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Correlated optimized effective-potential treatment of the derivative discontinuity
and of the highest occupied Kohn-Sham eigenvalue: A Janak-type theorem
for the optimized effective-potential model
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A Janak theorem is derived for the correlated optimized effective-potential model of the Kohn-Sham
exchange-correlation potentia). . It is used to evaluate the derivative disconting®D) and to show that the
highest occupied Kohn-Sham eigenvalég= —1, the negative of the ionization potential, when relaxation
and correlation effects are included. This reconciles an apparent inconsistency between the ensemble theory
and fractional occupation number approaches to noninteger particle number in density-functional theory. For
finite systemsg,=—1 implies thatv;,=0 independent of particle number, and that the DD vanishes asymp-
totically as 1f. The difference in behavior of the DD in the bulk and asymptotic regions means that the DD
affects the shape af,., even at fixed, integer particle numbgg0163-182€09)04907-3

I. INTRODUCTION ever, several recent works suggest that the DD should be
taken into account in designing functionals with the correct
Hohenberg-Kohn-Sham  density-functional ~ thédry asymptotic behaviot?!*31213|ndeed, the derivatives with
(DFT) is an important workhorse for electronic structure cal-respect to particle number are intimately connected to the
culations in both physics and chemistry. Since the quality ofelation between the highest occupied Kohn-Sham eigen-
the results is determined by the approximation used for th&alue ey and the ionization potentidl and, hence, to the
exchange-correlation functional, the development of im-asymptotic value vy =lim,_.v,(r) of the exchange-
proved practical, approximate functionals is of central im-correlation potential. The proof of these latter relations has
portance in DFT. For example, the functionals widely usedbeen the subject of recent controvetéy:*® This paper re-
for molecular calculations yield exchange-correlation potenconciles the apparent inconsistencies in the DD obtained
tials v,., whose asymptotic behavior is qualitatively incor- from different methods of handling noninteger particle num-
rect. This is critical for the calculation of high-lying bound ber and gives an independent proof confirming teat
excitations from time-dependent DRRefs. 3 and #and is  —1. For finite systems, this mean$.=0 and that the DD
important for other properties that are sensitive to the outeaffects the shape af,.. Thus, a proper consideration of the
part of the charge density, such as static and dynamic polapD is important for the design of improved practical func-
izabilities. Furthermore, the shortcomings of approximateionals.
functionals have meant that molecular first ionization poten- There are two main approaches for introducing noninteger
tials and band gaps in solids are, in practice, not computegarticle number into DFT. In the fractional occupation num-
from the Kohn-Sham eigenvalues but instead from totalber approach, the usual Kohn-Sham equation, which was de-
energy-difference-based procedures and post-DFT Greefived only for integer occupation number, is used, but the
function approximations, respectively. Work on improving orbital occupation numberf entering into the total-energy
approximate functionals is often guided by properties demexpression
onstrated to hold for the exact functional.
The concept that théexac) DFT exchange-correlation 1 )
energyE,. has a discontinuity in its derivative at integer E==-3 EI fiylV |‘r”i>+f v(r)p(r)dr

particle (electron number,
p(ry)p(r )
f f Trory dndrtEdel (12

7 .
— =v,.r), 1.1

0PN yror VPN o+ through the kinetic energy and the charge density)
ifil#;(r)|? are allowed to be fractional. In this formal-

was originally introduced to explain the discrepancy betweensm Janak s theorem states that

calculated and measured band gaps in solid-state pfysics

and the dissociation of diatomic molecules into neutral JE

atoms’~? In contrast to the well-established place of the de- a_fi €,

rivative discontinuity(DD) in the theory for infinite systems, v

the problem of the DD in finite systems has often been rewherever the derivative exist8.

garded as abstruse, due to questions of consistency betweenThe fractional occupation number approach can be

different methods of introducing noninteger particle numberiewed as simply providing a well-defined smooth extension

into DFT, and as irrelevant for practical applications. How-of the charge density and of the energy expression, which

xc(r)

