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Exactly solvable site-dependent Hubbard model
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Exact solutions for the eigenvalue problem of a Hubbard model with special site-depeaddti param-
eters is derived using an infinite-dimensional algebraic approach based on the Bethe ansatz.
[S0163-182699)05007-9

As is well known, the Hubbard modd is used in the This choice for the; parameters assigns a pairwise site-
study of magnetic metallic materials. The success of thelependent value to the hopping term. A common choice is to
theory is due to its simplicity and rich physical content. It is set thet? all equal or all zero except for equal-strength
also known that the so-calletdd model; which is used for nearest-neighbor interactions. Differetit can be used to
some hight; superconductors, is the strong correlation limit yjas the system towards a perferred configuration. From Eq.

of the Hubbard modeél.in general, the hopping terntsand (2a) it follows that thee” adds to €0) or subtracts from
the interaction parametet$ should be chosen to be nonzero (>0) the strength to the self-sité interaction terms in the

for any pair of sites. But when this is done the model is VeryL amiltonian. In a standard Hubbard model theory theis

diffic.ult to solve. Exp_licit apalytical r.esul_ts have only t_)een taken to represent the on-site Coulomb repulsion, while other
obtained for a one-dimensional chain with nearest-nelghbolr '

) ) . .~ “long-range terms with+ j are neglected. In contrast, thk,
interactions and constahandU strengths using the coordi- ...~ . _ - - .
nate Bethe ansafz, the quantum inverse scattering with i#] terms given by Eq(2b) may exaggerate the long

method®® its  SQ4) invariancel® 2  yangian range Coulomb interaction strength. This work demonstrates

symmetries>*and recent developments based on the algethat the latter scenario is exactly solvable.
. ' . " To diagonalize Hamiltoniafl), we intr h ra-
braic and analytic Bethe ansatz. Recently, Brackenl® 0 diagonalize Hamiltoniail), we introduce the opera

. t
and Gouldet al® have studied quantum superalgebra to ob- ors

tain a new extension of the Hubbard model with exact

solutions'”*8In Ref. 19, a special-J system, one that cor- Ar=2 (eN™c],, An=2 (e ¢,
responds to an infinite) Hubbard model with constamiand ! !

J values between sites, was studied using a symmetric group

approach. The ground-state configuration oftttdesystem is /\/HU:E (ej’)”c;‘(,cj(,, n=0,1,2..., 3)
known?® and a form for the general solution has been con- ]

jectured based on the spectra obtained through exact diag@micn satisfy the anticommutation relations

nalizations. Kirson exploited the supersymmetry of the

model to derive analytical results for energy spectra, includ- (A A ]s=08,0L% 0, [A§01A+ ,]+=0,
ing degeneracies. me
In this paper, another special Hubbdtdnodel is consid- [Ane Amgr ]+ =0, (48

ered, one with site-dependdrandU parameters. In this case

the Hamiltonian can be written as and the commutation relations

t [Nno' :A:,;(Tr] = 5(70"Ar-:'—1+ no? [Nna' !Amo’] == 5(70’Am+ no»
H:aijz tﬁci(er(r‘i‘iEj Uijn”n“, (1) (4b)
- . ' o . where
wherea can bex 1. It will be shown that Hamiltoniafl) is
exactly solvable under the following parameter separability

assumptions: Lﬁ=; (eD)"t]]? ®)
t7(ty)*  for i#j, is an n-dependentc number. The algebra generated by
tij= €7 +[t72 for i=j (23 A: . A, and N, with n=0,1,2 ... is called a half-
b infinite-dimensional fermion algebra.
and The lowest weight state of this system is the electron

- vacuum,|0), which satisfies
Uij:B(Ei+Ej)! (2b)

. . Ans0)=0. (6)
where B8 is a real parameter. If the parameters are spin-
component dependent, the total spin of the system is ndtet u andd be the number of up and down spins, respec-
conserved, only the total number of electréhand the third  tively. A generalu+ p particle state, up to a normalization
component of the spin are good quantum numbers. factor, can then be written as
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IN)=AT (x)A[ (X2)- -

