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Vortex lattice transition in d-wave superconductors
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Making use of the extended Ginzburg-Landau theory, which includes the fourth-order derivative term, we
study the vortex state in a magnetic field parallel to thec axis. The vortex core structure is distorted due to the
higher-order term, which reveals the fourfold symmetry. Further, this distortion gives rise to the core interac-
tion energy which favors a square lattice tilted by 45° from thea axis. The triangular vortex lattice in small
field region transforms into the rhombic vortex lattice~i.e., the square vortex lattice tilted 45° from thea axis!
at B5Hcr;k21Hc2(t), wherek is the Ginzburg-Landau parameter andHc2(t) is the upper critical field.
Therefore, in most of theB-T phase diagram the vortex lattice is rhombic. The transition is of the second order
and the associated jump in the specific heat should be accessible experimentally.@S0163-1829~99!08605-1#
-
ly

ld
ap

e
a

it

e

-
re
ar

th
a
s
ua
es

i-

as

en
he
or
m
e
tu

bles

he
or-
er
rti-
t is
ich
0)
nd

at-
it
a
tic
du-

r.

tail
he
the

two
the
fs.

lp
I. INTRODUCTION

After a few years of controversy,d-wave superconductiv
ity in the hole-doped high-Tc cuprates appears to be final
established.1,2 However, the electron-doped high-Tc cuprates
appear to be described bys-wave superconductivity.3,4

d-wave superconductivity manifests itself as fourfo
symmetry of the vortex state when a magnetic field is
plied either parallel to thec axis or within thea-b plane.5 In
particular the study of the vortex lattice in the vicinity of th
upper critical field6 and the quasiparticle spectrum around
single vortex7,8 in a magnetic field parallel to thec axis in-
dicate that the square vortex lattice tilted by 45° from thea
axis should be most stable except in the immediate vicin
of the superconducting transition temperatureTc . Indeed
such a square lattice, though elongated in thea direction has
been seen in Y-Ba-Cu-O monocrystals by small-angle n
tron scattering9 ~SANS! and scanning tunneling
microscopy10 ~STM! at low temperature and in a low mag
netic field. On the other hand, the fourfold symmetry p
dicted for the density of states near the vortex core appe
not to have been seen by STM~Ref. 10! in Y-Ba-Cu-O
monocrystals. This, we believe, indicates the failure of
quasiclassical approximation used in these theoretical an
sis. Indeed, recent studies11 of the Bogoliubov–de Genne
equation clearly indicate not only the breakdown of the q
siclassical approximation for Y-Ba-Cu-O, but also the pr
ence of the extended states with small energies~say uEu
,0.1D) which exhibits clearly the fourfold symmetry antic
pated from the square vortex lattice.

More recently a very similar square vortex lattice h
been seen in ErNi2B2C,YNi2B2C, and LuNi2B2C by SANS
~Refs. 12,13! and in YuNi2B2C by STM imaging.14 Although
superconductivity in borocarbides is believed to be conv
tional s wave,15 the above square lattice together with t
presence of antiferromagnetic phase in closely related b
carbides suggest that superconductivity in borocarbides
be of d wave as well.16 Incidentally the square vortex lattic
and related vortex lattice transition have recently been s
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ied using the generalized London equation.14,17,18 The phe-
nomenological free energy used by these authors resem
the one ford-wave superconductivity.

The object of this paper is twofold.~i! Making use of the
extended Ginzburg-Landau~GL! equation, we first study a
single vortex line in a magnetic field parallel to thec axis.
Unlike Refs. 17,18 we believe that the modification of t
vortex core structure is of prime importance. Indeed, the v
tex exhibits the fourfold symmetry which will have a numb
of consequences. For example it will modify the quasipa
cle spectrum around a vortex. One more significant fac
that this will generate vortex core interaction energy, wh
favors the alignment of two vortices either parallel to (1,1,
or (1,21,0). Indeed a similar vortex solution has been fou
numerically previously by Enomotoet al.19 But our analyti-
cal result is of prime importance in the following.~ii ! From a
study of the two-vortex problem, we consider the vortex l
tice for a class of isosceles. We find in the low-field lim
@i.e., B.Hc1(t)# the vortices form a triangular lattice as in
conventionals-wave superconductor. When the magne
field increases, the triangular lattice transforms first gra
ally and then suddenly to the square lattice atB5Hcr . In the
temperature range not very far fromTc ~i.e., 1