1.3
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—(eL—€n), 1.7

were derived only for integer occupation number, to includeBasic formal considerations yield

the case of fractional occupation number. Note that both the

charge density and the energy expressions are smooth func- A E) T ( E) -

tions of thef; on the interval 6<f;=<1. Minimization of the xc N ON

energy expressiofil.2) then yields a Kohn-Sham equation v v

involving fractional occupation number. This is purely awhere H and L refer, respectively, to the highest occupied
mathematical device that allows properties of the functional@nd lowest unoccupied molecular orbitals of theelectron

to be studied in the neighborhood of integer particle numbersystem, within a zero-temperature formalism where integer-
thereby giving useful information about the physical case ofN quantities are defined as the uside limit from the

an integer number of particles. In this point of view, no electron-deficient side. The superscripts)(indicate that the
physical reality is ascribed to the fractional particle numberderivative is evaluated &=0*. The resul(1.7) is indepen-

In the ensemble approaétthe orbital occupation num- dent of the method used to extend DFT to noninteger particle
bers of the standard Kohn-Sham theory remain integer but anumber. However, evaluating the derivatives in this expres-
ensemble is introduced where a fractiom=0<1 of the sion requires the use of one method or the other, thus the
members havéN+1 electrons while the rest hawe elec- values obtained cannet priori be assumed to be indepen-
trons, whereN is integer. The energy of a system with a dent of the choice of method.

noninteger number of electrons is then defined by In the ensemble theory, E¢l.4) gives
Elpn+1=fE[pn-1l+(L-DE[pn], (14 (%) B —Ey= e, (189
pn+i=Fonr1H(1=F)py. 1.9 .
JE
In a second step, a Kohn-Sham formalism is constructed for (&_N) =Eni1— En=—A, (1.8b

this ensemble energy and density, and a set of fictitious or-

bitals is introduced for the ensemble. Fractional electronyhere| andA are, respectively, the ionization potential and
number is handled by allowing partial occupation of thegjectron affinity of theN-electron system. Thus
highest occupied Kohn-Sham orbital. The resultant formal-

ism resembles the “fractional occupation number approach” Aye=(1—A)— (€.~ €n). (1.9
discussed above but with the important difference that the
exchange-correlation energy functior&al ] p] need not be Perdew and Lew have recently shown, completely
the same. In particulak, p] differs in its domain of defi- within their ensemble theory formalism, without recourse to
nition (and hence in its functional derivatije® the two  Janak’s theorem, that,= —I. [An earlier proof*® relied on
approaches. In the fractional occupation number approacttombining Janak’s theorem with the ensemble theory deriva-
E,d p] is defined(within the Levy-Lieb constrained search tives (1.8), which, in view of the differences in the two for-
formalism) initially over the domain of densities that inte- malisms, was less cleaBoth these proofs have been con-
grate to an integer number of electroNsand is then ex- tested by Kleinmaf*!® An independent proof, within the
tended to fractionaN. Whereas in the ensemble approach,fractional occupation number formalism, will be given in the
E,d p] is defined over the larger domain of ensemble densipresent paper, thus confirming the result of Perdew, Levy,
ties, including fractionaN, from the outset. Although this and co-workers.
might seem like a minor technicality, such differences in the In the fractional occupation number formalism, explicit
domain of definition of the functional can, in fact, be impor- evaluation of the derivatives in E¢L.7) can be carried out,
tant(see, e.g., Ref. 17 given an orbital-dependent energy expression. Such an en-
While the ensemble approach is convenient for certairergy expression is provided by the optimized effective po-
formal work, practical calculations making use of nonintegertential (OEP method. The OEP exchange potent@EPx
electron numbeisuch as Slater’s transition orbital method js that local potentialv, whose orbitals minimize the

for _calculatmg ionization potentials a}nd excitation enerples Hartree-FockHF) energy expressiolf*° This v, is identi-
typically use the fractional occupation number formalism.

