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A method of calculating reflection high-energy electron diffraction intensities is developed within the frame-
work of two-dimensional Bloch-wave approach. In the course of computations only wave-field-related quan-
tities are employedrather than transfer or scattering matriceghe intensities of reflected beams are calcu-
lated iteratively. The very good convergence of the method is demonstratedfaf)PEor scattering systems
with a large number of diffracted beanfexceeding 100—-50Ghis iterative method is potentially faster than
traditional direct methods. More importantly, a number of possible approximations can be easily derived on the
basis of the iteration sequence introdude?D163-18209)09107-9

In recent years much interest has been generated in theppeaf’ In that work authors benefit from introducing a con-
use of reflection high-energy electron diffractidRHEED) cept of a small perturbation and a reference system. For the
in experimental investigations of solid surfaceRHEED latter direct method calculations are carried out. We follow a
can be used to determine precise positions of atoms at flalifferent line. Our method is based on the supposition that
surfaces. It can also be used to gain information about théorward scattering processes are much stronger than back-
surface topography arising during growth of samples by moward ones. In principle we do not require any earlier direct
lecular beam epitaxy. However, to describe properly thenethod calculations. The possibility of benefiting from the
movement of electrons in crystals one needs to take accouaforementioned supposition was first recognized for the case
of multiple scattering processes. This is especially difficult inof low-energy electron diffractiofLEED). Despite the exis-
the grazing geometry of RHEED. Consequent|y precise thetence of important differences between RHEED and LEED,
oretical interpretations of RHEED data are rather compli-in some sense our work can be considered to be the continu-
cated even for simple experimental situations. More impor2ation of work of Pendry and of Tong on renormalized for-
tantly, such a treatment is still not available for the case of avard scattenng_schemé@.From this point of view it is
arbitrarily rough surface. Therefore, one can conclude thaporth emphasising that the method presented here employs
fundamental theoretical research on RHEED is still needed®nly & plane-wave representatitspherical wave expansions

In the past considerable progress in quantitative work osed in LEED cannot be applied for the case of high-energy
RHEED has been achieved due to the use of numerical meti®lectrons and it works for any kind of a local potentiéle.,
ods developed in nineteen eighties within the two-We do notneed to limit ourselves to muffin-tin potentials
dimensional Bloch-wave approdctreferred to hereafter as this paper we carry out numerical tests for a flat surface of
direct methods In these methods the crystal is divided into P(111), paying special attention to verification of the con-
slices parallel to the surface and transfer matrices for th&€rgence.
slices are determined. Then a reflection matrix is computed [N brief our method can be described as follows. We start
successively from the crystal bottom to the crystal ¥¢m from the assumption that the scattering potential is periodic
important feature of the direct methods is that, for both wealn planes parallel to the crystal surface. We can then expand
and strong potentials, all computation steps are executed ithe crystal potential/(r) in the following Fourier series:
the same way. This is in fact in many situations a big advan-
tage of these methods as they are universal. However, on the . hK? ..
other hand, an implication of this feature is that the link V(r)=ﬁ 2 v(2)explik-p), 1)
between the direct methods and simplified kinematical ap- 0 «
proachegwhich can be developed for weaker potenjiass R N R
hidden behind complicated numerical procedures, and this iherep is the parallel component of and « are vectors of
why precise numerical results usually cannot be explaine¢he two-dimensional reciprocal lattice corresponding to the
qualitatively. In this paper we develop a dynamical methodsurface periodicity  and m, are, respectively, Planck’s
of calculating RHEED intensities in which the exact resultsconstant and the electron rest maddie electron wave func-
are obtained as a limit of an iteration sequence. In oufion ¥(r) may be expressed as
method the full dynamical treatment of electron diffraction
can be considered to be an extension of the kinematical ap- - . -
proach. As discussed later the direct methods and our itera- W(r)= exp(ik|-p) 2 b(2)explix-p), 2
tive method have different advantages and disadvantages and «
should be treated as complimentary. o L

There exist already in the literature important examples ofVNere k| is the parallel component of the incident beam
RHEED dynamical calculations in which iteration sequencesvave vectorK. After the substitution(1) and (2) into the
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Schralringer equation we finally get the following set of 4,4 forj=1,... J+1 we define vectors P and “P-
ordinary differential equations: ! !

o . P =P/ (z), (10
2D+ bAD=2 vi (@2, @)

