IOte that this is not an approximation of the effects of spin-
%rbit coupling. We are still retaining spin-orbit coupling in

same charge density but a spin density that is rotated in thaII orders. The Dirac equations are now aiven b
opposite way from the effective field. ’ q 9 y

The Dirac equations are now equivalent to
hc. . hc L .
hC e el L e - —0-VS' ——Afo-(nXV)S
.—e”'/z)g”'”(r‘Ve_("z)H”'US’n | |
i
. U +[MC—ever(r) + upBer(NBo- o]L =€l
+[MC—eves(r) + upBess(r)Bo- o]l =€l ’,
fic . A, S ) ~ - hc. o ’ hc zon VAV
i_e+(|/2)an-ag_Ve—(uz)en-uL/ i—(r-VL —i—Aﬂa'(nXV)L
+[—ME—evgi 1)+ meBei(1)Bo- ]S = €S'. +[ =M —ever(r)+ uaBer(r)By 01S = €S'.
Using the relation from Appendix B, we find First-order perturbation theory gives, for the change in en-
ergy of the state,
U i~ -
et 2m-o(5.V)e 2 7=g.V+[cog 6)—1][(a-V) hic . .
o Ae=—.—Aof d3r[L%g- (nx V)SP+ ST (nx V)L,
~(n-V)(n-0)] !
whereL® and S refer to the solution at the reference field.

—sin()a-(nXV). At this point we are able to make contact with density-
We now define the operat®( ) by functional theorem via the force theorgppendix A and
we find that the change in energy due to a rotation of the
R(6)=[cog 6)—1][(c-V)—(n-V)(n-0)] magnetic field around a directianis given by
—sin(#)a- (X V), dEgs . -
=n-7,
and find, for the Dirac equations, do
hc. . hC with
i—a-VS’+i—R(¢9)S’ 5
- c - = - =
) L =+ — fd3r[L‘k’T(oxV)sﬁ+s‘g*(oxV)LE].
+[MC—ever(F) + upBeri(r)Bo- oL =eL, ! oce

Note again that in this formula we have not used any form of
perturbation expansion in powers of the effective spin-orbit
coupling. It is valid in general, under the assumptions ex-
plained in the previous sections.

fic. _ fic
i—a~VL’+i—R(6)L’

+[ =M —eve(r)+ uaBer(NBy 0]1S' = €S'.

This shows that the wave functions for an arbitrary direction VIl. APPROXIMATING THE TORQUE

of the effective field are related in a Simpl(:l‘ way to the wave In Sec. VI, we derived a formula for the magnetic torque
functions for the reference field directioB,. The wave on a crystal in density-functional theory. It is clear that the
functions are given byt and S The last set of formulas second term in this expression is the complex conjugate of
shows that it is more convenient to work with wave func- the first, so we only need to consider

tionsL’ andS’ which are rotated back to the original refer-

ence direction. Since the Dirac equation is only invariant R hc Bt coe

under simultaneous rotations of spin and space, the back ro- T=+2 Re— gc drL (o X V),

tation leads to an additional terR( 6) in the equations. This

term represents the spin-orbit interaction. It essentially rowhere Re indicates the real part of the expression. We have
tates the gradients back in the same way. If we change ouwropped the superscript zero and now calculate the torque for

coordinate system to’ which is rotated back in the same an arbitrary directionB. The small componen§ can be
way as the spin this term disappears, but now we have aliminated by inverting the Dirac equation, which leads to
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3 Jhc.

T=+2 Rel— E d rLk(UXV)[€k+mCZ+eUeff weBerB- o]t - VLk
occ

It is useful to consider the non-relativistic limit of this equation, which should give zero torque. The energy eigenvalues still

contain the rest mass energy, and hence we have

N hc . - 1 +hc e e s o
T°=+2Rei—2 d%Lﬁ(wV)W aVLk——zRe—E drL(aexV)a- VL.

occ 2m 5cc

Using the relation derived at the end of Appendix B, we find

~ g h?

n.P0=—-2— > Ref drLin-(exV)(o-V)L= —2— > Relf drL{[(n-a)A—(n-V)(o-V)]L=0,
2m occ 2 occ

since the integral is redhll operators are Hermitiarand therefore the prefactomakes the expression purely imaginary. Note

that in this expression we have used the wave functignshich are solutions of the Dirac equation. In order to find the order

of magnitude of the expression, we subtract a tefnfrom the torque, and after rearranging terms we find

