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Image-soliton method applied to finite multiple tunnel junctions

M. B. A. Jalil
Microelectronics Research Centre, Cavendish Laboratory, Cambridge CB3 OHE, United Kingdom

M. Wagner
Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge CB3 OHE, United Kingdom
(Received 21 September 1998

We show that the simple and physically intuitive method of soliton images can be used not only for a
semi-infinite multiple tunnel junctiodMTJ) array of identical junction capacitanc€sand stray capacitances
Cy, butis also applicable to both homogenous and inhomogenous MTJnileenumber of junctions. In the
latter, a junction capacitandc@’ # C is replaced by a homogenous chain of equivalent length, thereby extend-
ing the method to important circuits relying on inhomogenous MTJ’s, such as the multijunction trap and the
multijunction turnstile[S0163-182899)01908-§

In the field of charge transport in Coulomb blockade Cer+ Co
devices, much interest has recently arisen in the theoretical )\=In(ﬁ), Ce= \JC2+4CC,, (1.2
treatment of a single-charge soliton moving along a one- eff -0
dimensional chain of metallic islands, weakly coupled to
each other by tunnel junctions. So far, the problem of a soli-t

ton in an infinite multiple tunnel junctioMTJ) array has sumes that the soliton centered on #tb island from the

been analytically solved by recursiofwith a later exten- edge induces an antisoliton of the same strength at the same
sion to the case of a semi-infinite MTJ by the method ofd

images, where a soliton near the edge of the MTJ is assumeéstancek on the opposite side of the edge, giving

to induce an antisoliton imageFor the case of an MTJ of (o2 © . .

finite length, however, the solution to the potential distribu- Pix =C—eﬁ{exp(—)\|j —kh—exd-A(j+kI. ()

tion has been obtained by algebraically inverting a symmet-

ric tridiagonal matrix obtained by applying Kirchhoff's laws The introduction of the image soliton ensures that the bound-
. e g 1 (00/2)

and the conservation of charge on each of the MTJAry condition at the start of the semi-infinite chaipg,

islands®~° The drawback of this approach is that for different =0, is satisfied for alk.

MTJ circuits, such as the multijunction tapr the multi- We now apply the method of images tdiaite MTJ of n

junction turnstile} the resulting tridiagonal matrices have identical junction and stray capacitand@sand C,, respec-

different structures, each requiring a different method of in-tively, and a charge on thekth island. The potentiab}ﬂ) in

version. In this article, we generalize the method of imagehe MTJ can be solved by extending the MTJ infinitely on

charges to obtain the analytical solution for the potential inboth sides and introducing two antisolitons on either side at a

both homogenous and inhomogenous MTJ’s of finite lengthdistancek and (h\—k) from the edges, with strengths ¢f

Our method not only involves much less algebraic manipuand ¢,, respectively, as shown in Fig.(a. ¢J(L1) is then

lation and is applicable to both the multijunction trap andgiven by the contributions from all three solitons, i.e.,
turnstile circuits, but more importantly it is conceptually

simple and physically intuitive. The crucial quantity to cal-
culate is the total electrostatic potential, which includes the
localized (hence solitonlikg potential distribution due to an .
excess charge within the MTJ array. From the total potential, xexg—A(2n—j-k)], 3.1

we subsequently derive quantities such as capacitances, Crifihere by solving the simultaneous equations obtained from
cal charge$,and the Gibb’s and tunneling energies—the lat-p o boundary conditioné{!) =0, for j=0 andj=n, we ob-

ter determining the rate of charge transport through the . ‘o o us oo strenékths ' '

In a semi-infinite MTJ, the potentiap’® can be ob-
ained by employing the method of images, where one as-

e - -
K= g xRN i =KD g1 el A +K)]— ¢,
€

MTJ2
In an infinite MTJ of uniform junction capacitan&and e
stray capacitanc€,, the potential is analytically solved by zplzc—[exp(2)\n)—exp(Z)\k)]/[exp(Z)\n)—1],
eff

reducing the electrostatics equations for each island to a re-
cursive relation. The potentigl;’ on thejth island due to a

chargee on the kth island is then found to exponentially <p2=i[exp(2)\n)—exp(Z)\n—Z)\k)]/[exqzxn)—1].
decay with the separation distange- k| and is given by? Cer

