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Coherent transport through a quantum dot embedded in an Aharonov-Bohm ring

Kicheon Kang*
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 12 August 1998!

We study the coherent transport in a multiterminal mesoscopic Aharonov-Bohm ring with a quantum dot
embedded in an arm. Employing the Friedel sum rule for the effective single-particle levels in the quantum dot,
we explain some anomalous features that have been observed in the experiment. We attribute these anomalies
to the result of nontrivial quantum interference of the quantum dot with the attached ring. Further, we propose
an anomalous feature of conductance oscillations, which can be a test for the validity of our model.
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Resonant tunneling through a quantum dot is of consid
able current interest~see, e.g., Ref. 1 and references there!.
The phase coherence of the resonant tunneling canno
proved directly in the ordinary conductance measureme
through a quantum dot because the conductance mea
only the magnitude of the transmission amplitude. Yaco
et al.2 reported the first experimental demonstration t
transmission through a quantum dot has a coherent com
nent, using a two-terminal Aharonov-Bohm~AB! interfer-
ometer with a quantum dot embedded in one of its arms
addition to the observation of the coherence, they have fo
two other striking features, which could not be understo
well at first. First, the phase of the AB oscillation chang
abruptly byp whenever the conductance reaches its ma
mum. Second, the AB oscillations of successive conducta
peaks are in phase. It has been shown that the abrupt p
change at resonance can be understood in terms of the p
rigidity enforced by the condition that the two terminal co
ductance should be an even function of the external magn
field.3–5 The second feature ofin-phasebehavior has not
been understood well since neither integrable nor cha
quantum dots are expected to have generically the s
phase between successive resonances. Recently, Wuet al.6

suggested that thein-phasebehavior originates from the fac
that the resonant tunneling through the whole system ca
observed only when the phase shift introduced by the re
nant state of the dot coincides with the transmission phas
the reference arm.

In the two-terminal structure, a measurement of the tra
mission phase of the quantum dot itself is not possible
cause of the phase rigidity enforced by the microreversibi
of the transmission coefficient.7 Recently, a modified four-
terminal geometry has been adopted to measure the trans
sion phase of the quantum dot.8 Because the phase rigidit
does not exist in this geometry, they could observe conti
ous phase shifts of the AB oscillations as a function of
plunger gate voltage on the quantum dot. Within a simplifi
model that the coherent transmission can be described b
sum of two direct paths, the phase evolution within a re
nance could be explained by the Breit-Wigner model for
quantum dot. On the other hand, they observed two o
striking phenomena, which have not been understood by
Breit-Wigner model. First, the AB oscillations of the succe
sive resonances are in phase again as in the two-term
PRB 590163-1829/99/59~7!/4608~4!/$15.00
r-

be
ts
res
y
t
o-

In
d

d
s
i-
ce
ase
ase

tic

ic
e

be
o-
of

s-
-

y

is-

-
e
d
he
-

e
er
he
-
al

experiment. Second, there is a sharp phase drop byp at
some point between successive resonances, which is q
different from the phase change at the peaks in the t
terminal experiment.

In this paper, we address the problem of the coher
transmission through a quantum dot embedded in a two-
four-terminal AB ring. By employing the Green’s functio
method9,10 in the tight-binding model with the Friedel sum
rule for the quantum dot, we obtain some anomalous res
which also have been observed in the experiments suc
in-phasebehavior and the interresonance phase drop. F
we confirm that thein-phasebehavior arises because theout-
of-phaseresonances in the quantum dot do not appear
conductance peaks due to the destructive interference, as
et al.6 proposed. Second, it is found that the interresona
phase drop accompanies quite anomalous AB oscillat
which cannot be described by a simple sum of two dir
paths. We show that multiple path contributions in the int
ference are very important in the limit of small transmissi
probability and closely related to the interresonance ph
drop. Further, we find an anomalous periodicity in the co
ductance oscillations, with varying the value of the exter
magnetic flux. From our result, we conclude that, in gene
the transmission through the quantum dot cannot be con
ered separately from that of the whole system containing
ring. The quantum interferences lead to phenomena that
not be understood in terms of the quantum dot only.

