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Classical spin liquid: Exact solution for the infinite-component antiferromagnetic model
on the kagomélattice

D. A. Garanin* and Benjamin Canals†

Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany
~Received 22 May 1998!

Thermodynamic quantities and correlation functions~CF’s! of the classical antiferromagnet on thekagome´

lattice are studied for the exactly solvable infinite-component spin-vector model,D→`. In this limit, the
critical coupling of fluctuations dies out and the critical behavior simplifies, but the effect of would-be Gold-
stone modes preventing ordering at any nonzero temperature is properly accounted for. In contrast to conven-
tional two-dimensional magnets with continuous symmetry showing extended short-range order at distances
smaller than the correlation length,r &jc}exp(T* /T), correlations in thekagome´-lattice model decay already at
the scale of the lattice spacing due to the strong degeneracy of the ground state characterized by a macroscopic
number of strongly fluctuating local degrees of freedom. At low temperatures, spin CF’s decay as^S0Sr&
}1/r 2 in the rangea0!r !jc}T21/2, where a0 is the lattice spacing. Analytical results for the principal
thermodynamic quantities in our model are in fairly good quantitative agreement with the Monte Carlo simu-
lations for the classical Heisenberg model,D53. The neutron-scattering cross section has its maxima beyond
the first Brillouin zone; at T→0 it becomes nonanalytic but does not diverge at anyq.
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I. INTRODUCTION

Classical antiferromagnets onkagome´ and pyrochlore lat-
tices built of corner-sharing triangles and tetrahedra, resp
tively, are examples of frustrated systems which cannot o
because of the high degeneracy of their ground state1 and
ensuing large fluctuations. Monte Carlo~MC! simulations
for kagome´ 2 and pyrochlore3 lattices with the nearest
neighbor~NN! interactionJ show a smooth temperature d
pendence of the heat capacity,C(T), in the entire tempera
ture range. The spin correlation functions~CF’s! of both
models show only weak short-range order atT&J and decay
at distances of the order of several lattice spacingsa0 . This
is in a striking contrast to the long-range order in comm
three-dimensional magnets and the extended short-rang
der @strong correlation at the distancesr &jc}exp(T* /T)
with T* ;J# in common two-dimensional magnets.

Spin-wave calculations starting from one of the orde
states of thekagome´ lattice4 ~see, also, Ref. 5 for the quan
tum case! yield a twofold degenerate Goldstone mode,
well as a zero-energy mode for all values of the wave vec
q in the Brillouin zone, the latter reflecting the instability o
the ground states. Mean-field approximation~MFA! at el-
evated temperatures for bothkagome´ and pyrochlore lattices1

reflects the same behavior. The maximal eigenvalues of
Fourier-transformed exchange interaction matrix areq inde-
pendent for both models~and twofold degenerate for pyro
chlore!. Thus the system cannot choose the ordering w
vector at the mean-field transition temperature,Tc

MFA , which
in fact shows that there is no phase transition at this temp
ture because of fluctuations. This results in the smooth t
perature dependence of the thermodynamic quantities2,3 and
in the diffuse magnetic neutron scattering.6

The degeneracy of the ground state of these models
be lifted by small perturbations, such as dipole-dipole int
PRB 590163-1829/99/59~1!/443~14!/$15.00
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actions, lattice distortions, next-nearest-neighbor~NNN! or
long-range interactions, and quantum effects. This may b
reason why pyrochlore antiferromagnets usually freeze in
spin-glass state with lowering temperature.7,8 Theoretically,
the most transparent way to lift the degeneracy is to inclu
NNN interactions in the Hamiltonian.1 Experiment and MC
simulations on pyrochlores9 show ordering with an unusua
critical behavior (b'0.18) in this case. According to th
spin-wave results of Ref. 10 for thekagome´ lattice, at low
temperatures dipole-dipole interactions favor the planaq
50 phase which is characterized by the same ordering
tern in each of the elementary triangles.

A more subtle mechanism for lifting the degeneracy a
selection of definite ordering patterns is the nonlinear int
action of spin waves for classical systems at very low te
peratures, typicallyT&0.01J. For thekagome´ lattice, non-
linear effects~thermal fluctuations! favor the coplanar spin
configuration with theA33A3 short-range order in the cas
of the Heisenberg model,D53, as was suggested by th
results of MC simulations2,11,12 and high-temperature serie
expansions.4 Extension of theA33A3 short-range order into
the true long-range order in the limitT→0 is, however, ham-
pered by formation of chiral domain walls which cost n
energy but provide a gain in entropy at low concentration12

