PHYSICAL REVIEW B VOLUME 59, NUMBER 1 1 JANUARY 1999-|

Classical spin liquid: Exact solution for the infinite-component antiferromagnetic model
on the kagomelattice
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Thermodynamic quantities and correlation functi¢gB&’s) of the classical antiferromagnet on tkagome
lattice are studied for the exactly solvable infinite-component spin-vector mbBdele. In this limit, the
critical coupling of fluctuations dies out and the critical behavior simplifies, but the effect of would-be Gold-
stone modes preventing ordering at any nonzero temperature is properly accounted for. In contrast to conven-
tional two-dimensional magnets with continuous symmetry showing extended short-range order at distances
smaller than the correlation lengths &, exp(T*/T), correlations in th&agomelattice model decay already at
the scale of the lattice spacing due to the strong degeneracy of the ground state characterized by a macroscopic
number of strongly fluctuating local degrees of freedom. At low temperatures, spin CF's de¢SySas
«1/r? in the rangea,<r<£.xT Y2 wherea, is the lattice spacing. Analytical results for the principal
thermodynamic quantities in our model are in fairly good quantitative agreement with the Monte Carlo simu-
lations for the classical Heisenberg modek= 3. The neutron-scattering cross section has its maxima beyond
the first Brillouin zone; at T—0 it becomes nonanalytic but does not diverge at aqy
[S0163-18299)01601-X

I. INTRODUCTION actions, lattice distortions, next-nearest-neightfdNN) or
long-range interactions, and quantum effects. This may be a
Classical antiferromagnets &agomeand pyrochlore lat- reason why pyrochlore antiferromagnets usually freeze into a
tices built of corner-sharing triangles and tetrahedra, respespin-glass state with lowering temperat(feTheoretically,
tively, are examples of frustrated systems which cannot ordethe most transparent way to lift the degeneracy is to include
because of the high degeneracy of their ground Simel  NNN interactions in the HamiltoniahExperiment and MC
ensuing large fluctuations. Monte CarIC) simulations  simulations on pyrochloréshow ordering with an unusual
for kagomé& and pyrochlorg lattices with the nearest- critical behavior 3=~0.18) in this case. According to the
neighbor(NN) interactionJ show a smooth temperature de- spin-wave results of Ref. 10 for tHeagomelattice, at low
pendence of the heat capacity(T), in the entire tempera- temperatures dipole-dipole interactions favor the plagar

ture range. The spin correlation functiof€F’s) of both =0 phase which is characterized by the same ordering pat-
models show only weak short-range ordefatJ and decay tern in each of the elementary triangles.
at distances of the order of several lattice spacengsThis A more subtle mechanism for lifting the degeneracy and

is in a striking contrast to the long-range order in commonselection of definite ordering patterns is the nonlinear inter-
three-dimensional magnets and the extended short-range aetion of spin waves for classical systems at very low tem-
der [strong correlation at the distancess é.0cexp(T™*/T) peratures, typicallyT<0.01J. For thekagomelattice, non-
with T* ~J] in common two-dimensional magnets. linear effects(thermal fluctuationsfavor the coplanar spin
Spin-wave calculations starting from one of the orderedconfiguration with the/3x /3 short-range order in the case
states of thekagomelattice® (see, also, Ref. 5 for the quan- of the Heisenberg modeD) =3, as was suggested by the
tum casg yield a twofold degenerate Goldstone mode, asresults of MC simulatiorfs'**2and high-temperature series
well as a zero-energy mode for all values of the wave vectoexpansioné.Extension of the/3x /3 short-range order into
g in the Brillouin zone, the latter reflecting the instability of the true long-range order in the limit—0 is, however, ham-
the ground states. Mean-field approximati0iFA) at el- pered by formation of chiral domain walls which cost no
evated temperatures for bdtagomeand pyrochlore latticds  energy but provide a gain in entropy at low concentrations.
reflects the same behavior. The maximal eigenvalues of th€he configuration selection at low temperatures only occurs
Fourier-transformed exchange interaction matrix @iede-  if the number of spin componenB is low enough. So, the
pendent for both modelg@nd twofold degenerate for pyro- early MC simulations of Ref. 11 for theagomeantiferro-
chlore. Thus the system cannot choose the ordering wavenagnet showed selection of a coplanar statdfer3, but no
vector at the mean-field transition temperatdd:”, which  such selection foD=4. For the pyrochlore lattice, early
in fact shows that there is no phase transition at this temperaimulations showed the selection of the collinear spin order-
ture because of fluctuations. This results in the smooth tering for the Heisenberg model at low temperatutedthough
perature dependence of the thermodynamic quarftitiasd ~ according to the recent results of Ref. 13 this happens only
in the diffuse magnetic neutron scatterfhg. for the plane rotator modeD =2, and not for higher spin
The degeneracy of the ground state of these models catimensionalities. The above results are in accord with gen-
be lifted by small perturbations, such as dipole-dipole inter-eral criterion for selection of ordered states as a function of
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spin and space dimensions for corner sharing objects, which

was formulated in Ref. 13. Quantum fluctuations were
shown to stabilize the/3x /3 phase forS>1* but they
should destroy ordering for low spin valugs**~1’One of

the possible mechanisms for that is tunneling of the weath-
erwane(hard hexagonmode in they3x /3 structure'®

It should be stressed, however, that the subtle effects
guoted above can be easily overwhelmed by more trivial and
robust ones, and they are much easier to observe in simula-
tions than in experiment. The first task of the theory is thus
to describe the principal features of classical spin models on

frustrating lattices, as, e.g., a smooth variation of the thermo-
dynamic quantities in the whole temperature range. The sim-
plest approach, the MFA, is clearly inapplicable in this case,
whereas the more powerful tools of the theory of critical

phenomena, such as the renormalization group, seem to have
not been yet applied to these lattices.

The “next simplest” approximation for classical Spin sys-  FiG. 1. Structure of thiagomidattice. The elementary triangles
temS WhICh fO||0WS the MFA COﬂSIStS II"I genera“ZIng theare |abe|ed by the pan’s Of numbe‘[§ accord|ng to Eq(z 1)
Heisenberg Hamiltonian for theD-component spin  and the sites on triangldshe sublattlce)sare labeled by=1,2,3.
vectorst®? The configuration shown corresponds to the coplagdix 3
structure characterized by the ordering wave vecdtargiven by
Eq. (2.3.

