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Exactly solvable site-dependent Hubbard model

Feng Pan* and J. P. Draayer
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

~Received 28 October 1998!

Exact solutions for the eigenvalue problem of a Hubbard model with special site-dependentt andU param-
eters is derived using an infinite-dimensional algebraic approach based on the Bethe ansatz.
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As is well known, the Hubbard model1,2 is used in the
study of magnetic metallic materials. The success of
theory is due to its simplicity and rich physical content. It
also known that the so-calledt-J model,3 which is used for
some high-Tc superconductors, is the strong correlation lim
of the Hubbard model.4 In general, the hopping termst and
the interaction parametersU should be chosen to be nonze
for any pair of sites. But when this is done the model is ve
difficult to solve. Explicit analytical results have only bee
obtained for a one-dimensional chain with nearest-neigh
interactions and constantt andU strengths using the coord
nate Bethe ansatz,5 the quantum inverse scatterin
method,6–9 its SO~4! invariance,10–12 Yangian
symmetries,13,14 and recent developments based on the a
braic and analytic Bethe ansatz. Recently, Brackenet al.15

and Gouldet al.16 have studied quantum superalgebra to o
tain a new extension of the Hubbard model with ex
solutions.17,18 In Ref. 19, a specialt-J system, one that cor
responds to an infiniteU Hubbard model with constantt and
J values between sites, was studied using a symmetric g
approach. The ground-state configuration of thet-J system is
known,20 and a form for the general solution has been c
jectured based on the spectra obtained through exact di
nalizations. Kirson exploited the supersymmetry of t
model to derive analytical results for energy spectra, incl
ing degeneracies.21

In this paper, another special HubbardU model is consid-
ered, one with site-dependentt andU parameters. In this cas
the Hamiltonian can be written as

H5a (
i , j ,s

t i j
s cis

† cj s1(
i , j

Ui j ni↑nj↓ , ~1!

wherea can be61. It will be shown that Hamiltonian~1! is
exactly solvable under the following parameter separab
assumptions:

t i j
s 5H t i

s~ t j
s!* for iÞ j ,

e i
s1ut i

su2 for i 5 j ,
~2a!

and

Ui j 5b~e i
↑1e j

↓!, ~2b!

where b is a real parameter. If thet parameters are spin
component dependent, the total spin of the system is
conserved, only the total number of electronsN and the third
component of the spin are good quantum numbers.
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This choice for thet i j
s parameters assigns a pairwise si

dependent value to the hopping term. A common choice i
set the t i

s all equal or all zero except for equal-streng
nearest-neighbor interactions. Differentt i

s can be used to
bias the system towards a perferred configuration. From
~2a! it follows that thee i

s adds to (,0) or subtracts from
(.0) the strength to the self-sitet i i

s interaction terms in the
Hamiltonian. In a standard Hubbard model theory theUii is
taken to represent the on-site Coulomb repulsion, while ot
long-range terms withiÞ j are neglected. In contrast, theUi j
with iÞ j terms given by Eq.~2b! may exaggerate the long
range Coulomb interaction strength. This work demonstra
that the latter scenario is exactly solvable.

To diagonalize Hamiltonian~1!, we introduce the opera
tors

Ans
1 5(

j
~e j

s!nt j
scj s

† , Ans5(
j

~e j
s!nt j

s* cj s ,

Nns5(
j

~e j
s!ncj s

† cj s , n50,1,2, . . . , ~3!

which satisfy the anticommutation relations

@Ans
1 ,Ams8#15dss8Lm1n

s , @Ans
1 ,Ams8

1
#150,

@Ans ,Ams8#150, ~4a!

and the commutation relations

@Nns ,Ams8
1

#5dss8Am1ns
1 , @Nns ,Ams8#52dss8Am1ns ,

~4b!

where

Ln
s5(

j
~e j

s!nut j
su2 ~5!

is an n-dependentc number. The algebra generated b
Ans

1 , Ans , and Nns with n50,1,2, . . . is called a half-
infinite-dimensional fermion algebra.

The lowest weight state of this system is the electr
vacuum,u0&, which satisfies

Ansu0&50. ~6!

Let u and d be the number of up and down spins, respe
tively. A generalu1p particle state, up to a normalizatio
factor, can then be written as
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uN&5A↑
1~x1!A↑

1~x2!•••A↑
1~xu!A↓

1~y1!

