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Iterative method of calculating reflection-high-energy-electron-diffraction intensities
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A method of calculating reflection high-energy electron diffraction intensities is developed within the frame-
work of two-dimensional Bloch-wave approach. In the course of computations only wave-field-related quan-
tities are employed~rather than transfer or scattering matrices!. The intensities of reflected beams are calcu-
lated iteratively. The very good convergence of the method is demonstrated for Pt~111!. For scattering systems
with a large number of diffracted beams~exceeding 100–500! this iterative method is potentially faster than
traditional direct methods. More importantly, a number of possible approximations can be easily derived on the
basis of the iteration sequence introduced.@S0163-1829~99!09107-9#
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In recent years much interest has been generated in
use of reflection high-energy electron diffraction~RHEED!
in experimental investigations of solid surfaces.1 RHEED
can be used to determine precise positions of atoms at
surfaces. It can also be used to gain information about
surface topography arising during growth of samples by m
lecular beam epitaxy. However, to describe properly
movement of electrons in crystals one needs to take acc
of multiple scattering processes. This is especially difficul
the grazing geometry of RHEED. Consequently precise t
oretical interpretations of RHEED data are rather com
cated even for simple experimental situations. More imp
tantly, such a treatment is still not available for the case o
arbitrarily rough surface. Therefore, one can conclude
fundamental theoretical research on RHEED is still need

In the past considerable progress in quantitative work
RHEED has been achieved due to the use of numerical m
ods developed in nineteen eighties within the tw
dimensional Bloch-wave approach2 ~referred to hereafter a
direct methods!. In these methods the crystal is divided in
slices parallel to the surface and transfer matrices for
slices are determined. Then a reflection matrix is compu
successively from the crystal bottom to the crystal top.3 An
important feature of the direct methods is that, for both we
and strong potentials, all computation steps are execute
the same way. This is in fact in many situations a big adv
tage of these methods as they are universal. However, on
other hand, an implication of this feature is that the li
between the direct methods and simplified kinematical
proaches~which can be developed for weaker potentials! is
hidden behind complicated numerical procedures, and th
why precise numerical results usually cannot be explai
qualitatively. In this paper we develop a dynamical meth
of calculating RHEED intensities in which the exact resu
are obtained as a limit of an iteration sequence. In
method the full dynamical treatment of electron diffracti
can be considered to be an extension of the kinematical
proach. As discussed later the direct methods and our it
tive method have different advantages and disadvantages
should be treated as complimentary.

There exist already in the literature important examples
RHEED dynamical calculations in which iteration sequen
PRB 590163-1829/99/59~7!/4642~4!/$15.00
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appear.4 In that work authors benefit from introducing a co
cept of a small perturbation and a reference system. For
latter direct method calculations are carried out. We follow
different line. Our method is based on the supposition t
forward scattering processes are much stronger than b
ward ones. In principle we do not require any earlier dire
method calculations. The possibility of benefiting from t
aforementioned supposition was first recognized for the c
of low-energy electron diffraction~LEED!. Despite the exis-
tence of important differences between RHEED and LEE
in some sense our work can be considered to be the con
ation of work of Pendry and of Tong on renormalized fo
ward scattering schemes.5,6 From this point of view it is
worth emphasising that the method presented here emp
only a plane-wave representation~spherical wave expansion
used in LEED cannot be applied for the case of high-ene
electrons! and it works for any kind of a local potential~i.e.,
we do not need to limit ourselves to muffin-tin potentials!. In
this paper we carry out numerical tests for a flat surface
Pt~111!, paying special attention to verification of the co
vergence.

In brief our method can be described as follows. We s
from the assumption that the scattering potential is perio
in planes parallel to the crystal surface. We can then exp
the crystal potentialV(rW) in the following Fourier series:

V~rW !5
\2

2m0
(
kW

vkW ~z! exp~ ikW •rW !, ~1!

whererW is the parallel component ofrW andkW are vectors of
the two-dimensional reciprocal lattice corresponding to
surface periodicity (\ and m0 are, respectively, Planck’s
constant and the electron rest mass!. The electron wave func-
tion C(rW) may be expressed as

C~rW !5 exp~ ik iW •rW !(
kW

fkW ~z!exp~ ikW •rW !, ~2!

where kiW is the parallel component of the incident bea

wave vectorKW . After the substitution~1! and ~2! into the
4642 ©1999 The American Physical Society
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Schrödringer equation we finally get the following set o
ordinary differential equations:

d2

dz2fkW ~z!1kkW
2
fkW ~z!5(

kW 8
vkW 2kW 8~z!fkW 8~z!, ~3!