2 Tc,T,Tc)
we predict

Hcr50.524~2 ln t !21/2k21Hc2~ t !, ~1.1!

where t5T/Tc and k is the Ginzburg-Landau paramete
Though theB dependence of the apex angleu we obtained is
rather similar to the ones obtained in Refs. 17,18, the de
is quite different. For example, we find the change of t
apex angle is much faster though the transition is of
second order as in Refs. 17,18. Thisu dependence onB is
more consistent with the SANS result12 than that of Ref. 18
which may suggest that the core interaction between
vortices is much more crucial than the term arising from
anisotropy of the magnetic interaction considered in Re
17,18. Unfortunately the related SANS study for high-Tc cu-
prates is not available at the time of this writing. With he
4497 ©1999 The American Physical Society
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of this we constructed the phase diagram of the vor
state as shown in Fig. 1. A preliminary result on this w
be published in the proceeding of NATO ASI workshop
Yalta April, 1998.20

II. EXTENDED GINZBURG-LANDAU EQUATION
AND SINGLE VORTEX PROBLEM

We consider a weak-coupling model ford-wave
superconductors.21 Extending the procedure used by R
et al.,22 we obtain

S 2 ln t1
7z~3!

2~4pT!2 v2~]x
21]y

2!1
31z~5!

16~4pT!4 v4@5~]x
21]y

2!2

12~]x
22]y

2!2# DD~r !5
21z~3!

~4pT!2uD~r !u2D~r !, ~2.1!

which is converted into the dimensionless form

„11~]x
21]y

2!1e@5~]x
21]y

2!212~]x
22]y

2!2#…D~r !

5uD~r !u2D~r !, ~2.2!

where we have introduced

j~T!25
7z~3!v2

2~4pT!2~2 ln t !
, D~T!25

~4pT!2~2 ln t !

21z~3!
,

t5T/Tc , and rescaledr→j(T)r , D(r )→D(T)D(r ). Here
]x and ]y are gauge-invariant differential operators and
define the small parametere[31z(5)(2 ln t)/196z(3)2

;0.114(2 ln t).
Equation ~2.1! is written down basically in Ref. 19

though we ignore a few terms of the order of (2 ln t)2 since
they are of secondary importance in what follows. Here
concentrate on the effect of thee term, which is the basic
symmetry breaking term.

Assume thatD(r ) is given by

FIG. 1. TheB-T phase diagram.
x

t

e

D~r !5g~r !eif1e@e4ifa~r !1e24ifb~r !1g~r !#eif.
~2.3!

Substituting this in Eq.~2.2! we find g(r ) for r @1;

g~r !512
1

2
r 222

9

8
r 242

161

16
r 26

•••, ~2.4!

and equations fora(r ),b(r ), andg(r ) for r @1;

A~r !1F11S ] r
21

1

r
] r2

25

r 2 D Ga~r !5g~r !2@2a~r !1b~r !#,

~2.5!

B~r !1F11S ] r
21

1

r
] r2

9

r 2D Gb~r !5g~r !2@a~r !12b~r !#,

~2.6!

C~r !1F11S ] r
21

1

r
] r2

1

r 2D Gg~r !5g~r !23g~r !,

~2.7!

where

A~r !5
105

2
r 242

945

4
r 262

31 185

16
r 282

1 450 449

32
r 210

•••,

~2.8!

B~r !52
15

2
r 242

105

4
r 262

8505

16
r 282

557 865

32
r 210

•••,

~2.9!

C~r !5218r 242135r 262
14 175

4
r 282

1 065 015

8
r 210

•••.

~2.10!

Then we find

a~r !5
5

2
r 221S c2

55

4
ln r D r 24

1S 228732456c

80
1

627

8
ln r D r 26

•••, ~2.11!

b~r !52
5

2
r 221S 522c

2
1

55

4
ln r D r 24

1S 266272184c

80
1

253

8
ln r D r 26

•••, ~2.12!

and

g~r !529r 242
297

2
r 262

5313

8
r 28

•••. ~2.13!