3A↓
1~y2!•••A↓

1~yd!u0&, ~7!

whereN5u1p. It is assumed that the operatorAs
1(xi) can

be expanded in terms of theAns
1 nearxi;0, namely,

As
1~xi !5(

ni

anis
xi

niAnis
1 , ~8!

where

anis
Anis

1 5
1

2p i R0
dxixi

niAs
1~xi ! ~9!

is the Fourier-Laurent coefficient in the expansion
As

1(xi). It follows that the Bethe ansatz wave function~7!
nearxi;0 can be written as

uN&5 (
nimi

)
k51

u

ank↑xk
nkAnk↑

1 )
k851

d

amk8↓
y

k8

mk8Amk8↓
1 u0&.

~10!

Using Eq.~10! with relations~4a! and ~4b!, one can prove
that the xi with i 51,2, . . . ,u, and the yj with j
51,2, . . . ,d, satisfy

a1bd

xi
5(

k

autk
↑u2

12ek
↑xi

,
a1bu

yi
5(

k

autk
↓u2

12ek
↓yi

, ~11!

while the energy eigenvalue for theN5u1d electrons is
given by

EN5~a1bd!(
i 51

u
1

xi
1~a1bu!(

i 51

d
1

yi
. ~12!

The eigenvalue ofS0 is simply 1
2 (u2d).

Though these relations were derived forxi and yi near
zero, by analytic continuation they are valid over the en
complex plane. We also find that the coefficientsanis

in Eq.

~10! are ni and s independent. Hence, up to a consta
As

1(zi) is of the form

As
1~zi !5(

j

t j
s

12e j
szi

cj s
1 . ~13!

It should be clear that wave function~7! is antisymmetric
under permutations of the rootsxi or yi . Furthermore, it
follows from this that the rootsxi or yi in Eq. ~11! must all
be distinct. Indeed, it can be verified from Eq.~11! that the
roots are all different for up-spin or down-spin electron
respectively, when thee i

s , i 51,2, . . . , are alldifferent real
numbers. In this case, one can arrange the roots for up-
or down-spin asuz1u,uz2u,•••,uzuu,uzpu, wherep5u or
d. There is no degeneracy for any root:
f

e

,

,

in

1

zi
5(

k

utk
su2

12ek
szi

for i 51,2,•••,u

when s5↑ or d when s5↓. ~14!

When the parameterst ande are alls independent, it can
be proven that Hamiltonian~1! commutes with the total spin
operatorsSm with m50,1,2, defined by

S15(
i

ci↑
† ci↓ ,S25(

i
ci↓

† ci↑ ,S05
1

2(i
~ni↓2ni↑!,

~15!

as well as the total electron number operatorN5N↓1N↑ ,
where

N↑5(
i

ni↑ , N↓5(
i

ni↓ . ~16!

It follows that the total spinS and number operator are the
good quantum numbers.

To construct eigenstates of the total spin in this case,
can start from the highest weight state,

uN,S5 1
2 N,S05S&5A↑

1~z1!A↑
1~z2!•••A↑

1~zN!u0&,
~17!

which satisfies

S1A↑
1~z1!A↑

1~z2!•••A↑
1~zN!u0&50, ~18a!

and

S2A↑
1~z1!A↑

1~z2!•••A↑
1~zN!u0&

5 1
2 N~ 1

2 N11!A↑
1~z1!A↑

1~z2!•••A↑
1~zN!u0&. ~18b!

Applying S2 in Eq. ~17! N/22S0 times, yields, up to a nor-
malization factor,

uN,S5N/2,S0&5~S2!N/22S0uN,S5 1
2 N,S05S& ~19!

with energy eigenvalue of Hamiltonian~1! given by

ENS5N/25~a1bN!(
i 51

N
1

zi
, ~20!

where thezi with i 51,2, . . . ,N must satisfy

a1bN5(
k

autku2zi

12ekzi
. ~21!

Therefore, forN electrons and total spinS5N/2 the energy
eigenvalue is (N11)-fold degenerate withS05N/2,N/2
21, . . . ,2N/2.

A special state is the one withS50 andN52, which can
be expressed as

P0~z1 ,z2!u0&5„A↑
1~z1!A↓

1~z2!1A↑
1~z2!A↓

1~z1!…u0&.
~22!

It should be noted that in Eq.~22! z1Þz2 because of the
Pauli principle. Using the pairing operatorP0(zi ,zj ), one
can construct the following state withN52S12k:
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uN52S12k,S,S0&5P0~z1 ,z2!P0~z3 ,z4!•••P0~z2k21 ,z2k!

