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Correlated optimized effective-potential treatment of the derivative discontinuity
and of the highest occupied Kohn-Sham eigenvalue: A Janak-type theorem

for the optimized effective-potential model

Mark E. Casida*
Département de Chimie, Universite´ de Montréal, Case Postale 6128, Succursale Centre-Ville, Montre´al, Québec, Canada H3C 3J7

~Received 27 July 1998!

A Janak theorem is derived for the correlated optimized effective-potential model of the Kohn-Sham
exchange-correlation potentialvxc . It is used to evaluate the derivative discontinuity~DD! and to show that the
highest occupied Kohn-Sham eigenvalue,eH>2I , the negative of the ionization potential, when relaxation
and correlation effects are included. This reconciles an apparent inconsistency between the ensemble theory
and fractional occupation number approaches to noninteger particle number in density-functional theory. For
finite systems,eH52I implies thatvxc

` 50 independent of particle number, and that the DD vanishes asymp-
totically as 1/r . The difference in behavior of the DD in the bulk and asymptotic regions means that the DD
affects the shape ofvxc , even at fixed, integer particle number.@S0163-1829~99!04907-3#
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I. INTRODUCTION

Hohenberg-Kohn-Sham density-functional theory1,2

~DFT! is an important workhorse for electronic structure c
culations in both physics and chemistry. Since the quality
the results is determined by the approximation used for
exchange-correlation functional, the development of i
proved practical, approximate functionals is of central i
portance in DFT. For example, the functionals widely us
for molecular calculations yield exchange-correlation pot
tials vxc , whose asymptotic behavior is qualitatively inco
rect. This is critical for the calculation of high-lying boun
excitations from time-dependent DFT~Refs. 3 and 4! and is
important for other properties that are sensitive to the ou
part of the charge density, such as static and dynamic po
izabilities. Furthermore, the shortcomings of approxim
functionals have meant that molecular first ionization pot
tials and band gaps in solids are, in practice, not compu
from the Kohn-Sham eigenvalues but instead from to
energy-difference-based procedures and post-DFT Gr
function approximations, respectively. Work on improvin
approximate functionals is often guided by properties de
onstrated to hold for the exact functional.

The concept that the~exact! DFT exchange-correlation
energy Exc has a discontinuity in its derivative at integ
particle ~electron! number,

vxc
1~r ![S dExc

dr~r ! D
N101

ÞS dExc

dr~r ! D
N201

[vxc
2~r !, ~1.1!

was originally introduced to explain the discrepancy betwe
calculated and measured band gaps in solid-state phys5,6

and the dissociation of diatomic molecules into neut
atoms.7–9 In contrast to the well-established place of the d
rivative discontinuity~DD! in the theory for infinite systems
the problem of the DD in finite systems has often been
garded as abstruse, due to questions of consistency bet
different methods of introducing noninteger particle numb
into DFT, and as irrelevant for practical applications. Ho
PRB 590163-1829/99/59~7!/4694~5!/$15.00
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ever, several recent works suggest that the DD should
taken into account in designing functionals with the corr
asymptotic behavior.10,11,3,12,13Indeed, the derivatives with
respect to particle number are intimately connected to
relation between the highest occupied Kohn-Sham eig
value eH and the ionization potentialI and, hence, to the
asymptotic value vxc

` [ limr→`vxc(r ) of the exchange-
correlation potential. The proof of these latter relations h
been the subject of recent controversy.14,9,15 This paper re-
conciles the apparent inconsistencies in the DD obtai
from different methods of handling noninteger particle nu
ber and gives an independent proof confirming thateH5
2I . For finite systems, this meansvxc

` 50 and that the DD
affects the shape ofvxc . Thus, a proper consideration of th
DD is important for the design of improved practical fun
tionals.

There are two main approaches for introducing noninte
particle number into DFT. In the fractional occupation num
ber approach, the usual Kohn-Sham equation, which was
rived only for integer occupation number, is used, but
orbital occupation numbersf i entering into the total-energy
expression

E52
1

2 (
i

f i^c i u¹2uc i&1E v~r !r~r !dr

1
1

2E E r~r1!r~r2!

ur12r2u
dr1dr21Exc@r# ~1.2!

through the kinetic energy and the charge densityr(r )
5( j f j uc j (r )u2 are allowed to be fractional. In this forma
ism, Janak’s theorem states that

S ]E

] f i
D

v

5e i , ~1.3!

