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Coherent transport through a quantum dot embedded in an Aharonov-Bohm ring
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We study the coherent transport in a multiterminal mesoscopic Aharonov-Bohm ring with a quantum dot
embedded in an arm. Employing the Friedel sum rule for the effective single-particle levels in the quantum dot,
we explain some anomalous features that have been observed in the experiment. We attribute these anomalies
to the result of nontrivial quantum interference of the quantum dot with the attached ring. Further, we propose
an anomalous feature of conductance oscillations, which can be a test for the validity of our model.
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Resonant tunneling through a quantum dot is of considerexperiment. Second, there is a sharp phase dropr gt
able current interegsee, e.g., Ref. 1 and references therein some point between successive resonances, which is quite
The phase coherence of the resonant tunneling cannot laifferent from the phase change at the peaks in the two-
proved directly in the ordinary conductance measurementserminal experiment.
through a quantum dot because the conductance measuresin this paper, we address the problem of the coherent
only the magnitude of the transmission amplitude. Yacobyransmission through a quantum dot embedded in a two- and
etal? reported the first experimental demonstration thatfour-terminal AB ring. By employing the Green’s function
transmission through a quantum dot has a coherent compeaethod'!® in the tight-binding model with the Friedel sum
nent, using a two-terminal Aharonov-Boh(AB) interfer-  rule for the quantum dot, we obtain some anomalous results,
ometer with a quantum dot embedded in one of its arms. Invhich also have been observed in the experiments such as
addition to the observation of the coherence, they have founth-phasebehavior and the interresonance phase drop. First,
two other striking features, which could not be understoodve confirm that then-phasebehavior arises because tbet-
well at first. First, the phase of the AB oscillation changesof-phaseresonances in the quantum dot do not appear as
abruptly by 7 whenever the conductance reaches its maxiconductance peaks due to the destructive interference, as Wu
mum. Second, the AB oscillations of successive conductancet al® proposed. Second, it is found that the interresonance
peaks are in phase. It has been shown that the abrupt phaskase drop accompanies quite anomalous AB oscillation,
change at resonance can be understood in terms of the phashich cannot be described by a simple sum of two direct
rigidity enforced by the condition that the two terminal con- paths. We show that multiple path contributions in the inter-
ductance should be an even function of the external magnetference are very important in the limit of small transmission
field3=® The second feature dh-phasebehavior has not probability and closely related to the interresonance phase
been understood well since neither integrable nor chaotidrop. Further, we find an anomalous periodicity in the con-
guantum dots are expected to have generically the sanductance oscillations, with varying the value of the external
phase between successive resonances. Recentlyet\Wlf  magnetic flux. From our result, we conclude that, in general,
suggested that tha-phasebehavior originates from the fact the transmission through the quantum dot cannot be consid-
that the resonant tunneling through the whole system can bered separately from that of the whole system containing the
observed only when the phase shift introduced by the resaing. The quantum interferences lead to phenomena that can-
nant state of the dot coincides with the transmission phase afot be understood in terms of the quantum dot only.
the reference arm. The model we study is a multiterminal AB ring where a

In the two-terminal structure, a measurement of the transquantum dot is embedded in one of its arms, as shown sche-
mission phase of the quantum dot itself is not possible bematically in Fig. 1. We adopt a single-channel model of spin-
cause of the phase rigidity enforced by the microreversibilityless electrons. We use a tight-binding representation with the
of the transmission coefficieAtRecently, a modified four- hopping integralt of which the magnitude is taken to be
terminal geometry has been adopted to measure the transmisity here. This model can be applied for a ring where the
sion phase of the quantum dbBecause the phase rigidity ring is so narrow that only a few 1D channels are included in
does not exist in this geometry, they could observe continutranmission. This is exactly the situation of experiments of
ous phase shifts of the AB oscillations as a function of theRefs. 2 and 8. Also, we neglect electron spin. The spin does
plunger gate voltage on the quantum dot. Within a simplifiednot seem to play a major role in the experiments because it
model that the coherent transmission can be described by thies not show an even-odd parity effect for the occupation
sum of two direct paths, the phase evolution within a resonumber of the quantum dot. The quantum dot is modeled by
nance could be explained by the Breit-Wigner model for thethe barrier energfg and multilevels in the site of the dot.
guantum dot. On the other hand, they observed two othefAn equal spacing is assumed for the effective single-particle
striking phenomena, which have not been understood by thenergies in the quantum dot. The periodicity comes from
Breit-Wigner model. First, the AB oscillations of the succes-large charging energy, which implies that the Coulomb in-
sive resonances are in phase again as in the two-termintdraction effects are being considered through the effective
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FIG. 1. (a) Schematic diagram of the Aharonov-Bohm ring with
a quantum dot coupled to four reservoirs denoted bR, a, andb 5
with coupling constant,(e¢=L,R,a,b). (b) The on-site energies in
the tight-binding model. The quantum dot is modeled by the barrier
energyEg and periodic multilevel energies with its lowest le¥g)
and spacingd, respectively. The values of their phase shifts are
given by O(solid line) and 7 (dotted ling alternatively due to the
Friedel sum rule.