The configuration selection at low temperatures only occ
if the number of spin componentsD is low enough. So, the
early MC simulations of Ref. 11 for thekagome´ antiferro-
magnet showed selection of a coplanar state forD53, but no
such selection forD>4. For the pyrochlore lattice, earl
simulations showed the selection of the collinear spin ord
ing for the Heisenberg model at low temperatures,9 although
according to the recent results of Ref. 13 this happens o
for the plane rotator model,D52, and not for higher spin
dimensionalities. The above results are in accord with g
eral criterion for selection of ordered states as a function
443 ©1999 The American Physical Society
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444 PRB 59D. A. GARANIN AND BENJAMIN CANALS
spin and space dimensions for corner sharing objects, w
was formulated in Ref. 13. Quantum fluctuations we
shown to stabilize theA33A3 phase forS@1,14 but they
should destroy ordering for low spin valuesS.5,15–17One of
the possible mechanisms for that is tunneling of the wea
erwane~hard hexagon! mode in theA33A3 structure.18

It should be stressed, however, that the subtle effe
quoted above can be easily overwhelmed by more trivial
robust ones, and they are much easier to observe in sim
tions than in experiment. The first task of the theory is th
to describe the principal features of classical spin models
frustrating lattices, as, e.g., a smooth variation of the therm
dynamic quantities in the whole temperature range. The s
plest approach, the MFA, is clearly inapplicable in this ca
whereas the more powerful tools of the theory of critic
phenomena, such as the renormalization group, seem to
not been yet applied to these lattices.

The ‘‘next simplest’’ approximation for classical spin sy
tems, which follows the MFA, consists in generalizing t
Heisenberg Hamiltonian for theD-component spin
vectors:19,20

H52H–(
r

sr2
1

2(rr 8
Jrr 8sr–sr 8 , usr u51 ~1.1!

and taking the limitD→`. In this limit the problem be-
comes exactly solvable for all lattice dimensionalities,d, and
the partition function of the system coincides21 with that of
the spherical model.22,23 The D5` model possesses, how
ever, a number of important advantages with respect to
spherical one.~i! The 1/D expansion is possible,24–26includ-
ing the case of low-dimensional systems.27,28 The calcula-
tions can be done conveniently in the framework of the d
gram technique for classical spin systems.29,27,30 ~ii !
Inclusion of anisotropic terms in Eq.~1.1! is possible, too,
which allows us to describe ordering in low dimensions,
cluding thin films31 and domain walls.32 ~iii ! In spatially in-
homogeneous cases theD5` model yields physically cor-
rect results, in contrast to the spherical model failing on
global spin constraint.33 ~iv! Below the Curie temperatureTc
or in a magnetic field, theD5` model describes both trans
verse and longitudinal CF’s~Ref. 34! that differ from each
other, in contrast to the single CF in the spherical model

TheD5` model properly accounts for the profound ro
played, especially in low dimensions, by the Goldstone
would be Goldstone modes. At the same time, the less
nificant effects of the critical fluctuation coupling leadin
e.g., to the quantitatively different nonclassical critical ind
ces, die out in the limitD→`. Thus this model is a rela
tively simple yet a powerful tool for classical spin systems
should not be mixed up with theN-flavor generalization of
the quantumS51/2 model35 in the limit N→`, including its
1/N expansion.15,36 The N-component nonlinears-model
~see, e.g., Refs. 37, as well as Ref. 38, and 39 for theN
expansion! is a quantum extension of Eq.~1.1! in the long-
wavelength region at low temperatures. Effective free en
gies for then-component order parameter appear, instead
Eq. ~1.1!, in conventional theories of critical phenomen
Using them for the 1/n expansion~see, e.g., Ref. 40! is a
matter of taste. While yielding the same results for the cr
cal indices as the lattice-based 1/D expansion,24–26 it misses
ch
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the absolute values of the nonuniversal quantities. The s
comment also applies to the spatially inhomogeneous
tems in the limitD5n5`, such as semi-infinite ferromag
nets~cf. Refs. 41 and 42!.

In this article the solution for the isotropic antiferroma
netic infinite-component spin-vector model on thekagome´
lattice will be given. The qualitatively similar results for th
pyrochlore lattice will be presented in a subsequent comm
nication. As long as the system studied is homogeneous,
tropic, and in zero magnetic field, the standard spher
model22,23 can be applied, too. Such an approach for non
dering frustrated three-dimensional systems has been a
cated in Ref. 43. We prefer, however, to use the more g
eral framework.

The rest of this article is organized as follows. In Sec.
the structure of thekagome´ lattice and its collective spin
variables are described. In Sec. III the formalism of theD
5` model is tailored for thekagome´ lattice. The diagrams
of the classical spin diagram technique that do not disapp
in the limit D→` are summed up. The general analytic
expressions for the thermodynamic functions and spin C
for all temperatures are obtained. In Sec. IV the thermo
namic quantities of thekagome´ antiferromagnet~AFM! are
calculated and compared with MC simulation results in
whole temperature range. In Sec. V the real-space correla
functions are computed. In Sec. VI the neutron-scatter
cross section is worked out. In Sec. VII possible improv
ments of the present approach, such as the 1/D expansion,
are discussed.