Consist bet its f the two is clearlv desi cal to the Kohn-Sham exchange potentialwithin a linear-
onsistency between results 1rom the two Is clearly ESIr'response approximatidhKrieger, Li, and lafraté extended

ablle. both hes. for fint ) it tul to di the OEPXx to include fractional occupation number and de-
n both approaches, for finite systems it is useful to dis-; aq a Janak-type theorem

tinguish a “bulk region,” where the density is large enough

that the effect orp of the addition or removal of a small JE ,
H H H H H b H — HF

fraction of an electron is insignificant, and an “asymptotic —- =€ (1.10
H ” H H H H (9f,

region” where only the most diffuse orbital contributes sig- v

nificantly to the density, which is smallOne would, of HE . .

course, also expect a “transition region” in between, whereWhereEi. Is the usual H.F orbital energy expression evalu-
the density is small but several orbitals still contribytie. ated using the OEPX orbitals. They thus obtain
the bulk region, or in infinite systems, the DD must be a HE'

_ HF'
nonzero constarit® Ay=(e —€y )—(eL—e€p). (1.1

. B They further verified the existence of this nonzero DD by
Aye= 0y (1) = vy(1). (1.6 direct calculatiorf® Taken together, Eqg1.3 and (1.10
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imply thatey= €, in an exchange-only theory. Levy and - Pi(r)PE(r') PAGYA()
Gorling obtained the same result by using coordinate scalingG(r'r ""):Z fi o i +§i: (1-1) o tin
for the external potential, within the coupling-constant i ! (le)

approactt!

Although it neglects correlation and relaxation, the workWhere the tilde indicates OEP quantities= 0", andf; may
of Krieger, Li, and lafraté’ was an important first step to- be noninteger. Combined with the OEP energy expression
ward reconciling the fractional occupation number and en{Ed. (2.11) of Ref. 23, this provides an explicit formula for
semble theory results. The fractional occupation number rethe “exact” exchange-correlation energy at fractional occu-
sult for A, [Eq. (1.11)] is consistent with the ensemble pation number.
theory result forA,. [Eq. (1.9)] insofar as Koopmans's theo- A Janak-type theorem for the OEP can now be derived.
rem gives the correct ionization potential and electron affin-The notation of Ref. 23 will be used. The derivative to be

ity. However,— el and — /7 are not the same as thend ~ evaluated is
A obtained as total-energy differencA€ in HF, due to ~ ~ ~
relaxation effects. Yet the ensemble theory clearly gives the E) :f f J' oE (aG(l’Z?w) d1d2dw

total-energy difference quantiti¢gqgs.(1.8)]. This is a con- ati), 5(“;(1,2;w)\ of, . '

crete illustration that, in the exchange-only case, the func- (2.2
tional E must be different in the fractional occupation _. L .
numberxiggi ensemble approaches, since otherwisep the tv%fferenﬂatmg Eq.(2.1) gives
approaches would agreflhis same difference in the func- (

tional is also seen from the difference between the Levy and

Garling (exchange-only result thate,,= el (which does

not use ensemble thedrpand the ensemble theory redulit = .

that ey=—1.] It has also been emphasiZédhat the en- The derivativesE/ 8G is given in Eq.(2.16 of Ref. 23[see

semble theory assumds to be a linear functional op, also Eq.(2.21) of that referenck

whereas the fractional occupation number formalism does

not. =
In order to address the questions of consistency between  5G(1,2;0) 2

the ensemble theory and fractional occupation number re-

sults for the DD, the inclusion of relaxation effects in the +wd(1-2)]. (2.9

latter formalism, the relation betweety andl, and the value Inserting Eqs.(2.9 and (2.4) into Eq. (2.2 and taking ad

o 3 . . \L. . ) . . -
Of vy, the general(correlated O.EP me_tho&, which is vantage of the fact that the facte'r”’® allows us to close the
based on many-body Green functions, will be used. Note thegontour in the upper-half complex plane gives

many-body Green-function theory includes relaxation ef-
fects. In particular, the negatives of the eigenvalues of Dys- (

= .. (DT (2) BT (2
aG(l,z,w)) _HOER) @

ar v w—€—in w—€+ing

5E ei77w ~
i [25(2, L) —vy(1)6(1-2)

= 1 -« -~ ~
(3_f|) :2_77i % (w+<¢i|2x0(w)_vxc|¢i>)

on’s quasiparticle equation

[hu+ S 0)]= o, (1.12 X[(0—&=in) = (0—g+in do.