e

1
H=-H-2 =52 Joss, Isl=1 @D
" the absolute values of the nonuniversal quantities. The same
and taking the limitD—o. In this limit the problem be- comment also applies to the spatially inhomogeneous sys-
comes exactly solvable for all lattice dimensionalitiésand  tems in the limitD=n=c, such as semi-infinite ferromag-
the partition function of the system coincidesvith that of  nets(cf. Refs. 41 and 42

the spherical modéf?® The D=« model possesses, how- In this article the solution for the isotropic antiferromag-
ever, a number of important advantages with respect to theetic infinite-component spin-vector model on tkagome
spherical one(i) The 1D expansion is possibfé; ?includ-  lattice will be given. The qualitatively similar results for the

ing the case of low-dimensional systef{$® The calcula-  pyrochlore lattice will be presented in a subsequent commu-
tions can be done conveniently in the framework of the dia-nication. As long as the system studied is homogeneous, iso-
gram technique for classical spin systeth&*° (i)  tropic, and in zero magnetic field, the standard spherical
Inclusion of anisotropic terms in Eql.1) is possible, too, modef??3can be applied, too. Such an approach for nonor-
which allows us to describe ordering in low dimensions, in-dering frustrated three-dimensional systems has been advo-
cluding thin films* and domain walls? (iii) In spatially in-  cated in Ref. 43. We prefer, however, to use the more gen-
homogeneous cases tbe=~ model yields physically cor- eral framework.
rect results, in contrast to the spherical model failing on the The rest of this article is organized as follows. In Sec. Il
global spin constraint: (iv) Below the Curie temperatuf®,  the structure of thekagomelattice and its collective spin
or in a magnetic field, th® =« model describes both trans- variables are described. In Sec. Ill the formalism of e
verse and longitudinal CF'éRef. 39 that differ from each = model is tailored for the&kagomelattice. The diagrams
other, in contrast to the single CF in the spherical model. of the classical spin diagram technique that do not disappear
The D=« model properly accounts for the profound role in the limit D—o are summed up. The general analytical
played, especially in low dimensions, by the Goldstone orexpressions for the thermodynamic functions and spin CF'’s
would be Goldstone modes. At the same time, the less sigor all temperatures are obtained. In Sec. IV the thermody-
nificant effects of the critical fluctuation coupling leading, namic quantities of théagomeantiferromagnetAFM) are
e.g., to the quantitatively different nonclassical critical indi- calculated and compared with MC simulation results in the
ces, die out in the limiD—c. Thus this model is a rela- whole temperature range. In Sec. V the real-space correlation
tively simple yet a powerful tool for classical spin systems. Itfunctions are computed. In Sec. VI the neutron-scattering
should not be mixed up with thi-flavor generalization of cross section is worked out. In Sec. VII possible improve-
the quantunB=1/2 modef® in the limit N—, including its  ments of the present approach, such as tlie é¥pansion,
1/N expansiort>3® The N-component nonlinea-model  are discussed.
(see, e.g., Refs. 37, as well as Ref. 38, and 39 for the 1/
expansiof is a quantum extension of E@L.1) in the long-
wavelength region at low temperatures. Effective free ener-
gies for then-component order parameter appear, instead of The kagomelattice shown in Fig. 1 consists of corner-
Eqg. (1.1, in conventional theories of critical phenomena. sharing triangles. Each node of the corresponding Bravais
Using them for the Il expansion(see, e.g., Ref. 40is a  lattice (i.e., each elementary triangle in Fig\. i5§ numbered
matter of taste. While yielding the same results for the criti-by i,j=1, ... N. Each site of the elementary triangle is la-
cal indices as the lattice-based1éxpansiorf*~2%it misses  beled by the index=1,2,3. It is convenient to use the di-

Il. LATTICE STRUCTURE AND THE HAMILTONIAN
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1
— in’ !
H= N2 Vy 99 g (2.5

where the interaction matrix is given by
0 a b a=coqu-q)
V=20 a 0 ¢, b=coava (2.6)
b ¢ 0 c=cogw-Q).

At the second stage, the Hamiltonié2.5) is finally di-
agonalized to the form

oo
H=— ﬁ% Vaoh-a" . 2.7

FIG. 2. Reduced eigenvalues of the interaction mawi(q) ~ whereVi=2Jw,(q) are the eigenvalues of the matfig]
=V4§/(23) of Eq. (2.7), plotted over the Brillouin zone. taken with the negative sign,

mensionless units in which the interatomic distance equals 1 =1, vy3=(*V1+8abc-1)/2. 2.9

and hence the lattice period equals 2. The triangles numbereg, g diagonalizing transformation has the explicit form
by i,j=1,... N can be obtained from each other by the

transiations U (@)Vg Uy (0)= Vi 2.9
r}=r!+nu2u+ n,2v, (2.))  where the summation over the repeated indices is implied

0 i i - 1=()7 i -1
Wherer: is the position of a site on the lattice, andn, are and U is the real unitary matrixU "=U", i.e., Uy

integers, 2 and 2/ are the elementary translation vectors =Un. The columns of the matriYJ are the three normal-
(lattice periods, and ized eigenvectord),,=(Uq,,U,,,Us,) of the interaction

matrix V:

_ 2_ .2
One of the most symmetric phases of RagomeAFM is Un=(ac=buy,, ab=cw,, p—a )/\/Q_n'
the so-calledy/3% /3 phase which is shown in Fig. 1. This Qn=(12—a??2+(ab—cvy)?+ (ac—bvy)2 (2.10
coplanar phase can be described by the complex “spgin”
=s/+is)=explqz-r+ige), where the ordering wave vec-
tor g3 can be written in three equivalent forms:

u=(1,0, v=(—1/2+3/2). (2.2

The eigenvectotJ; corresponding to the dispersionless ei-
genvaluev,;=1 can be represented in the un-normalized

form as
2m | Uy=[sin(w-q),sin(v-q) sifu-o)]. (2.1
43=— ?X v (2.3 The normalized eigenvectors satisfy the requirements of or-
w, thogonality and completeness, respectively,
where w=(—1/2,—/3/2). In this phase spins rotate by Ui (DU 10 ()= 81y Upn(@) U () =8y -
—240°=120° ag changes by the lattice period 2 in each of (2.12

the directionau, v, andw making the angle 120 ° with each

other. Another realization of the3x y3 phase, in which 1he Fourier conmponents of the spiggand the collective
spins rotate by—120°, is described byj 5 with positive ~ SPIn variablesoq are related by

sign. In addition, they3x 3 phase can be described by _ _
appropriate combinations of different forms qgfz given §q U'”(q)g'g’ 0'3 Squ'“(Q)' 213
above. The largest dispersionless eigenvaiyeof the interaction

_ Tofacilitate the diagram summation in the next section, ity trix [see Eq.(2.8)] manifests frustration in the system
is convenient to put the Hamiltoniafl.1) into a diagonal \yhich precludes an extended short-range order even in the
form. First, one goes to the Fourier representation accordingic 1.0, Independence of, of q signals that 1/3 of all

to spin degrees of freedom are local and can rotate freely. The
| 1 | other two eigenvalues satisfy
= e lan, g=— e'dr, 2.4
=2 § N & (2.4

where the wave vectay belongs to the hexagonal Brillouin at small wave vectorsqzzq>2<+ q§< 1. The eigenvalues,
zone specified by the corners+/3,=/\3) and which becomes degenerate with in the limit g—O0 is re-
(+=27/3,0) (see Fig. 2 The Fourier-transformed Hamil- lated, as we shall see below, to the usual would be Goldstone
tonian reads mode destroying the long-range order in low-dimensional

va()=1-0%2, wvy(q)=-2+09*2  (2.14
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magnets with a continuous symmetry. The eigenvalyés

positioned, in the long-wavelength region, much lower than = i\\\\\% " &\\\\\% GD

the first two, and it is tempting to call it the “optical” eigen-

value. In fact, however, the eigenvalues of the interaction r mn
matrix arenot the same as theormal modesf the system b , ; '
that appear in the dynamics. Whereas gives rise to the NV = +(o o 2 D4 -2 2 2 .
zero-energy spin-wave branch corresponding to the absence k\\\\ Cn P n> C E
4 1 fty

of a restoring force for small deviations from one of degen-

erate ground statesy, and v5 hybridize to the double- FIG. 3. Self-consistent Gaussian approximati@CGA) for

degenerate Goldstone mode with energy at small wave classical spin systems in the nonordered st@ethe Dyson equa-

vectors, as in conventional antiferromagn%‘tsl.\/ith increas- tion for the spin correlation functior(p) the block summation for

ing g the eigenvaluer, decreases whereas increases; at the renormalized pair cumulant spin averages.