wherekkW
2
5K22ukiW1kW u2. Additionally, we need to specify

boundary conditions. We assume that a crystal is conta
between two infinite, parallel planes determined byz5zT
andz5zB , wherezT.zB . We assume that above the cryst
for z>zT , the functionsfkW (z) can be written in the form of
d0W kW exp@2ikkW(z2zT)#1rkWexp@1ikkW(z2zT)#. Below the crystal,
for z<zB , we assume the functionsfkW (z) have the form of
tkW exp@2ikkW(z2zB)#. We have two sets of unknown coeffi
cientsr kW and tkW , and our aim is to find at least the first se
Before proceeding further we introduce some notation. In
practical work we must limit ourself to a finite numberN of
vectorskW . Because of this it is useful to treat sets of coe
cients, like the set ofr kW , as N-dimensional vectors and t
name them with corresponding capital letters. Using t
convention, we may say briefly that we are interested in fi
ing the vectorR. In our method we get a sequence of vecto
(R)k that converges to the exact solutionR. We have two
combined iteration schemes in our method. The first sche
called by us a multislice scheme, is formally the main o
and completing itsk iterations gives us (R…k . We employ
also another iteration scheme which we call a single-s
scheme. Formally it appears as an auxiliary scheme, but
ertheless it is a very relevant component of our method.

1. A multislice iteration scheme taking account of the local
average potential

We divide the crystal slab intoJ slices and count them in
the increasing order from the bottom to the top. Thej th slice
has boundaries atzj and zj 11 , and moreoverz15zB and
zJ115zT . For the j th slice we introduce vector quantitie

P̂j
1(z) and P̂j

2(z) @which have componentsp̂kW j
1 (z) and

p̂kW j
2 (z)] using the following relations:

dfkW ~z!

dz
5 i k̂kW j p̂kW j

1
~z!2 i k̂kW j p̂kW j

2
~z!, ~4!

fkW ~z!5 p̂kW j
1

~z!1 p̂kW j
2

~z!, ~5!

where

k̂kW j5AK22 v̂0W j2ukiW1kW u2, ~6!

v̂0W j5v0W S zj1zj 11

2 D , ~7!

and in Eq.~6! we assume that Rek̂kW j>0 and Imk̂kW j>0. We

also defineP̂j
1(z) and P̂j

2(z) below and above the crysta

~then formally j 50 and j 5J11) taking v̂0W j50. Next, for
j 50, . . . ,J we define vectorsHP̂j

1 and HP̂j
2

HP̂j
1[P̂j

1~zj 11!, ~8!

HP̂j
2[P̂j

2~zj 11!, ~9!
ed

,
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-

s
-

s
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and for j 51, . . . ,J11 we define vectorsLP̂j
1 and LP̂j

2

LP̂j
1[P̂j

1~zj !, ~10!

LP̂j
2[P̂j

2~zj !. ~11!

The vectorsHP̂j
1 , HP̂j

2 , LP̂j
1 , and LP̂j

2 contain all basic in-
formation about the electron wave field in the crystal and j
below and above its boundaries. The aim of our multisl
scheme is to find all these vectors iteratively. We have f
vectors for each crystal slice, additional two for the crys
top and additional two for the crystal bottom. The vecto
marked with ‘‘2 ’’ describe the wave propagating from th
top to the bottom, similarly the vectors marked with ‘‘1 ’’
are for the wave moving in the opposite direction.

Computations are carried out in the following way. In
tially all the vectors defined by Eqs.~8!–~11! are taken to be
equal to theN-dimensional zero vector~this constitutes our
0th iteration!. In the kth iteration, first we assume that w
know all vectors marked with ‘‘1 ’’ and we calculate only
vectors marked with ‘‘2 ’’ starting with j 5J11 and ending
with j 50. Namely, we start with (Lp̂kW J11

2 )k equal to 1 for

kW 50 and to 0 for all others values ofkW . We then use the
formula @developed from Eqs.~4! and ~5!#

~Hp̂kW j
2

!k5
2k̂kW j 11

k̂kW j1 k̂kW j 11

~Lp̂kW j 11
2

!k1
k̂kW j2 k̂kW j 11

k̂kW j1 k̂kW j 11

~Hp̂kW j
1

!k21

~12!

to change the local representation of the wave field. Furth
more, with the help of the single-slice iteration scheme,
find the wave transmitted through a slice or more precis

we determine (LP̂j
2)k using (HP̂j

2)k ,(LP̂j
1)k21 , and

(HP̂j
1)k21 . In the second part of thekth multislice scheme

iteration we assume that we know all the vectors mark
with ‘‘ 2 ’’ and we calculate vectors marked with ‘‘1 ’’ start-
ing with j 50 and ending withj 5J11. We begin with
(Hp̂kW 0