wherever the derivative exists.16

The fractional occupation number approach can
viewed as simply providing a well-defined smooth extens
of the charge density and of the energy expression, wh
4694 ©1999 The American Physical Society
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were derived only for integer occupation number, to inclu
the case of fractional occupation number. Note that both
charge density and the energy expressions are smooth
tions of thef i on the interval 0, f i<1. Minimization of the
energy expression~1.2! then yields a Kohn-Sham equatio
involving fractional occupation number. This is purely
mathematical device that allows properties of the function
to be studied in the neighborhood of integer particle numb
thereby giving useful information about the physical case
an integer number of particles. In this point of view, n
physical reality is ascribed to the fractional particle numb

In the ensemble approach,7 the orbital occupation num
bers of the standard Kohn-Sham theory remain integer bu
ensemble is introduced where a fraction 0< f <1 of the
members haveN11 electrons while the rest haveN elec-
trons, whereN is integer. The energy of a system with
noninteger number of electrons is then defined by

E@rN1 f #5 f E@rN11#1~12 f !E@rN#, ~1.4!

rN1 f5 f rN111~12 f !rN . ~1.5!

In a second step, a Kohn-Sham formalism is constructed
this ensemble energy and density, and a set of fictitious
bitals is introduced for the ensemble. Fractional elect
number is handled by allowing partial occupation of t
highest occupied Kohn-Sham orbital. The resultant form
ism resembles the ‘‘fractional occupation number approac
discussed above but with the important difference that
exchange-correlation energy functionalExc@r# need not be
the same. In particular,Exc@r# differs in its domain of defi-
nition ~and hence in its functional derivatives! in the two
approaches. In the fractional occupation number appro
Exc@r# is defined~within the Levy-Lieb constrained searc
formalism! initially over the domain of densities that inte
grate to an integer number of electronsN and is then ex-
tended to fractionalN. Whereas in the ensemble approac
Exc@r# is defined over the larger domain of ensemble den
ties, including fractionalN, from the outset. Although this
might seem like a minor technicality, such differences in
domain of definition of the functional can, in fact, be impo
tant ~see, e.g., Ref. 17!.

While the ensemble approach is convenient for cert
formal work, practical calculations making use of noninteg
electron number~such as Slater’s transition orbital metho
for calculating ionization potentials and excitation energi!
typically use the fractional occupation number formalis
Consistency between results from the two is clearly de
able.

In both approaches, for finite systems it is useful to d
tinguish a ‘‘bulk region,’’ where the density is large enoug
that the effect onr of the addition or removal of a sma
fraction of an electron is insignificant, and an ‘‘asympto
region’’ where only the most diffuse orbital contributes si
nificantly to the density, which is small.~One would, of
course, also expect a ‘‘transition region’’ in between, whe
the density is small but several orbitals still contribute.! In
the bulk region, or in infinite systems, the DD must be
nonzero constant,5,6

Dxc5vxc
1~r !2vxc

2~r !. ~1.6!
e
e

nc-

ls
r,
f

r.

an

or
r-
n

l-
’’
e

h,

,
i-

e

n
r

.
r-

-

e

Basic formal considerations yield5

Dxc5F S ]E

]ND
v

1

2S ]E

]ND
v

2G2~eL2eH!, ~1.7!

where H and L refer, respectively, to the highest occup
and lowest unoccupied molecular orbitals of theN-electron
system, within a zero-temperature formalism where integ
N quantities are defined as the usual6,8,9 limit from the
electron-deficient side. The superscripts (6) indicate that the
derivative is evaluated atN601. The result~1.7! is indepen-
dent of the method used to extend DFT to noninteger part
number. However, evaluating the derivatives in this expr
sion requires the use of one method or the other, thus
values obtained cannota priori be assumed to be indepen
dent of the choice of method.

In the ensemble theory, Eq.~1.4! gives

S ]E

]ND
v

2

5EN2EN2152I , ~1.8a!

S ]E

]ND
v

1

5EN112EN52A, ~1.8b!

whereI andA are, respectively, the ionization potential an
electron affinity of theN-electron system. Thus

Dxc5~ I 2A!2~eL2eH!. ~1.9!

Perdew and Levy9 have recently shown, completel
within their ensemble theory formalism, without recourse
Janak’s theorem, thateH52I . @An earlier proof7,5 relied on
combining Janak’s theorem with the ensemble theory der
tives ~1.8!, which, in view of the differences in the two for
malisms, was less clear.# Both these proofs have been co
tested by Kleinman.14,15 An independent proof, within the
fractional occupation number formalism, will be given in th
present paper, thus confirming the result of Perdew, Le
and co-workers.