In this solution we find a free parameterc, which fortunately
does not show up in the core interaction term which we
going to discuss in the following section. Note th
the choicec55/4 makes the first few terms symmetri
a(r ) 5 5/2r 22 1 (1211 lnr)5/4r 24

•••, b(r ) 5 25/2r 22

1(1111 lnr)5/4r 24
•••. We will also discuss in the nex

paragraph that the choicec;5/4 is necessary to have ap
proximate solutions.
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For later purposes, it is convenient to introduce the int
polation expressions which give the correct asymptotics
r→0. We find

g~r !5tanh
r

c0
2

1

2r 2S 12c1 sech
r

c0
D tanh5

r

c0

2
9

8r 4S 12c2 sech
r

c0
D tanh9

r

c0
•••, ~2.14!

a~r !5
5

2
r 22 tanh7

r

c3
1S 5

4
2

55

4
ln r D r 24 tanh11

r

c3
•••,

~2.15!

b~r !52
5

2
r 22 tanh5

r

c3
1S 5

4
1

55

4
ln r D r 24 tanh9

r

c3
•••,

~2.16!

where c051.71, c150.80, c251.35. The way to fix these
constants is the following. Using the GL equation~2.2!, we
can express all the constantsc1 ,c2 , . . . byc1 . The constant
c1 can be obtained by performing numerical integration
the GL equation with the boundary conditionsg(0)50,
limr→`g(r )51. In principle, we can apply the same proc
dure toa(r ) andb(r ). However, we simply start from the
ansatz~2.15! and~2.16! which are given from Eq.~2.11! and
~2.12! by introducing suitable powers of tanhr /c3 , and ob-
serve that these withc352.5 andc55/4 agree very nicely
with the numerical results obtained by Enomotoet al.19 In
Fig. 2 a(r ) andb(r ) are plotted as function ofr. These are
compared with 8f 1

(1)(r ) and 8f 21
(1)(r ) in Enomotoet al. It

can be seen that our analytic expressions are very close t
numerical ones from Ref. 19. We have not showng(r ) as
this term is somewhat different from the one in Enomo
et al. since our starting equation is different.

FIG. 2. Plots ofa(r ) andb(r ).
r-
r

f
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III. INTERACTION BETWEEN TWO VORTICES

Before studying the regular vortex lattice, let us consid
the two-vortex problem. We assume that two vortices
placed at (0,0) and (d cosu,dsinu) and (k@d@1). The free
energy in dimensionless units is given by

V5E d2r S 2uDu21u]xDu21u]yDu2

2eu@5~]x
21]y

2!12~]x
22]y

2!#Du21
1

2
uDu41

1

8p
b2D

5E d2r S 2
1

2
uDu41

1

8p
b2D , ~3.1!

whereb5b(r ) is the local magnetic field. Making use of th
usual approximation

D~r !5D)
i

f ~r2r i !, ~3.2!

where

f ~r !5@g~r !1e„a~r !e4if1b~r !e24if1g~r !…#eif,
~3.3!

is the single vortex solution,g(r );tanhr , and neglecting
g(r ) which is irrelevant for the fourfold symmetry, we ob
tain

V two-vortex.2
1

2E d2r $tanhr 1e cos 4f@a~r !1b~r !#%4

3$tanhr 81e cos 4f8@a~r 8!1b~r 8!#%4

.2
1

2
$A22a122a1e@a~d!1b~d!#cos 4u%,

~3.4!

whereA is the area and

a15E d2r ~2 sech2 r 2sech4 r !5
8p

3 S ln 21
1

8D.6.854.

~3.5!

On the other hand, the magnetic interaction between
vortices is given by (2p/k2)K0(d/k) ~the London formula!
whereK0(z) is the modified Bessel function. Strictly spea
ing the magnetic interaction is also modified due to t
higher-order term~see, for example, Ref. 18!. Indeed the
correction term decays liked22 with d, but this term does
not contain extrak dependence. Therefore, the correcti
term to the magnetic interaction is completely negligib
whenk@1 as in high-Tc cuprates. Therefore, the core inte
action gives a strongly directional energy;d24 cos 4u,
while the magnetic energy is isotropic as in the conventio
s-wave superconductor.

IV. VORTEX LATTICE

Let us consider a vortex lattice where lattice points a
given by
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r l ,m5r l ,m~cosu l ,m ,sinu l ,m!

5 ld~cosu,sinu!1md~cosu,2sinu!, ~4.1!

wherel ,m are integersd5Af0 /sin(2u)B, andf0 is the flux
quantum. For later convenience, we separate the lattice
even and odd lattices as

r l ,m
~e! 5r l ,m

~e! ~cosu l ,m
~e! ,sinu l ,m

~e! !5~2ld cosu,2lm sinu!,
~4.2!

r l ,m
~o!5r l ,m

~o! ~cosu l ,m
~o! ,sinu l ,m

~o! !

