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Vortex lattice transition in d-wave superconductors
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Making use of the extended Ginzburg-Landau theory, which includes the fourth-order derivative term, we
study the vortex state in a magnetic field parallel todtaxis. The vortex core structure is distorted due to the
higher-order term, which reveals the fourfold symmetry. Further, this distortion gives rise to the core interac-
tion energy which favors a square lattice tilted by 45° from @haxis. The triangular vortex lattice in small
field region transforms into the rhombic vortex latti¢e., the square vortex lattice tilted 45° from thaxis)
at B=Hg~«xHg,(t), wherek is the Ginzburg-Landau parameter aHg,(t) is the upper critical field.
Therefore, in most of thB-T phase diagram the vortex lattice is rhombic. The transition is of the second order
and the associated jump in the specific heat should be accessible experimgB€B3-18269)08605-1

. INTRODUCTION ied using the generalized London equattén’*8The phe-
nomenological free energy used by these authors resembles

After a few years of controversyl-wave superconductiv- the one ford-wave superconductivity.
ity in the hole-doped high, cuprates appears to be finally ~ The object of this paper is twofoldi) Making use of the
established:? However, the electron-doped high-cuprates ~ extended Ginzburg-Landai@L) equation, we first study a
appear to be described lsywave Super(;()nductivit?,_4 single vortex line in a magnetic field parallel to theaxis.

d-wave superconductivity manifests itself as fourfold Unlike Refs. 17,18 we believe that the modification of the
symmetry of the vortex state when a magnetic field is apVortex core structure is of prime importance. Indeed, the vor-
plied either parallel to the axis or within thea-b plane® In  tex exhibits the fourfold symmetry which will have a number
particular the study of the vortex lattice in the vicinity of the Of consequences. For example it will modify the quasiparti-
upper critical field and the quasiparticle spectrum around acle spectrum around a vortex. One more significant fact is
single vorteX® in a magnetic field parallel to the axis in-  that this will generate vortex core interaction energy, which
dicate that the square vortex lattice tilted by 45° from she favors the alignment of two vortices either parallel to (1,1,0)
axis should be most stable except in the immediate vicinityr (1,—1,0). Indeed a similar vortex solution has been found
of the superconducting transition temperatte. Indeed numerically previously by Enomotet al.*® But our analyti-
such a square lattice, though elongated inafirection has ~ cal result is of prime importance in the followingi) From a
been seen in Y-Ba-Cu-O monocrystals by small-angle neustudy of the two-vortex problem, we consider the vortex lat-
tron scattering (SANS) and scanning tunneling tice for a class of isosceles. We find in the low-field limit
microscopy® (STM) at low temperature and in a low mag- [i-€.,B=H(t)] the vortices form a triangular lattice as in a
netic field. On the other hand, the fourfold symmetry pre-conventionals-wave superconductor. When the magnetic
dicted for the density of states near the vortex core appeardild increases, the triangular lattice transforms first gradu-
not to have been seen by STKRef. 10 in Y-Ba-Cu-O ally and then suddenly to the square lattic8atH,,. In the
monocrystals. This, we believe, indicates the failure of thedemperature range not very far from, (i.e., 3T,<T<T,)
quasiclassical approximation used in these theoretical analyve predict
sis. Indeed, recent studfésof the Bogoliubov—de Gennes
equation clearly indicate not only the breakdown of the qua- He=0.524 —Int) " Y2 "1H (1), (1.2
siclassical approximation for Y-Ba-Cu-O, but also the pres-
ence of the extended states with small enerdg&sy |E| wheret=T/T. and « is the Ginzburg-Landau parameter.
<0.1A) which exhibits clearly the fourfold symmetry antici- Though theB dependence of the apex angleve obtained is
pated from the square vortex lattice. rather similar to the ones obtained in Refs. 17,18, the detail