II. LATTICE STRUCTURE AND THE HAMILTONIAN

The kagome´ lattice shown in Fig. 1 consists of corne
sharing triangles. Each node of the corresponding Brav
lattice ~i.e., each elementary triangle in Fig. 1! is numbered
by i , j 51, . . . ,N. Each site of the elementary triangle is l
beled by the indexl 51,2,3. It is convenient to use the d

FIG. 1. Structure of thekagome´ lattice. The elementary triangle
are labeled by the pairs of numbersnu ,nv according to Eq.~2.1!,
and the sites on triangles~the sublattices! are labeled byl 51,2,3.
The configuration shown corresponds to the coplanarA33A3
structure characterized by the ordering wave vectorqA3 given by
Eq. ~2.3!.
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PRB 59 445CLASSICAL SPIN LIQUID: EXACT SOLUTION FOR . . .
mensionless units in which the interatomic distance equa
and hence the lattice period equals 2. The triangles numb
by i , j 51, . . . ,N can be obtained from each other by t
translations

r j
l 5r i

l1nu2u1nv2v, ~2.1!

wherer i
l is the position of a site on the lattice,nu andnv are

integers, 2u and 2v are the elementary translation vecto
~lattice periods!, and

u5~1,0!, v5~21/2,A3/2!. ~2.2!

One of the most symmetric phases of thekagome´ AFM is
the so-calledA33A3 phase which is shown in Fig. 1. Th
coplanar phase can be described by the complex ‘‘spin’s̃r
[sr

x1 isr
y5exp(iqA3–r1 if0), where the ordering wave vec

tor qA3 can be written in three equivalent forms:

qA352
2p

3
3H u

v

w,

~2.3!

where w5(21/2,2A3/2). In this phase spins rotate b
2240 °5120 ° asr changes by the lattice period 2 in each
the directionsu, v, andw making the angle 120 ° with eac
other. Another realization of theA33A3 phase, in which
spins rotate by2120 °, is described byqA3 with positive
sign. In addition, theA33A3 phase can be described b
appropriate combinations of different forms ofqA3 given
above.

To facilitate the diagram summation in the next section
is convenient to put the Hamiltonian~1.1! into a diagonal
form. First, one goes to the Fourier representation accord
to

sq
l 5(

i
si
le2 iq–r i

l
, si

l5
1

N(
q

sq
l eiq–r i

l
, ~2.4!

where the wave vectorq belongs to the hexagonal Brilloui
zone specified by the corners (6p/3,6p/A3) and
(62p/3,0) ~see Fig. 2!. The Fourier-transformed Hamil
tonian reads

FIG. 2. Reduced eigenvalues of the interaction matrix,nn(q)

5Ṽq
n/(2J) of Eq. ~2.7!, plotted over the Brillouin zone.
1
ed

it

g

H5
1

2N(
l l 8q

Vq
l l 8sq

l
–s2q

l 8 , ~2.5!

where the interaction matrix is given by

V̂q52JS 0 a b

a 0 c

b c 0
D ,

a[cos~u–q!

b[cos~v–q!

c[cos~w–q!.
~2.6!

At the second stage, the Hamiltonian~2.5! is finally di-
agonalized to the form

H52
1

2N(
nq

Ṽq
nsq

n
–s2q

n , ~2.7!

where Ṽq
n52Jnn(q) are the eigenvalues of the matrixVq

l l 8

taken with the negative sign,

n151, n2,35~6A118abc21!/2. ~2.8!

The diagonalizing transformation has the explicit form

Unl
21~q!Vq

l l 8Ul 8n8~q!5Ṽq
ndnn8 , ~2.9!

where the summation over the repeated indices is imp
and Û is the real unitary matrix,Û215ÛT, i.e., Unl

21

5Uln . The columns of the matrixÛ are the three normal
ized eigenvectorsUn5(U1n ,U2n ,U3n) of the interaction
matrix V̂:

Un5~ac2bnn , ab2cnn , nn
22a2!/AQn,

Qn5~nn
22a2!21~ab2cnn!21~ac2bnn!2. ~2.10!

The eigenvectorU1 corresponding to the dispersionless e
genvaluen151 can be represented in the un-normaliz
form as

U15@sin~w–q!,sin~v–q!,sin~u–q!#. ~2.11!

The normalized eigenvectors satisfy the requirements of
thogonality and completeness, respectively,

Uln~q!Uln8~q!5dnn8 , Uln~q!Ul 8n~q!5d l l 8 .
~2.12!

The Fourier components of the spinssq
l and the collective

spin variablessq
n are related by

sq
l 5Uln~q!sq

n , sq
n5sq

l Uln~q!. ~2.13!

