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Mixed biexcitons in single quantum wells
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Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave
mixing (FWM). The formation of heavy-heavy-holX, and of mixed heavy-light-hole&XX,, biexcitons
showing binding energies &,=4.8 meV andA ,,=2.8 meV is identified by polarization selection rules. The
coherent dynamics of the FWM response and the observed FWM intensity ratio betweéK;tlaad X X,
biexciton-induced nonlinear signals are in agreement with the solution of an extended optical Bloch equation.
[S0163-182609)01508-9

The formation of biexcitons in low-dimensional semicon- and an optical multichannel analyzer with a spectral resolu-
ductor structures has attracted attention in recent years sin¢ien of 0.4 meV. The samples were kept in a helium cryostat
biexcitonic effects that lead to an enhanced optical nonlinat a temperature of 50 K.
earity are important for all-optical and electro-optical device The FWM spectra obtained for different polarization con-
applications. These effects are particularly interesting irfigurations at a negative delay time of — 0.2 ps(k, before
1I-VI quantum-well (QW) structures because of their large k;) are shown in Fig. 1. The FWM signal was analyzed in
exciton oscillator strength and high biexciton binding ener-front of the detector by a combination ofA#4 plate and a
gies compared to I11-V based structures. Most of the biexcifolarizer. The analyzer polarization is given in the following
tonic effects in 1I-VI structures have been investigated using?y the third symbol in the parentheses indicating the configu-
high-excitation photoluminescenée® Since a biexciton can ration. The excitation intensity was 800 kW/E;nznorre-
be directly excited by two-photon excitation, the nonlinearSPOnding to an exciton density of aboux20’cm?. The
optical technique of degenerate four-wave mixiffgVM) center of the_ excitation spectrum was set to 2.815 eV, in
provides a powerful tool to study coherent biexcitonic ord_er to aV(_)ld continuum contributions but simultaneously
phenomen&-’ So far, these studies consider mainly the€xcite the first (1hX,) and second (1) center-of-mass
biexciton formation from two heavy-hole excitons(y). quantlzed 5 exc'tg?os of the heavy hole_, a_nd the first of the

e g : . . light hole (11X,).”** The coherent excitation of the heavy-
Biexcitons involving light-hole excitons X;) have been

observed but no distinction between mixed and pure light-
hole biexcitons has been made. X,

In this Brief Report we report on the formation of heavy-
light-hole biexcitons, denoted as mixed biexcitonéX(,), XX X k k, A
observed in FWM. We identify their contribution to the h
FWM signal using the polarization selection rules of the
FWM response.

The investigated ZnSe single QW structure was pseudo-
morphically grown on(001) GaAs by molecular-beam epi-
taxy. The active ZnSe layer of 10-nm thickness is sand-
wiched between two 25-nm-thick ggMigg.Se barriers,
defining a type- QW. A detailed description of the growth
and a sample characterization is given in Ref. 9. A
frequency-doubled, mode-locked Ti-sapphire laser was used
to excite the FWM, providing 100 fs pulses of a spectral
width of 22 meV and a repetition rate of 76 MHz. We per-
formed two-pulse degenerate FWM experiments in reflection
geometry. The polarizations of the two incident pulses with
the directionsk; andk, and the mutual delay time have
been adjusted to cocircular(,0") as well as linear with

FWM signal

relative angles of 0¢71), 45°(1 ), and 90°(1—). The first 280 en%?g}y [e\/]2'82
(secondl symbol in the parentheses indicates here the polar-
ization of thek,(k,) pulse, respectively. The &7 focus di- FIG. 1. FWM spectra for different polarization configurations

ameter of the pulses on the sample wasur@. The FWM  recorded at a delay time of~— 0.2 ps. The symbols in the paren-
signal in the reflected i —k, direction was time-integrated theses indicate the polarizations of the excitation pulses propagating
and spectrally resolved by a combination of a spectrometeslongk, andk, and of the analyzer.
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FIG. 3. Energy level diagram indicating the dipole allowed
ground-to-exciton and exciton-to-biexciton transitions. The energy
scale gives the energetic position of unbound heavy—heavy-hole
XX, mixed heavy-light-holeXX,,, and light—light-hole XX
biexciton states.