single-particle levels. That is, the energy levels in the quan- 1 | |

tum dot are modeled a& =Ey+IA with 1=0,1,2..., 00 1 5

whereA ~e?/C with C being the capacitance of the quantum 21/ ®,

dot. Due to the Friedel sum rule, the increment in the occu-

pation numbewn and the phase shifiz of the quantum dot FIG. 2. Transmission probability and phase of AB oscillation as

levels are related by a function of the lowest energy of the dot levg), in the two-

terminal ring. The parameters used for the calculations &re
Sn=mén. (1) =08T =Tg=0.1T,=T,=0, andEg=4.0 in unit of t. E, is
also normalized in unit of. Twelve levels in the quantum dot are

It should be noted that the sum rule is valid in spite of thetaken into account in the calculatiof@ Transmission probability

electron-electron interactions. In a well-confined quantunisolid ling) in the absence of the external magnetic flux and its

dot characterized by a large value Bf in our model, the phase of the AB oscillatiotdashed ling (b) AB oscillations of the

charge in the quantum dot is quantized by the charging eriransmission probability for several valuestaf marked ash, R, B,

ergy so that we havén=1 between adjacent levels. Thus, C: D, E andXin (a).

the adjacent levels have opposite parities with each other,

which are denoted by solid lines and dotted lines drawn alleft to the right leadT g can be related to the Green’s func-

ternatively in Fig. 1b). This phase shift is taken into account tion connecting site 1 and sit¢, Gy :

in the hopping matrix elements with the neighboring sites.

The magnetic fluxb appears in the phase fact®t'¢ of the Tr=4T T'r|Gin(er)|% 3

hopping integral, where=27®/N D, with ®y=hc/e and ) ,

N, being the elementary flux quantum and the number ofl N€ two-terminal system can be studied by taking=T',

lattice sites, respectively. The ring is connected to four res=0- The two-terminal conductance is proportional Tig:

ervoirs denoted by ,R,a,b by the coupling constartt,(« according to the Landauer formula. In the four-terminal ge-

=L,R,a,b). The coupling strength is characterized by theOmetry, T r could be measured with an open-circuit collec-
parameter tor (Ig=0) 8 The Green’s functiorG, is calculated by us-

ing the standard Green’s function technique in the presence
(2)  of multiterminal leads:*°
Figure Za) displays the transmission probability and its
wherep, andeg denote the density of states and the Fermiphase @) of the AB oscillation as a function of the lowest
energy of the reservoit, respectively. dot levelE,. In the experimentz, can be controlled by the
Owing to the relation between scattering amplitude andexternal plunger gate on the quantum dot. As observed in the
the Green’s functiofl,the transmission probability from the experiments, periodic conductance oscillation due to the

Fa: 7T|ta|2pa(8F)1
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FIG. 3. Transmission probabilitisolid line) from the left(L) to
the right(R) lead with its phasédashed lingin the four-terminal (1] — =
geometry. The coupling strength is given By =T'gr=T,=T,
=0.05, in unit oft. Other parameters are same with those in Fig. 2. & = 39,/4
charging energy is shown in this figure. The asymmetry of [V , ) | ) )