(3.2
e 1 H B
¢}§“>:C_ﬁexp(_)\|j —K)), (1.1) Combining Egs(3.1) and(3.2) yields
e ¢(n)_i ch(n—|j—kp)x—ch(n—j—k)\ @
where K Cepr shn\ ’
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(a) C shin—1)A
/ ! ! /i (M= pN)_ My - )
(tm.tpo)e c i c o c E c (92 <|>2)e C V(¢°’V 1v)=C|1 Shnx (7.1
L U U i
To determine the energy of tunneling in the MTJ, we first
%T/ COTCOTC(T cor COTCOT %T/ need to calculate the external capacitaﬁ«‘ﬁét across thgth
-, J k - I\ 1 junction. This quantity is defined as the equivalent capaci-
k original n-MTJ n-k tance across the junction due to the rest of the cingith

all the biases in the latter being shornteand arises from the

®)¢ o] CrimC C C Norton-Thevenin simplification of the circuitUsing Eq.
-1l @ I “'IH]II]]I“ I ) I (7.1) andCy=2C(coshn—1), derived from Eq(1.2), Cf“ is

oiT. odT Co'l'qufCoT ooT caT found to be
original anunctions' n . .
-1 (n—=j) ) L
FIG. 1. () A chargee on thekth island of a(finite) n MTJ can C?th(co+ C (.)_(1():0+ (Cn_.) ) = fi-afnj=1 1],
be thought of as inducing two image charges, with the planes of 2C,+CY Y+ i fiogt+foj—2
reflection being the edges of the MTgdy=e/C is the peak po- (7.2

tential on thekth island, and the relative strengths of the images

¢1,2/ ¢o are such that the potentials from all three charges cancelvheref;=sinhA(j+1)/sinh\j. With the above result and the
out at both edges of the MT(h) The effect of an external bias on total potential of thgth island given by (bJ(E)-F ¢J(\”/)), we are
ann MTJ is equivalent to two biases of opposite signs in an infinitenow in a position to evaluate the tunneling energies that
MTJ, separated byr2junctions, with the plane of reflection at the determine the rate of charge transport through the MTJ. We
grounded edge of the original finite MTJ. consider a tunnel sequen¢®,2,3 . .. ,n}, in which tunnel-

. . . ing occurs sequentially along the MTJ. In Ref. 3, tith
which has been derived earll|er:)|n Ref. 3. In the next §tep, W&nneling energyE; is obtained by calculating the resulting
need to evaluate the potentiafy due to an external bid¢,  change in the Gibb’s energy. An equivalent and slightly less
applied at one endthe zeroth islandof the n MTJ. As  complicated way of evaluatingE; is through the following
before, we extend the MTJ infinitely on both sides, replacequation, which involves only linear terms in the potential
the external biad/ by a bias¢), and introduce an image

bias — ¢4, a distancen from the right-hand edge, as shown

in Fig. 1(b). ¢}/ is then given by 5Ej:6(qic_qi)
S0 = ple N —ghe 1M, (5.1 &
. . . =———e(¢p" —W )—e(",,— &)
where the respective bias strengils, are again evaluated 2(C+Cjext) i-Lji-1 ¥hj-1 - v

from the boundary conditions{V=V and #{,=0, yielding
' ’ = 6|+ 5E{P + 5E{Y )
oh=gh=VI(1-e 2", (5.2
where q; is the jth junction charge, andqf=eC/2
(C+ Cf’“), the corresponding so-called critical charge,
shin—j)\ which must be exceeded lgy for the tunneling event to be
“shnn (6) energetically favorabl® Note that the first two energy terms
in Eq. (8) give the “internal” change in energy, which is
which in the limit of n—o gives the known resultﬁ}{‘j’z) dependent on the position of the charge in the MTJ, while
=Ve M for a semi-infinite array. From Eq.(6), one can the third is the contribution due to the external bias. Using
then evaluate the capacitancé” between one end of the  EGs. (7.2, (4), and (6), we obtain forSE{", 5E(®, and

Substituting Eq(5.2) into Eq. (5.1), we obtain

S =V

MTJ and ground as SE(®
|
SEZ e? [shajsha(n—j)+shh(j—1)sha(n—j+1)—2sh\(j—1)shr(n—j)
I Ceg shin '
(2)_2e2 shh(j—1)sha(n—j)—shA(j—1)sha(n—j+1)
I " Ce shan ’

v sha(n—j)—sha(n—j+1)
shin

: 9.1)

SE\¥ =

the sum of which give$E;=g;—g;_,, where
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FIG. 2. (@ An inhomogenous semi-infinite MTJ with its
(k+1)th junction capacitance replaced By #C. The portion of
the circuit beyond thekth junction can be replaced by a single

capacitanc@:, (b) which in turn is equivalent toeq(f:) links of the
homogenous array, as given by Eg1l).

shin—j)A
+ev shnn '’

€ shjashin—j)\
9=C shn\

and the cumulative energy change afteevents becomes

9.2

m

AE,= 2, 5E;=0m—Jo.