) X (2.5
wherehy, is the Hartree operator anltl,; is the exchange-  Thjs integral is straightforward and evaluates to
correlation self-energy operator, are the ionization potentials
and electron affinities. The first ionization potential and elec- oE o ,
tron affinity solutions will be referred to asy and o, <_f =&+ (i3 (e) v, dvi)=€eF , (2.6
respectively. i/,

which is the usual quasiparticle energy expression evaluated

Il. JANAK-TYPE THEOREM FOR THE OEP using the OEP orbitals and orbital energies; (denotes. .
but constructed using the OEP orbitals and orbital enepgies.
In the (correlated OEP method, the exchange-correlation Note that this is analogous to Janak’s theorem. Note also that
potentialv,, is that potential, local in space and time, whoseit reduces to the exchange-only Janak-type theqted? of
Green function makes a Klein-Luttinger-Ward-type energyKrieger, Li, and lafrate when correlation is neglected.
expression stationa®. The resultant,, is identical to the Using the present OEP Janak theoré®) to evaluate
exactv,. of Kohn-Sham theory, within a linear-response the derivatives in Eq(1.7) gives
approximatior?> A similar energy expression was used by

Sham and Schter in their original treatment of the DB?* A= (e — e )~ (eL—ep). .7
however, they did not address the issue of noninteger particle . " , P )
number. This is a positive quantity becaug@® is the orbital energy

First, note that the OEP method can be extended to handf@" an electron that is repeled by one more electron than is
fractional occupation number by writing the OEP Greenthe case fore” , while the Kohn-Sham orbital energies
function in the form and e are for orbitals that see the same effective potential.
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Equation (2.7) is consistent with the result foA,. ob-  ment has been imposed to fix the arbitrary additive constant
tained from ensemble theof¥q. (1.9)] because the quasi- in 3, ., and it remains undetermined.

particle energiesiQ'y [Eq. (2.6)] provide first-order solutions
to Dyson’s equatiorf1.12). (See Ref. 25 for a discussion of
the similarities and differences between OEP orbitals and
Dyson orbitals. In particulareS” =—1 and €2 = —A. For finite systems, one of the important implications of
In the fractional occupation number formalism, many-the result(3.1) is that, taken together with the known
body effects, including relaxation effects, are included@symptotic form ofv,c,*’ it determines the value af,, as
through the self-energy. This can be seen explicitly at seconfas been shown by Levy, Perdew, and S&RfiThis is
order. Using the usual second-order approximation for théhown again here in order to resolve questirigsurround-

IV. ASYMPTOTIC BEHAVIOR OF v,

Se|f_energy, the OEP energy expression is Ing the effect of neglecting relaxation effects, or other ap-
proximations, on the value af},.
_ 1o fif(1—fa—f)|V}, wl? Subtracting the Dyson equation from the Kohn-Sham
E®=Epp + ZE ~ o~ L=, (2.9  equation in the asymptotic region, and noting tiatin the
€; €j — €K €

two equations must be the same in the asymptotic region

whereV} ; is an electron repulsion integral involving the SINC€P 1S necessarily the same, givés

OEP orbitals. Straightforward differentiation gives, for the

ionization potential out of orbitadj, wﬁ(r)ixc(wH)wH(r)
vell) = = e o)
JE? _HFS fj(l_fl)|vé]j,ql|2 A
of ~€a T — e fy
a/f,=1 6] € H_T'F(GH_CUH), (41)

fi(1=F) (1= 1)V pl?