The largest dispersionless eigenvaluen1 of the interaction
matrix @see Eq.~2.8!# manifests frustration in the system
which precludes an extended short-range order even in
limit T→0. Independence ofn1 of q signals that 1/3 of all
spin degrees of freedom are local and can rotate freely.
other two eigenvalues satisfy

n2~q!>12q2/2, n3~q!>221q2/2 ~2.14!

at small wave vectors,q2[qx
21qy

2!1. The eigenvaluen2

which becomes degenerate withn1 in the limit q→0 is re-
lated, as we shall see below, to the usual would be Golds
mode destroying the long-range order in low-dimensio
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446 PRB 59D. A. GARANIN AND BENJAMIN CANALS
magnets with a continuous symmetry. The eigenvaluen3 is
positioned, in the long-wavelength region, much lower th
the first two, and it is tempting to call it the ‘‘optical’’ eigen
value. In fact, however, the eigenvalues of the interact
matrix arenot the same as thenormal modesof the system
that appear in the dynamics. Whereasn1 gives rise to the
zero-energy spin-wave branch corresponding to the abs
of a restoring force for small deviations from one of dege
erate ground states,n2 and n3 hybridize to the double-
degenerate Goldstone mode with energy}q at small wave
vectors, as in conventional antiferromagnets.5,4 With increas-
ing q the eigenvaluen2 decreases whereasn3 increases; at
the corners of the Brillouin zone they become degener
n25n3521/2. The q dependences of the eigenvaluesnn
over the whole Brillouin zone is shown in Fig. 2.

In contrast to the smooth behavior ofnn , the diagonaliz-
ing matrix Û composed of the eigenvectorsUn @see Eq.
~2.10!# has much more complicated structure as function
q. This results in the intricate behavior of the spin CF’s a
neutron-scattering cross sections at low temperatures, w
will be considered in Sec. V. Here we only show the nona
lytic limiting form of Û at small wave vectors,

Ûq>
1

A6S 2nx2A3ny 2ny1A3nx A2

2nx1A3ny 2ny2A3nx A2

2nx 2ny A2
D ,

~2.15!

wheren[q/q.
In the next section the equations describing spin corr

tion functions of the classicalkagome´ antiferromagnet in the
large-D limit will be obtained with the help of the classica
spin diagram technique. The readers who are not intere
in details can skip to Eq.~3.16! or directly to Sec. IV.

III. CLASSICAL SPIN DIAGRAM TECHNIQUE
AND THE LARGE- D LIMIT

The exact equations for spin correlation functions in
limit D→`, as well as the 1/D corrections, can be the mos
conveniently obtained with the help of the classical spin d
gram technique.29,27,30A perturbative expansion of the the
mal average of any quantityA characterizing a classical spi
system~e.g.,A5szi — the z spin component on the lattic
site i ) can be obtained by rewriting Eq.~1.1! as H5H0
1Hint , whereH0 is, e.g., the mean-field Hamiltonian, an
expanding the expression

^A&5
1

ZE )
j 51

N

dsjA exp~2bH!, usj u51, ~3.1!

where b51/T, in powers ofHint . The integration in Eq.
~3.1! is carried out with respect to the orientations of t
D-dimensional unit vectorssj on each of the lattice sites
Averages of various spin-vector components on various
tice sites with the HamiltonianH0 can be expressed throug
spin cumulants, or semi-invariants, which will be conside
below, in the following way:
n

n
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^sa i&05La , ^sa isb j&05Labd i j 1LaLb ,
~3.2!

^sa isb j sgk&05Labgd i jk1LabLgd i j 1LbgLad jk

1LgaLbdki1LaLbLg ,

etc., whered i j , d i jk , etc., are the site Kronecker symbo
equal to 1 for all site indices coinciding with each other a
to zero in all other cases. For the one-site averages (i 5 j
5k5 . . . ) Eq. ~3.2! reduces to the well-known represent
tion of moments through semi-invariants, generalized fo
multicomponent case. In the graphical language~see Fig. 3!
the decomposition~3.2! corresponds to all possible group
ings of small circles~spin components! into oval blocks~cu-
mulant averages!. The circles coming fromHint ~the ‘‘inner’’
circles! are connected pairwise by the wavy interaction lin
representingbJi j . In diagram expressions, summations ov
site indicesi and component indicesa of inner circles are
carried out. One should not take into account disconnec
~unlinked! diagrams @i.e., those containing disconnecte
parts with no ‘‘outer’’ circles belonging toA in Eq. ~3.1!#,
since these diagrams are compensated for by the expan
of the partition functionZ in the denominator of Eq.~3.1!.
Consideration of combinatorial numbers shows that each
gram contains the factor 1/ns , wherens is the number of
symmetry group elements of a diagram@see, e.g., the facto
1/2! in Eq. ~3.12! below#. The symmetry operations do no
concern outer circles, which serve as a distinguisha
‘‘root’’ to build up more complicated~e.g., renormalized!
diagrams. For spatially homogeneous systems, it is m
convenient to use the Fourier representation and to calcu
integrals over the wave vectors in the Brillouin zone rath
than lattice sums. As due to the Kronecker symbols in
~3.2! lattice sums are subject to the constraint that the co
dinates of the circles belonging to the same block coinc
with each other, the sum of wave vectors coming to or go
out of any block along interaction lines is zero. So, for o
model the pair cumulant average of the Fourier compone
defined by Eq.~2.4! reads