In the fractional occupation number formalism, explic
evaluation of the derivatives in Eq.~1.7! can be carried out,
given an orbital-dependent energy expression. Such an
ergy expression is provided by the optimized effective p
tential ~OEP! method. The OEP exchange potential~OEPx!
is that local potentialṽx whose orbitals minimize the
Hartree-Fock~HF! energy expression.18,19 This ṽx is identi-
cal to the Kohn-Sham exchange potentialvx within a linear-
response approximation.6 Krieger, Li, and Iafrate20 extended
the OEPx to include fractional occupation number and
rived a Janak-type theorem

S ]E

] f i
D

v

5e i
HF8 , ~1.10!

wheree i
HF8 is the usual HF orbital energy expression eva

ated using the OEPx orbitals. They thus obtain

Dx5~eL
HF82eH

HF8!2~eL2eH!. ~1.11!

They further verified the existence of this nonzero DD
direct calculation.20 Taken together, Eqs.~1.3! and ~1.10!
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imply that eH5eH
HF8, in an exchange-only theory. Levy an

Görling obtained the same result by using coordinate sca
for the external potential, within the coupling-consta
approach.21

Although it neglects correlation and relaxation, the wo
of Krieger, Li, and Iafrate20 was an important first step to
ward reconciling the fractional occupation number and
semble theory results. The fractional occupation number
sult for Dx @Eq. ~1.11!# is consistent with the ensemb
theory result forDxc @Eq. ~1.9!# insofar as Koopmans’s theo
rem gives the correct ionization potential and electron af
ity. However,2eH

HF and2eL
HF are not the same as theI and

A obtained as total-energy differencesDE in HF, due to
relaxation effects. Yet the ensemble theory clearly gives
total-energy difference quantities@Eqs.~1.8!#. This is a con-
crete illustration that, in the exchange-only case, the fu
tional Exc@r# must be different in the fractional occupatio
number and ensemble approaches, since otherwise the
approaches would agree.@This same difference in the func
tional is also seen from the difference between the Levy

Görling ~exchange-only! result thateH5eH
HF8 ~which does

not use ensemble theory! and the ensemble theory result7,9

that eH52I .] It has also been emphasized22 that the en-
semble theory assumesE to be a linear functional ofr,
whereas the fractional occupation number formalism d
not.

In order to address the questions of consistency betw
the ensemble theory and fractional occupation number
sults for the DD, the inclusion of relaxation effects in th
latter formalism, the relation betweeneH andI, and the value
of vxc

` , the general~correlated! OEP method,23 which is
based on many-body Green functions, will be used. Note
many-body Green-function theory includes relaxation
fects. In particular, the negatives of the eigenvalues of D
on’s quasiparticle equation

@ ĥH1Ŝxc~v I !#c I5v Ic I , ~1.12!

where ĥH is the Hartree operator andŜxc is the exchange-
correlation self-energy operator, are the ionization potent
and electron affinities. The first ionization potential and el
tron affinity solutions will be referred to asvH and vL ,
respectively.

II. JANAK-TYPE THEOREM FOR THE OEP

In the ~correlated! OEP method, the exchange-correlati
potentialṽxc is that potential, local in space and time, who
Green function makes a Klein-Luttinger-Ward-type ener
expression stationary.23 The resultantṽxc is identical to the
exact vxc of Kohn-Sham theory, within a linear-respon
approximation.23 A similar energy expression was used
Sham and Schlu¨ter in their original treatment of the DD;6,24

however, they did not address the issue of noninteger par
number.

First, note that the OEP method can be extended to ha
fractional occupation number by writing the OEP Gre
function in the form
g
t

-
e-

-

e

-

wo

d

s

en
e-

at
-
-

ls
-

y

le

le

G̃~r ,r 8;v!5(
i

f i

c̃ i~r !c̃ i* ~r 8!

v2 ẽ i2 ih
1(

i
~12 f i !

c̃ i~r !c̃ i* ~r 8!

v2 ẽ i1 ih
,

~2.1!

where the tilde indicates OEP quantities,h501, and f i may
be noninteger. Combined with the OEP energy express
@Eq. ~2.11! of Ref. 23#, this provides an explicit formula for
the ‘‘exact’’ exchange-correlation energy at fractional occ
pation number.

A Janak-type theorem for the OEP can now be deriv
The notation of Ref. 23 will be used. The derivative to
evaluated is

S ]Ẽ

] f i
D

v

5E E E dẼ

dG̃~1,2;v!
S ]G̃~1,2;v!

] f i
D

v

d1d2dv.

~2.2!

Differentiating Eq.~2.1! gives

S ]G̃~1,2;v!

] f i
D

v

5
c̃ i~1!c̃ i* ~2!

v2 ẽ i2 ih
2

c̃ i~1!c̃ i* ~2!

v2 ẽ i1 ih
. ~2.3!