€qt€j— €€

1
+§E

for the exactv,., in the asymptotic region. In the limit

—>OO,

1 > fifj(l—f|)~|Vi'

12
- A '~ ~ ]:..(.:1|| . (29) U;:: GH_wH:6H+I. (42)
2i7%q €te—€qe€

Physically, the terms on the right-hand side represent, relhus, Eq.(3.1) impliesv,.=0.

spectively (from left to right, the Koopmans's theorem  Now, note that Eq(4.1) applies to any self-energy ap-
value, relaxation, pair-correlation with orbitgl and correla- Proximation whose correlation part falls off more rapidly
tion changes due to electron reorganization, and there is dAan the exchange paifThis is the case for nearly all sys-
analogous formula and interpretation for the electront€ms of interest except suE)erconduct)oFEhe exactvy IS
affinity.?® This makes it clear how relaxatiofand some determined by the exack,., via the Sham-Schter
othed effects are in fact included, providing a sufficiently equatior® Similarly, for any self-energy approximation there

accurate model of . is used. Note also thét is a nonlinear IS @ corresponding approximatg., which is exact within

function of thef,, but that it is approximately linear. the model defined by the self-energy approximation. In the
case of an approximate self-energyy, in Eq. (4.2 is the
lll. RELATION BETWEEN &, AND THE IONIZATION quasiparticle eigenvalue for whatever approximatg was
POTENTIAL used. For example, in the exchange-only casg= el .

This means that in Eq(4.2), | should be interpreted as
The Janak theorems for the OEP and Kohn-Sham theories wy, hot asAE, when these are different. Thus neg]ect of

can now be used together to rela¢g to I. Kohn-Sham

X - relaxation (or othe) effects in3,. resulting in — wy#AE
theory gives the exact ground-state total energy. This is alsaoes not affect the asymptotic value of the corresponding

true of the OEP theory, within the linear-response approxrvxc, contrary to a previous argumeit-*

mation used there. Thug"><E. Applying the respective  Since the conclusion that,=0 is based on the Janak
Janak theorem€qgs.(1.3) and(2.6)] givesey= eSP', which,  theorems, it holds independent of particle number. Thus, the
as noted above, gives to first order DD must go to zero at infinity. In the asymptotic region, Eq.
(4.1) gives
€4= Wy, (3.9
. . - A 1 é
which equals—1 in the limit of the exact self-energ¥ .. Ur)—— - va(r)—— -, 4.3

Note that the restriction to the ground-state energy means

that Eq.(3.1) applies only to the highest occupied molecular- N .

orbital energy. This is the same as the result obtained b{PON addition or removal of a small fractidghof an electron.
Perdew, Levy, and co-workers within their ensemble theorylhus, the DD vanishes asrlih the asymptotic region. This
formalism”° The present proof, within the fractional occu- IS the same as the exchange-only result of Krieger, Li, and
pation number formalism, is completely independent of'fi‘fra'f6320 for the asymptotic behavior of the DD, since only
theirs and thus confirms their result. Note that no require2, contributes at large.
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V. CONCLUSION discrete excitations and properties sensitive to the “large-

This paper has presented a Janak-tvpe theorem based rergion. Now that a full OEP treatment has been given, and

pap P 1ak-typ it ensemble theory and fractional occupation number re-
the full (correlated .OEP model. This was uged to e_valuate sults for the DD have been shown to be consistent, the chal-
;[/Ui?hDﬂ?é Zﬁi;&ﬁg'?ﬁe\ﬁu;gﬁc gfalle(rzdz)v]v |2nc(;)r|1_55|stent lenge will be to develop approximate functionals that incor-

y eIISE;q. .porate the essential features of the DD. As a step in this

(1.9] and rgduces to the exchange-only r?su“ of Krieger, I"’direction we have shown how the effect of the DD on the
and lafraté® [Eq. (1.11)] when correlation is neglected. The shape Oﬁ,}xc can be mimicked through an asymptotic correc-
present correlated égip treatment makes it clear that the Mafldn scheme involving a shifted local-density approximation
apparent differenc between the ensemble an_d fractional (or gradient correctédv,. and that this does indeed yield a
occupation number results, such as the inclusion of relax: XC