^saq
l sbq8

l 8 &0,cum5LabNdq8,2qd l l 8 , ~3.3!

whered l l 8 is the sublattice Kronecker symbol. The cumula
spin averages in Eq.~3.2! can be obtained by differentiatin
the generating functionL(j) over appropriate component
of the dimensionless fieldj[bH:29

FIG. 3. Self-consistent Gaussian approximation~SCGA! for
classical spin systems in the nonordered state.~a! the Dyson equa-
tion for the spin correlation function;~b! the block summation for
the renormalized pair cumulant spin averages.
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La1a2•••ap
~j!5

]pL~j!

]ja1
]ja2

•••]jap

, L~j!5 lnZ0~j!,

~3.4!

wherej[uju,

Z0~j!5const3j2~D/221!I D/221~j! ~3.5!

is the partition function of aD-component classical spin, an
I n(j) is the modified Bessel function. For the two lowes
order cumulants the differentiation in Eq.~3.4! leads to the
following expressions:

La~j!5B~j! ja /j,

Lab~j!5
B~j!

j S dab2
jajb

j2 D 1B8~j!
jajb

j2
. ~3.6!

wheredab is the Kronecker symbol for spin components,

B~j!5dL~j!/dj5I D/2~j!/I D/221~j! ~3.7!

is the Langevin function ofD-component classical spins, an
B8(j)5dB/dj ~see the details in Ref. 30!. If H050, as is
the case for our model in the absence of a magnetic field,
pair spin cumulant in Eq.~3.6! simplifies to the obvious form

Lab~0!5Laa~0!dab , Laa~0!51/D. ~3.8!

As was shown in Ref. 29~see also Ref. 27! the limit D
→` for the spin-vector model is completely described
the self-consistent Gaussian approximation~SCGA!, since
all diagrams not accounted for by the SCGA vanish in t
limit. The SCGA consists in taking into accountpair corre-
lations of the molecular field acting on a given spin from
neighbors, which implies a Gaussian statistics of molecu
field fluctuations. The appropriate diagram sequence for
nonordered state,̂sz&50, is represented in Fig. 3. Its ana
lytical form for the square lattice model is given in Ref. 2
In a magnetic field or belowTc in the ordering models the
average spin polarization̂sz&Þ0 appears. The additiona
diagrams and corresponding analytical expressions can
found in Refs. 29, 30, and 28. The SCGA equations in
spatially inhomogeneous case and their large-D limit have
been derived~and applied to domain walls! in Ref. 32.

In all cases above, the SCGA equations have been wr
for diagonal Hamiltonians describing the simplest on
sublattice magnets. For nondiagonal Hamiltonians, such

Eq. ~2.5!, the matrix interaction lines, here2bVq
l l 8 , compli-

cate the formalism. Simplification can be achieved by us
the diagonalized Hamiltonian, for our model, Eq.~2.7!. For
the latter, however, thes counterparts of the one-site cum
lant averages do not have a transparent meaning anym
sinces is a combination of spins on different sites and su
lattices. Thus thes cumulants should be specially worke
out as follows. The pairs cumulant~which is in our model
explicitly diagonal in the spin-component indicesa,b) can
be rewritten in terms of the initial spin variables as

^saq
n saq8

n8 &0,cum5Uln~q!Ul 8n8~q8!^saq
l saq8

l 8 &0,cum. ~3.9!
he
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With the use of Eq.~3.3! and the first of the relations~2.12!,
this can be simplified to the final form

^saq
n saq8

n8 &0,cum5LaaNdq8,2qdnn8 . ~3.10!

Now, with the help of the results just obtained, the seco
diagram in the sum in Fig. 3~b! can be written in the analyti-
cal form

A25Uln~q!Uln8~q!LaabbLb l , ~3.11!

where the summation over the spin-component indexb is
implied and the quantityLb l in the lowest~the second! order
of the perturbation theory is given by

Lb l
~2!5

1

2!
Lbb

1

N (
l 8p

(
n1

Uln1
~p!Ul 8n1

~p!bṼp
n1

3(
n18

Uln
18
~p!Ul 8n

18
~p!bṼp

n18 . ~3.12!

Hereb51/T in front of Ṽ cannot be confused with the spi
component indexb. This expression can be simplified in tw
ways. First, one can perform the sum over the indexl 8 and
use the first of Eqs.~2.12!, which leads to

Lb l
~2!5

1

2!
Lbb

1

N (
n1p

~bṼp
n1!2Uln1

2 ~p!. ~3.13!

Second, inverting the transformation~2.9! one can write

Lb l
~2!5

1

2!
Lbb

1

N (
l 8p

~bVp
l l 8!2. ~3.14!

Taking into account the explicit form ofVp
l l 8 given by Eq.