ﬁ2
T==2 Reﬁ gc d3r LE(U’X V)[mCz_ ek—eveff+ ,LLBBeffB' O'][Ek+ mC2+ eUeff—MBBeffB' 0']710" VLk .
We can see that this expression scales asntf2 and therefore we obtain a small number without having to subtract large
terms. If we now evaluate the Ieading order of this term in an expansion in the inverse speed of light we obtain

’;'%_2 Re4 2 > z d3r LE(&Xﬁ)[m@—ek—eveff-f-,u,BBeffI:’J-G]G-ﬁLk.

occ
This expression shows how the magnetic effective field has to be included into a spin-orbit coupling calculation. Also,
following the same argument that showed that the classical limit of the torque is zero, we can show that the’tere
gives zero for the integral. Therefore we can write
h? - R
WE d3r Ll(a’XV)[EUeff_,LLBBeffB'(T]O"VLk.

occ

7~2 Re

The real part is now evaluated by adding the Hermitian conjugate of the expression, taking into account that both derivatives
give a minus sign:

. h? I A e o s o PO
T~ 27 2 | A LI{(0XV)[everi— pugBerB: 710 V+ 0 V[ever— uaBerB- o1(aX V)}Ly.

4 occ

After some vector algebra we find that the torque splits into  The term~, is zero if one uses the nonrelativistic form of
three terms. The first of the three integrals, involving thethe wave function in a material with inversion symmetry. In

effective potential, simplifies to order to evaluate this integral we have to use the wave func-
42 tions obtained from the full Dirac equation with a magnetic
- 3 field, as described above. This will be discussed in a follow-
= g 2 | 4 Lidiox ([Veverd X V)}Ly. ing paper.
The second of the three terms in the torque is spin inde-
The potential energy related to this torque is pendent. We obtain
ﬁZ R . R 2
Upot= = 4P f Eriifio: ([Vever]X V)L, 6= 16 gzg2 2 | O LIIBX([VBerd X V)b
4m-c” gec 4m-c

which can be derived by considering the changes in energ¥his term represents the fact that there is a torque when the
as a function of small changes in the angle between the spiorbital moment and the spin direction are not aligned. The

and the lattice. This is the standard expression for the effectsontroling parameter is an integral over the derivative of the

of spin-orbit coupling as included in most calculations thateffective magnetic field, or the difference between spin-up

do not use the full Dirac equatidh.The additional terms are and -down potentials. It represents a correction to the stan-
generally ignored in such calculations. This casts doubt owlard implementation of the spin-orbit coupling.

many of the density-functional calculations that have been If we assume that the effective fields are spherical sym-

performed to obtain the magnetic anisotropy energy. metric, we obtain
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N fh 1 deVeff
W 2, | O T ox Dby
and
- 3 eff
,U~B4m 2 gc d°r d k(BX L)Ly.

Since the spin density is opposite to the effective field, the second term reduces the magnetic anisotropy as calculated in
standard investigations. Estimates from atomic calculations show that this reduction can be 10—-20 %.
The third term is more complicated:

N %2 R - o N R " N . R
Ty= e 777 ;cfd3rLE{VX[dBeffB'VHBefwa-a)]—[(vBeffB>a+<V-a)BeffBJXV}Lk.
Integration by parts gives
N #?
T3= MB—Q—ZE Jd rBerd[ X (VLB (VLOI+[BX(VL NI (o- (VLY]
+[(B- (VLN oX (VLI+[(a- (VLY TBX (VL}

The physical origin of this last term is not clear. It is proportional to the effective magnetic field. We can approximate this term

when we assume that the exchange splitting is a constant, and that for the spin direction we only take the part &rallel to
This gives

73~2uBBeff4 2 22 d*r[BX (VLW]'(B- 0)[(B-(VL]+c.c.

