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Optical properties of anisotropic exciton: Hyperspherical theory
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A perturbation Brillouin-Wigner approach to anisotropic exciton problem, based on a hyperspherical for-
malism, is developed. The binding energies and oscillator strengths of elongated as well as flattened excitons
are calculated numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are
markedly redistributing between optically active and formerly inactive states, making the latter optically active.
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The progress in the physics of semiconductor heterost
tures has revived the interest to the anisotropic exc
problem.1,2 In bulk semiconductors, the anisotropy of carri
effective masses and/or of dielectric susceptibilities is
duced by the band and/or polarization anisotropy of the c
tal. In layered semiconductors such asAIIBVI, AIIBVII , and
AIVBVII compounds the effective-mass anisotropy is due
localization of carriers inside layers and tunneling betwe
layers. This effect becomes very important in artificial la
ered structures such as semiconductor superlattices~SL’s!,
where the miniband formation is responsible for a stro
mass anisotropy.3 The dielectric constant becomes anis
tropic too, if the SL’s constituent layers have different d
electric susceptibilities. Thus, the exciton in the SL’s b
comes significantly anisotropic. Recently, the formalism
the anisotropic exciton in a variational form was used in
theory of excitons in short-period SL’s~see, e.g., Refs. 4 an
5!.

In spite of a long history of theoretical study,1,2,6–16 the
investigation of the optical properties of the anisotropic e
citon is not complete. For example, the behavior of exci
oscillator strengths is very important for understanding
experimental absorption spectra. However, the evolution
the oscillator strengths of the anisotropic exciton with t
increase of the anisotropy has not been investigated, to
knowledge, with two exceptions: calculations for slightly a
isotropic exciton13 and simulations of optical spectra withi
an isotropic exciton model.17 We would like to stress, how
ever, that in both approaches13,17it is not possible to describe
the reported below drastic changes of the oscillator stren
~due to the level anticrossings10! with the increase of the
anisotropy.

In this paper the energy spectrum, wave functions,
oscillator strengths of the uniaxial anisotropic exciton a
calculated numerically for flattened as well as elongated
citons. We develop a perturbation approach based on
stereographic projection of the momentum space to the
four-dimensional~4D! sphere, proposed by Fock.18 We uti-
lize the additional hidden symmetry of the Coulomb pote
tial for an expansion of the anisotropic exciton wave funct
over a complete basis of hyperspherical harmonics. This
pansion depends explicitly on the exciton energy throu
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scaling parameters that follow adiabatically the changes
anisotropy. As a result, the hyperspherical functions turn
to be the most effective basis for numerical calculations.

In addition, recently an elegant model of fractiona
dimensional space has been developed~see Refs. 19 and 20
and references therein!, allowing us to treat self-consistentl
the bound as well as continuum states in hydrogen prob
of noninteger dimension. However, its direct applicability
the anisotropic exciton problem is troublesome. For exam
the fractional-dimensional hydrogen problem conserves
Coulomb degeneracy of levels~so that the binding energie
depend on the principal quantum number only!, whereas in
reality the anisotropy lifts this degeneracy and restore
only in exactly 2D and 3D cases.

Let us describe briefly the perturbation method based o
hyperspherical formalism.21 First, we transform the Hamil-
tonian of the uniaxial anisotropic exciton,

Ĥ52
\2

2m'
S ]2

]x2
1

]2

]y2D 2
\2

2m i

]2

]z2

2
e2

A« i«'~x21y2!1«'
2 z2

, ~1!

to a dimensionless effective Hamiltonian with isotropic p
tential energy, introducing the effective Rydberg Ry*
5m'e4/2«0

2\2 and Bohr radiusaB* 5\2«0 /m'e2, where«0

5A«'« i, and using a dilatationz→zA« i /«'. Herem is the
reduced exciton mass,« is the semiconductor dielectric con
stant, and subscriptsi and' refer, respectively, to the quan
tities along and normal to the axis of symmetryOZ. Next,
we calculate the Fourier transform and following Fock18 per-
form a stereographic projection of 3D momentum space
the 4D unit spherep/pn→uW where the 4D vectoruW on the
sphere is defined as

uW 5$u,un%5H 2pnp

p21pn
2

,
p22pn

2

p21pn
2J , ~2!