~2.6!, one can see that after the integration over the w
vectorp expression~3.14! becomes independent of the su
lattice indexl. After this observation one can symmetrize E
~3.13! with respect tol. This leads to the vanishing of th
diagonalization matrix by virtue of the first of Eqs.~2.12!
and to the appearance of the factor 1/3. Now the summa
over l in Eq. ~3.11! simplifies, and the diagonalization matr
ces convert, again, todnn8 . The result in the second order o
the perturbation theory has the form

A25LaabbLb
~2! , Lb

~2!5
Lbb

3•2!

1

N (
n1p

~bṼp
n1!2

~3.15!

(dnn8 has been omitted! and it is independent of the eigen
value indexn and of the wave vectorq.

The mechanism of the simplification of diagram expre
sions demonstrated above can be shown to work for w
ever complicated diagrams. In all cases oval blocks repre
cumulant spin averagesLa1a2 . . . ap

, as in the original, non-
diagonalized, version of the classical spin diagram techniq
In all the elements connected to a given block summat
over the eigenvalue indicesn is carried out. The diagonaliz
ing matrix Û disappears completely if correlation function
for the s variables,
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sn~q!5
D

N
^saq

n sa,2q
n &5

1

N
^sq

ns2q
n &, ~3.16!

are considered. After the calculation of the latter the true s
CF’s can be found from the formula

sll 8~q!5Uln~q!Ul 8n~q!sn~q! ~3.17!

following from Eq. ~2.13!. Note thatsn(q) are eigenvalues
of the correlation matrixsll 8(q) and they describe indepen
dent linear responses to appropriate wave-vector-depen
fields. As can be seen from Eq.~3.17!, the eigenvectors de
scribing the ‘‘normal modes’’ of the susceptibility are tho

of the interaction matrixVq
l l 8 in Eq. ~2.5!.

The analytical expression for thes CF in the SCGA,
which satisfies the Dyson equation shown in Fig. 3~a!, has
the Ornstein-Zernike form

sn~q!5
DL̃aa

12L̃aabṼq
n

. ~3.18!

This expression differs from that obtained by Reimers on
mean-field basis6 by the replacement of the bare cumula
Laa51/D by its renormalized valueL̃aa determined by the
diagram series Fig. 3~b!. The summation of these diagrams
documented in the most detailed way by Eqs.~3.16!–~3.19!
of Ref. 30. The result forL̃aa is given by the second line o
Eq. ~3.6! averaged over theGaussianfluctuations of all com-
ponents of the molecular fieldj with the dispersion defined
by the quantityLa . In our model, fluctuations of differen
components ofj are independent from each other and of t
same dispersion,La5L. Thus the quantityL̃ab is diagonal
and independent ofa. In the large-D limit the multiple
Gaussian integral determiningL̃aa is dominated by the sta
tionary point and the result simplifies to27

L̃aa5
2

D

1

11A118L/D
. ~3.19!

Here the dispersionL corresponding to the diagram series
Fig. 3 is given by the formula

L5
L̃aa

3•2!(n
v0E dq

~2p!d

~bṼq
n!2

12L̃aabṼq
n

~3.20!

generalizing Eq.~3.15!. Here, the summation (1/N)(q••• is
replaced by the integration over the Brillouin zone,v0 is the
unit-cell volume, andd is the spatial dimensionality. For th
kagome´ lattice we havev052A3 andd52. The expression
for L can be simplified to

L5
P̄21

2L̃aa

, P̄[
1

3(n
Pn , ~3.21!

where Pn is the lattice Green function associated with t
eigenvaluen:

Pn5v0E dq

~2p!d

1

12L̃aabṼq
n

. ~3.22!
in

ent

e
t

Now one can eliminateL from Eqs.~3.19! and~3.21!, which
yields the basic equation of the large-D model,

DL̃aaP̄51. ~3.23!

This nonlinear equation determiningL̃aa as a function of
temperature differs from those considered earlier29,27,28,30by
a more complicated form ofP̄ reflecting the lattice structure
The form of this equation is similar to that appearing in t
theory of the usual spherical model.22,23 The meanings of
both equations are, however, different. Whereas in the s
dard spherical model a similar equation account for
pretty unphysical global spin constraint, Eq.~3.23! here is, in
fact, the normalization condition̂sr

2&51 for the spin vectors
on each of the lattice sitesr @see Eq.~3.1!#. Indeed, calcu-
lating the spin autocorrelation function in the form symm
trized over sublattices with the help of Eqs.~3.17!, ~2.12!,
and ~3.18!, one obtains

^sr
2&5v0E dq

~2p!d

1

3 (
l

sll ~q!

5v0E dq

~2p!d

1

3 (
n

sn~q!5DL̃aaP̄. ~3.24!

That is, the spin-normalization condition is automatica
satisfied in our theory by virtue of Eq.~3.23!. After L̃aa has
been found from this equation, the spin CF’s are read
given by Eqs.~3.18! and ~3.17!.