_o. ) Lp~ =P (z)). 11)
wherek=K?2— |kj+ «|. Additionally, we need to specify § =Py (@) (
boundary conditions. We assume that a crystal is containeg,g vectors“le’j* , Hfajf , L|SJ_+ , and L|SJ? contain all basic in-

between two infinite, parallel planes determined &yzr  formation about the electron wave field in the crystal and just
andz=zg, wherezr>zg. We assume that above the crystal, hejow and above its boundaries. The aim of our multislice
for z=z;, the functionse(2) can be written in the form of  scheme is to find all these vectors iteratively. We have four
56 exf —ik(z—zr) 1+ rexd +ik(z—2z)]. Below the crystal, yectors for each crystal slice, additional two for the crystal
for z=zz, we assume the function;(z) have the form of  top and additional two for the crystal bottom. The vectors
tiexd —ik(z—zg)]. We have two sets of unknown coeffi- marked with “— describe the wave propagating from the
cientsr; andt,;, and our aim is to find at least the first set. top to the bottom, similarly the vectors marked with-*
Before proceeding further we introduce some notation. In allre for the wave moving in the opposite direction.
practical work we must limit ourself to a finite numbsrof Computations are carried out in the following way. Ini-
vectorsk. Because of this it is useful to treat sets of coeffi-tially all the vectors defined by Eqé8)—(11) are taken to be
cients, like the set of ;, asN-dimensional vectors and to equal to theN-dimensional zero vectdithis constitutes our
name them with corresponding capital letters. Using thith iteration. In the kth iteration, first we assume that we
convention, we may say briefly that we are interested in findknow all vectors marked with 4" and we calculate only
ing the vectoR. In our method we get a sequence of vectorsvectors marked with “ " starting with j =J+ 1 and ending
(R)« that converges to the exact solutiéh We have two  wjith j=0. Namely, we start with'(p-, . .), equal to 1 for
combined iteration schemes in our method. The first scheme; w11
called by us a multislice scheme, is formally the main oneK:O and to O for all others values ai. We then use the
and completing itk iterations gives usR),. We employ formula[developed from Eqs(4) and (5)]
also another iteration scheme which we call a single-slice . . .
scheme. Formally it appears as an auxiliary scheme, but nev- ,~- 2Kgj+1 Ao Kej—Kej+1 pyas
ertheless it is a very relevant component of our method pf?i)sz .\ p:?i+1)k+” - 1k ( p'?i)k—l

: ke tk k

| (12

Kj+1 o) TKgj+1
1. A multislice iteration scheme taking account of the local
average potential to change the local representation of the wave field. Further-

We divide the crystal slab intd slices and count them in  MOre, with the help o_f the single-slice 'iteration scheme', we
the increasing order from the bottom to the top. Ttreslice  find the wave transmitted through a slice or more precisely
has boundaries a; andz;,,, and moreovez;=zz and we determine P;), using ('P;),(*P)i1, and
Z;+1=2r. For thejth slice we introduce vector quantities (Mp/), ;. In the second part of thkth multislice scheme
Pf(z) and P; (2) [which have componentsfagj(z) and iteration we assume that we know all the vectors marked

5= (2)1 using the following relations: with “ —" and we calculate vectors marked with+*’ start-
P (2)] using g ing with j=0 and ending withj=J+1. We begin with

doa(z) . -, o ("p2,)k equal to O for allk=0. Correspondingly to Eq12)
az k&P (D)= ikgpg(2), @ e use the formula
$u(2)=p;(2)+p(2), 5 bt )= 2kij 1 et )k+R;,»—“;j_1( -
where D kgtkg 9T kytkgo, 9
(13
N % S TP
Kej= VK o)~ [kj+ %, ® 4 change representations, and with the help of the single-
~ _(Zj+zj+1 . incAe iter§tion scherpe we determineHPg*)k using
va=vel T ) D ("B)), (4B )i, and (P)),