the corners of the Brillouin zone they become degenerate:

v,=v3=—1/2. Theq dependences of the eigenvalugs N e\ .

over tsﬁe whole Brillouin zone is shown in Fig. 2. (Saido=Aar (SaiSp)o=Napdij + Aakp,
In contrast to the smooth behavior gf, the diagonaliz-

ing matrix U composed of the eigenvectots, [see Eq.
(2.10] has much more complicated structure as function of T AL Apdkit A AgA,,
g. This results in the intricate behavior of the spin CF’'s and

neutron-scattering cross sections at low temperatures, whic&c wheres
will be considered in Sec. V. Here we only show the nonana- "’

(3.2
<Sais,8jsyk>0:AaBy§ijk + AaﬁAyéij +AﬁyAa5jk

ij» Oijk. etc., are the site Kronecker symbols
equal to 1 for all site indices coinciding with each other and

lytic limiting form of U at small wave vectors, to zero in all other cases. For the one-site averages (
=k=...) Eg.(3.2 reduces to the well-known representa-
—ny— \/§ny —n,+ J3n, V2 tion of moments through semi-invariants, generalized for a
N 1 multicomponent case. In the graphical languégge Fig. 3
Ug= NG —neH\3ny, —n,—y3n, V2], the decompositior(3.2) corresponds to all possible group-
2n, 2n, \/E ings of small circlegspin componenjsinto oval blocks(cu-

(2.15 mulant averagegsThe circles coming fronk;,; (the “inner”
circles are connected pairwise by the wavy interaction lines
wheren=gq/q. representing3J;; . In diagram expressions, summations over
In the next section the equations describing spin correlasite indicesi and component indices of inner circles are
tion functions of the classicddagorﬁaantiferromagnet in the carried out. One should not take into account disconnected
largeD limit will be obtained with the help of the classical (unlinked diagrams(i.e., those containing disconnected
spin diagram technique. The readers who are not interestdefrts with no “outer” circles belonging tod in Eq. (3.1)],
in details can skip to Eq:3.16) or directly to Sec. IV. since these diagrams are compensated for by the expansion
of the partition functionZ in the denominator of Eq.3.1).
Consideration of combinatorial numbers shows that each dia-
IIl. CLASSICAL SPIN DIAGRAM TECHNIQUE gram contains the factor id, whereng is the number of
AND THE LARGE- D LIMIT symmetry group elements of a diagrdsee, e.g., the factor

The exact equations for spin correlation functions in the/2! in Eq. (3.12) below]. The symmetry operations do not
limit D—c, as well as the T corrections, can be the most concern outer circles, which serve as a dlstmgylshable
conveniently obtained with the help of the classical spin dia- "00t" to build up more complicated(e.g., renormalized
gram techniqué®2"29A perturbative expansion of the ther- d|agrarr_1$. For spatially ho_mogeneous systems, it is more
mal average of any quantity characterizing a classical spin convenient to use the Fourier representation f_:md to calculate
system(e.g., A=s,, — the z spin component on the lattice mtegrals_ over the wave vectors in the Brillouin zone rather
site i) can be obtained by rewriting Ed1.1) as H="H, than Iatt.|ce sums. As dug to the Kronecker_ symbols in Eq.
+H,,, whereH, is, e.g., the mean-field Hamiltonian, and (3.2) lattice sums are subject_ to the constraint that the_ coor-
expanding the expression dl_nates of the circles belonging to the same _block comcllde

with each other, the sum of wave vectors coming to or going
out of any block along interaction lines is zero. So, for our

10 model the pair cumulant average of the Fourier components
(A= Z 11;[1 dsAexp(—BH), [s[=1, BD  defined by Eq(2.4) reads

where B=1/T, in powers ofH;,. The integration in Eqg.
(3.1 is carried out with respect to the orientations of the
D-dimensional unit vectors; on each of the lattice sites.
Averages of various spin-vector components on various latwhered),, is the sublattice Kronecker symbol. The cumulant
tice sites with the Hamiltoniaf?, can be expressed through spin averages in E43.2) can be obtained by differentiating
spin cumulants, or semi-invariants, which will be consideredhe generating functior (¢) over appropriate components
below, in the following way: of the dimensionless fielg=BH:?°

(ShaSgq)ocun=A agNdqr —qSi1/ 33
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IPA() With the use of Eq(3.3) and the first of the relation@.12),
Aalaz---ap(@:m, A(§)=InZy(8), this can be simplified to the final form
(3.9 '
<0'2q0'2q'>0,cum:AaaNéq’,fqann’ . (3.10
where¢=|4,
Now, with the help of the results just obtained, the second
Zo(&)=constk £~ P27V, (&) (3.5  diagram in the sum in Fig.(B) can be written in the analyti-
cal form
is the patrtition function of &-component classical spin, and
I,(&) is the modified Bessel function. For the two lowest- A,=U U (A L, 3.11)
order cumulants the differentiation in E¢8.4) leads to the 2= Uin(@Unn (DA aasl s (
following expressions: where the summation over the spin-component ingeis
implied and the quantity. 5 in the lowest(the secongorder
A (§=B(&) €a1€, of the perturbation theory is given by
B(¢) Eubp| | o, Eabp @1, 1 i
Aaﬂ(g)zT( b= | RO 39 Lt =57 Assy % nEl Unn, (P)U1n,(P)BV;
where é,,4 is the Kronecker symbol for spin components, X}; U|ni(p)U|'n5(p)ngl- (3.12
n
B(&)=dA(&)/dé=1p(&)/Ipj-1(8) (3.7) '

is the Langevin function ob-component classical spins, and Here f= l/T_ in front Of_ v cannot_ be confuseq W‘?h th? spin
B’(£)=dB/d¢ (see the details in Ref. 30If H,=0, as is component indey3. This expression can be S|mpl!f|ed in two
the case for our model in the absence of a magnetic field, th@@ys: First, one can perform the sum over the intfeand
pair spin cumulant in Eq3.6) simplifies to the obvious form YS€ the first of Eqs2.12), which leads to