p5upu, andpn is the transformation parameter. If we assum
that the transformation Eq.~2! depends on the energyEn
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,0 of the anisotropic exciton bound staten via pn

5A2En, then, after the wave-function renormalization, t
anisotropic exciton Schro¨dinger equation takes the form

F11
g21

2

uz
2

12un
GCn~uW !5

1

pn

1

2p2E Cn~uW 8!

uuW 2uW 8u2
d4V8,

~3!

where the integral on the right-hand side is carried out o
the unit sphere in 4D space. Hereg5«'m' /« im i is the an-
isotropy parameter (0,g,1 and 1,g,` for, respectively,
flattened and elongated exciton!. For the isotropic exciton
g51 and the hyperspherical functionsCnlm

(0) (uW ) become the
solutions18 of Eq. ~3! with pn51/n, wheren51,2, . . . is the
principal quantum number (l 50,1, . . . ,n21 and m52 l ,
2 l 11, . . . ,l are, respectively, the orbital and magne
quantum numbers!. The hyperspherical functions afford th
irreducible representation of the full symmetry group O~4! of
the hydrogenlike system.22 These functions constitute a con
venient complete basis for applying Brillouin-Wigner pertu
bation method to the bound states23 of the anisotropic exci-
ton for anyg.0. Expanding the perturbed wave functionCn

over the hyperspherical harmonics, Eq.~3! takes the matrix
form

(
s8

Fndss81
g21

2
Vss8GCs8

n
5lnC s

n , ~4!

with ‘‘Fock eigenvalues’’

ln5
1

pn
5

1

A2En

~5!

and the perturbation matrix

Vss85Ann8E Cs
~0!* ~a,u,w!~11cosa!cos2uCs8

~0!

3~a,u,w!d4V, ~6!

where s5(n,l ,m) and (a,u,w) are the hyperspherica
coordinates.18

Note that in spite of the energy-dependent transforma
Eq. ~2!, the effective Hamiltonian matrix of Eq.~4! is energy
independent, thus allowing its direct diagonalization. The
perturbed spectrum in the Fock representationlnlm

(0) 5n is
equidistant with respect to the hydrogen principal quant
number and does not have a series limit. In the coordin
representationC s

n are the coefficients in the expansion of t
wave function

fn~r !5
pn

3/2

Sn
(

s
n2C s

nfs
~0!~rpnn! ~7!

over the standard hydrogen wave functionsfnlm
(0) (r ) ~see,

e.g., Ref. 24!. It follows from Eq.~7! that the wave function
of the anisotropic exciton takes the form of an infinite sup
position of spherical harmonics with radially-dependent
efficients. The scaling factorspn in the wave functions Eq
~7!, which are different for different perturbed states a
change adiabatically withg, play the role of adiabatic scal
ing parameters in the perturbation theory. Due to the sy
r
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-
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-
-

-

metry properties of uniaxial anisotropic exciton Hamiltoni
and the full hydrogen symmetry of the basis functions,
matrix elements of the perturbation take the algebraic form21

following the selection rules

Vss8Þ0, if m85m, l 85H l , n85n,n61

l 22, n8<n11

l 12, n8>n21,

~8!

andVss850 for all others,s8. Thus, matrices with even an
odd l as well as with differentm can be diagonalized inde
pendently.

In numerical calculations the direct diagonalization of
truncated Hamiltonian matrix has been carried out with
relative energy precision of 1024. For example, to calculate
with this precision the ground-state energy for 0.6<g1/3<2
hydrogen states with the principal quantum number up to
and orbital quantum number up to 6 must be taken into
count. The numerical procedure becomes unstable fog
→0 andg→`. This nonconvergency is caused by the fa
that these points, where the symmetry changes~to 2D and
1D, respectively!, are peculiar for the perturbation theor
The dimension change causes the levels’ degeneration, w
a very large~divergent! number of levels are mixed due t
perturbation and have to be taken into account.