More recently a very similar square vortex lattice hasis quite different. For example, we find the change of the
been seen in ErdB,C,YNi,B,C, and LuUNjB,C by SANS apex angle is much faster though the transition is of the
(Refs. 12,13and in YuNiB,C by STM imaging'® Although ~ second order as in Refs. 17,18. Tlisdependence oB is
superconductivity in borocarbides is believed to be convenmore consistent with the SANS restdlthan that of Ref. 18
tional s wavel® the above square lattice together with thewhich may suggest that the core interaction between two
presence of antiferromagnetic phase in closely related borasortices is much more crucial than the term arising from the
carbides suggest that superconductivity in borocarbides magnisotropy of the magnetic interaction considered in Refs.
be ofd wave as well® Incidentally the square vortex lattice 17,18. Unfortunately the related SANS study for hiiheu-
and related vortex lattice transition have recently been studprates is not available at the time of this writing. With help
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Hea(0) A(r)=g(r)e?+ (e’ ®a(r)+e 49B(r)+ y(r)]e'®.
2.3

Substituting this in Eq(2.2) we findg(r) for r>1;

Hez -1 1 2 9 -~ 161 2
g(r=1-gsr o—gri=ogr >, (2.9

and equations foe(r),B(r), and y(r) for r>1;

H , 1. 25)] ,
- AN+ | 1+| 7+ Zor— <5 | |a(r) =g(r) Y[ 2a(r) + B(1)],
.“‘/m liquid ) . (25)
[ , 1. 9Y] ,
B(r)+| 1+| 7+ “ar— o3| | B() =g(r)[a(r) +2B(1)],
O-tatvice ' : 2.6
Her .’%"%., 2 1 1 2
\ o, C(r)+| 14| 97+ - = 5| [¥(1)=g(r)?3x(r),
0 4 temsa,
/ .
0 4—lattice T/TC 1 (27)
where
FIG. 1. TheB-T phase diagram.
105 , 945 31185 _ 1450449
of this we constructed the phase diagram of the vortexM) =51 "= =1 = —e— 1 ————1 """,
state as shown in Fig. 1. A preliminary result on this will (2.9
be published in the proceeding of NATO ASI workshop at
Yalta April, 1998%° 15 , 105 _ 8505 _ 557865
B(r)=——5r % —r"°- ro8— roi0..,
2 4 16 32
Il. EXTENDED GINZBURG-LANDAU EQUATION (2.9
AND SINGLE VORTEX PROBLEM
We consider a weak-coupling model fod-wave C(r)=—18*-135 6— 14 175r‘8—%5r‘10~ .
superconductors: Extending the procedure used by Ren 4 8
et al,?? we obtain (210
Then we find
7§(3) 2( 92 2 31§(5) 4 2 2\2
—Int+2(47ﬂ_)2v (ﬁx'f't?y)'f‘ Wu [5((9X+z9y) 5 L 55 »
a(r)y=zr “+{c——Inr|r
2 4
+2(82—3%)?] A(r)=@|A(r)|2A(r) (2.1
x Yy (47T)? ! ) —2873-456c 627 B
+ TJr?Inr r6.., (211
which is converted into the dimensionless form
(1+(22+ 32)+ e[ B(2+ 02)2+ 2( 2~ A2 DA(r) ()= gr—2+(5_22C N ?,n r>r_4
=[A(r)[2A(r), 2.2
. —6627-184c 253 6
where we have introduced + TJr ?Inr r—°..., (212
7{(3)v? 47T)%(—Int
g(T)ZZ#, A(‘rﬂ;M, and
2(47T)“(—Int) 21(3)
., 297 . 5313
t=T/T., and rescaled — &(T)r, A(r)—A(T)A(r). Here W)==9r "= —-r - —mr . (213

dy and d, are gauge-invariant differential operators and we
define the small parametee=31/(5)(—Int)/196/(3)?> In this solution we find a free parameigrwhich fortunately
~0.114(=Int). does not show up in the core interaction term which we are
Equation (2.1) is written down basically in Ref. 19, going to discuss in the following section. Note that
though we ignore a few terms of the order eflfit)? since  the choicec=5/4 makes the first few terms symmetric;
they are of secondary importance in what follows. Here wex(r) =5/2r "2+ (1—111Inr)5/4 ~*..., B(r)=—5/2r"2
concentrate on the effect of theterm, which is the basic +(1+11Inr)5/4 “.... We will also discuss in the next
symmetry breaking term. paragraph that the choiae~5/4 is necessary to have ap-
Assume thatA(r) is given by proximate solutions.
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0.08 T . ' ' ' ' ' . T lll. INTERACTION BETWEEN TWO VORTICES