1 )k equal to 0 for allkW 50. Correspondingly to Eq.~12!
we use the formula

~Lp̂kW j
1

!k5
2k̂kW j 21

k̂kW j1 k̂kW j 21

~Hp̂kW j 21
1

!k1
k̂kW j2 k̂kW j 21

k̂kW j1 k̂kW j 21

~Lp̂kW j
2

!k

~13!

to change representations, and with the help of the sin

slice iteration scheme we determine (HP̂j
1)k using

(HP̂j
2)k ,(LP̂j

1)k , and (LP̂j
2)k .

Finally, in the kth iteration we get from this schem

(LP̂J11
1 )k , which is equal to (R̂)k . It is essential for conver-

gence to use local wave field representations@see Eqs.~6!
and ~7!#.

2. A single slice inner iteration scheme with successive
correction of starting values

For each slice we have the following set of ordinary d

ferential equations forP̂j
1(z) and P̂j

2(z):
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dp̂kW j
1

~z!

dz
51 i k̂kW j p̂kW j

1
~z!1

1

2i k̂kW j
(
kW 8

@vkW 2kW 8~z!2dkW kW 8v̂0W j #

3@ p̂kW 8 j
1

~z!1 p̂kW 8 j
2

~z!#, ~14!

dp̂kW j
2

~z!

dz
52 i k̂kW j p̂kW j

2
~z!2

1

2i k̂kW j
(
kW 8

@vkW 2kW 8~z!2dkW kW 8v̂0W j #

3@ p̂kW 8 j
1

~z!1 p̂kW 8 j
2

~z!#. ~15!

Below we give a prescription for finding two scattered wav
if we know two incident ones for the case of an arbitrary th
slice. More formally, let us assume that we knowP̂j

2(zj 11)

5A and P̂j
1(zj )5B and that we want to determineP̂j

2(zj )

andP̂j
1(zj 11). From the basic theory of RHEED it is know

that this problem has a unique solution~it can be proved
using the concept of scattering matrices!. We solve it itera-
tively. Let us start by recalling basic information on how
set of ordinary differential equations may be solved with
help of a computer~for more details see, for example, Re
7!. Numerical techniques are best developed for so ca
initial value problems, i.e., for cases where for a certa
value of the independent variable, all values of the depen
variables are given. In our case the values of the depen
variables are specified at two values of the independent v
able and subsequently our problem belongs to a clas
two-boundary problemsthat generally may be very compl
cated. However, we can benefit from the assumption of sm
thickness of the slice. Let us define the following iterati

procedure. We put at the slice top@P̂j
2(zj 11)#05A and

@P̂j
1(zj 11)#050. The first relation follows from our bound

ary conditions, the second one constitutes our starting
proximation of the scattered wave. Having now determin
all values of the dependent variables at the top of the slice
can find the solution of the set~14! and ~15! for the whole
slice proceeding consecutively from the top to the botto
and by employing for example the Runge-Kutta method~the
standard method for solving initial value problems!. After
reaching the bottom of the slice we can define another in
value problem. Let us preserve at the bottom the part ‘‘2, ’’

from the the solution just found, as@P̂j
2(zj )#1 ~the part ‘‘1 ’’

of the solution may be discarded!, and according to our origi-

nal boundary condition let us put@P̂j
1(zj )#15B. We now

find the full solution of this new initial value problem b
proceeding from the bottom to the top. At the top we p

serve the part ‘‘1 ’’ of the solution as@P̂j
1(zj 11)#1 . By put-

ting @P̂j
2(zj 11)#15A we form another initial value problem

and we can proceed again to the bottom. We can repeat
procedure and in this way we get an iteration sequenc

vectors@P̂j
2(zj )# l and @P̂j

1(zj 11)# l for l>1. If the slice is
very thin iterations always converge~this can be show using
the concept of transfer matrices! and in the limit we obtain
the solution to our problem.

Let us now come back to the multislice scheme and c
sider the case of determining ‘‘2 ’’ vectors in thekth itera-
tion ~in fact exactly the same concepts are valid for finding
1 ’’ vectors and only a change of the notation is required
s
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this case!. We want to find (LPj
2)k if we know (HP̂j

2)k and

(LPj
1)k21 . Taking A5(HP̂j

2)k andB5(LP̂j
1)k21 we can in

principle apply the algorithm just described. However,
practice we need to terminate single slice iterations afteL
steps. If we proceed straightaway, always taking zero vec
as starting approximations for scattered waves, we can
avoid the appearance of some truncation error. Howeve

we employ in the zeroth approximation, the vector (HP̂j
1)k21

~this constitute a correction of the initial guess! then the trun-
cation error is successively reduced.

