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Spin-density-functional theory of circular and elliptical quantum dots
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NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
(Received 14 August 1998

Using spin-density-functional theory, we study the electronic states of a two-dimensional parabolic quantum
dot with up toN=>58 electrons. We observe a shell structure for the filling of the dot with electrons. Hund’s
rule determines the spin configuration of the ground state, but only up to 22 electrons. At $petiiground
state is degenerate, and a small elliptical deformation of the external potential induces a rotational charge-
density-wave state. Previously identified spin-density-wave states are shown to be artifacts of broken spin
symmetry in density-functional theor{/S0163-182699)03507-9

Quantum dots have recently attracted much interest both
experimentally and theoretically. One realization of a quan- p(N=2 p’(N=2 2 [¥7(1n)% 2
tum dot is a small island fabricated in a two-dimensional 7 7!
electron gas laterally confined by an external potential andHere o denotes the spin index(r) is the local spin polar-
containing a few to a few hundred electrdnExperimen- ization, andE,. is the exchange-correlation energy func-
tally, measuring the tunnel conductahemd capacitanéey  tional, for which we use the local-density approximatfon
changing the gate voltage attached to the quantum dot, one
observes a peak every time the average number of electrons _
increases by 1. The spacing of peaks, or addition spectrum, EXC_J' p(r)exd p(r),Z(r)]dr, )
reflects the energy differences between ground states of the
dot with different numbers of electrons. Each disordered dot _ p!(r)—ph(r)
has its own characteristic addition spectrum, but recently it ¢r)= p(r) ' )
has become possible to fabricate dots so clean that the addi-

tion spectra are reproducible from dot to doAmong the |0 Solve the equation, we expand thel(r) in a Fock-
features of these clean, parabolic dots are atomiclike shelf@rwin representation;
structures, Hund'’s rules, and reproducible transition rates. | 1

The advent of atomiclike spectra in quantum dots calls for 07 (1,0)=]nk)= v 2
appropriately quantitative theoretical tools. Presently, exact " 2m(n+ kD!
diagonalization of the full Hamiltonian is limited to a small 5\ [KI/2 2
number of electrons in the dof. Thomas-Fermi, Hartreg, we-rza? T | ] ke
and Hartree-Fock methoti3all suffer from sizeable system- 212 "22 Xo
atic errors. Here, we treat the electronic states of a dot using K . — -
the density-functional methd¥™ explicitly including Where Ly'(x) is a Laguerre polynomiall= V#/(2m* wo)
spin}2~1* We find shell structures in the addition-energy andy, is a spin function. The noninteracting, smgle-p_amcle
spectrum for a circular, parabolic external potential. Hund’s€vels form a ladderg, = (2n+[k|+ 1)k wo=M#w, with
rule determines the ground-state spin configurations, buiing degeneracil. The ground-state energy of a quantum
only up to 22 electrons. Elliptically deforming the external dot with N electrons is obtained from
potential eliminates the shell structures, and Hund’s rule is

replaced by a more Pauli-like behavior of the total spin. At E(N)=2 e 9_2 p(r)p(r’) drdr’

specificN, the ground state is degenerate, and a small ellip- =~ ' 2k lr—r'|

tical deformation of the external potential induces a rota-

tional charge-density-waveCDW) state. The spin-density- OE,d p.{]

wave (SDW) states found by Koskinen, Manninen, and —203 fpg(f)wdr+Exc- 5

Riemann? (KMR) are artifacts of broken spin symmetry in
density-functional theory. We use the material constants for GaAs? =0.067m, «
We solve the following Kohn-Sham equations numeri-=12.9, and the external potential is fixedab,= 3.0 meV.
cally for a two-dimensional parabolic quantum dot, and iter-The resulting dimensionless interaction strength is
ate until self-consistent solutions are obtaifed:; (€21 k/ o) hwy=1.9, where/ o= VAl (Mm* w).
Shell structure.At low temperatures, electron hopping
into a dot containindN electrons is suppressed except when