in Jones vector notation. Biexcitons are created by a two-
photon excitation schematically shown in the energy level
diagram of Fig. 3. Bound heavy-hole biexcitoK;, have
paired electron as well as hole spins as a consequence of the
Pauli exclusion. TheXX,, two-photon coherence leading to
the BIF FWM for negative delay is thus created by a simul-

FIG. 2. FWM tracega) at the heavy-hol&;, resonance and the taneouss~ and o™ excitation by the pulsé,. The third-
BIF-induced XX, transition for ({—) polarization, andb) at the  order polarizationP(zi)z_kl generated by pulsk; from the
light-hole X; resonance and the mixed BIF-induckX,, transition two-photon coherence gives rise to a time-integrated FWM
for (¢*,0™) polarized fields. signall(zi)z,kl(w,f) at the X, transitionf w, and at theX,

— XX, transition hw,— Ay, where Ay, is the heavy-hole
hole (Xp,) and light-hole excitonX,) states leads to quantum hjexciton binding energy. The polarization dependence of
beats in the delay time-dependent FWM signal with a periodhe X X,, BIF induced FWM is obtained by the solution of
of T=270fs (Fig. 2. The relative phase of the quantum optical Bloch equations for a homogeneously broadened
beats is shifted byr going from (11) to (1—) excitation, many-level system(see Fig. 3, in which the calculated
confirming the heavy-hole and light-hole character ofXae  Fourier transformed third-order polarization 7at,,— Ay, is
andX; exciton transitions, respectivety A significant FWM  proportional to the product of the polarizations of the in-
signal is observed for negative delay times, indicating imporyolved transitions? i.e.,
tant interaction-induced FWM processes such as local-field
effects(LFE),*? excitation-induced dephasirigID),****and @ . 9_
biexciton formation(BIF).*>~17In homogeneously broadened P,k (lwn—An)> Zf {[(an)* B JL(7h ) Ex, ]
systems a decay about twice as fast compared to positive g

FWM signal

delay times is expected for negative delay times for LFE and +[(an)*E (7)) * B 1}

EID. Inhomogeneous broadening accelerates this decay. The

observed FWM signal decay times of 0.5 ps for negative and X[ (ip)* Ekl]* vp . (1)
1.2 ps for positive delay times indicate the presence of nearly

homogeneously broadened exciton resonances. The X, exciton toXX;, biexciton matrix element is given by

In addition to the exciton resonances, spectral features i, , and is assumed to be equaldg up to a factor close to
the FWM are observed on the low-energy side ofXheand 1, since it involves the same interband exciton transition, and
X transitions with an energy separationof=4.8meV and  the biexciton binding energy is much less than the exciton
A,=2.8meV, respectively. The signal close t¥,f, de- binding energy. The direction of the BIF-induced third-order
noted as XX;), can be identified as heavy-hole BIF from its polarization is consequentl§l) for (17), (T1—), and (T,
polarization dependency, and is also present when excitingxcitation, which explains the strong reduction of K,
only the (X;,) exciton!® The signal on the low-energy side of signal in(T /—) configuration. The BIF induced sign&lX;,

(X) cannot be attributed to a light-hole BIF due to its pres-is equally strong fof77) and(—) excitation, showing that
ence in ¢ o o) configuration. It is attributed to a heavy- the BIF process is not affected by EID, as expected for third-
hole—light-hole mixed biexciton by the following consider- order processes. It vanishes in"(,a") configuration, since
ations. the bound biexciton stat¥ X, cannot be excited. The un-