To test our method we carried out iterative and dire
calculations of rocking curves for Pt~111!, for the azimuth

^112̄& and the electron energy of 19 keV. The real part of t
potential was determined using electron scattering coe
cients tabulated by Jiang and Li,8 assuming thermal vibra
tions typical for 300 K. The imaginary part of the potenti
was taken in the form of the real part multiplied by factor
0.2. The calculations were carried out for 37 beams from
Laue zones. In iterative calculations we considered sli
with the thickness of about 0.07 Å and we fixed the numb
L of a single-slice iterations to be equal to 4. The time
quired to complete each multislice scheme iteration turn
out to be about equal to a quarter of the time required for
direct method.

We computed the curves for glancing angles betwe
0.025° and 6.0° at steps of 0.025°. For the angles of 0.0
and 0.050° the iteration sequence does not converge.
angles between 0.075° and 0.175° the convergence oc
but is very slow~for example, for 0.1° after completing 1
multislice scheme iterations, we still observe variations
the specular beam intensity exceeding 20% of the pre
value!. However, for angular points from the range of 0.2°
6.0° the convergence is fast. Respectively, for the range
0.2° to 6.0° we show in Fig. 1 two curves obtained af
completing 1 and 5 multislice scheme iterations, toget
with a curve calculated by the direct method. We can see
the curve obtained for 1 iteration constitutes only a qual
tive approximation of the exact results. However, the cu
for 5 iterations can hardly be distinguished from the dire
method curve. If the number of iterations exceeds 10 then
respective curves are in excellent agreement and on the s

FIG. 1. The rocking curves for Pt~111! calculated using the
iterative and direct methods. The dotted vertical line near 3
shows the side beam emergence condition.
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of Fig. 1 we could not see any differences. We can add
the same situation happens for other beams.

Let us discuss now the most important features of
method more generally. It is clear from the results presen
in this paper that apart from the region of very small glan
ing angles the iteration sequence may converge very quic
Nevertheless, one should also admit that the lack of a g
convergence may occur in principle for any angle. We ha
found that the convergence improves if the magnitude of
real part of the potential is made smaller and/or of the ima
nary part larger. Subsequently if we use the proportio
model of the potential~i.e., the imaginary part is proportiona
to the real part! then for lighter elements than Pt a number
situations may happen. Usually for light elements the c
vergence is very rapid; however, sometimes the method
fail to work at all. The latter situations seem to be related
resonance scattering. Taking a larger imaginary part of
potential may lead to convergence in such situations. C
cerning the computer time needed, we can say that in
course of computations only operations, which scale in ti
like N2 occur. However, if the number of beams is less th
100, our method cannot be practically faster than the tra
tional direct methods if precise results are required. For
ample, for the direct method used by the author3 most of the
computation time is spent in finding transfer matrices by
integration of differential equations. We can estimate that
time required is about equal to 2cN3, wherec is some factor
depending on thickness of the crystal. For the same co
tions using the iterative method, to completek multislice
scheme iterations we require the time about equal
4ckLN2, wherec is the same constant andL is the number
B

1

at

r
d
-
ly.
d
e
e
i-
l

f
-

ay
o
e

n-
e

e
n
i-

x-

e
e

i-

o

of iterations executed in the single-slice scheme. We h
omitted possible benefits from considering crystal symm
tries, but actually they may be slightly larger for the dire
method. Thus, if we require precise results~for L54 we
should takek.10) iterative computations are potential
faster than traditional ones if the number of beamsN exceeds
100–500. Finally, it seems that the biggest advantage of
iterative method is that it is especially convenient for dev
oping approximate approaches. Namely, we can limit
number of iterations executed in both schemes, ignore c
pling between certain beams~or groups of beams! and addi-
tionally combine iterative computations with direct ones f
crystal-bulk layers. For example if we limit ourselves to e
ecuting only one iteration in both schemes (L51 and k
51) then we get an approximation, which is very similar
the kinematical approaches used by Knibb9 and by Mitura,
Dudarev, and Whelan.10

In summary, a dynamical method of calculating RHEE
intensity has been proposed.
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the Department of Theoretical Physics of the Marie Cur
Skłodowska University, and we thank Dr. A. Baran for ma
ing them available. Other computations were carried ou
the Materials Modelling Laboratory of the University of Ox
ford. We acknowledge funding for its facilities from th
EPSRC and the HEFCE/OST, under the Joint Resea
Equipment Initiative with matching funding from Hewlet
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