_ _ 1 1 ~
Aaﬁ(o)_Aaa(O)aaﬁa A 4o(0)=1/D. (3.9 L(ﬁzl)ZEABBN nzp (ngl)ZUEnl(p). (3.13
As was shown in Ref. 28see also Ref. 27the limit D '
— o for the spin-vector model is completely described bySecond, inverting the transformati¢2.9) one can write
the self-consistent Gaussian approximati®@CGA), since
all diagrams not accounted for by the SCGA vanish in this
limit. The SCGA consists in taking into accoupair corre-
lations of the molecular field acting on a given spin from its
neighbors, which implies a Gaussian statistics of molecularaking into account the explicit form oyg’ given by Eq.
field fluctuations. The appropriate diagram sequence for thg2 6), one can see that after the integration over the wave
nonordered statg(s,)=0, is represented in Fig. 3. Its ana- vectorp expression3.14) becomes independent of the sub-
lytical form for the square lattice model is given in Ref. 27. |attice indexl. After this observation one can symmetrize Eq.
In a magnetic field or belowW . in the ordering models the (3.13 with respect tol. This leads to the vanishing of the
average spin polarizatiogs,)#0 appears. The additional diagonalization matrix by virtue of the first of Eq&2.12
diagrams and corresponding analytical expressions can kgnd to the appearance of the factor 1/3. Now the summation
found in Refs. 29, 30, and 28. The SCGA equations in thever| in Eq. (3.11) simplifies, and the diagonalization matri-
spatially inhomogeneous case and their laBgéimit have  ces convert, again, t6,, . The result in the second order of
been derivedand applied to domain wallsn Ref. 32. the perturbation theory has the form
In all cases above, the SCGA equations have been written
for diagonal Hamiltonians describing the simplest one- ) ) s 1 o
sublattice magnets. For nondiagonal Hamiltonians, such as Ao=A apply Lfg)=ﬁﬁ > (,3Vp1)2 (3.15
Eq. (2.5), the matrix interaction lines, here,BV'(;' , compli- P
cate the formalism. Simplification can be achieved by using
the diagonalized Hamiltonian, for our model, Bg.7). For (8, has been omittgdand it is independent of the eigen-
the latter, however, the counterparts of the one-site cumu- value indexn and of the wave vecta.
lant averages do not have a transparent meaning anymore The mechanism of the simplification of diagram expres-
sinceo is a combination of spins on different sites and sub-sions demonstrated above can be shown to work for what-
lattices. Thus ther cumulants should be specially worked ever complicated diagrams. In all cases oval blocks represent
out as follows. The pait- cumulant(which is in our model ~ cumulant spin average$, ,, ... , as in the original, non-
explicitly diagonal in the spin-component indicesg) can  diagonalized, version of the classical spin diagram technique.
be rewritten in terms of the initial spin variables as In all the elements connected to a given block summation
) , over the eigenvalue indicesis carried out. The diagonaliz-
<agqagq,>0,cum:um(q)u|,n,(q')<s;qs;q,>o,cum. (3.9 ing matrix U disappears completely if correlation functions
for the o variables,

1 1 ,
L =7 Appyg 2 (BVp )2 (3.14
. |!p
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D 1 Now one can eliminaté from Egs.(3.19 and(3.21), which
o"(q)= N<0-2q0-2,7q>: N<0J210J1q>' (3.16 yields the basic equation of the lar§emodel,

are considered. After the calculation of the latter the true spin ~ =
CF’s can be found from the formula DAq.P=1. (3.23

S () =U (@)U a(a) a™(q) (3.17  This nonlinear equation determininy,, as a function of
temperature differs from those considered e&fligr?8*‘py

£ th lati il d thev d ibe ind a more complicated form d? reflecting the lattice structure.
of the correlation matrix™ (q) and they describe indepen- The form of this equation is similar to that appearing in the

dent linear responses to appropriate wave—vector—dependemteory of the usual spherical mod&?® The meanings of
flelq§. As ca‘r‘1 be seen from”E(B.17), the elggnyectors de- both equations are, however, different. Whereas in the stan-
scribing the “normal modes™ of the susceptibility are those o4 spherical model a similar equation account for the
of the interaction math'ql_ in Eq.(2.9. pretty unphysical global spin constraint, E8.23 here is, in
The analytical expression for the CF in the SCGA, fact, the normalization conditiofg?) =1 for the spin vectors
which satisfies the Dyson equation shown in Figg3has  on each of the lattice sites[see Eq.(3.1)]. Indeed, calcu-
the Ornstein-Zernike form lating the spin autocorrelation function in the form symme-
trized over sublattices with the help of Eq8.17), (2.12,

following from Eg. (2.13. Note thate"(q) are eigenvalues

DA o and(3.18, one obtains
1-A,aBVq
This expression differs from that obtained by Reimers on the ()= f dq E s'(q)
mean-field basfsby the replacement of the bare cumulant vo (2m)43 1 d

A ,,=1/D by its renormalized valud ,, determined by the
diagram series Fig.(B). The summation of these diagrams is _ dg PN
documented in the most detailed way by E(16—(3.19 _Uoj (2m)¢ 3«7 (@=DAuP. (3.24
of Ref. 30. The result foh ,,, is given by the second line of
Eq. (3.6) averaged over th@aussiarfluctuations of all com-
ponents of the molecular fielél with the dispersion defined

by the quantityL ,. In our model, fluctuations of different been found from this equation, the spin CF's are readily
components of are independent from each other and of thegiven by Eqs.(3.18 and(3.17).

same dispersior,,=L. Thus the quantity\ .5 is diagonal To avoid possible confusion, we should mention that in
and independent ot. In thg largeb limit the multiple 1o paper of Reimers, Ref. 6, where E§.18 with the bare
Gaussian integral determininy,,, is dominated by the sta- cumulantA ,,=1/D has been obtained, the theoretical ap-

That is, the spin-normalization condition is automatically
satisfied in our theory by virtue of E¢3.23. After A, has

tionary point and the result simplifies?o proach has been called the “Gaussian approximai@h).”
This term taken from the conventional theory of phase tran-
~ 2 1 sitions based on the Landau free-energy functional implies

Aaa_B m (319 that the Gaussian fluctuations of tioeder parameterare

considered. In the microscopic language, this merely means
Here the dispersioh corresponding to the diagram series in calculating correlation functions of fluctuating spins after ap-

Fig. 3 is given by the formula plying the MFA. Such an approach is known to be inconsis-
5 _ tent, since correlations are taken into account after they had
Ao dq (,ng)2 been neglected. As a result, for tkegomelattice one ob-
L= 3_2!; UOJ (2m) 1- R oV (320  tains a phase transiton at the temperatufg="TY™

=2J/D but immediately finds that the approach breaks
generalizing Eq(3.19. Here, the summation (W)=,--- is  down belowT, because of the infinitely strong fluctuations.
replaced by the integration over the Brillouin zong,is the  In contrast to this MFA-based approach, the self-consistent
unit-cell volume, andl is the spatial dimensionality. For the Gaussian approximation used here allows, additionally, to
kagomelattice we havev,=2/3 andd=2. The expression the Gaussian fluctuations of theolecular field which renor-
for L can be simplified to malize A ., and lead to the absence of a phase transition for
this class of systems. The SCGA is, in a sense, a “double-
P-1 _ 1 Gaussian” approximation: The diagram series in Fi(p) 3
= §§n: Pn, (3.2)  allows for the Gaussian fluctuations of the order parameter,
aa whereas that in Fig.(®) describes Gaussian fluctuations of
where P,, is the lattice Green function associated with thethe molecular field.
eigenvaluen: To close this section, let us work out the gxpressions for
the energy and the susceptibility of ttkk@gomeantiferro-
dq 1 magnet. For the energy of the whole system, using E4%.
”:Uof 3 = —. (3.22 and(3.16), as well as the equivalence of all spin components,
(2m)" 1= AaaBVq one obtains

L
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dg - and the reduced eigenvalues(q) are given by Eq(2.9).
dVga”(q). (3.29 The o CF's of Eq. (3.18, which are proportional to the
(2m) integrands ofP,,, can be rewritten in the form
To obtain the energy per spld, one should divide this ex- 0G
pression by 8l. With the use of Eq(3.18), the Ia@r can be o"(Q)= ————.
expressed through the lattice Green’s functiBnof Eq. 1=-Gwy(a)
(3.21); then with the help of E(3.23) it can be put into the  Further, it is convenient to consider the reduced energy per
final form spin defined by

N
Utot:<H>: - Ezn: Uo

(4.9

U=U/|Uy|, Ug=-1J, (4.5

whereU, is the energy per spin at zero temperature. With

The susceptibility per spin symmetrized over sublattices cathe help of Eq(3.26 U can be written as
be expressed through the spin CF’s as

