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Image-soliton method applied to finite multiple tunnel junctions
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We show that the simple and physically intuitive method of soliton images can be used not only for a
semi-infinite multiple tunnel junction~MTJ! array of identical junction capacitancesC and stray capacitances
C0 , but is also applicable to both homogenous and inhomogenous MTJ’s of afinite number of junctions. In the
latter, a junction capacitanceC8ÞC is replaced by a homogenous chain of equivalent length, thereby extend-
ing the method to important circuits relying on inhomogenous MTJ’s, such as the multijunction trap and the
multijunction turnstile.@S0163-1829~99!01908-6#
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In the field of charge transport in Coulomb blocka
devices, much interest has recently arisen in the theore
treatment of a single-charge soliton moving along a o
dimensional chain of metallic islands, weakly coupled
each other by tunnel junctions. So far, the problem of a s
ton in an infinite multiple tunnel junction~MTJ! array has
been analytically solved by recursion,1,2 with a later exten-
sion to the case of a semi-infinite MTJ by the method
images, where a soliton near the edge of the MTJ is assu
to induce an antisoliton image.2 For the case of an MTJ o
finite length, however, the solution to the potential distrib
tion has been obtained by algebraically inverting a symm
ric tridiagonal matrix obtained by applying Kirchhoff’s law
and the conservation of charge on each of the M
islands.3–5 The drawback of this approach is that for differe
MTJ circuits, such as the multijunction trap4 or the multi-
junction turnstile,5 the resulting tridiagonal matrices hav
different structures, each requiring a different method of
version. In this article, we generalize the method of ima
charges to obtain the analytical solution for the potentia
both homogenous and inhomogenous MTJ’s of finite leng
Our method not only involves much less algebraic mani
lation and is applicable to both the multijunction trap a
turnstile circuits, but more importantly it is conceptual
simple and physically intuitive. The crucial quantity to ca
culate is the total electrostatic potential, which includes
localized~hence solitonlike! potential distribution due to an
excess charge within the MTJ array. From the total poten
we subsequently derive quantities such as capacitances,
cal charges,6 and the Gibb’s and tunneling energies—the l
ter determining the rate of charge transport through
MTJ.2

In an infinite MTJ of uniform junction capacitanceC and
stray capacitanceC0 , the potential is analytically solved b
reducing the electrostatics equations for each island to a
cursive relation. The potentialf jk

(`) on thej th island due to a
chargee on the kth island is then found to exponentiall
decay with the separation distanceu j 2ku and is given by1,2

f jk
~`!5

e

Ceff
exp~2lu j 2ku!, ~1.1!

where
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l5 lnS Ceff1C0

Ceff2C0
D , Ceff5AC0

214CC0. ~1.2!

In a semi-infinite MTJ, the potentialf jk
(`/2) can be ob-

tained by employing the method of images, where one
sumes that the soliton centered on thekth island from the
edge induces an antisoliton of the same strength at the s
distancek on the opposite side of the edge, giving2

f jk
~`/2!5

e

Ceff
$exp~2lu j 2ku!2exp@2l~ j 1k!#%. ~2!

The introduction of the image soliton ensures that the bou
ary condition at the start of the semi-infinite chain,f0k

(`/2)

50, is satisfied for allk.
We now apply the method of images to afinite MTJ of n

identical junction and stray capacitancesC andC0 , respec-
tively, and a chargee on thekth island. The potentialf jk

(n) in
the MTJ can be solved by extending the MTJ infinitely
both sides and introducing two antisolitons on either side
distancek and (n2k) from the edges, with strengths ofw1

and w2 , respectively, as shown in Fig. 1~a!. f jk
(n) is then

given by the contributions from all three solitons, i.e.,

f jk
~n!5

e

Ceff
exp~2lu j 2ku!2w1 exp@2l~ j 1k!#2w2

3exp@2l~2n2 j 2k!#, ~3.1!

where, by solving the simultaneous equations obtained fr
the boundary conditionsf jk

(n)50, for j 50 and j 5n, we ob-
tain the antisoliton strengths

w15
e

Ceff
@exp~2ln!2exp~2lk!#/@exp~2ln!21#,

w25
e

Ceff
@exp~2ln!2exp~2ln22lk!#/@exp~2ln!21#.

~3.2!

Combining Eqs.~3.1! and ~3.2! yields

f jk
~n!5

e

Ceff
Fch~n2u j 2ku!l2ch~n2 j 2k!l

shnl G , ~4!
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which has been derived earlier in Ref. 3. In the next step,
need to evaluate the potentialf jV

(n) due to an external biasV,
applied at one end~the zeroth island! of the n MTJ. As
before, we extend the MTJ infinitely on both sides, repla
the external biasV by a biasf1

v , and introduce an image
bias2w2

v , a distancen from the right-hand edge, as show
in Fig. 1~b!. f jV

(n) is then given by

f jV
~n!5w1

ve2l j2w2
ve2~2n2 j !l, ~5.1!

where the respective bias strengthsw1,2
v are again evaluated

from the boundary conditionsf0,V
(n)5V andfn,V

(n) 50, yielding

w1
v5w2

v5V/~12e22ln!. ~5.2!