=1

9.3

The Gibb’s energyF,, of the circuit is then given by
AE,+E,, the offsetE,=C(MV?/2 being the initial capaci-
tive energy(before the first tunnel eventWe thus obtain the
Gibb’s energy expression of Ref. 3,

€ shmash(n—m)\ L shin—m)x
M Cofr shnx B ~ shna
CV2[  shin—1)\
| 1 g ) (10)

BRIEF REPORTS

PRB 59

CN Mnode €

k junctions

njun&ions
FIG. 3. Multijunction trap circuit, withCy andCy, as the gate
and stray capacitance of the node, respectively. The node is at-
tached to a finite MTJ ofi junctions. An escaping chargss at the
kth island, whilen,,4& charges are stored on the node.

as was demonstrated above for the case of an MTJ with stray
capacitances.

Suppose there am,,q. charges stored on the node, with
an additional escaping charge on tkil island (the node
being the zeroth islandThere are three contributions to the
potential®; on thejth island,(i) ®;, from the external bias
V, (i) @, induced by the escaping charge, diid ®;, due
to the node charges. From E&), ®;y is given by

shin—j)A
(DjV:Vnoder(ST){)a (12
where V,,ge= CyV/(Cn+ Cro+ C™) is the node potential
due to the bia®/, nis the length of the MTJ, an@y o are
the gate and stray capacitance of the node, respectively. To
evaluated;,, we again homogenize the array by replacing
the node with an equivalent number &,C,) links. We can

write the node capacitance ag:,gd;r Co), Where Enode
=CntCno—Cq. Thus, the extra number of links 4]

=neq(6nodg. The potential contribution of the escaping
charge is then given bgbjk=¢>j(TA?}Q+Aj, i.e., with all is-
land indexes being displaced Hyj compared withg{p) in
Eq. (4). Similarly, the third contributiorb;, due to the node

charges is given bylygex< ¢{1i0, 4;. With an equally

To demonstrate the generality of our method we now apstraightforward analysis, the analytical expression for the po-

ply it to aninhomogenoudlTJ, where for the sake of sim- tential in a multijunction turnstile can also be evaluated,
plicity all but one of the junction capacitances are identical.since each branch of the turnstile may be treated as a multi-
Let us consider the semi-infinite array of Fig. 2, where thejunction trap.
(k+1)th junction has a capacitan€ compared withC for In summary, we have applied the method of image
the rest. The semi-infinite chain beyo@d has a capacitance charges, which previously had been used for the case of a
Ch=(Ce—Cp)/2,} and so the circuit can be reduced to asemi-infinite MTJ, to obtain analytic solutions to the poten-
finite chain terminated b§3=(Ch+CO)C’/(Ch+CO+C’). tial in homogenous as well as inhomogenous MTJ arrays of
. . . ~ finite length, the latter of which cover important circuits like
The next step is to “homogenize” the chain by replaciig

ith al b ; link h b the multijunction trap and turnstile. The solutions are in
with an equivalent numbene, of (C,Co) links, where by 5 eement with numerical solutions obtained via Kirchhoff's
inverting Eq.(7.1), ngqis found to be

laws and charge conservation, as well as previous analytic

_ 1 shi solutions evaluated via algebraic inversion of matrices. Com-
Ne C)= —tanh ! — , (1D pared to earlier analytic methods, ours has the advantage of
chhn—1+C/C being simple and physically more intuitive, while neverthe-

. . ) less having a wider scope of application.
and the total capacitance of the array is then given by

Cck*Ned | Note that the equivalent number of junctiamg, is The authors would like to thank H. Ahmed for many use-
now a continuous variable. The above generalization enabldal discussions. This paper was carried out under the man-
us to analyze a wider range of circuits as before, includingaggement of FED, as a part of the MITI R&D of the Industrial
the multijunction trap shown in Fig. 3. We will limit our- Science and Technology Frontier Progré@uantum Func-
selves to obtaining the analytical expression for the potentidional Device projegtsupported by NEDO. M.B.A. Jalil ac-
profile in the trap, since the corresponding expression for th&nowledges the financial support of St. John’s College, Cam-
tunneling energies follows directly from the potential profile, bridge.
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