The X, exciton involves a transition from the first heavy- bound biexciton state®?°is neglected for simplicity in the
hole subband with angular momentum eigenstdted,) model. It influences in homogeneously broadened systems
=|3%,%=3) to the first electron subband, having angular mo-the signal around the exciton energy, especially for cross-
mentum eigenstatds, = 3), respectively. TheX, eigenstates linear polarization, but does not change the signal strength at
[3,J,)=]1,=1) are excited by circularly ¢*) polarized the bound biexcitonic transitions. The assignmenkd, is
light with the dipole matrix vectorgip, = —2 %Su,(F1,) further supported by the observation of oscillations in the
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FWM trace at theX;, resonance for negative delay times asmixed biexcitonXX,, gives a signal ak w,,— A, observed in
shown in Fig. 2a) for (1—) excitation. These oscillations are the (o o*) and(1,”—) configurations.
caused by the interference of LFE and BIF inducedThe relative ratios of the BIF-induced signal intensities can
polarizations| and are not present in theX, trace. From the  pe estimated by comparing the product of oscillator strengths
oscillation period we deducA,=4.7meV, in good agree- appearing in the third-order nonlinear response. If we assume
ment withA,=4.8 meV obtained from the FWM spectra.  that the relative oscillator strength between heavy-hole and
The FWM trace at th&, resonance for¢™,o") excita-  |ight-hole related transitions is given by the valence-band
tion is displayed in Fig. @). Similar to the behavior &, functions to | wp| /| 1|2~ | v 2 w12~ v 2| vim|2=3, the
the FWM trace aX; shows o§C|IIat|ons accordlng to an en- intensity ratio is approximately given bisn:lxxm:
ergy difference of 2.9 meV, in agreement with K, en-
ergy separation ofA,,=2.8meV from theX, resonance.
Again these oscillations do not appear in the trac&X if,,
and theX X, signal is equally strong if]1) and(1—) con-
figurations, while theX; signal is strongly affected by EID
(see Fig. 1 These observations suggest thaX,, is caused
by BIF, however the attribution to a light-hole biexciton
(XX;) must be excluded sincXX,, does not vanish for

I'xxi
~81:9:1. Thecalculated ratid xx,: 1 xxm iS in good agree-

ment with the experimentally observed ratio Igfxn: | xxm
~10:1, and explains why the BIF-inducedX; signal is not
visible in the FWM spectra.

In conclusion, we have discussed the FWM responses of
nearly homogeneously broadened, quasi-two-dimensional
excitons in view of BIF-induced processes. Comparison of
(o",0") excitation. This fact implies the formation of polarization-dependent, spectrally resolved FWM with mul-
mixed heavy-hole—light-hole  biexcitons, schematicallyt'k?vel optical 5Ioch equgﬂon_s identifies the f(_)rmatlon of
sketched in Fig. 3. The bound,J,)=|2,%2)XX,, biexci- mixed heavy_—hght-hole biexcitonsX(X,,) appearing at the
tons have different hole spirt&, =2) and|2,+1)) and oppo- low-energy side of the heavy-hol&{) and light-hole ;)
site electron spins, leading to a polarization dependence @xciton resonance. The observed mixed biexciton binding
the XX, BIF induced nonlinear polarization &iw,— A, ac-  €nergy @=2.8meV) is smaller than the value found for
cording to the product of the involved transitions: the heavy-heavy biexcitoXX;, (A,=4.8 meV). This is un-
expected since the biexciton binding is generally increasing
with decreasing electron-hole mass ration, and thus the
higher in-plane mass of the light-hole exciton should lead to

Pk (o= A= 2 {[(A7)* By ) (Fim)* Ex]
7 a higher mixed-biexciton binding energy compared to that of

+[(ﬁ|i)Ek2][(17,fm)*Ek2]} the heavy-hole biexciton. However, there is to our knowl-
- . edge no theoretical model treating the binding between dif-
X[(fn)* B, 1" iy (2)  ferent kinds of excitons. The estimated intensity ratios of the

BIF signals are in agreement with the experimental data, and
further explain the missing BIF-inducexiX, signal as being
too weak to be detected in our experiments.

Also here, theX; ) — XX, exciton-biexciton matrix elements
ﬁﬁmam) are assumed to be equalﬁxﬁ(l) up to a factor close
to unity. The resulting polarization direction of théX,
BIF-induced FWM signal is¢™) for (¢* o), (1) for (11), We thank H. Preis and W. Gebhardt for providing the
(1) for (1—), and(—) for (1) excitation. Hence thXX,,  ZnygVigg 1Se/ZnSe single QW structure. This work was sup-
signal appears ind*o*o*) and (1,”—) configuration ported by the Deutsche Forschungsgemeinschaft and by the
while it vanishes in(T 1) configuration, in agreement with Danish Ministries of Research and Education in the frame-
the experiment(see Fig. 1 Likewise, the BIF-induced work of the Center for Nanostructures.
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