~ 1
U=3D-5—]. (3.26

U=0-1/G. (4.6)

1 )
Xq:SD_TE s'(q). (3.27  The homogeneous susceptibility of Eq. (3.29 can be re-
I written with the help of Eq(2.14) in the reduced form
With the use of Eq(3.17) this can be rewritten in the form

~ G
1 X=2)x=155- (4.7)
Xa= 3572 Wa@)a"(@),  Wa(@=2 Uin(a),
(3.29 The sense of callin@ the “gap parameter” is clear from

. ) ) Eq. (4.4). If G=1, then the gap in correlation functions
where the diagonalized CF's are given by E§.18. From  ¢joses: ¢! turns to infinity, ando? diverges atq—0. For
Eq. (2.19 it follows that in the limitq—0 one hasW;  ponordering models, it happens only in the lirgit- 0, how-
=W,=0 andWs= /3. Thus the homogeneous susceptibility ever. The solution of Eq(4.2) satisfiesG=1 and goes to
X=Xo simplifies to zero at high temperatures. #<1, the functionP is domi-

1 nated byP,;=1/(1-G), whereasP; remains of order unity
X=ﬁa3(0). (3.29 and P, diverges only logarithmically, as in usual two-
dimensional systems?,=(+/3/7)In[c/(1-G)], c~1. The
As we shall see in the next section, disappearance of thensuing asymptotic form of the gap parameter at low tem-
terms withn=1 and 2 from this formula ensures the nondi- peratures reads
vergence of the homogeneous susceptibility of iagome

antiferromagnet in the limiT—0. The situation foq+0 is =1 o [0 2_3| 3¢ <1 @9
much more intricate and it will be considered below in rela- T 3 \3/ 7 n 0’ : :
tion to the neutron-scattering cross section. ) )
At high temperatures, Ed4.2) requires small values dg.
IV. THERMODYNAMICS Here, the IImItlng form of P can be shown to bé=1
OF THE KAGOME ANTIFERROMAGNET +G?. The corresponding asymptote @Gfhas the form
To put the results obtained above into the form explicitly 1 1
well behaved in the largB- limit and allowing a direct com- G=41- rak 60>1. (4.9

parison with the results obtained by other methods for sys-
tems with finite values ob, it is convenient to use the mean- The numerically calculated temperature dependend® isf
field transition temperaturgy*=2J/D as the energy scale. shown in Fig. 4. Note that in the MFA one h&=1/6
With this choice, one can introduce the reduced temperatur@hich attains the value 1 a=1.

0 and the so-called gap parame@iaccording to The temperature dependence of the reduced energy of Eq.
(4.6) is shown in Fig. 5. Its asymptotic forms following from
T D. Egs.(4.8) and (4.9 are given b
0= —umnr G=5Raa. (ap 98 and(@9are given by
Te - (=1, 6>1
In these terms, Eq3.23 rewrites as U= _ 1+(2/3)6, 6<1. (4.10
6GP(G)=1 (4.2 This implies the reduced heat capadity: dU/d 6 is equal to

2/3 at low temperatures, in contrast @=1 for the usual
two-dimensional lattices in the same approximation. The lat-
ter result is solely due to the term linear éhin Eq. (4.6),
q 1 1 whereasG only exponentially deviates from 1 at low tem-
= q = peratures. For thkagomelattice, there is a linear i con-
Pn Uo d ’ Pl ’ (43) . R .
(2m)4 1= Gry(0q) 1-G tribution to the gap paramet& of Eq. (4.8), which leads to

and determine& as function ofé. HereE(G) is defined by
Eq. (3.21), where
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FIG. 4. Temperature dependence of the gap paran@eter the
kagomeantiferromagnet.

free, making no contribution to the heat capacity.
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FIG. 6. Temperature dependence of the heat capacity of the

kagomeantiferromagnet. The MC results of Ref. 2 for the Heisen-
berg model D=3) are represented by circles.

C=2/3. This reflects the fact that one of three modes in the
kagoméattice[see Eq(2.7)] is dispersionless, and hence 1/3 take into account the [/ corrections to the presem =
of all spin degrees of freedom in the system are local andesults. For conventional magnets, this leads in the first order

in 1/D to the replacement d8=D/2 by C=(D —1)/2 in the

The reduced variables introduced at the beginning of thigimit T—0.2"?8 This result is exact and physically transpar-
section are very convenient for the comparison of the resultent as following from the constraing|=1 in counting of

for D= with those for finite values oD, which are ob-

the spin degrees of freedom; it does not change further at

tained by other methods. The expected discrepancies are bigher orders of the IV expansion. For th&kagomelattice,

order 1D which is not too much foD =3. (Note that the
D=« approximation can be

improved by the D1/

the same counting argument suggests to replacky D
—1, which would yieldC= (D —1)/3=2/3 for T—0. On the

expansiort.?3 To compare with the MC simulation data of other hand, inclusion of the [/ corrections reduces the de-
Ref. 2 for the heat capacity of the Heisenberg model we willgeneracy of the ground state, and the heat capacity should

use, instead ofC, the true heat capaciyC=dU/dT
=(D/2)C [see Eqgs(4.1) and (4.5)], which in our approach
tends toD/3=1 at low temperatures. The fairly good agree-
ment on the high-temperature side of Fig. 6 is not surprising
since a nontrivial dependence @ appears only at order

increase again. This degeneracy reduction manifests itself by
the appearance of thee dependence of the correlation func-
tion o-im of EqQ. (4.4). On the high-temperature side, the de-
generacy of the largest eigenvalue of the susceptibility ma-
frix is removed at order TP [see Eqs(3.29 and(3.31) of

1/T2 for the NN correlation function and hence for the en- Ref. 4; the effect vanishes, however, fbr—c]. At low

ergy, and thus at order T for the heat capacitysee the
combinationn+2=D+2 in Eq.(3.109 of Ref. 4. The rea-

temperatures, the resulting heat capacity becomes 11/12
(Ref. 2, which is not far away from our resu@— 1.

sonable agreement with the MC results at low temperatures The reduces uniform susceptibilify calculated from Eq.
is better than expected and can be interpreted as a compel#-7) is shown in Fig. 7. Again, our results are in a fairly
sation of errors. Indeed, for finite values bBf one should

kagomeantiferromagnet.

~ 04t
0.04+7—~ . . .
{og
o
-0.2- B 0.3
-0.44 - 0.2
-0.6 B
0.1
-0.84 B
0.0 T T
1.0 ' . . . 0 1
0 2 3 4 5
6 =T/TMFA

4 5
6 = 7/TMFA

FIG. 7. Temperature dependence of the reduced uniform suscep-
FIG. 5. Temperature dependence of the reduced energy of thibility of the kagomeantiferromagnet. The MC results of Ref. 12
for the Heisenberg modeD(=3) are represented by circles.
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good agreement with the MC data of Ref. 12, which are, in , dg . 1 v

turn, in accord with the HTSE results of Ref(dot shown. s ZSUOJ S0 () Upa(9)

Here, in contrast to the heat capacity, our regu#1/3, or (2m)

x=1/(6J), atT=0 is exact This follows from the fact that dq

the zero-temperature susceptibilities of the clasdieglome :3vof co{q-(r!—r'j')]
antiferromagnet have the same vajge 1/(6J) for all direc- (2m)¢

tions of the field with respect to the three spins on a triangle ) )

being mutually oriented at 120°. On the contrary, for con- % sin(u; -g)sin(u; -q) (5.9
ventional low-dimensional antiferromagnets, which show sirf(u-q) + sirf(v-q) + sirf(w-q) ' ’

two-sublattice short-range correlations, there Rrel sus-

ceptibilities transverse to the local orientation of spigs, where, according to Eq2.11),