ation effects. are resolved when a sufficientl ﬁigniﬁcant improvement in high-lying discrete excitation en-
’ y accurate model .o "trom time-dependent DEFL?
of v, is used. The present OEP-Janak theorem is also used? P '
to show thate,= — I, thus confirming the widely known but
recently contestéd!® theorem of Perdew, Levy, and
co-workers’? For finite systems this implies;,=0, inde-
pendent of particle number, and thus that the DD vanishes as | am grateful to Dennis Salahub for his support of this
1/ in the asymptotic region. work, including financial support through grants from the
The difference between the effect of the DDwp inthe  Natural Sciences and Engineering Research Council
bulk and asymptotic regions means that the DD affects théNSERQ of Canada and the Fonds Pour la Formation des
shapeof v,., even at fixed, integer particle number. The Chercheurs et I'Aide da RecherchéFCAR) of Québec. |
development of improved practical approximationwgfis  would also like to thank Kim Casida and Mel Levy for com-
important, and especially so for the calculation of high-lyingments on a draft of this manuscript.

ACKNOWLEDGMENTS

*Electronic address: mark.casida@umontreal.ca 11H. Chermette, A. Lembarki, H. Razafinjanahary, and F. Roge-
1p. Hohenberg and W. Kohn, Phys. R&&6, B864 (1964). mond, Adv. Quantum Chen&3, 105 (1999.
2W. Kohn and L.J. Sham, Phys. Rel40, A1133(1965. 12\M.E. Casida, Kim C. Casida, and D.R. Salahub, Int. J. Quantum

3M.E. Casida, inRecent Developments and Applications of Mod- _ Chem.70, 933(1998. _
ern Density Functional Theonedited by J.M. Seminario, The- 14M-E- Casida and D.R. Salahybnpublished
oretical and Computational Chemistry Vol (Blsevier Science, L. Kleinman, Phys. Rev. 56, 12 042(1997.

Amsterdam, 1996 p. 391. L. Kleinman, Phys. Rev. B6, 16 029(1997).

“M.E. Casida, C. Jamorski, K.C. Casida, and D.R. Salahub, J,.J-F- Janak, Phys. Rev. B, 7165(1978.
Chem. Phys108 4439(1998 ’R.M. Dreizler and E.K.U. GrossDensity Functional Theory

' i Springer-Verlag, Berlin, 19 . 48-52.

5J.P. Perdew and M. Levy, Phys. Rev. L&, 1884(1983. 18R(Tp Shgar o g K Horon 92Eps R@D, 317(1953

6L.J. Sham and M. Schier, Phys. Rev. Lett51, 1888(1983. 197 Tal P -+, morton, S ’ ;

7 . Talman and W. Shadwick, Phys. Rev.1A, 36 (1976.

J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. RevzoJ P. Krieger, Y. Li, and G.J. lafrate, Phys. Lett. 148 470
Lett. 49, 1691(1982. e en e ' ' '

(1990; 146, 256 (1990.
2IM. Levy and A. Galing, Phys. Rev. A53, 3140(1996.
22y, Russier, Phys. Rev. B5, 8894(1992.
23M.E. Casida, Phys. Rev. A1, 2005(1995.

83.P. Perdew, iensity-Functional Methods in Physjcgol. 123
of NATO Advanced Study Institute Series B: Physdited by
R.M. Dreizler and J. da ProvidendiRlenum, New York, 1985

o P 265. 24| 3. Sham and M. Schier, Phys. Rev. B32, 3883(1985.
J.P. Perdew and M. Levy, Phys. Rev.5B, 16 021(1997). 25p_puffy, D.P. Chong, M.E. Casida, and D.R. Salahub, Phys. Rev.
R, Neumann, R.H. Nobes, and N.C. Handy, Mol. PH§3. 1 A 50, 4707(1994).

(1996; D.J. Tozer, N.C. Handy, and W.H. Green, Chem. Phys.25g, pickup and O. Goscinski, Mol. Phy86, 1013(1973.
Lett. 273 183 (1997; G.K-L. Chan, D.J. Tozer, and N.C. 27C.O. Almbladh and U. von Barth, Phys. Rev.38, 3231(1985.

Handy, J. Chem. Phy4.07, 1536(1997; D.J. Tozer and N.C. 28M. Levy, J.P. Perdew, and V. Sahni, Phys. Rev.38, 2745
Handy, ibid. 108 2545(1998. (1984.