This shows that states with linear momentum parallel or or- Based on the formula for the magnetic anisotropy energy
thogonal to the direction of the effective field do not contrib- we evaluated the magnetic torque. We found that the general
ute. It should play a role in cubic materials, where symmetryexpression is
reduces the effects of the first two terms on the magnetic
anisotropy energy difference between high-symmetry direc-
tions. - hc Bt Coe
7=+2Re— gc d3r Li(oxV)S,,
VIIl. CONCLUSIONS
where we need the solutions to the Dirac equation. If we
expand this expression in terms of powers of the square of
the fine-structure constafwhich is the inverse of the speed
of light) we find that in zeroth order the torque is zero. We
analyzed the first-order terms and found that there are three
N . s oo - contributions to the magnetic torque. The first one is the
Egs(Bo):mln[ Tnilp(r),s(r),Bol+Unlp(r)] standard form of spin-orbit coupling used in all calculations
ps based on Pauli theory. There are two additional terms, how-
. .. ever, which are related to the spin-dependent part of the
+Excdlp(r),s(r)]+ f Uext(r)P(r)dsr]- exchange-correlation potential. This is an important develop-
ment, since it was always unclear how to combine magne-
. tism and spin-orbit coupling in calculations. Our work shows
This formula is only valid when the directioB, is @ good  that in the context of density-functional theory such a com-
approximation for the direction of the total magnetization. pination is possible.
This reqUIreS the orbital magnetlc moment to be almost com- Future calculations will have to show how |arge the con-
pletely quenched, a situation that only arises in transitiorriputions of the additional terms are, but a rough estimate
metals. If, however, the directioB, coincides with a direc- based on atomic calculations indicates changes on the order
tion of high symmetry in the crystal it will represent the of 10%. The formula for the torque presented above is very
direction of the total magnetization in many cases even whenseful for theoretical consideration, but is not suitable for
the orbital moment is not quenched. Hence the formulgractical calculations. In a following paper we will address
above can be used to calculate differences in magnetic athe issue of how to calculate the torque and magnetic anisot-
isotropy energy between high-symmetry directions. ropy efficiently.

In this paper we have investigated the procedure for cal-
culating the magnetic anisotropy energy using density-
functional theory. We have defined this energy by
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APPENDIX A: FORCE THEOREM s Heett
We consider the density-functional expression In general we have
Ep(r),S(r),Bol=Talp(r),s(r),Bol SE O 3

JE
AE=5—pAp+£AS+a?ABO,

+Uplp(N]+Exd p(r),s(r)] 0

N but at the self-consistent solution the first two terms are zero.
+ | vexdr)p(r)dr. Hence
At self-consistency we have dEgs: JE _ aT i
SE 5Tm_%5UH_%5EXC dB, 9B, 9By

0=—-= tUext
% op  dp  dp where the expressions at the right are calculated at self-
or consistency. The kinetic energy follows from

~ . [hC, .
Tni[pSCISSC!BO:IZE d3r ‘/fl(r)(i_ca'V'FﬁmCz) (1)

occ

:gc f d3r (1) (€nt€veri— maBerBo S) ¥n(r).

The sum over occupied states can be weighted by a Fermi- R R
Dirac or other distribution function to include non-zero tem- ATy=A2 6n_f d3r vesr(F)Apsd(r)
perature or some broadening. Using the normalization of the oce

charge of each state and the definitons of charge and spin . .
density, we obtain _ZMBJ d®rBefi(r)Bo- AS(r).

At this point again we have to use the assumption that the

~ _ _ 3 >, e ~
Thilpsc:Sse:Bol= gc €n f d°r veri(r)psd(r) spin field is approximately parallel 8,. As a result we can
approximate the change in kinetic energy by

—ZMde%Beff(F)éo-é(F).

aTn 0
= €n
In general, for the change in kinetic energy we write JBo By oce
which is the force theorem.
OTqi OTqi aThi -
AT, == Ap+ D As+ AR,
op s dBg APPENDIX B: SPIN ROTATIONS

where we have to include the changes in the spin and charge Two useful identies with Pauli spin matrices are

density due to a change in the direction of the magnetization.

At self-consistency this reduces to (A-0)(C-0)=A-C+ic-(AxC)
and
IToi
ATni=— [ veriAp— Z/J“BBeffAS'i'?ABO; o 1 1\, .
9Bo UR=e‘("2>"““’=cos(§0)—isin(ze n-o.

from the expression of the kinetic energy in terms of eigen-
values, we find These identities are needed to show that
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e (20 7(A. g)e D07 = (3. R)(n- &) +cod O)[ (A- o)
—(n-A)(n-0)]

+sin(@)o- (NXA).

If the vectorA is parallel ton, the second and third terms are

zero andA- o is unchanged. If the vectdk is orthogonal to
n we find thatA- o is rotated to co#)(A-o)+sin(f)o-(n
% A), which corresponds to a rotation &f aroundn by an
angleé.

We define the rotation needed to transform the veétpr

into an arbitrary vectoB by the axis of rotatiom and the
angle # according to

Bo-B=cog ) andB,xB=sin(6)n.
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This leads to
e_(”z)gﬁ*;(éo- 5)e+(i2)eﬁ-<;:|§_5_.
Finally, some useful relations are
(A-oxV)(o-V)=(a-VXA)(o-V)
=(VXA)-V+ic-[(VXA)XV]
=ig-[AA—(A-V)V]
(oXA) (o -B)=BXA+i(BXa)xA

(o-B)(eXA)=BXA—i(BxXa)XA.
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