=1/(2J,), and one longitudinal susceptibilify, which van-

ishes in the zero-temperature limit. After the averaging over U=W, U=V, Uz=U. (5.5
all orientations of spins one obtains the exact reguit(1

—1/D)/(2J,) at T=0, which differs significantly from that At large distancesijzr!—r}', the small values ofy are
for the D= model. Taking into account the first-ordeiDl/  jmportant in Eq.(5.4). Thus one can expand the sines to the
correction leads to a rather accurate result §¢T) in the  |owest order and useu¢q)?+(v-q)2+(w-q)%=(3/2)q>.
whole temperature rangé,which has a well-known flat  After that integration can be done analytically and yields the
maximum atT=J. Returning to thekagomeantiferromag-  asymptotic result

net, one can state that theDlEorrections to the susceptibil-

ity are smaller than in the conventional case. The small

v a ~ . 233 (U U = 20U ()

maximum ofy in the data of Ref. 12 is probably allfkffect S = (5.6

1) 4
T rij

arising due to the increase of the longitudinal susceptibility

of spins with temperature at low temperatures, similarly to ) _ ,
that in conventional low-dimensional antiferromagnetse  [0f [ij>1. Thatis, at zero temperature spin CF's decrease at
Ref. 27 for details the scale of the lattice spacing and decay according to a

power law 1f? at large distances. The form of E€.6) is
that of the dipole-dipole interaction in a two-dimensional
V. REAL-SPACE CORRELATION FUNCTIONS world. Here the elementary translation vectarsassociated

) with each of three sublatticésee Eqs(5.5), (2.2), and(2.3)]
The long-wavelength, low-temperature behavior of éhe )5y the role of dipole moments.

correlation functions of Eq(4.4) is given, according to Eqs. At nonzero temperatures, an additional exponential decay
(2.8), (2.14), and(4.8), by of the correlation functions appears, which is governed by
the correlation length. of Eq. (5.2). For #<1, the third-

342 eigenvalue terrm=3, in Eq.(5.3) can still be neglected, and

K 0 ]

ol=3, o¢’=——, o’=_, (5.1) one can use the first and second columns of the long-
K*+0? 3 wavelength form of the diagonalizing matrid,,(q), Eg.

(2.15. The resulting CF"'(q) of Eqg. (3.17, which enters
where the quantityc®=26/3 in ¢? defines the correlation Eg. (5.3), has the form
length

Suf(q)EKZ(‘1+35H')+2<UI -Q)(u-q)

1 (3)\1? 2, 42
§c=;=(—) . (5.2 Kra

20
Whereas thec? term in the numerator yields only small con-

] o tributionse @ in the real-space CF's, that in the denominator
The appearance of this length parameter implies that the reglagits in the additional exponentially decaying factor
space spin CF's defined, according to E(17 and(2.4),

(5.7)

by 1, «kn<l
Krinl(Krij): /’7TKriJ' /zefkrij, Kn»l, (58)
& =p [ 2L g0, (@)U, (@) o™a) i
ij =Vo (2m)° inla)Yra(q)o(q), in Eq. (5.6).

To study real-space correlation functions at distances of
the order of the lattice spacing and to list the particular cases
of the general formuld5.6), it is convenient to enumerate

decay exponentially at large distances at nonzero tempergpgg by the numbers, andn, defined by Eq(2.1), as is

tures. In contrast to conventional lattices, divergencé,. ait - nroo . .
’ shown in Fig. 1. Thu is the correlation function of the
06— 0 does not lead here to an extended short-range order, 9 Snyn,

i.e., to strong correlation at distancess¢,. The zero- | sublattice spin of the “central” triangle (0,0) with the
temperature CF’s agurely geometricatjuantities which are  Sublattice spin of the triangle translated hy,(n,). (Note

dominated byo! and have the form thats',1'u"n ;ts',{LJ"n , in general). There is a number of several

(5.3
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useful relations between correlation functions. First, the sun€omparing Eqs(5.13 and(5.14), one concludes that corre-
of the CF’ss'rl poverl atT=0 is zero by virtue of Eqg5.4) lations in theD = model have nothing in common with the
and(2.12: Y \/§>< \/§ structure which is selected by thermal fluctuations
in the Heisenberg modéft'*2Apart from the fast decay, the
stotsiatsiy=0, T=0. (5.9  sign of the correlation function changes with each step along
N . the line connecting the sites, while the coefficient alternates
Taking into account the symmetry of the lattice, one can pupy he factor 2. Such a behavior of the sign and coefficient
this relation into the form of the “star rule cannot be described by any ordering wave vector. Correla-
Slr:,0+ Sl()l,n+sln|,n:0! 12123 (5.10 tors involving the third sublattice have the form
for the sum of the correlation functions along the directions 13 31 . 23 32:£ (5.15
u, v, andw [see Eqs(2.2) and(2.3)]. The star rule does not '

Sn,O: n,0= *n,0= °n,0— 7TI’2'
hold at nonzero temperatures, which can be easily seen frOIBne can see that the above expressions satisfy the triangle
the HTSE for the spin CF'’s starting fromTE" for st and b ;
P 9 n.0 rule, Eq.(5.1)). In addition, the CF’'s along the three lines

22 2n+1 33 ; e
Snoand from 17 for s, 0. More detailed analysis shows going through the apexes of the David stars in Fig. 1 read

that in the low-temperature region the sum in E@s9 and
(510 is smaller thans’, by a factor of order 23
(kn)2In[1/(xn)] at the distancexn<1. Thus the star rule Sh =S n=Sam=""p"
can be used with a good accuracy in the whole rasftgdl. el
An additional relation can be found from the condition that

. : To calculate the short-range correlation functions, one
at zero temperature the sum of spins in each of the triangle . Y
is zero. Thups one obtains, e.g. tﬁe “triangle rule” g s?hould use in Eq95.3) or (5.4 the full form of the diago-
’ ’ nalizing matrixU,,(q) [see Eq.(2.10] instead of its long-

(5.1

Slnl ) +S|nz ) +S|n3 =0, T=0 (5.11) Wayelength for_m(2.13 and inte_grate over the whole Bril-
urv urtv urtv louin zone. This seems to be impossible to do analytically,
for all I, n,, andn,, as well as similar relations. but atT=0 one can express numerous CF’s through some
The most nontrivial of the relations between spin CF'’s is' fundamental” one with the help of the relations discussed
the “hexagon rule” above. So, in addition to the trivial resuligo=1, Sio
=s?%=—1/2, etc., one obtains numerically
Shex= r/ZheX (= 1)fsyr= 0" chex (5.12 sto=si%=a=0.1540. (5.17

. ., After that using the star and triangle rules leads to the results
for the correlators between a siteand all the sites’ be-

longing to hexagons, which are taken with alternating signs. s¥3=—-2a=-0.308, si3=-a+1/2=0.346,
If the siter itself belongs to the hexagon, the right-hand side ’ ’
of Eg. (5.12 is nonzero and the autocorrelation functigp si2=s13=3a—1/2=-0.038, s!2=-4a+1/2=0.116,
in the sum is taken with the positive sign. As follows from ’ ’ ’
Eq. (4.4 and the temperature dependence of the gap param- sl — _6a+1=0.076, st ,=3a—1/2=—0.038.
eter G, the quantitys,, changes in this case from 1 at high ’ ’ (5.18
temperatures to 3 at low temperatures. This very deep rela-
tion has been derived in Ref. 4 from the condition that theNow from the hexagon rule for the hexagon marked by the
largest eigenvalue of the correlation matei# is indepen- Star in Fig. 1,
dent ofq. For models with finiteD this condition and hence
the hexagon rulg5.12) is violated only at order TF of the
HTSE? For our D= model, ¢* given by Eq.(3.18 re-  and from other relations one obtains the CF’s on the remote
mains dispersionless at all temperatures, and the hexagaide of this hexagon:
rule is always satisfied.