5@~2l 11!d cosu,~2m11!d sinu#. ~4.3!

Note that in Eqs.~4.2! and~4.3! l andm run over allintegers.
Then the free energy of the vortex lattice is given by

V52
1

2S A2a1j2nf2e10a1j2nf(
l ,m

8
j4

r l ,m
4

cos 4u l ,mD
1

2p

k2 nfj2(
l ,m

8K0S r l ,m

l D , ~4.4!

wherenf5B/f0 is the vortex density per unit area. Here w
consider only the vortex core interaction between two vo
ces, since the three vortex interaction is exponentially sm
whend/j@1. Further, we have neglected the fourfold sy
metric term in the magnetic interaction term since it is p
portional to e/k2. So except for the condensation energ
(2 1

2 A), the second term and the last term are proportiona
B, while the core interaction energy~the third term! is pro-
portional to B3. As the magnetic field increases fromB
5Hc1(t), the third term becomes more dominant and forB
>Hcr the square vortex lattice will be established. The l
term in Eq.~4.4! contains the sum

(
l ,mPZ
p5e,o

8K0S r l ,m
~p!

l
D 5(

l ,m
8K0@~ l 2m21m2m82!1/2#

1(
l ,m

K0$@~ l 21/2!2m2

1~m21/2!2m82#1/2%,

where m52d sinu/l, m852dcosu/l. Following the argu-
ment by Fetteret al.,23 namely, using the integral represe
tation of the functionK0(x) and two Poisson summatio
formulas~see Appendix!, we can rewrite these infinite sum
mations. Then the last term in Eq.~4.4! becomes~for l
@d)
to

-
ll

-
-

to

t

2p

k2 nfj2(
l ,m

8K0S r l ,m

l D
.

2p

k2 nfj2H 4p

mm8
1

1

2
ln

mm8

4p
2

1

2
~12g!

1
1

2(l ,m
8FE1S pS l 2

m

m8
1m2

m8

m D D
1

~21! l 1m1exp$2p@ l 2~m8/m!1m2~m/m8!#%

p@ l 2~m8/m!1m2~m/m8!#
G J .

~4.5!

The angleumin which minimizes the free energy is obtaine
by studying the function

f ~u!5S B

H* ~ t ! D
2

(
l ,m

8
sin2 2u cos 4u l ,m

@~ l 1m!2 sin2u1~ l 2m!2 cos2u#2

1(
l ,m

8S E1@p~ l 2 tanu1m2 cotu!#

1
~21! l 1m1exp@2p~ l 2 cotu1m2 tanu!#

p~ l 2 cotu1m2 tanu!
D ,

where

H* ~ t !5S 98z~3!2~2p!3

155a1z~5!~2 ln t ! D
1/2Hc2~ t !

k

;5.64667~2 ln t !21/2
Hc2~ t !

k
.

Then the minimization off (u) gives Fig. 3 where the ape
angleumin is shown as a function ofB/Hcr where

Hcr50.524~2 ln t !21/2k21Hc2~ t !. ~4.6!

For B>Hcr the square lattice is fully established. Note al
that du/dB diverges atB5Hcr indicating a possible phas
transition. Earlier a similaru-B curve was obtained within
the generalized London equation.17,18 However, the presen
result appears to be more consistent with the observeB
dependence ofu by SANS from ErNi2B2C at T53.5 K.12

Insertingu determined thus into Eq.~4.4!, we find the free
energy

V5V01
2pj2Hcr

k2f0

cS B

Hcr
D , ~4.7!

where the first term

V052
A

2
1

a1j2

2f0
B1

2pj2

k2f0
B

3F2pl2

f0
B1

1

2
ln

f0

2pl2B
2

1

2
~12g!G , ~4.8!

depends onB in a nonsingular way, and the second term
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cS B

Hcr
D5

B

Hcr
f S uminS B

Hcr
D D . ~4.9!

In Fig. 4 c(B/Hcr) as a function ofB/Hcr for 0<B/Hcr
<1.2 is plotted and it is seen thatc is continuous atB
5Hcr . The magnetization2M5]V/]B has a kink atB
5Hcr . Figure 5 shows the part of the magnetizati
c8(B/Hcr)5]c(B/Hcr)/](B/Hcr) for 0<B/Hcr<1.2. Fig-
ures 4 and 5 show clearly that this phase transition is of

FIG. 3. Apex angle 2umin as a function ofB/Hcr where 2umin

590° and 120° correspond to the square lattice and the triang
lattice with hexagonal symmetry, respectively.