_ h? V24 e_2J p(r) dr’+ SExd p.¢] +Em*w2r2 the ground-state energi(N) is equal toE(N+1). This
2m* KJ |r=r’'| Sp’(r) 2 0 degeneracy condition determines the observed conductance
oscillation peaks that occur at the chemical potentia(sl
XWP(r)=e¥i(r), (D) +1)=E(N+1)—E(N). The addition energyA(N) needed
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FIG. 1. Addition energ)A(N) as a function of electron number increases, Consistent W|th recent experiments in Wh|Ch peaks
N in the dot for(a) a confining parabolic potentiah* w2r%/2 and ~ Were observed in the addition energy up to 12 electfons.
(b, elliptical confining potential®/(r) = m* (wx?+ wly?)/2. The Hund's rule.By analogy to atoms, we expect that Hund's
dotted lines indicate the addition energy according to a classicdlule for total spin will apply in the present situation. Accord-
electrostatic analysi§Ref. 17. The parameters ar@) #w,=3.0 ing to Hund’s rule, as degenerate states are filled, the total
meV, (b) w’/w;=11/13 andc) }/w;=5/7.(b) and(c) are shifted ~ spin S takes the maximum value allowed by the exclusion
by 1.0 meV and 2.0 meV, respectively. Upper inset—total energy irprinciple and becomes zero for closed shells. Figui@ 2
meV as a function of total spin for electron numbels  shows the spin configuration as a function of the electron
=16, 24, 34, and 46 ina). The origin of energy for eacN is  numberN for the circular, parabolic potential. The dotted
arbitrary. Lower inset—total energy fof=4 electrons obtained by |ine represents the spin configuration when Hund'’s rule is
exact diagonalization within a restricted Hilbert spa€e+4) and  satisfied. We can see that, for up to 22 electrons filling the
|1_,i 2), as a function of single-particle level splittidg The ener- dot, the spin configurations obey Hund’s rBiE&or larger
giesE(S=0, L,=0) andE(S=1, L,=*2) are plotted relative 0 qots Hund's rule is violated and the high spin states are
E(S=2, L,=0). suppressed. In particular, the total spin becomes zero at elec-

tron numberdN=24, 34, 46 instead of the expect&e- 2.

to put an extra electron in the dot is obtained franiN) In the upper inset of Fig. 1, we show the total eneE(\N)
=u(N+1)—u(N)=E(N+1)—-2E(N)+E(N—-1). Figure as a function of the total spin for these statesNAt 16, the
1(a) shows the addition energ¥(N) as a function of elec- S=2 state is 0.10 meV lower in energy than tBe 0 state,
tron numbem for a circular, parabolic potential. The dotted which follows Hund'’s rule. In contrast, & =24 theS=0
line indicatesA(N) obtained from a classical electrostatic state is 0.05 meV lower in energy than t8e 2 state. This
analysis with no kinetic energy. Overall, A(N) decreases trend is enhanced as the number increases. These energy
with N, as the dot and its capacitance grow. On average, thdifferences are sufficiently small that weak magnetic fields,
addition energy obtained from the density-functional calcu-of order 300 G, will favor ar5=2 ground state.
lation is close to the classical electrostatic res@lC. How- The breakdown of Hund'’s rule is due to the nonparabolic
ever, we see small zig-zag structures, and large peaks at elegffective potential caused by Coulomb interactions. For ex-
tron numbersN=2, 6, 12, 20, 30, 42, and 56. In the ample, without interaction® =24 corresponds to 20 elec-
single-particle spectrum for a parabolic potential, the electrons in filled inner shells and four “valence” electrons dis-
tronic states of the dot form closed shell structures at thestibuted among 10 degenerate statgs;k)=|0,=4),|1,
numbers. Even in the presence of electron-electron interact2), and|2,0), spin up and down. Coulomb interactions
tion, extra energy is required to add one more electron to deform the radial potential and lower the energy of the
closed shell. The peak heights decrease as the nuiMber single-particle states with larger angular momentim The
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system could minimize it@xchangeenergy by creating an TABLE |. The numbers KI=N'+N!) of electrons for which
S=2 state, i.e., putting all four valence electrons into spin upspin-density-functional theory predicts a rotational charge-density
states. Instead, fo=24, the system minimizes isingle- Wwave (CDW) near the edge of the quantum dot. The numbers in
particle energy by putting all four electrons intk==4  boldface indicate a strong modulation of the associated spin density,
states, giving a total spiB=0, and breaking Hund’s rule. while a weaker modulation occurs in the opposite spin density. The
To confirm this result, we performed an exact diagonal-tOtal angular momentunt,| of the degenerate pair of ground states

ization of N=4 valence electrons in a restricted basis set oI 1ise to the CDW is also shown.
eight states]0,=4) and |1,+2), spin up and down. The

Hamiltonian we employed is Number of . ,
Electrons(N) Spinup N')  Spin down (')  Total |LZ]
< # _, 1, e? 3 2 1 1
H:iZE]_ —2m* Vi+§m*w0ri+’yri +i<jK|ri——I'j|’ 5 3 2 1
(6) 7 4 3 2
10 6 4 2
where theyri4 term is introduced to split the degenerate 13 7 6 3
single-particle energies, ., ande; .. The resulting eigen- 17 10 7 3
states of the four electrons can be labeled by total Sgind o4 11 10 4
S, and total angular momentuln, . In the lower inset of Fig. 53 12 11 4
1, we have plotted the total energy as a functionfof 3, 16 15 5
= €142~ € 4. If the splittingA is small, the ground state is 35 17 16 5
S=2, L,=0, consistent with Hund'’s rule. But fok larger  ,5 29 21 6
than 1.4 meV, the ground state becon®s0, L,=0, indi- 45 23 29 6
cating a violation of Hund'’s rule. 29 o8 7