At long distances, the zero-temperature sublattice- s§}1= 3a—1/2=-0.038, 5531= —6a+1=0.076.
diagonal CF's in the horizontal direction, which follow from (5.20
Eq. (5.6), have the form

_Qll 3, 12 a1, A3 12
Shex=S1,0~S11+ 51121+ 5217S10=0,  (5.19

After that the star and triangle rules yield

g £32 I ﬁf 5.13 sit=10a—3/2=0.040, s}2=—36a+11/2=—0.044,
Y oo ’ wr 13 11
$70=26a—4=0.004, s, _;=—2%+9/2=0.034.
with r=2n. One can see that relatidb.9) is satisfied. For (5.21)
the spin correlators between the first and second sublattic

i . : %his routine cannot be continued without numerically calcu-
along the horizontal line one obtains

lating the next fundamental CB3o=0.0164. This would

12 make little sense, however, because at such distances corre-
Sn.o 2‘/§ 2n+1 lati functi Iread I d ibed by thei

= — _ (5.14 ation functions are already we escribe y their
Sﬁ,lo ar? 2n—-1 asymptotic forms given abovsee Fig. 8
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FIG. 8. Real-space correlation functiosf§, and|st%| at T=0
calculated from Eq(5.4). The distance unit is the interatomic spac-
ing. The asymptotes given by Eq$.13 and(5.14) are shown by
the dashed lines. Crosses are the results of Ref. 16 for the quantum
system withS=1/2 multiplied by 4. FIG. 9. Neutron-scattering cross section from the ldbge-

kagomeantiferromagnet al =0 (cf. Fig. 2.

The results obtained above for the real-space CF’s can be
compared with those for the quantum Heisenberg antiferroall coefficient in Eq.(6.1) contains a magnetic form factor
magnet withS=1/21® The latter for the CF’s of the same and is poorly known, one can use the most convenient form
type, multiplied by a factor of four to normalize the autocor- of this coefficient and define
relation function by one, are also shown in Fig. 8. In contrast
to the classical Heisenberg antiferromagnet on khgome d_": E
lattice selecting the/3x /3 structure, the ground state of the dQ 397
quantum model is disorder&d® which brings it, in a sense,
closer to ouD = model. In the quantum model CF’s decay
faster: Even for the nearest neighbors one P%%=

, 1
$'(@=32 Wi@e"@. (62

This expression differs from the wave-vector-dependent sus-
ceptibility of Egs.(3.27) and (3.28 only by the absence of

—0.2922 instead of- 0.5 because of the zero-point motion. DT in the denominator, while the normal-mode CE'S are

For the establishing of the large-distance behavior of th%'ven by Eq.(4.4). The scattering wave vectoris not con-

CF’s in the quantum antiferromagnet, the numerical diago-Ined to the Brillouin zongBZ), in contrast ta appearing in

nalization of clusters of much larger siz@$ sites in Ref. 16 the calculyanon of the th_ermpdynamlc quantities a_nd real-
or 27 sites in Ref. 17is needed, which is a tremendous SPaCe CF’s. For usual bipartite lattices, the scattering cross

computational problem section withq outside the BZ is the same as witi=q
The main implication of this section is that the spin cor-__ ¥ inside the BZ, wherex is an appropriate reciprocal-

relation functions for the largB- model on thekagomielat- lattice vector. That is, in this casbr/d() is repeating over

tice decay at the distances of the order of the lattice spacinme set of exjended Brillouin zones. For periodic Iatti_ces .With.
even atT—0, in spite of the divergence of the correlation ore complicated structures, the neutron cross section is still

length&.. ThusT=0 isnot a critical pointof this model, in a periodic function ofy, but the period can be larger than

contrast to the conventional low-dimensional ferro- and an®"€ BZ. , L e .
For the kagomelattice in the limit T—0, Eq. (6.2 is

tiferromagnets. Correlations developing in the low- ; el g -
temperature range, which, however, become only strong b&lominated by the term witor = §G/(1-G). Using G=1
0/3 one obtainglo/dQ =Wi(q) that is temperature inde-

tween several neighboring spins, characterize the state of our st
model as aspin liquid pendent. As follows from the contour plot in Fig. 9, the

“unit cell” for the neutron cross section contains four Bril-
louin zones: one with a very low scattering intensity, such as
VI. NEUTRON-SCATTERING CROSS SECTION the first BZ in the middle, and three BZ's with a highly
) ) ) . .Inhomogeneous scattering pattern oriented at three different
The static magnetic neutron-scattering cross section igngles. The neutron cross section is symmetric with respect
proportional to the static Fourier-transformed spin CF: to rotations by 60 ° degrees. It reaches its maximal value for
q=(=8/3,0), etc., and vanishes along the directiaps

do . ) , =0,= \/§qy, includingg=0. The scattering pattern in Fig. 9
d_sz (S Sﬁr>e'q“‘f ), (6.1 strongly resembles that in the appropriate plane for the clas-
L sical Heisenberg model on the pyrochlore lattice, which was

obtained by MC simulations in Ref. 44. In contrast, the per-
whereS; is the component of the spin perpendicular to theturbative calculation for the guantum AFM model wish
scattering wave vectay. In our model all spin components =1/2 on the pyrochlore lattié@ shows much less revealed
are equivalent and=r: is defined in Sec. Il. Since the over- triangular shape of the maxima of the neutron cross section.
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Let us now analyze the neutron cross section in more do/dQ) powder,
detail. At T=0 using Eqs(2.11) and(3.28 one obtains ST T ]

do _4 sirf(qy/2)[cog a,/2) —cos \3q,/2)
sir?(q,) + >, sirf(q,/2= \3q,/2)

, (6.3

where >~ . sums terms with both signs. Particular cases of
this formula are the following. Fog,=0 one has
do 4 sirf(q./4)
dQ  1+2 cod(q,/2)

This is equal to 1/3 at the corner of the first B{~=2#/3, to
2 atqg,= 7 (the highest slopeto 3 atq,=4/3 (the maxi-

(6.9

mum), and to 8/3 af,=2m. Near the lineq,=0, Eq.(6.3) FIG. 10. Powder average of the neutron-scattering cross section
simplifies to from thekagomeantiferromagnet af = 0. Inset: MC simulations of
) \/_ Ref. 12 for the Heisenberg model.
do (¢ 3 27
mg?xtanz 4qy, an qy_ —=|>0x (65) 2 2
\/§ d_0'2§& K, 0y, 80, <1 (6.9
For small wave vectors one obtains dQ - 3, 2+q2+(6q)2 T '
do 1 Q>2<(Q3_3q32/)2 IF can be seen that this expres_sion is nonanglytic only in the
d—Qs 9% 2.z Ox,0y<<1. (6.6) limit T—O0, where the correlation lengtf. defined by Eq.
Ox + Cy (5.2 becomes infinite.