Before studying the regular vortex lattice, let us consider
the two-vortex problem. We assume that two vortices are
placed at (0,0) andd(cosé,dsin ) and (k>d>1). The free

0.04 energy in dimensionless units is given by

Q=fdzr(—|A|2+|&xA|2+|&yA|2
2 2 2 2 2 1 4 1 2
—el[5(5+ 35)+2(35— ) 1A+ 5 |A]*+ gD

1 1
=fd2r(—§|A|4+8—7Tb2 , (3.1)

-0.04
whereb=h(r) is the local magnetic field. Making use of the

usual approximation

ST A =A]T f(r=r, (3.2

-0.08

where
FIG. 2. Plots ofa(r) and B(r). . . )
f(r)=[g(r)+e(a(r)e®?+ B(r)e™ "%+ y(r))le'?,
For later purposes, it is convenient to introduce the inter- 33
polation expressions which give the correct asymptotics fofg tne single vortex solutiong(r)~tanhr, and neglecting

r—0. We find v(r) which is irrelevant for the fourfold symmetry, we ob-
tain
r 1 r r
g(r)=tanh—- EZ(l—Cl sech— tank?c— 1
0 0 0 Qwo-vortex™ — Ef d2r{tanhr+ecos 4¢[a(l’)+ﬂ(l‘)]}4
9 r r
- W(l—CzsechC—o tanﬁ’c—o' (214 x{tanhr’ + e cos4p’'[a(r’')+B(r")]}*

=— %{A— 2a,—2a; e[ a(d)+ B(d)]cos 49},

5 r 55 r
a(r)==r"?tanf —+|—— —Inr |r " *tanh*—. ..,
2 Cs 4 4 C3 (2 13 (34)
' whereA is the area and
5 r 5 55 r
__ .2 o Ty -4 . 8 1
Br)= 2" tanﬁ03+ 277 Inr)r tanh"ca : alzf d?r(2 secﬁr—secl‘lr)z? In2+§ ~6.854.
(2.19 3.5

where co=1.71,¢,=0.80, c;=1.35. The way to fix these  On the other hand, the magnetic interaction between two
constants is the following. Using the GL equati@h2), we  \ortices is given by (2/x%)Ky(d/«) (the London formula
can express all the constarnts,c,, . .. byc,. The constant  \yhereK(z) is the modified Bessel function. Strictly speak-
¢, can be obtained by performing numerical integration ofing the magnetic interaction is also modified due to the
the GL equation with the boundary conditiomg0)=0,  higher-order term(see, for example, Ref. 18Indeed the
lim,_,..g(r)=1. In principle, we can apply the same proce- correction term decays likd 2 with d, but this term does
dure toa(r) and B(r). However, we simply start from the not contain extrax dependence. Therefore, the correction
ansatz2.19 and(2.16 which are given from E¢2.1) and  term to the magnetic interaction is completely negligible
(2.12 by introducing suitable powers of tanits, and ob-  whenk>1 as in highT, cuprates. Therefore, the core inter-
serve that these with;=2.5 andc=5/4 agree very nicely action gives a strongly directional energyd *cos 4,

: : - 19 : . e ; ene :
with the numerical results obtained by Enom@bal.™ In  \hile the magnetic energy is isotropic as in the conventional
Fig. 2 a(r) and B(r) are plotted as function af These are swave superconductor.

compared with 8(11)(r) and &‘Eli(r) in Enomotoet al. It

can be seen that our analytic expressions are very close to the
numerical ones from Ref. 19. We have not shoy(n) as

this term is somewhat different from the one in Enomoto Let us consider a vortex lattice where lattice points are
et al. since our starting equation is different. given by