FIG. 4. Singular part of the free energyc as a function of
B/Hcr .
e

second order with a jump in the specific heat, which sho
be accessible experimentally. If we choosex5u290° as the
order parameter, the behavior ofx and c are exactly what
expected for the second-order transition. Naturally this tr
sition line terminates atB5Hm the melting transition line
where the vortex lattice melts into the vortex liquid.

V. CONCLUDING REMARKS

By analyzing the extended Ginzburg-Landau equation
d-wave superconductor, we discover that the vortex c
contains a long-range fourfold term which is proportional
r 24 cos 4f whenr>j. The effect of this term on the quas
particle spectrum is under current study. This fourfold te
gives rise to the vortex core interaction, which favors t
orientation of two vortices parallel to the diagonal directio
(1,1,0) and (1,21,0). In the low-field regime we find tha
the vortex lattice transforms from triangular to square asB
increases and that the approach to the square lattices is r
steep. The transition is of the second order. The presen
sult appears to describe very well the vortex transition
served in ErNi2B2C, though the superconductivity in boro
carbides is believed to bes wave. Turning to high-Tc
cuprates there is no similar measurement available even
Y-Ba-Cu-O monocrystals. On the other hand, if we putk
5100, Hc2(0)5120 T for Y-Ba-Cu-O, we estimateHcr
51 T, which is consistent with the observation of th
square lattice at low temperature and in a magnetic field
few Tesla. Clearly a parallel measurement of theB depen-
dence of the apex angleu in high-Tc cuprates is highly de-
sirable.

Coming back to the vortex lattice transformation in t
vicinity of B.Hc2(t), it is shown that the transition is agai
continuous in contrast to an earlier analysis.24 In particular
the full transition to the square lattice is completed at
50.81. Therefore it is now possible to draw a vortex latti

lar

FIG. 5. Singular part of the magnetizationc8 as a function of
B/Hcr .
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phase diagram in theT-B plane as shown in Fig. 1.
We expect also that the directional core potential not o

modifies the equilibrium vortex lattice configuration but al
the collective mode, the elastic, and dynamic response o
vortex lattice. At this moment we can say only thatd-wave
superconductivity should bring a profound change in our
derstanding of the vortex motion.
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APPENDIX

In this appendix, we list some useful formulas for stud
ing the free energyV @Eq. ~4.4!# of the vortex lattice with
the apex angleu.

We have to treat the lattice sums

J~e!~m,m8!5(
l ,m

8K0@~ l 2m21m2m82!1/2#,
e

-

,

n

y

he

-

-
ks
r

in
nt

-

J~o!~m,m8!5(
l ,m

K0$@~ l 21/2!2m21~m21/2!2m82#1/2%.

The Poisson sum formulas

(
l

exp@2 l 2m2/4t#5
A4pt

m (
l

exp~24p2t l 2m2!,

(
l

exp@2~ l 21/2!2m2/4t#

5
A4pt

m (
l

~21! l exp~24p2t l 2m2!,

can be obtained from Jacobi’s imaginary transformations
the elliptic u functions;

q3~v,t!5ep i /4t21/2e2p iv2/tq3~v/t,21/t!

and

q4~v,t!5ep i /4t21/2e2p iv2/tq2~v/t,21/t!.

Using the argument by Fetteret al.,23 we obtain
J~e!~m,m8!5
2p

mm8
1

1

2
ln

mm8

4p
2

1

2
~12g!1

1

2(l ,m
8H E1FpS l 2

m

m8
1m2

m8

m D G1
exp$2p@ l 2~m8/m!1m2~m/m8!#%

p@ l 2~m8/m!1m2~m/m8!#
J

2
2p

mm8(l ,m
8

1

@114p2~ l 2/m21m2/m82!#@4p2~ l 2/m21m2/m82!#
,

J~o!~m,m8!5
2p

mm8
1

2p

mm8(l ,m
8

~21! l 1m

@4p2~ l 2/m21m2/m82!#
2

2p

mm8(l ,m
8

~21! l 1m

@114p2~ l 2/m21m2/m82!#@4p2~ l 2/m21m2/m82!#
.
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