The most interesting form of the neutron cross section is 1h€ powder average of the neutron cross section
realized in the vicinity of the centers of the Brillouin zones (do/d(), i.e., the average of E¢6.2) over the directions of
surrounding the first BZ in Fig. 9. In particular, neqr 9. iS shown in Fig. 10. Positions of its singularities Bt

—(0,27//3) Eq.(6.3) takes the form =0 can be found from the scattering pattern in Fig. 9. The
first of them are located aj=2m/3~3.63 (sharp maxi-
do 8 q2 sa <1 67 mum):/7277~6.2(8 (slTarp minihmulrl);ﬁ \/(377)2/3_(77/&)2
To =2 5 o 5 Ox,00y<l, . =2m7/3~9.6 (small cuspy shouldgr 3X27/3~10.88
dQ 3 q§+ (5qy)2 X y

(sharp maximum V(4)2+ (2m/\3)2=2m/13/3~13.08
where 5qyzqy—27r/\/§. This function is nonanalytic at (sharp minimuny (57)%+ (7/+/3)%?=2m/19/3~15.81
dx,90dy,=0, and its limiting value in this point depends on (sharp maximury 5X 27.,/\/§~ 18.14 (sharp maximum)
the way of approaching ittSuch a function is difficult to g;~18.85 (cuspy shoulder etc. With increasing ofy the
plot: What looks like narrow paths in Fig. 9 are in fact infi- pehavior of(do/d()) becomes more and more irregular, and
nitely thin walls) _ it very slowly approaches the value 1. The latter can be un-
At T#0 one should take into account the terms with  derstood since for large values qfthe average over the
=2,3in Eq.(6.2). This is especially important in the region gjrections ofg should be equal to that overitself. The latter
where the zero-temperature neutron cross section turns {§ according to Eq(6.1), nothing else but the autocorrelation
zero or is singular. In particular, nege=0 the quantityW;  function, and the result is unity for the normalization of
is small due to cancellation of the leading terms and is giveris/d() adopted in Eq(6.2).
by the right-hand sidérhs) of Eq. (6.6). Similar cancellation At nonzero temperatures, the sharp featureédaf/d()
takes place inV3, and the result is given by the same for- smoothen. Their low-temperature forms can be found with
mula with interchanged, andq,. The leading term thus the help of Eq(6.8) and are given by
becomes the noncancelled one associated with the “optical”
eigenvalueW5=3. This leads to the uniform susceptibility do 43 (59)2
given by Eqs(3.29 and(4.7), that tends to a constant in the <—> =2.712+0.8685q—— NPETTIE
near the first maximumsq=q—2=/+/3, and

o) (6.9
low-temperature limit. On the contrary, with q#0 be-
haves as IV at low temperatures.

In the vicinity of the singularity point|j= (0,277/\/5), ie.,
near the center of the Brillouin zone just above the ficen- < do

4
—> =0.0183-0.2385q+ ;\/K7+ (50)% (6.10

tral) BZ in Fig. 9, cancellation of the leading terms does not 90

take place. Here the matrﬁtq differs from that of Eq(2.15
by the redefinitionn,=38q,/[a5+(5q,)?]*? and by the near the first minimumég=q— 2. In the high-temperature
change of sign of the third row. Hel is given by the rhs  limit, Eq. (6.1 is dominated by the autocorrelation function,
of Eq. (6.7) with interchanged], and5q, . Now with the use  and the neutron cross section defined by @®) is equal to
of Eq. (5.1) one obtains the final result 1 for all q (an absolutely diffuse scatteripg
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The MC simulation data of Ref. 12 for the Heisenbergabove are in a fairly good agreement with the MC simulation
model atT=0.002) are shown in the inset to Fig. 10. At results for the Heisenberg model in the whole temperature
such low temperatures the system shows a tendency towardsnge. This implies that the I/ corrections to the thermo-
selection of the\3x+3 phase, and the corresponding dynamic functions of thekagomeAFM, which could be
Bragg-reflection peaks grow. The latter, according @),  studied within the same theoretical framewdf&® are sup-
are situated at the corners of all Brillouin zones in the expressed by some mechanism.
tended BZ scheme shown in Fig. 9, and their positions are The D= model and the T} expansion seem to be in-
shown by additional tics in Fig. 10. These peaks that arefficient in the cases when, due to topological effects, the
superimposed on the underlying=c« structure can be behavior of the system abruptly changes at small values of
traced out in the inset. Note that there are Bragg-reflectio®. A well-known example is the Berezinskii-Kosterlitz-
peaks in the vicinity of thd = peaks, and they seem to be Thouless transition which takes place in two dimensions for
mixed together in the simulations of Ref. 12. In contrast, theD =2. For thekagomelattice, thermal fluctuations favor the
first two minima in Fig. 10 can be found in the inset at nearly/3x /3 phase at low temperatures for the Heisenberg
the same positions, although in a strongly rounded form. model, but there is no such an effect @342 0On the

other hand, the tendency to the selection of tf@x /3
VII. DISCUSSION phase at low temperatures is already seen in the high-
) , i , temperature series expansion of Ref. 4 for any finite value of

In the main part of this article, we have presented in detaify £yactly how this mechanism becomes inefficient at low

the exact solution for th® =< component classical antifer- temperatures fob >3, could be studied with the help of the

romagnet on th&agomelattice. The solution does not show y/ ‘expansion. The latter describes lifting of the degeneracy
ordering at any temperature due to the strong degeneracy gt e |argest eigenvalue of the correlation matrix in the first

the ground state, and the thermodynamic 'functigns bEha\@rder in 1D and is applicable in the whole range of tempera-
smoothly. In contrast to conventional two-dimensional mag+ res.

nets, there is no extended short-range order at low tempera- As follows from the consideration above, the Heisenberg

tures, andr =0 is not a critical point ofEhl?zsystem. Although 5 ntiferromagnet on th&agomielattice is still not the best
the correlation length diverges &@g=T 7, the power-law 4 4g to substitute it with th® = model. For the Heisen-

decay(sys ) 1/r? of the spin correlation functions leads to berg AFM on the pyrochlore lattice, the lar@eapproxima-

the loss of correlations at the scale of the interatomic distqn"can be expected to work even better since this model is
tance. The magnetic neutron-scattering Cross section bg; 5 sense, more disordered, and topological effects leading
comes nonanalytic at—0 but does not diverge at any “or- pere tg the selection of the coplanar phase arise onlyfor

deri?%” War\]/ehvector. | with an infini ¢ spi =21 The formalism for the pyrochlore lattice in zero field
Although the model with an infinite number of spin com- j5 eqqentially the same as for thagomelattice, and the

ponents may appear very unphysical at the first glance, it i3, egponding results will be presented elsewhere
in fact the second that should be applied, after the mean-field P g P '

approximation, to any classical spin system. It properly de-
scribes the effect of would be Goldstone modes and thus it
has important advantages against the MFA. Properly scaled We would like to thank John Berlinsky for the permission
physical quantities show a smooth dependenc®pand in  to use the data of Ref. 12 in the inset to Fig. 10 and Kon-
typical cases the largh- model proves to be a reasonable stantin Kladko for a critical reading of the manuscript. D. G.
approximation to the realistic one wilbh=3. So, the results is grateful to Christopher Henley for a stimulating discus-
for the heat capacity and the uniform susceptibility obtainedsion.
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