In Fig. 1 the calculated eigenvaluesln of Eq. ~4! @related
to the eigenenergies via Eq.~5!# are shown form50 even-
parity states as functions ofg1/3 for flattened excitonsg<1
~left panel!; for elongated excitonsg>1 ~right panel! depen-
dencesg21/2ln are shown as functions ofg21/3. The multi-
plier g21/2 in the latter case makes the effective Rydbe
finite when m'→`. Starting atg51 from isotropic case
ln5lnml

(0) 5n, all the eigenvalues~with the samem and par-
ity! do not intersect with the anisotropy change~multiple
anticrossings occur due to the interaction between states! and
at g→` approach the ground-state eigenvalue of
exciton25 g21/2ln→g21/2l0

1D→0 ~right panel!. In the oppo-
site case ofg→0 all shown eigenvalues approach th

FIG. 1. Fock eigenvaluesln of m50 even-parity states as func
tions of the anisotropy parameterg1/3, g<1 ~left panel!, and
g21/2ln as functions ofg21/3, g>1 ~right panel!. A linear ap-
proximation of the ground-state eigenvalue is plotted by dots. S
curves never intersect each other due to a small anticrossing
tween the levels. The eigenvalues of purely 2D exciton~left panel!
and 1D exciton~right panel! are shown by semicircles.
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ground-state eigenvaluel0
2D51/2 of 2D exciton~left panel!.

As it can be seen from Fig. 1, the ground-state eigenva
dependence is almost linear overg1/3 for g<1, and

E0'2
4

~11g1/3!2
. ~9!

Let us now turn to the calculation of the oscillat
strengths. In the envelope function approximation the re
tive oscillator strengths of dipole-allowed transitionsf n are
proportional toufn(0)u2 ~see, e.g., Ref. 26!. Taking into ac-
count that for the unperturbed statesfn(0)Þ0 only for l
5m50, from Eq.~7! we obtain

f n}ufn~0!u25
pn

3

pSn
2U(n

C n,0,0
n AnU2

. ~10!

Figure 2 shows the numerically calculated oscilla
strengths of lowerS-,D0-, andG0-like states as functions o
the anisotropy parameter. We use here the standard hy
genlike notations that can be done only approximately. N
that when the states are split off due to perturbation,
always label the states with larger oscillator strength ag
'1 asSstate, e.g., the pair of 3S and 3D0 states—the third
and the fourth levels in Fig. 1. Thus, atg,1 the 3D0 level
lies lower than 3S, contrary to the classification b
Faulkner.10

It is seen in Fig. 2 that the oscillator strengths of
shown states do not vanish atg51. Originated from the
degenerated states of isotropic 3D exciton, the pertur
states become fixed linear combinations of the former e
when the perturbation tends to zero. Atg'1 theS-like state
is optically more intensive than theD0-like state. The picture
changes drastically with the increase of anisotropy. N
g1/350.8 the oscillator strength of the 3D0 state overcomes

FIG. 2. The anisotropic exciton oscillator strengths of low
S-,D0-, andG0-like states as functions of anisotropy parameterg1/3

~in units of the ground-state oscillator strength atg51).
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that of the 3S one. Forg1/3,0.8 the intensity of the 3S state
collapses and then revives due to the interaction with 4D0
state. Moreover, the anisotropy increase leads to substa
growth of the oscillator strengths of higher excited stat
such as 4S and 4D0 , making them optically significant. A
similar situation takes place ifg.1 ~when a transition from
3D to 1D exciton occurs!. Such a redistribution of the osci
lator strengths between different states can be clearly se
the absorption spectra, Fig. 3, calculated for different val
of g1/3.

To summarize, the perturbation theory of the anisotro
exciton is developed with the help of the Fock transfor
The eigenvalues and eigenvectors are found by a nume
diagonalization of the effective Hamiltonian matrix. The e
ergies and oscillator strengths of anisotropic exciton st
are calculated for 0,g,1 ~flattened excitons! and 1,g
,` ~elongated excitons!. It is found that with the increase o
the anisotropy a strong redistribution of oscillator streng
between optically active and formerly inactive states occ
the oscillations in optical intensities of higher excited sta
take place, and the switching on of formerly weak opti
transitions is predicted.

The authors are thankful to Professor R. Zimmermann
helpful discussions. This work was supported by the Rus
Basic Research Foundation, Russian Ministry of Scie
~program ‘‘Nanostructures’’! and INTAS. A.E.B. was sup-
ported by CUNY.
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FIG. 3. Anisotropic exciton absorption spectra~calculated with
inhomogeneous broadening of 0.02 Ry* ) for different values of
anisotropy parameterg<1. The spectral intensities are logarithm
cally scaled and, being normalized to the intensity in the isotro
case, are measured in arbitrary units.
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