The model we study is a multiterminal AB ring where
quantum dot is embedded in one of its arms, as shown s
matically in Fig. 1. We adopt a single-channel model of sp
less electrons. We use a tight-binding representation with
hopping integralt of which the magnitude is taken to b
unity here. This model can be applied for a ring where
ring is so narrow that only a few 1D channels are included
tranmission. This is exactly the situation of experiments
Refs. 2 and 8. Also, we neglect electron spin. The spin d
not seem to play a major role in the experiments becaus
does not show an even-odd parity effect for the occupa
number of the quantum dot. The quantum dot is modeled
the barrier energyEB and multilevels in the site of the dot
An equal spacing is assumed for the effective single-part
energies in the quantum dot. The periodicity comes fr
large charging energy, which implies that the Coulomb
teraction effects are being considered through the effec
4608 ©1999 The American Physical Society
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single-particle levels. That is, the energy levels in the qu
tum dot are modeled asEl5E01 lD with l 50,1,2. . . ,
whereD;e2/C with C being the capacitance of the quantu
dot. Due to the Friedel sum rule, the increment in the oc
pation numberdn and the phase shiftdh of the quantum dot
levels are related by

dh5pdn. ~1!

It should be noted that the sum rule is valid in spite of t
electron-electron interactions. In a well-confined quant
dot characterized by a large value ofEB in our model, the
charge in the quantum dot is quantized by the charging
ergy so that we havedn51 between adjacent levels. Thu
the adjacent levels have opposite parities with each ot
which are denoted by solid lines and dotted lines drawn
ternatively in Fig. 1~b!. This phase shift is taken into accou
in the hopping matrix elements with the neighboring sit
The magnetic fluxF appears in the phase factore6 iw of the
hopping integral, wherew52pF/NsF0 with F05hc/e and
Ns being the elementary flux quantum and the number
lattice sites, respectively. The ring is connected to four r
ervoirs denoted byL,R,a,b by the coupling constantta(a
5L,R,a,b). The coupling strength is characterized by t
parameter

Ga5putau2ra~«F!, ~2!

wherera and«F denote the density of states and the Fer
energy of the reservoira, respectively.

Owing to the relation between scattering amplitude a
the Green’s function,9 the transmission probability from th

FIG. 1. ~a! Schematic diagram of the Aharonov-Bohm ring wi
a quantum dot coupled to four reservoirs denoted byL, R, a, andb
with coupling constantta(a5L,R,a,b). ~b! The on-site energies in
the tight-binding model. The quantum dot is modeled by the bar
energyEB and periodic multilevel energies with its lowest levelE0

and spacingD, respectively. The values of their phase shifts a
given by 0 ~solid line! andp ~dotted line! alternatively due to the
Friedel sum rule.
-

-

n-

r,
l-

.

f
-

i

d

left to the right leadTLR can be related to the Green’s fun
tion connecting site 1 and siteN, G1N :

TLR54GLGRuG1N~«F!u2. ~3!

The two-terminal system can be studied by takingGa5Gb
50. The two-terminal conductance is proportional toTLR
according to the Landauer formula. In the four-terminal g
ometry,TLR could be measured with an open-circuit colle
tor (I R50).8 The Green’s functionG1N is calculated by us-
ing the standard Green’s function technique in the prese
of multiterminal leads.9,10

Figure 2~a! displays the transmission probability and i
phase (u) of the AB oscillation as a function of the lowes
dot levelE0 . In the experiment,E0 can be controlled by the
external plunger gate on the quantum dot. As observed in
experiments, periodic conductance oscillation due to

r

FIG. 2. Transmission probability and phase of AB oscillation
a function of the lowest energy of the dot levelE0 in the two-
terminal ring. The parameters used for the calculations areD
50.8,GL5GR50.1,Ga5Gb50, and EB54.0 in unit of t. E0 is
also normalized in unit oft. Twelve levels in the quantum dot ar
taken into account in the calculation.~a! Transmission probability
~solid line! in the absence of the external magnetic flux and
phase of the AB oscillation~dashed line!. ~b! AB oscillations of the
transmission probability for several values ofE0 marked asA, R, B,
C, D, E, andX in ~a!.
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charging energy is shown in this figure. The asymmetry
the peaks is the result of the interference with the upper a
Surprisingly, the period of the oscillation is notD but 2D.
This implies that the oscillation period corresponds to add
charge 2e to the quantum dot, note as in the ordinary Cou-
lomb blockade oscillations. In the two-terminal structure,
conductance should be an even function of the external fl
which allows only abrupt phase change ofp.7 It should be
noted that there are two types of abrupt phase changes.
occurs at resonance and the other does at some point bet
adjacent resonance peaks. With two types of phase cha
in a period, every peak has the same phase in AB oscillat
as observed in the experiments.2,8 As a result of the interfer-
ence with the reference arm, onlyin-phase resonances
through the quantum dot appear as conductance peaks, w
the out-of-phaseresonances do not give rise to conductan
peaks because of destructive quantum interference. This
plains why the conductance peaks in the experiment sh
have the same phase in AB oscillations.