Substituting Eq.~5.2! into Eq. ~5.1!, we obtain

f jV
~n!5V

sh~n2 j !l

shnl
, ~6!

which in the limit of n→` gives the known resultf jV
(`/2)

5Ve2l j for a semi-infinite array.2 From Eq. ~6!, one can
then evaluate the capacitanceC(n) between one end of then
MTJ and ground as

FIG. 1. ~a! A chargee on thekth island of a~finite! n MTJ can
be thought of as inducing two image charges, with the plane
reflection being the edges of the MTJ.w05e/Ceff is the peak po-
tential on thekth island, and the relative strengths of the imag
w1,2/w0 are such that the potentials from all three charges ca
out at both edges of the MTJ.~b! The effect of an external bias o
ann MTJ is equivalent to two biases of opposite signs in an infin
MTJ, separated by 2n junctions, with the plane of reflection at th
grounded edge of the original finite MTJ.
e

e

C~n!5
C

V
~f0,V

~n!2f1,V
~n! !5CF12

sh~n21!l

shnl G . ~7.1!

To determine the energy of tunneling in the MTJ, we fi
need to calculate the external capacitanceCj

ext across thej th
junction. This quantity is defined as the equivalent capa
tance across the junction due to the rest of the circuit~with
all the biases in the latter being shorted!, and arises from the
Norton-Thevenin simplification of the circuit.7 Using Eq.
~7.1! andC052C(coshl21), derived from Eq.~1.2!, Cj

ext is
found to be

Cj
ext5

~C01C~ j 21!!~C01C~n2 j !!

2C01C~ j 21!1C~n2 j ! 5CS f j 21f n2 j21

f j 211 f n2 j22
21D ,

~7.2!

wheref j5sinhl(j11)/sinhlj. With the above result and th
total potential of thej th island given by (f jk

(n)1f jV
(n)), we are

now in a position to evaluate the tunneling energies t
determine the rate of charge transport through the MTJ.
consider a tunnel sequence$1,2,3, . . . ,n%, in which tunnel-
ing occurs sequentially along the MTJ. In Ref. 3, thej th
tunneling energydEj is obtained by calculating the resultin
change in the Gibb’s energy. An equivalent and slightly le
complicated way of evaluatingdEj is through the following
equation, which involves only linear terms in the potentia

dEj5
e

C
~qj

c2qj !

5
e2

2~C1Cj
ext!

2e~f j 21,j 21
~n! 2f j , j 21

~n! !2e~f j 21,V
~n! 2f jV

~n!!

5dEj
~1!1dEj

~2!1dEj
~3! , ~8!

where qj is the j th junction charge, andqj
c5eC/2

(C1Cj
ext), the corresponding so-called critical charg

which must be exceeded byqj for the tunneling event to be
energetically favorable.6 Note that the first two energy term
in Eq. ~8! give the ‘‘internal’’ change in energy, which is
dependent on the position of the charge in the MTJ, wh
the third is the contribution due to the external bias. Us
Eqs. ~7.2!, ~4!, and ~6!, we obtain fordEj

(1) , dEj
(2) , and

dEj
(3)

of

s
el
dEj
~1!5

e2

Ceff
Fshl j shl~n2 j !1shl~ j 21!shl~n2 j 11!22shl~ j 21!shl~n2 j !

shln G ,
dEj

~2!5
2e2

Ceff
Fshl~ j 21!shl~n2 j !2shl~ j 21!shl~n2 j 11!

shln G ,
dEj

~3!5eVFshl~n2 j !2shl~n2 j 11!

shln G , ~9.1!

the sum of which givesdEj5gj2gj 21 , where
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gj5
e2

Ceff

sh j lsh~n2 j !l

shnl
1eV

sh~n2 j !l

shnl
, ~9.2!

and the cumulative energy change afterm events becomes

DEm5(
j 51

m

dEj5gm2g0 . ~9.3!

The Gibb’s energyFm of the circuit is then given by
DEm1E0 , the offsetE05C(n)V2/2 being the initial capaci-
tive energy~before the first tunnel event!. We thus obtain the
Gibb’s energy expression of Ref. 3,

Fm5
e2

Ceff

shmlsh~n2m!l

shnl
2eVS 12

sh~n2m!l

shnl D
1

CV2

2 S 12
sh~n21!l

shnl D . ~10!