) . . Finally, in the kth iteration we get from this scheme
= - = ~ . . ~ . .
and in Eq.(6) we assurne that Re;=0 and Imk;=0. We (“P5, 1)k, Which is equal to R) . It is essential for conver-

also defineP;"(z) and P; (z) below and above the crystal gence to use local wave field representatifsee Eqs(6)
(then formallyj=0 andj=J+1) takingvg=0. Next, for  and(7)].
j=0,...J we define vector$'P]" and "P;
2. A single slice inner iteration scheme with successive
Hpj+E pj*(szrl), (8) correction of starting values
L For each slice we have the following set of ordinary dif-
P =P (zj+1), (9 ferential equations foP; (z) andP; (2):
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dE)Jf.(z) 1 !
i oL .. I
dz = TikaPy (@D F o2 [0s(2) = Sev] PR
| Kj K’ [
4
~ 4 ~_ = -2
X[pg(2D+p(D)], (14) z 107
2 .3
“_ 107° |
oD pz @S g0 55006, :
=—ikzp:(2) ——— Vi_i(2)— 805 r
dz k] 2ik ;% o e < 10} 1storder it. meth. -
8 5th %rder it. rr;ﬁth. --------
a4 ol - irect .—
X[p;/J(Z)+p;/](Z)] (15) % 105 [ rect me
Below we give a prescription for finding two scattered waves
if we know two incident ones for the case of an arbitrary thin 0 1 GLANglNG AI\?GLE d4 5 6
slice. More formally, let us assume that we kné’y’v(z,—H) [degrees]
=A and |5j+(zj):|3 and that we want to determin%‘*(zj) FIG. 1. The rocking curves for Bit11) calculated using the

iterative and direct methods. The dotted vertical line near 3.6°

+ . . -
andP; (zj ). From the basic theory of RHEED it is known shows the side beam emergence condition.

i
that this problem has a unique soluti¢it can be proved
using the concept of scattering matriced/e solve it itera- R
tively. Let us start by recalling basic information on how a this cas¢ We want to find EPj_)k if we know (HPj_)k and

set of ordinary differential equations may be solved with the LPF), TakingA—(Hﬁ”)k and B_(Ller)k we can in
jJk-1- =UF U k-1

help of a computeffor more details see, for example, Ref. * .1 . . . .
X ; rinciple apply the algorithm just described. However, in
7). Numerical techniques are best developed for so calle . . . L .
practice we need to terminate single slice iterations dfter

initial value problems i.e., for cases where for a certain it d iah I Ki
value of the independent variable, all values of the depender?lIe‘pS' we proceed straightaway, always taking zero vectors

variables are given. In our case the values of the dependeftt Starting approximations for scattered waves, we cannot
variables are specified at two values of the independent var@void the appearance of some truncation error. However, if
able and subsequently our problem belongs to a class ofe employ in the zeroth approximation, the vect‘(BF’K)k,l
two-boundary problemghat generally may be very compli- (this constitute a correction of the initial gugéisen the trun-
cated. However, we can benefit from the assumption of smattation error is successively reduced.

thickness of the slice. Let us define the following iteration To test our method we carried out iterative and direct
procedure. We put at the slice tc{rﬁ’j’(zjﬂ)]O:A and calculations of rocking curves for R111), for the azimuth

d- (117) and the electron energy of 19 keV. The real part of the

[I5j+(zj+1)]0=0. The first relation follows from our boun tential determined usi lect teri i
ary conditions, the second one constitutes our starting apﬁo ential was determined using electron scattering coettl-

proximation of the scattered wave. Having now determine lents tabulated by Jiang and Lassuming thermal vibra-

all values of the dependent variables at the top of the slice wi ons typlcgl for 300 K. The imaginary part (.)f the potential
can find the solution of the sé14) and (15) for the whole was taken in the _form of the rea] part multiplied by factor of
slice proceeding consecutively from the top to the bottomo'z' The calculat!ons were carrleq out for 37 b<_aams from >
and by employing for example the Runge-Kutta metkibe Lgue zones. In iterative calcula’gons we qonsudered slices
standard method for solving initial value problémafter with the thickness of about 0.07 A and we fixed the number

reaching the bottom of the slice we can define another initia|' (.)f a single-slice iterations to pe equal to 4 Th? time re-
value problem. Let us preserve at the bottom the part™ quired to complete each multislice scheme iteration turned
o ~ out to be about equal to a quarter of the time required for the
from the thg solution Jus.t found, &&; (zj) ]1 (_the part “+ ~ direct method.
of the solution may be dlscard)adanq according to our origi- We computed the curves for glancing angles between
nal boundary condition let us plﬂPj*(zj)h:B. We now 0.025° and 6.0° at steps of 0.025°. For the angles of 0.025°
find the full solution of this new initial value problem by and 0.050° the iteration sequence does not converge. For
proceeding from the bottom to the top. At the top we pre-angles between 0.075° and 0.175° the convergence occurs

serve the part %" of the solution as| |5]-+(zj+1)]1. By put- but is very slow(for example, for 0.1° after completing 10