IV. VORTEX LATTICE
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M m=r| m(cosé, ,,siné 2m , r
I,m I,m( I,m I,m) ?2‘”(15522 Ko(%)
=ld(cos6,sinf)+md(cosh,—sing), (4.1 lm

2 2 A +1| Ty 1(1 )
wherel,m are integersl=\/¢,/sin(26)B, and ¢y, is the flux WS a2 4w 200 7

guantum. For later convenience, we separate the lattice into

even and odd lattices as

1o
+§|,Em El

!
W(mﬁ,mw_))
M M

(% (cos6|®),,sin6})) = (2ld cosd,2msin ), . (= 1) Mt expl— [ 12(w' /) +mP(ul )]}

(4.2 12w’ I ) +m?(ul )]

(e) —
MNa=r

4.9

The anglef,,;, which minimizes the free energy is obtained
—[(21+1)d coss,(2m+1)dsing]. (4.3 0¥ Studying the function

rio=ri%(cos6i9),sin 6%

2., sir? 26 cos 46, ,
Note that in Eqs(4.2) and4.3) | andm run over allintegers f(o)= H*(1)) & [(1+m)2sirf0+ (1 —m)? cod6)?
Then the free energy of the vortex lattice is given by

+> '( E [ m(1?tang+m? cotd)]
I,m

1 &
—_ 2 a_ 20 2 rs
0= > A—a;&ny—ella ¢ n¢§1 I’|4 COS40|,m> N (—1)'+m+ex;:[—Tr(lzcot0+m2tan0)])
, m '
(12 cot6+m? tan6)
27 22 ,K M m 4.4
“ZNot & o\ ) 44 where
Ly | SBEF2M? | PHe(0)
wheren ,= B/ ¢, is the vortex density per unit area. Here we (H= 1553,¢(5)(—Int) K
consider only the vortex core interaction between two vorti- H ot
ces, since the three vortex interaction is exponentially small ~5.6466‘(—Int)*1’2£.
whend/&>1. Further, we have neglected the fourfold sym- K

metric term in the magnetic interaction term since it is Pro-Then the minimization of (6) gives Fig. 3 where the apex

portional to e/k?. So except for the condensation energy angle 6, is shown as a function d/H,, where

(—1A), the second term and the last term are proportional to mn °

B, while the core interaction enerdthe third term is pro- H=0.524 —Int) Y2~ TH,(t). (4.6)

portional to B3. As the magnetic field increases froB

= Hcl(t)1 the third term becomes more dominant andBor For B?Hcr the square lattice is fU”y established. Note also

=H,, the square vortex lattice will be established. The lasthat d6/dB diverges aB=H,, indicating a possible phase

term in Eq.(4.4) contains the sum transition. Earlier a similag-B curve was obtained within
the generalized London equatibn® However, the present
result appears to be more consistent with the obseBed

(D) dependence of by SANS from ErNjB,C at T=3.5 K.}
> 'Ko(ﬂ) = > "Ko[(12u2+m2u'2)12) Inserting # determined thus into Eq4.4), we find the free
I,meZ A I,m energy
p=e,0
2mEH B
+3 Kofl(1 - 11222 0= Qo+ f—w(—), @7
I,m 2 0 Hcr
+(m=1/2)2u"?1Y3, where the first term
_ , A a&  2n¢
where u=2dsiné/\, p'=2dcosé/\. Following the argu- Qg=-— §+ 2—B+2—B
ment by Fetteret al.?® namely, using the integral represen- b0 Ko
tation of the functionKy(x) and two Poisson summation 2mA\2 1 do

1
formulas(see Appendix we can rewrite these infinite sum- X TB+ §|nm - 5(1— Y)
mations. Then the last term in E¢.4 becomes(for A 0

>d) depends o in a nonsingular way, and the second term is

. (48
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FIG. 3. Apex angle 2,,, as a function oB/H. where 2,
=90° and 120° correspond to the square lattice and the triangulaﬁ’/Hcr'

lattice with hexagonal symmetry, respectively.
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"

4.9

In Fig. 4 #(B/H.) as a function ofB/H. for 0<B/H,
=<1.2 is plotted and it is seen that is continuous atB

=H.. The magnetization— M =dQ//B has
=H,,.

a kink atB

Figure 5 shows the part of the magnetization

' (BIH)=0w(B/H)/d(B/H,) for 0<B/H,<1.2. Fig-
ures 4 and 5 show clearly that this phase transition is of thg,qve superconductor, we discover that the vortex core

-0.59 T T T T

0611

V(B/H)

-0.62[

-0.63 [

-0.64 : : : :
0 02 04 06_ 08

B/H.,

FIG. 4. Singular part of the free energy as
B/H.