XA/ (Ya)- -

AT (XA (Y1)
A (v9)|0), @)

whereN=u+p. It is assumed that the operamf;(xi) can

be expanded in terms of tma:(, nearx;~0, namely,
AL () =2 an XA, ®)
nj
where
+ 1 Ni A+
aniaAnigz o deixi A (X)) 9

is the Fourier-Laurent coefficient in the expansion of

Al (x;). It follows that the Bethe ansatz wave functi6n
nearx;~0 can be written as

u d
I1 ankTX AnkT H am,, lymk, k1|0>

njm; k=1

IN)=
(10

Using Eg.(10) with relations(4a) and (4b), one can prove

that the x; with i=12,...u, and they; with j
=1,2,...d, satisfy
a+ Bd a|t£|2 a+Bu 2
—= e~ E (11)
Xi k 1—¢€X; Yi kyl

while the energy eigenvalue for thé=u-+d electrons is
given by

12

‘<||A

u 1 d
EN=(a+,8d)i21X—i+(a+,Bu 2

The eigenvalue 08, is simply 3(u—d).
Though these relations were derived fgrand y; near

zero, by analytic continuation they are valid over the entire

complex plane. We also find that the coefficiea;ls, in Eq.

(10) are n; and ¢ independent. Hence, up to a constant,where thez; withi=1,2, ...

A (z) is of the form

U'

Al(z)= 2 Cfy-

1- €z

13

It should be clear that wave functiof) is antisymmetric
under permutations of the rootg or y;. Furthermore, it
follows from this that the rootg; or y; in Eq. (11) must all
be distinct. Indeed, it can be verified from EqJl) that the

roots are all different for up-spin or down-spin electrons,

respectively, when the, i=1,2, ..., are albifferent real
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1 |t0'|2
—=E for i=1,2,
Zi k 1—€kZ,

when =1 or d when o=]. (14

When the parametetsande are allo independent, it can
be proven that Hamiltoniafll) commutes with the total spin
operatorsS,, with u=0,+,—, defined by

1
S+:Z CiTTCu:S—:Z CiTLCiTvSOZEEi (N —nNiy),
(19

as well as the total electron number operaibsN +N;,
where

NT:Ei Nip, lezl nj . (16)
It follows that the total spirS and number operator are then
good quantum numbers.

To construct eigenstates of the total spin in this case, one
can start from the highest weight state,

IN,S=1N,Sy=5)=A/(z)A] (z,)- - - Al (zy)[0),
(17)
which satisfies
S AT (DA (20)---AT(zy)|0)=0, (189
and
SA (z)A] (z2)- - A (zy)|0)
=IN(EN+ DA (Z)A] (z0)- - -Af (zn)|0). (18b)

Applying S_ in Eq. (17) N/2— S, times, yields, up to a nor-
malization factor,

IN,S=N/2,S)=(S_)N2"%|N,S=1IN,S,=S) (19
with energy eigenvalue of Hamiltonigd) given by
N1
Ens=ni2=(a+ BN) Z z (20
N must satisfy
< altd?z
a+ BN= ; 1_—Ekz| (21

Therefore, forN electrons and total spiB=N/2 the energy
eigenvalue is N+1)-fold degenerate withSy=N/2N/2
-1,...,—N/2.

A special state is the one witB=0 andN=2, which can
be expressed as

P0(21,22)|0>=(A?(Zl)Af(Zz)+A$(Zz)Af(Zl))|0>-( )
22

numbers. In this case, one can arrange the roots for up-splh should be noted that in Eq22) z;#z, because of the

or down-spin agz;|<|z,|<- - - <|zy|<|z,|, wherep=u or
d. There is no degeneracy for any root:

Pauli principle. Using the pairing operat&®°(z 1Zj), one
can construct the following state witkh=2S+ 2k:
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IN=2S+2k,S,S) =P%(z;,2,) P%(23,24) - - - PY(Zpx—1.Z0k) simple; a.nd.the pairing structure descri_bed in 3 will be
totally missing becasue there only exists one root of Bethe