To demonstrate the generality of our method we now
ply it to an inhomogenousMTJ, where for the sake of sim
plicity all but one of the junction capacitances are identic
Let us consider the semi-infinite array of Fig. 2, where
(k11)th junction has a capacitanceC8 compared withC for
the rest. The semi-infinite chain beyondC8 has a capacitanc
Ch5(Ceff2C0)/2,1 and so the circuit can be reduced to

finite chain terminated byC̃5(Ch1C0)C8/(Ch1C01C8).

The next step is to ‘‘homogenize’’ the chain by replacingC̃
with an equivalent numberneq of (C,C0) links, where by
inverting Eq.~7.1!, neq is found to be

neq~C̃!5
1

l
tanh21S shl

chl211C̃/C
D , ~11!

and the total capacitance of the array is then given
C(k1neq). Note that the equivalent number of junctionsneq is
now a continuous variable. The above generalization ena
us to analyze a wider range of circuits as before, includ
the multijunction trap shown in Fig. 3. We will limit our
selves to obtaining the analytical expression for the poten
profile in the trap, since the corresponding expression for
tunneling energies follows directly from the potential profi

FIG. 2. ~a! An inhomogenous semi-infinite MTJ with it
(k11)th junction capacitance replaced byC8ÞC. The portion of
the circuit beyond thekth junction can be replaced by a sing

capacitanceC̃, ~b! which in turn is equivalent toneq(C̃) links of the
homogenous array, as given by Eq.~11!.
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as was demonstrated above for the case of an MTJ with s
capacitances.

Suppose there arennode charges stored on the node, wi
an additional escaping charge on thekth island ~the node
being the zeroth island!. There are three contributions to th
potentialF j on the j th island,~i! F jV from the external bias
V, ~ii ! F jk induced by the escaping charge, and~iii ! F j 0 due
to the node charges. From Eq.~6!, F jV is given by

F jV5Vnode

sh~n2 j !l

shnl
, ~12!

where Vnode5CNV/(CN1CN01C(n)) is the node potentia
due to the biasV, n is the length of the MTJ, andCN,N0 are
the gate and stray capacitance of the node, respectively
evaluateF jk , we again homogenize the array by replaci
the node with an equivalent number of (C,C0) links. We can

write the node capacitance as (C̃node1C0), where C̃node
5CN1CN02C0 . Thus, the extra number of links isD j

5neq(C̃node). The potential contribution of the escapin
charge is then given byF jk5f j 1D j ,k1D j

(n1D j ) , i.e., with all is-
land indexes being displaced byD j compared withf jk

(n) in
Eq. ~4!. Similarly, the third contributionF j 0 due to the node
charges is given bynnode3f j 1D j ,01D j

(n1D j ) . With an equally
straightforward analysis, the analytical expression for the
tential in a multijunction turnstile can also be evaluate
since each branch of the turnstile may be treated as a m
junction trap.

In summary, we have applied the method of ima
charges, which previously had been used for the case
semi-infinite MTJ, to obtain analytic solutions to the pote
tial in homogenous as well as inhomogenous MTJ arrays
finite length, the latter of which cover important circuits lik
the multijunction trap and turnstile. The solutions are
agreement with numerical solutions obtained via Kirchhof
laws and charge conservation, as well as previous ana
solutions evaluated via algebraic inversion of matrices. Co
pared to earlier analytic methods, ours has the advantag
being simple and physically more intuitive, while neverth
less having a wider scope of application.
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Science and Technology Frontier Program~Quantum Func-
tional Device project! supported by NEDO. M.B.A. Jalil ac
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FIG. 3. Multijunction trap circuit, withCN andCN0 as the gate
and stray capacitance of the node, respectively. The node is
tached to a finite MTJ ofn junctions. An escaping chargee is at the
kth island, whilennodee charges are stored on the node.



er

u,

.
ev.

PRB 59 4629BRIEF REPORTS
1P. Delsing, inSingle Charge Tunneling, edited by H. Grabert and
M. H. Devoret~Plenum, New York, 1992!, p. 249.

2N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I. S
dyukova, Zh. Eksp. Teor. Fiz.95, 1010~1989! @Sov. Phys. JETP
68, 581 ~1989!#.

3G. Y. Hu and R. F. O’Connell, Phys. Rev. B49, 16 773~1994!.
4G. Y. Hu and R. F. O’Connell, Phys. Rev. Lett.74, 1839~1995!.
-

5Young Bong Kang, G. Y. Hu, R. F. O’Connell, and Jai Yon Ry
J. Appl. Phys.80, 1526~1996!.

6L. J. Geerligs, V. F. Anderegg, P. Holweg, J. E. Mooij, H
Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. R
Lett. 64, 2691~1990!.

7G.-L Ingold and Yu. V. Nazarov, inSingle Charge Tunneling
~Ref. 1!, p. 68.