3~S2!S2S0u2S,S,S&, ~23!

where

u2S,S,S&5A↑
1~z2k11!A↑

1~z2k12!•••A↑
1~z2k12S!u0&.

~24!

The eigenvalueEN,S of Hamiltonian~1! for any spin, whent
and e are s independent, is still given by Eq.~20!. All the
c-numberszi in Eqs.~23! and ~24! should satisfy Eq.~21!.

It can be verified that some of the rootszi in the product

P0~z1 ,z2!P0~z3 ,z4!•••P0~z2k21 ,z2k! ~25!

can be the same. To understand the overall structure o
solutions better, first note that the roots in Eq.~24! should all
be different. Furthermore, if the number of sites isL, the
total number of different solutions of Eq.~21! is L!/(L
22S)!(2S)! each (2S11)-fold degenerate. Further dege
eracy may enter through the pairing part, Eq.~25!, of the
wave function. For example, if z1 ,z2 ,z3 ,z4 are
roots, the four-particle pairing part~25! can be
taken as P0(z1 ,z2)P0(z3 ,z4), P0(z1 ,z3)P0(z2 ,z4), or
P0(z1 ,z4)P0(z2 ,z3). All of these have the same eigene
ergy. Furthermore, if a rootzj does not enter in Eq.~24!, it
may occur twice in Eq.~25! in the following form:

•••P0~zi ,zl !P
0~zi ,zm!•••; ~26!

whereas ifzi is used in Eq.~24!, it can only occur in Eq.~25!
once. For example, ifz1 is not taken by Eq. ~24!,
while z2 , z3 , and z4 are, the four-particle pairing
part of the wavefunction can further b
taken as P0(z1 ,z2)P0(z1 ,z3), P0(z1 ,z2)P0(z1 ,z4), or
P0(z1 ,z3)P0(z1 ,z4). The situation becomes more comp
cated with increasing number of spin zero pairs.

To summarize, exact solutions for the eigenvalue prob
of a HubbardU model, ones with separablet parameters and
a simple site-dependent form forU, have been derived usin
an infinite-dimensional algebraic approach based on the
the ansatz. The HubbardU model with spin-dependentt pa-
rameters and special site-dependentU parameters have als
been discussed. The complete spectrum and the corresp
ing eigenstates are derived. Obviously, the Hubbard Ha
tonian~1! has three different phases:~i! when all parameters
t j
s , and« j

s are the same;~ii ! when all these parameters a
different; and~iii ! when the parameterb→`. The phase
transition occurs when these parameters vary from one
gime to another. In case~i! the solutions are particularly
n

he

m

e-

nd-
il-

e-

simple; and the pairing structure described in Eq.~23! will be
totally missing becasue there only exists one root of Be
equation~23!. Therefore, the total number of electrons ca
not exceed 2L, whereL is the number of sites, because
the Pauli principle. In case~ii ! there are a sufficient numbe
of solutions to Eq.~23!, which leads to a rich structure o
both the whole spectrum and the corresponding eigenst
as given by Eqs.~20!–~23!. In case~iii ! the Hubbard model
considered will become a site-dependentt-J model, of which
a site independent case was studied in detail in Ref. 21
this case the double occupancy of any site is not allow
because of the infinite repulsion. Hence, its spectrum
eigenstates will be different from what are reported in t
paper. The present results apply to the case of limit of z
electron correlation as well,24 which is useful in the so-called
pseudospin-electron model introduced at the consideratio
the anharmonicity effects in high-Tc superconductors when
the hopping parameters are assumed to be site dependen
separable.

It can be inferred from these results that the HubbardU
model Hamiltonian,

H5a(
i , j

t i j cis
† cj s1U(

i
ni↑ni↓ , ~27!

can be easily diagonalized whenS5N/2, yielding eigenen-
ergies

ENS5N/25a(
i 51

N
1

zi
~28!

under the Bethe ansatz~19!, where thec numberszi satisfy

1

zi
5(

k

utku2

12ekzi
. ~29!

The method can also be applied to other many-ferm
interacting systems, such as the nuclear pairing problem22

The advantage of this method is that the building bloc
As

1(zi) of the Bethe ansatz wave functions can be deriv
These building blocks satisfy a nonlinear fermion algebra
the Gaudin type23—an infinite dimensional algebra, which
generally, is an affine Lie algebra without centr
extension—which is the infinitesimal form of the corr
sponding nonlinear fermion algebra.
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