- B _— multislice scheme iterations, we still observe variations in
ting [P; (z+1)]1=A we form another initial value problem he specular beam intensity exceeding 20% of the precise

and we can proceed again to the bottom. We can repeat thig\,a. However, for angular points from the range of 0.2° to
procedure and in this way we get an iteration sequence f oo the convergence is fast. Respectively, for the range of
vectors[P; (z) ], and[Pj*(sz)]I for I=1. If the slice is 0.2° to 6.0° we show in Fig. 1 two curves obtained after
very thin iterations always convergthis can be show using completing 1 and 5 multislice scheme iterations, together
the concept of transfer matrigeand in the limit we obtain  with a curve calculated by the direct method. We can see that
the solution to our problem. the curve obtained for 1 iteration constitutes only a qualita-
Let us now come back to the multislice scheme and contive approximation of the exact results. However, the curve
sider the case of determining="' vectors in thekth itera-  for 5 iterations can hardly be distinguished from the direct
tion (in fact exactly the same concepts are valid for finding * method curve. If the number of iterations exceeds 10 then the
+" vectors and only a change of the notation is required forrespective curves are in excellent agreement and on the scale
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of Fig. 1 we could not see any differences. We can add thatf iterations executed in the single-slice scheme. We have
the same situation happens for other beams. omitted possible benefits from considering crystal symme-
Let us discuss now the most important features of outries, but actually they may be slightly larger for the direct
method more generally. It is clear from the results presenteghethod. Thus, if we require precise resultsr L=4 we
in this paper that apart from the region of very small glanc-should takek=10) iterative computations are potentially
ing angles the iteration sequence may converge very quicklygster than traditional ones if the number of beawexceeds
Nevertheless, one should also admit that the lack of a googlgg_500. Finally, it seems that the biggest advantage of our
convergence may occur in principle for any angle. We haveerative method is that it is especially convenient for devel-

found that the convergence improves if the magnitude of th%ping approximate approaches. Namely, we can limit the
real part of the potential is made smaller and/or of the imagi-

. . umber of iterations executed in both schemes, ignhore cou-
nary part larger. Subsequently if we use the propoonnaEIing between certain beantsr groups of beamsand addi-
model of the potentidli.e., the imaginary part is proportional

to the real pajtthen for lighter elements than Pt a number Oftionally combine iterative computations with direct ones for
situations rFr)wa hapoen gUsuaII for light elements the Con_c:rystal-bulk layers. For example if we limit ourselves to ex-
y happen. y 9 ecuting only one iteration in both schemes<1 andk

vergence is very rapid; however, sometimes the method may 1) then we get an approximation, which is very similar to

fail to work at all. '_I'he Iatte_r situations s_eem_to be related tothe kinematical approaches used by Kiiznd by Mitura,
resonance scattering. Taking a larger imaginary part of th

: . Ay E Dudarev, and Whelat?
potential may lead to convergence in such situations. Con- . .

. . . In summary, a dynamical method of calculating RHEED
cerning the computer time needed, we can say that in the .

X ] : . .. Intensity has been proposed.

course of computations only operations, which scale in time
like N? occur. However, if the number of beams is less than Some computations were carried out using the facilities of
100, our method cannot be practically faster than the tradithe Department of Theoretical Physics of the Marie Curie-
tional direct methods if precise results are required. For exSktodowska University, and we thank Dr. A. Baran for mak-
ample, for the direct method used by the authmpst of the  ing them available. Other computations were carried out in
computation time is spent in finding transfer matrices by thehe Materials Modelling Laboratory of the University of Ox-
integration of differential equations. We can estimate that théord. We acknowledge funding for its facilities from the
time required is about equal t@®®, wherec is some factor EPSRC and the HEFCE/OST, under the Joint Research
depending on thickness of the crystal. For the same condEquipment Initiative with matching funding from Hewlett-
tions using the iterative method, to complétkemultislice =~ Packard. The author is grateful to the Leverhulme Trust for
scheme iterations we require the time about equal tdunding and to Professor M.J. Whelan for reading the manu-
4ckLN?, wherec is the same constant ardis the number  script.
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