The derivativedẼ/dG̃ is given in Eq.~2.16! of Ref. 23@see
also Eq.~2.21! of that reference#,

dẼ

dG̃~1,2;v!
5

eihv

2p i
@Sxc8 ~2,1;v!2 ṽxc~1!d~122!

1vd~122!#. ~2.4!

Inserting Eqs.~2.3! and ~2.4! into Eq. ~2.2! and taking ad-
vantage of the fact that the factoreihv allows us to close the
contour in the upper-half complexv plane gives

S ]Ẽ

] f i
D

v

5
1

2p i R ~v1^c̃ i uŜxc8 ~v!2 ṽxcuc̃ i&!

3@~v2 ẽ i2 ih!212~v2 ẽ i1 ih!21#dv.

~2.5!

This integral is straightforward and evaluates to

S ]Ẽ

] f i
D

v

5 ẽ i1^c̃ i uŜxc8 ~ ẽ i !2 ṽxcuc̃ i&[e i
QP8 , ~2.6!

which is the usual quasiparticle energy expression evalu
using the OEP orbitals and orbital energies. (Ŝxc8 denotesŜxc

but constructed using the OEP orbitals and orbital energi!
Note that this is analogous to Janak’s theorem. Note also
it reduces to the exchange-only Janak-type theorem~1.10! of
Krieger, Li, and Iafrate when correlation is neglected.

Using the present OEP Janak theorem~2.6! to evaluate
the derivatives in Eq.~1.7! gives

Dxc5~eL
QP82eH

QP8!2~eL2eH!. ~2.7!

This is a positive quantity becauseeL
QP8 is the orbital energy

for an electron that is repeled by one more electron tha

the case foreH
QP8, while the Kohn-Sham orbital energieseL

andeH are for orbitals that see the same effective potent
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Equation ~2.7! is consistent with the result forDxc ob-
tained from ensemble theory@Eq. ~1.9!# because the quas

particle energiese i
QP8 @Eq. ~2.6!# provide first-order solutions

to Dyson’s equation~1.12!. ~See Ref. 25 for a discussion o
the similarities and differences between OEP orbitals

Dyson orbitals.! In particulareH
QP8>2I andeL

QP8>2A.
In the fractional occupation number formalism, man

body effects, including relaxation effects, are includ
through the self-energy. This can be seen explicitly at sec
order. Using the usual second-order approximation for
self-energy, the OEP energy expression is

Ẽ~2!5EHF81
1

4(
f i f j~12 f k!~12 f l !uVi j ,kl8 u2

ẽ i1 ẽ j2 ẽk2 ẽ l

, ~2.8!

where Vik, j l8 is an electron repulsion integral involving th
OEP orbitals. Straightforward differentiation gives, for t
ionization potential out of orbitalq,

S ]Ẽ~2!

] f q
D

f q51

5eq
HF82(

f j~12 f l !uVq j ,ql8 u2

ẽ j2 ẽ l

1
1

2 (
f j~12 f k!~12 f l !uVq j ,kl8 u2

ẽq1 ẽ j2 ẽk2 ẽ l

2
1

2 (
i , j Þq

f i f j~12 f l !uVi j ,ql8 u2

ẽ i1 ẽ j2 ẽq2 ẽ l

. ~2.9!

Physically, the terms on the right-hand side represent,
spectively ~from left to right!, the Koopmans’s theorem
value, relaxation, pair-correlation with orbitalq, and correla-
tion changes due to electron reorganization, and there i
analogous formula and interpretation for the electr
affinity.26 This makes it clear how relaxation~and some
other! effects are in fact included, providing a sufficient
accurate model ofvxc is used. Note also thatẼ is a nonlinear
function of thef q , but that it is approximately linear.

III. RELATION BETWEEN eH AND THE IONIZATION
POTENTIAL

The Janak theorems for the OEP and Kohn-Sham theo
can now be used together to relateeH to I. Kohn-Sham
theory gives the exact ground-state total energy. This is
true of the OEP theory, within the linear-response appro
mation used there. Thus,EKS5Ẽ. Applying the respective

Janak theorems@Eqs.~1.3! and~2.6!# giveseH5eH
QP8, which,

as noted above, gives to first order

eH5vH , ~3.1!

which equals2I in the limit of the exact self-energyŜxc .
Note that the restriction to the ground-state energy me
that Eq.~3.1! applies only to the highest occupied molecula
orbital energy. This is the same as the result obtained
Perdew, Levy, and co-workers within their ensemble the
formalism.7,9 The present proof, within the fractional occu
pation number formalism, is completely independent
theirs and thus confirms their result. Note that no requ
d
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ment has been imposed to fix the arbitrary additive cons
in ṽxc, and it remains undetermined.