X(S.)% %2S,S,S), (23)  equation(23). Therefore, the total number of electrons can-

where not exceed B, wherelL is the number of sites, because of
the Pauli principle. In cas@i) there are a sufficient number
|23,S7S>:A?(szl)A?(szu)' . .A;(22k+23)|0>_ of solutions to Eq.(23), which leads to a rich structure of

(24) both the whole spectrum and the corresponding eigenstates

as given by Eqgs(20)—(23). In case(iii) the Hubbard model

considered will become a site-dependedtmodel, of which

a site independent case was studied in detail in Ref. 21. In

this case the double occupancy of any site is not allowed

because of the infinite repulsion. Hence, its spectrum and

0 0 0 eigenstates will be different from what are reported in this

P(21,22)P(25,24) - - PA(Zok-1,220) @9 paper. The present results apply to the case of limit of zero

can be the same. To understand the overall structure of thelectron correlation as welf,which is useful in the so-called

solutions better, first note that the roots in E2¢) should all  pseudospin-electron model introduced at the consideration of

be different. Furthermore, if the number of sitesListhe  the anharmonicity effects in highs superconductors when

total number of different solutions of Ed21) is L!/(L  the hopping parameters are assumed to be site dependent and

—29)!1(29)! each (5+1)-fold degenerate. Further degen- separable.

eracy may enter through the pairing part, Eg5), of the It can be inferred from these results that the Hubbard

wave function. For example, ifz;,2,,23,2, are model Hamiltonian,

roots, the four-particle pairing part(25) can be

ta(l)<en as OPo(zl,zz)PO(z3,z4), Po(zl,z3)P°(zz,z4),' or H=a tiche,+UD nin . 27)

P*(z,,24)P"(z,,23). All of these have the same eigenen- i .

ergy. Furthermore, if a roat; does not enter in Eq24), it

may occur twice in Eq(25) in the following form:

The eigenvaluéy s of Hamiltonian(1) for any spin, whert
and e are o independent, is still given by Eq20). All the
c-numbersz; in Eqgs.(23) and(24) should satisfy Eq(21).

It can be verified that some of the roasin the product

can be easily diagonalized whé&x N/2, yielding eigenen-
ergies
- P%z,2)P%zi ,zp) - - - (26)

N
whereas ifz; is used in Eq(24), it can only occur in Eq(25) Ens=ni2= 0‘241 Z (28)
once. For example, ifz; is not taken by Eq.(24), )
while z,, z5, and z, are, the four-particle pairing under the Bethe ansa(t9), where thec numbersz; satisfy
part of the wavefunction can  further be 1 It/2
taken as P%(z;,2,)P%z;,23), P(z1,25)P%(z1,24), oOF =3 K
P%(z,,25)P°(z,,2,). The situation becomes more compli- z. % 1-az

cated with increasing number of spin zero pairs. The method can also be applied to other many-fermion

To summarize, exact solutipns for the eigenvalue pmble”i‘nteracting systems, such as the nuclear pairing proBfem.
of @ HubbardJ model, ones with separabi@arameters and  he advantage of this method is that the building blocks

a simple site-dependent form fok, have been derived using A (z) of the Bethe ansatz wave functions can be derived.
an infinite-dimensional algebraic approach based on the Be=Z \_'

) . ®hese building blocks satisfy a nonlinear fermion algebra of
the ansatz. The Hubbatd model with spin-dependemipa- 0 i typ&—an infinite dimensional algebra, which,
rameters and special site-dependénparameters have also nerally, is an affine Lie algebra without central
been discussed. The complete spectrum and the correspo 'tension’—which is the infinitesimal form of the corre-
ing eigenstates are derived. Obviously, the Hubbard Hamll-Sponding nonlinear fermion algebra
tonian(1) has three different phase$) when all parameters ’

t7, andej are the same(ii) when all these parameters are  Supported by the National Science Foundation under
different; and(iii) when the parameteB—o. The phase Grant No. 9603006 and Cooperative Agreement No. EPS-
transition occurs when these parameters vary from one re8550481, which includes matching from the Louisiana Board
gime to another. In casé) the solutions are particularly of Regents Support Fund.
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