the peaks is the result of the interference with the upper arm. $ 7 6 5 4 3 -2
Surprisingly, the period of the oscillation is nat but 2A.
This implies that the oscillation period_correspo_nds toadding g, 4. Transmission probability as a function Bf in the
charge 2 to the quantum dot, nat as in the ordinary Cou-  yo-terminal geometry for several values of the external flux. Other
lomb blockade oscillations. In the two-terminal structure, theparameters are same with those in Fig. 2.
conductance should be an even function of the external flux,
which allows only abrupt phase changeof It should be  The reduction of the probability comes from the fact that the
noted that there are two types of abrupt phase changes. Oadditional reservoir plays a role of inelastic scattering
occurs at resonance and the other does at some point betweggnter:* The AB oscillation patterns, which are not dis-
adjacent resonance peaks. With two types of phase changpkyed here, are same with those of the two-terminal inter-
in a period, every peak has the same phase in AB oscillationerometer{Fig. 2(b)] with reduced magnitude of the oscilla-
as observed in the experimeAtsAs a result of the interfer-  tions. Looking into the AB oscillations displayed in Figb
ence with the reference arm, only-phase resonances again, one can find that the magnetoconductance curves are
through the quantum dot appear as conductance peaks, whiier from sinusoidal of the perio®, at the low-transmission
the out-of-phaseaesonances do not give rise to conductanceegion. This means that multiple path interference is impor-
peaks because of destructive quantum interference. This etant especially at low transmission regi@eeC, D, Xin Fig.
plains why the conductance peaks in the experiment shoul@(b)]. In contrast, near the resonance, the multiple-path con-
have the same phase in AB oscillations. tributions are relatively small and thie, period due to direct

AB oscillations are more closely inspected in Figh)2In two paths is dominanftseeA, R, Bin Fig. 2(b)]. This sug-
Fig. 2b), the transmission probability as a function of the gests that multiple-path contributions should not be ne-
flux is displayed for several values Bf. One can see that glected in the small transmission limit, and it requires more
the parity of AB oscillations is changed twice in a period ascareful analysis. In analyzing their experimental results, the
mentioned above. The phase change at the conductaneethors of Ref. 8 used a simple model of the sum of two
peaks is now well understood from the previous studiiés. direct paths, on the basis of their observation that there is no
Further, we find that the phase change between the peaksgher-order harmonics in the AB oscillation with period
accompanies quite anomalous AB oscillation. That is, at th&y/n (n>1). While it seems valid in describing the phase
point of inter-resonance phase chan@,(the transmission evolution around the peaks, it is still questionable whether
amplitude is zero for almost every value of the external flux.this argument is correct in the limit of the small amplitude of
It means that coherent transmission is nearly absent at thife AB oscillation. Though our treatment is not complete
point. This result is quite similar to the experimental obser-because of the restriction in the allowed phase values, nu-
vation of Ref. 8 that the inter-resonance phase drop accommerical results indicate at least that multiple-path interfer-
panies zero amplitude of the AB oscillation. ence cannot be neglected at the low-transmission limit. Fur-

In Fig. 3, transmission probability and its phase of AB ther, multiple-path contributions are closely related to the
oscillation in the four-terminal geometry is displayed as ainter-resonance phase drop. At the point of inter-resonance
function of E;. While a continuous phase shift has beenphase dropX of Fig. 2(b)], effects of multiple-path interfer-
observed in the experimefithe phase rigidity still exists in ences are rather drastic, which lead to the quite anomalous
our treatment because net current flow through the other re#\B oscillation pattern.
ervoirs a, b is not allowed in this formulation. It has been In Fig. 4, we displayT, g as a function ofg, for several
shown that the phase rigidity is preserved even in the presralues of the external flux quantum. Interestingly, the peri-
ence of inelastic processes through the other leads if the neticity varies as A — A —2A — A with increasing the value
current flow is zero through these leadm our treatment, of the flux. For®=d,/2, the locations of the peaks are
the behavior of the AB phase is the same as that of thehifted byA compared to the zero-flux case. This is because
two-terminal ring, with reduced transmission probability. the ring acquires the AB phase due to the flux, so thé
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phaseresonances andut-of-phaseresonances in the quan- levels in the quantum dot, we have explained some anoma-
tum dot are reversed. When the periodicity is(® lous features that have been observed in the experiment. We
=0y/4,3D,/4), the conductance peaks are no longer inhave discussed these anomalous features in relation to the
phase, and the positions of the peaks do not coincide with theontrivial quantum interference of the quantum dot with the

resonance of the quantum dot. This is also the result of inattached ring. Further, we have proposed a feature of con-

terference. We suggest that the validity of the model preguctance oscillations that can be a test for the validity of our
sented in this paper can be tested experimentally by investingdel.

gating the feature in Fig. 4.

In conclusion, we have investigated the coherent trans- The author thanks H. Schanz for his critical reading of
mission in two- and four-terminal mesoscopic Aharonov-this manuscript, and P. Fulde for his hospitality. This paper
Bohm rings with a quantum dot embedded in an arm. Emhas been supported by the KOSEF and in part by the Visitors
ploying the Friedel sum rule for the effective single-particle Program of the MPI-PKS.
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