IV. ASYMPTOTIC BEHAVIOR OF vxc

For finite systems, one of the important implications
the result ~3.1! is that, taken together with the know
asymptotic form ofvxc ,27 it determines the value ofvxc

` , as
has been shown by Levy, Perdew, and Sahni.28,9 This is
shown again here in order to resolve questions22,14surround-
ing the effect of neglecting relaxation effects, or other a
proximations, on the value ofvxc

` .
Subtracting the Dyson equation from the Kohn-Sha

equation in the asymptotic region, and noting thatcH in the
two equations must be the same in the asymptotic reg
sincer is necessarily the same, gives27

vxc~r !→
cH* ~r !Ŝxc~vH!cH~r !

ucH~r !u2
1~eH2vH!

→2
f H

r
1~eH2vH!, ~4.1!

for the exactvxc , in the asymptotic region. In the limitr
→`,

vxc
` 5eH2vH5eH1I . ~4.2!

Thus, Eq.~3.1! implies vxc
` 50.

Now, note that Eq.~4.1! applies to any self-energy ap
proximation whose correlation part falls off more rapid
than the exchange part.~This is the case for nearly all sys
tems of interest except superconductors.! The exactvxc is
determined by the exactŜxc , via the Sham-Schlu¨ter
equation.6 Similarly, for any self-energy approximation ther
is a corresponding approximatevxc , which is exact within
the model defined by the self-energy approximation. In
case of an approximate self-energy,vH in Eq. ~4.1! is the
quasiparticle eigenvalue for whatever approximateŜxc was
used. For example, in the exchange-only case,vH5eH

HF.
This means that in Eq.~4.2!, I should be interpreted a
2vH , not asDE, when these are different. Thus neglect
relaxation~or other! effects in Ŝxc resulting in 2vHÞDE
does not affect the asymptotic value of the correspond
vxc , contrary to a previous argument.22,14

Since the conclusion thatvxc
` 50 is based on the Jana

theorems, it holds independent of particle number. Thus,
DD must go to zero at infinity. In the asymptotic region, E
~4.1! gives

vxc
2~r !→2

1

r
, vxc

1~r !→2
d

r
, ~4.3!

upon addition or removal of a small fractiond of an electron.
Thus, the DD vanishes as 1/r in the asymptotic region. This
is the same as the exchange-only result of Krieger, Li, a
Iafrate20 for the asymptotic behavior of the DD, since on
Ŝx contributes at larger.



d
te

L
e
a

a
la
d
s

t
d

s

th
e

ng

-
nd
re-

hal-
or-
this
he
c-
on
a
n-

is
e

ncil
es

-

4698 PRB 59MARK E. CASIDA
V. CONCLUSION

This paper has presented a Janak-type theorem base
the full ~correlated! OEP model. This was used to evalua
the DD. The resulting value ofDxc @Eq. ~2.7!# is consistent
with the ensemble theory result of Perdew and Levy5 @Eq.
~1.9!# and reduces to the exchange-only result of Krieger,
and Iafrate20 @Eq. ~1.11!# when correlation is neglected. Th
present correlated OEP treatment makes it clear that the m
apparent differences22,14between the ensemble and fraction
occupation number results, such as the inclusion of re
ation effects, are resolved when a sufficiently accurate mo
of vxc is used. The present OEP-Janak theorem is also u
to show thateH52I , thus confirming the widely known bu
recently contested14,15 theorem of Perdew, Levy, an
co-workers.7,9 For finite systems this impliesvxc

` 50, inde-
pendent of particle number, and thus that the DD vanishe
1/r in the asymptotic region.

The difference between the effect of the DD onvxc in the
bulk and asymptotic regions means that the DD affects
shapeof vxc , even at fixed, integer particle number. Th
development of improved practical approximations ofvxc is
important, and especially so for the calculation of high-lyi
d

e

on

i,

in
l
x-
el
ed

as

e

discrete excitations and properties sensitive to the ‘‘larger ’’
region. Now that a full OEP treatment has been given, a
the ensemble theory and fractional occupation number
sults for the DD have been shown to be consistent, the c
lenge will be to develop approximate functionals that inc
porate the essential features of the DD. As a step in
direction, we have shown how the effect of the DD on t
shape ofvxc can be mimicked through an asymptotic corre
tion scheme involving a shifted local-density approximati
~or gradient corrected! vxc and that this does indeed yield
significant improvement in high-lying discrete excitation e
ergies from time-dependent DFT.12,13
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