AB oscillations are more closely inspected in Fig. 2~b!. In
Fig. 2~b!, the transmission probability as a function of th
flux is displayed for several values ofE0 . One can see tha
the parity of AB oscillations is changed twice in a period
mentioned above. The phase change at the conduct
peaks is now well understood from the previous studies3–5

Further, we find that the phase change between the p
accompanies quite anomalous AB oscillation. That is, at
point of inter-resonance phase change (X), the transmission
amplitude is zero for almost every value of the external fl
It means that coherent transmission is nearly absent at
point. This result is quite similar to the experimental obs
vation of Ref. 8 that the inter-resonance phase drop acc
panies zero amplitude of the AB oscillation.

In Fig. 3, transmission probability and its phase of A
oscillation in the four-terminal geometry is displayed as
function of E0 . While a continuous phase shift has be
observed in the experiment,8 the phase rigidity still exists in
our treatment because net current flow through the other
ervoirs a, b is not allowed in this formulation. It has bee
shown that the phase rigidity is preserved even in the p
ence of inelastic processes through the other leads if the
current flow is zero through these leads.3 In our treatment,
the behavior of the AB phase is the same as that of
two-terminal ring, with reduced transmission probabili

FIG. 3. Transmission probability~solid line! from the left~L! to
the right ~R! lead with its phase~dashed line! in the four-terminal
geometry. The coupling strength is given byGL5GR5Ga5Gb

50.05, in unit oft. Other parameters are same with those in Fig
f
.
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The reduction of the probability comes from the fact that t
additional reservoir plays a role of inelastic scatteri
center.11 The AB oscillation patterns, which are not dis
played here, are same with those of the two-terminal in
ferometer@Fig. 2~b!# with reduced magnitude of the oscilla
tions. Looking into the AB oscillations displayed in Fig. 2~b!
again, one can find that the magnetoconductance curves
far from sinusoidal of the periodF0 at the low-transmission
region. This means that multiple path interference is imp
tant especially at low transmission region@seeC, D, X in Fig.
2~b!#. In contrast, near the resonance, the multiple-path c
tributions are relatively small and theF0 period due to direct
two paths is dominant@seeA, R, B in Fig. 2~b!#. This sug-
gests that multiple-path contributions should not be
glected in the small transmission limit, and it requires mo
careful analysis. In analyzing their experimental results,
authors of Ref. 8 used a simple model of the sum of t
direct paths, on the basis of their observation that there is
higher-order harmonics in the AB oscillation with perio
F0 /n (n.1). While it seems valid in describing the pha
evolution around the peaks, it is still questionable whet
this argument is correct in the limit of the small amplitude
the AB oscillation. Though our treatment is not comple
because of the restriction in the allowed phase values,
merical results indicate at least that multiple-path interf
ence cannot be neglected at the low-transmission limit. F
ther, multiple-path contributions are closely related to t
inter-resonance phase drop. At the point of inter-resona
phase drop@X of Fig. 2~b!#, effects of multiple-path interfer-
ences are rather drastic, which lead to the quite anoma
AB oscillation pattern.

In Fig. 4, we displayTLR as a function ofE0 for several
values of the external flux quantum. Interestingly, the pe
odicity varies as 2D→D→2D→D with increasing the value
of the flux. For F5F0/2, the locations of the peaks ar
shifted byD compared to the zero-flux case. This is becau
the ring acquires the AB phasep due to the flux, so thein

.

FIG. 4. Transmission probability as a function ofE0 in the
two-terminal geometry for several values of the external flux. Ot
parameters are same with those in Fig. 2.
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phaseresonances andout-of-phaseresonances in the quan
tum dot are reversed. When the periodicity isD(F
5F0/4,3F0/4), the conductance peaks are no longer
phase, and the positions of the peaks do not coincide with
resonance of the quantum dot. This is also the result of
terference. We suggest that the validity of the model p
sented in this paper can be tested experimentally by inve
gating the feature in Fig. 4.

In conclusion, we have investigated the coherent tra
mission in two- and four-terminal mesoscopic Aharono
Bohm rings with a quantum dot embedded in an arm. E
ploying the Friedel sum rule for the effective single-partic
s
,
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levels in the quantum dot, we have explained some ano
lous features that have been observed in the experiment
have discussed these anomalous features in relation to
nontrivial quantum interference of the quantum dot with t
attached ring. Further, we have proposed a feature of c
ductance oscillations that can be a test for the validity of
model.
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