1 1.2

a function of

4501

0
002 F .
=
1]
T 004 1
8
>
-0.06 | 1
-0_08 L L L L L
0 0.2 0.4 0.6 0.8 1 1.2
B/H,,

FIG. 5. Singular part of the magnetizatigri as a function of

second order with a jump in the specific heat, which should
be accessible experimentally. If we chogse 6—90° as the
order parameter, the behavior gfand s are exactly what
expected for the second-order transition. Naturally this tran-
sition line terminates aB=H,, the melting transition line
where the vortex lattice melts into the vortex liquid.

V. CONCLUDING REMARKS

By analyzing the extended Ginzburg-Landau equation for

contains a long-range fourfold term which is proportional to

r % cos 4p whenr=¢. The effect of this term on the quasi-
particle spectrum is under current study. This fourfold term
gives rise to the vortex core interaction, which favors the
orientation of two vortices parallel to the diagonal directions
(1,1,0) and (1 1,0). In the low-field regime we find that
the vortex lattice transforms from triangular to squareBas
increases and that the approach to the square lattices is rather
steep. The transition is of the second order. The present re-
sult appears to describe very well the vortex transition ob-
served in ErNjB,C, though the superconductivity in boro-
carbides is believed to bs wave. Turning to highF,
cuprates there is no similar measurement available even for
Y-Ba-Cu-O monocrystals. On the other hand, if we put
=100, H.»(0)=120 T for Y-Ba-Cu-O, we estimatél,

=1 T, which is consistent with the observation of the
square lattice at low temperature and in a magnetic field of a
few Tesla. Clearly a parallel measurement of Bheepen-
dence of the apex anglkein high-T. cuprates is highly de-
sirable.

Coming back to the vortex lattice transformation in the
vicinity of B=H,(t), it is shown that the transition is again
continuous in contrast to an earlier analyéisn particular
the full transition to the square lattice is completedtat
=0.81. Therefore it is now possible to draw a vortex lattice
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phase diagram in thé-B plane as shown in Fig. 1. —(0) > 2 191
We expect also that the directional core potential not only = (wp')= 2 Kof[(I-1/2%u?+(m=1/2)2p"2]12).

modifies the equilibrium vortex lattice configuration but also

the collective mode, the elastic, and dynamic response of thene poisson sum formulas

vortex lattice. At this moment we can say only tlthtvave

superconductivity should bring a profound change in our un-

derstanding of the vortex motion. 2 ex] — 12u2/47]= _Hm'z exp — 4m2712u2),
| Mmoo
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APPENDIX

In this appendix, we list some useful formulas for study- O3(v,m) =™ 7 Yoo Iy (v/ 7, ~ 17)
ing the free energy) [Eq. (4.4)] of the vortex lattice with
the apex angle. and
We have to treat the lattice sums
Ta(v,7)= g7~ o™ 7Tivleﬂz(v/ T,— 1l7).

E(e)(M,M'):%/KO[UZMZ*‘mz,u’z)llz]. _ 23

Using the argument by Fettet al,~> we obtain

exp{—m{12(u' ) +mP(ul ')}
al1P(w' )+ mP(ul )]

”(e)(MM)— 277 ln———(l Y)+ 2[ [ ( 5,+m2’%> +

2 1

!

o' [1+ 47212 w2+ m? w' ) [ 47212 w2+ m u'?)]’

2w 2m (—1)ltm 27 (—1)tFm
pu' o G [4m2(02 pP A m 2] Re T [ 1+ 47202 w2+ mPl 2 [ 47212 w2+ mP D))

EOu,u)=
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