To avoid possible confusion, we should mention that
the paper of Reimers, Ref. 6, where Eq.~3.18! with the bare
cumulantLaa51/D has been obtained, the theoretical a
proach has been called the ‘‘Gaussian approximation~GA!.’’
This term taken from the conventional theory of phase tr
sitions based on the Landau free-energy functional imp
that the Gaussian fluctuations of theorder parameterare
considered. In the microscopic language, this merely me
calculating correlation functions of fluctuating spins after a
plying the MFA. Such an approach is known to be incons
tent, since correlations are taken into account after they
been neglected. As a result, for thekagome´ lattice one ob-
tains a phase transition at the temperatureTc5Tc

MFA

52J/D but immediately finds that the approach brea
down belowTc because of the infinitely strong fluctuation
In contrast to this MFA-based approach, the self-consis
Gaussian approximation used here allows, additionally,
the Gaussian fluctuations of themolecular field, which renor-
malizeLaa and lead to the absence of a phase transition
this class of systems. The SCGA is, in a sense, a ‘‘doub
Gaussian’’ approximation: The diagram series in Fig. 3~a!
allows for the Gaussian fluctuations of the order parame
whereas that in Fig. 3~b! describes Gaussian fluctuations
the molecular field.

To close this section, let us work out the expressions
the energy and the susceptibility of thekagome´ antiferro-
magnet. For the energy of the whole system, using Eqs.~2.7!
and~3.16!, as well as the equivalence of all spin componen
one obtains
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U tot5^H&52
N

2(
n

v0E dq

~2p!d
Ṽq

nsn~q!. ~3.25!

To obtain the energy per spinU, one should divide this ex
pression by 3N. With the use of Eq.~3.18!, the latter can be
expressed through the lattice Green’s functionP̄ of Eq.
~3.21!; then with the help of Eq.~3.23! it can be put into the
final form

U5
T

2S D2
1

L̃aa
D . ~3.26!

The susceptibility per spin symmetrized over sublattices
be expressed through the spin CF’s as

xq5
1

3DT(
l l 8

sll 8~q!. ~3.27!

With the use of Eq.~3.17! this can be rewritten in the form

xq5
1

3DT(
n

Wn
2~q!sn~q!, Wn~q![(

l
Uln~q!,

~3.28!

where the diagonalized CF’s are given by Eq.~3.18!. From
Eq. ~2.15! it follows that in the limit q→0 one hasW1

5W250 andW35A3. Thus the homogeneous susceptibil
x[x0 simplifies to

x5
1

DT
s3~0!. ~3.29!

As we shall see in the next section, disappearance of
terms withn51 and 2 from this formula ensures the nond
vergence of the homogeneous susceptibility of thekagome´
antiferromagnet in the limitT→0. The situation forqÞ0 is
much more intricate and it will be considered below in re
tion to the neutron-scattering cross section.

IV. THERMODYNAMICS
OF THE KAGOMÉ ANTIFERROMAGNET

To put the results obtained above into the form explici
well behaved in the large-D limit and allowing a direct com-
parison with the results obtained by other methods for s
tems with finite values ofD, it is convenient to use the mean
field transition temperatureTc

MFA52J/D as the energy scale
With this choice, one can introduce the reduced tempera
u and the so-called gap parameterG according to

u[
T

Tc
MFA

, G[
D

u
L̃aa . ~4.1!

In these terms, Eq.~3.23! rewrites as

uGP̄~G!51 ~4.2!

and determinesG as function ofu. HereP̄(G) is defined by
Eq. ~3.21!, where

Pn5v0E dq

~2p!d

1

12Gnn~q!
, P15

1

12G
, ~4.3!
n

he

-

s-

re

and the reduced eigenvaluesnn(q) are given by Eq.~2.8!.
The s CF’s of Eq. ~3.18!, which are proportional to the
integrands ofPn , can be rewritten in the form

sn~q!5
uG

12Gnn~q!
. ~4.4!

Further, it is convenient to consider the reduced energy
spin defined by

Ũ[U/uU0u, U052J, ~4.5!

whereU0 is the energy per spin at zero temperature. W
the help of Eq.~3.26! Ũ can be written as

Ũ5u21/G. ~4.6!

The homogeneous susceptibilityx of Eq. ~3.29! can be re-
written with the help of Eq.~2.14! in the reduced form

x̃[2Jx5
G

112G
. ~4.7!

The sense of callingG the ‘‘gap parameter’’ is clear from
Eq. ~4.4!. If G51, then the gap in correlation function
closes:s1 turns to infinity, ands2 diverges atq→0. For
nonordering models, it happens only in the limitu→0, how-
ever. The solution of Eq.~4.2! satisfiesG<1 and goes to
zero at high temperatures. Ifu!1, the functionP̄ is domi-
nated byP151/(12G), whereasP3 remains of order unity
and P2 diverges only logarithmically, as in usual two
dimensional systems:P2>(A3/p)ln@c/(12G)#, c;1. The
ensuing asymptotic form of the gap parameter at low te
peratures reads

G>12
u

3
2S u

3D 2A3

p
ln

3c

u
, u!1. ~4.8!