Spin-density-wave stateBor a dot with circular symme-
try, the eigenstates can always be chosen to have definite
angular momentumL,, and hence circularly symmetric
charge density. Nevertheless, Koskinen, Manninen anground states. For example, lt=31 the total angular mo-
Reimann? reported recently on a spontaneous breaking offentum will beL ;= +5, giving a charge-density modulation
circular symmetry in a spin-density-functional calculation of ~|exp(56)+exp(~i56)[*~cos(56) as observed in Fig. 3.
a parabolic quantum dot. Indeed, we confirm that Efj<5) We have investigated the charge dengifyr) for N=3
yield spin-density-wavgSDW) ground states at particular by exact diagonalization to confirm the above interpretation.
numbers of electrons, e.gN=24, 34, as reported in Ref. As expected, we find that there are two degenerate ground
12. These are precisely tf8=0 ground states discussed States, withL,=*1, and that a coherent mixture of these
above in the context of breaking of Hund’s rule. Within spin-
density-functional theory, even f@=0, the system lowers
its exchange energy slightly by mixing k= =2 states with
the lower-lyingk= *4 orbitals. The result is a SDW state.
However, from our exact diagonalization studies whtk 4
in the restricted basis set, we find that the SDW states are
due to an unphysical mixture between states of different total
spin: S=0, S,=0 andS=1, S,=0. Hence, the SDW states
are artifacts of the well known difficulty of spin-density-
functional theory that only th&, component of total spin
can be specified. We conclude that the correct ground states
for N=24, 34, and 46 hav&=0, L,=0 and retain circu-
larly symmetry.

Charge-density-wave stated/e also find that for certain
N (cf. Table ), Equations(1-5 predict a rotational charge-
density wave(CDW) near the edge of the dot. Figure 3 N=31
shows an example of such a CDW state fr31. The
numbers shown in boldface in Table | indicate a strong spin-
density modulation, as fop'(r) at N=31, while a weaker
modulation occurs in the opposite spin density. The numbers
in boldface correspond to a closed shell plus one electron,
indicating that the extra electron is added to the lowest or-
bital in the next shell, namely, the one with highest angular i 3. Charge-density distributions Bit=31. Left column—
momentum. By circular symmetry, this orbital is doubly de- from top to bottom, spin-upN'=16), spin-down N'=15), and
generate. Hence the ground state of the entire dot is doublgtal charge-density distribution. Right column—spin-up charge-
degeneratgIn contrast to atoms, the spin-orbit interaction in density distributions N'=16) for elliptical potentials, wi/wi
GaAs dots is too small to split this degenera@yThe spin- =11/13(top), w§/w§=4/5 (middle), andwf,/wizsﬂ (bottom), re-
density-functional result is a mixture of these two degeneratepectively.

N'=16 N'=16

N'=15
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states produces almost exactly the same charge density oftre external potential. The ground-state spi%is1/2 in all
tained in the density-functional calculation. three cases. The charge-density wave has periods(56)
Elliptical dots. To investigate the effect of removing cir- and results from the mixing of the degenerhate= +5 states
cular symmetry, we consider elliptically deformed potentialspy the elliptical external potential.
V() =m*(wpP+wiy?)/2, with vj=(wi+w;)/2, which In conclusion, we have studied the electronic states of
lift the large degeneracies of the shell structure. Figutes 1 quantum dots with up to 58 electrons for parabolic circular
and Xc) show that as the deformation grows the regular zig-and elliptical external potentials, using spin-density-
zag pattern found for the circular potential becomes irregulagnctional theory and exact diagonalization. For a circular
and the large peaks at largédisappear. One can still see potential, we observe a shell structure for the filling of the

large peaks aN=2, 6, 12, and 20 electrons i), which 44t \yith electrons. Hund's rule determines the spin configu-
are the remnants of the closed-shell structures. However, Lo of the ground state up to 22 electrons. For specific

(c) such large peaks are present onlyNat 2 and 6. numbers of electrons, CDW states appear on small elliptical

Figures 2b) and 2c) show the_spm configurations for the deformation of the external potential, while previously iden-
same deformed external potentials. We can see that Hund

rule is satisfied up tN=15 in (b) but only up to onlyN titied SDW state¥ are found to be artifacts of broken spin

symmetry in density-functional theory. For elliptical poten-

;S ;;?g:;?gt?oﬁgéc-g;?eglgr r?ig‘)ig]aﬁia—t(teﬁeﬁfsss%?Firrlzscszleoi:(%als’ the shell structures are lost with increasing deforma-
9 ion, and the spin configurations change from Hund’s rule to

tS:tZlII ssrt)mfgtures results in a more Pauli-like behavior of the," /- "r 1ilike behavior.

Figure 3 shows the up-spin densities in deformed poten- We acknowledge O. Agam, I.L. Aleiner, B.L. Altshuler,
tials for N=31, N'=16. We find that true CDW ground D.J. Chadi, W. Kohn, Y. Meir, and M. Stopa for comments
states are induced by the increasing elliptical deformation oénd suggestions.
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