At high temperatures, Eq.~4.2! requires small values ofG.
Here, the limiting form of P̄ can be shown to beP̄>1
1G2. The corresponding asymptote ofG has the form

G>
1

uS 12
1

u2D , u@1. ~4.9!

The numerically calculated temperature dependence ofG is
shown in Fig. 4. Note that in the MFA one hasG51/u
which attains the value 1 atu51.

The temperature dependence of the reduced energy o
~4.6! is shown in Fig. 5. Its asymptotic forms following from
Eqs.~4.8! and ~4.9! are given by

Ũ>H 21/u, u@1

211~2/3!u, u!1.
~4.10!

This implies the reduced heat capacityC̃5dŨ/du is equal to
2/3 at low temperatures, in contrast toC̃51 for the usual
two-dimensional lattices in the same approximation. The
ter result is solely due to the term linear inu in Eq. ~4.6!,
whereasG only exponentially deviates from 1 at low tem
peratures. For thekagome´ lattice, there is a linear inu con-
tribution to the gap parameterG of Eq. ~4.8!, which leads to
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C̃52/3. This reflects the fact that one of three modes in
kagome´ lattice@see Eq.~2.7!# is dispersionless, and hence 1
of all spin degrees of freedom in the system are local
free, making no contribution to the heat capacity.

The reduced variables introduced at the beginning of
section are very convenient for the comparison of the res
for D5` with those for finite values ofD, which are ob-
tained by other methods. The expected discrepancies a
order 1/D which is not too much forD53. ~Note that the
D5` approximation can be improved by the 1/D
expansion.27,28! To compare with the MC simulation data o
Ref. 2 for the heat capacity of the Heisenberg model we w
use, instead ofC̃, the true heat capacityC5dU/dT

5(D/2)C̃ @see Eqs.~4.1! and ~4.5!#, which in our approach
tends toD/3⇒1 at low temperatures. The fairly good agre
ment on the high-temperature side of Fig. 6 is not surpris
since a nontrivial dependence onD appears only at orde
1/T3 for the NN correlation function and hence for the e
ergy, and thus at order 1/T4 for the heat capacity@see the
combinationn12[D12 in Eq.~3.10a! of Ref. 4#. The rea-
sonable agreement with the MC results at low temperatu
is better than expected and can be interpreted as a com
sation of errors. Indeed, for finite values ofD one should

FIG. 4. Temperature dependence of the gap parameterG for the
kagome´ antiferromagnet.

FIG. 5. Temperature dependence of the reduced energy o
kagome´ antiferromagnet.
e

d

is
ts

of

ll

-
,

es
en-

take into account the 1/D corrections to the presentD5`
results. For conventional magnets, this leads in the first o
in 1/D to the replacement ofC5D/2 by C5(D21)/2 in the
limit T→0.27,28 This result is exact and physically transpa
ent as following from the constraintusru51 in counting of
the spin degrees of freedom; it does not change furthe
higher orders of the 1/D expansion. For thekagome´ lattice,
the same counting argument suggests to replaceD by D
21, which would yieldC5(D21)/3⇒2/3 for T→0. On the
other hand, inclusion of the 1/D corrections reduces the de
generacy of the ground state, and the heat capacity sh
increase again. This degeneracy reduction manifests itse
the appearance of theq dependence of the correlation fun
tion saa

1 of Eq. ~4.4!. On the high-temperature side, the d
generacy of the largest eigenvalue of the susceptibility m
trix is removed at order 1/T8 @see Eqs.~3.29! and ~3.31! of
Ref. 4; the effect vanishes, however, forD→`#. At low
temperatures, the resulting heat capacity becomes 1
~Ref. 2!, which is not far away from our resultC→1.

The reduces uniform susceptibilityx̃ calculated from Eq.
~4.7! is shown in Fig. 7. Again, our results are in a fair

he

FIG. 6. Temperature dependence of the heat capacity of
kagome´ antiferromagnet. The MC results of Ref. 2 for the Heise
berg model (D53) are represented by circles.

FIG. 7. Temperature dependence of the reduced uniform sus
tibility of the kagome´ antiferromagnet. The MC results of Ref. 1
for the Heisenberg model (D53) are represented by circles.
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good agreement with the MC data of Ref. 12, which are
turn, in accord with the HTSE results of Ref. 4~not shown!.
Here, in contrast to the heat capacity, our resultx̃51/3, or
x51/(6J), at T50 is exact. This follows from the fact that
the zero-temperature susceptibilities of the classicalkagome´
antiferromagnet have the same valuex51/(6J) for all direc-
tions of the field with respect to the three spins on a trian
being mutually oriented at 120 °. On the contrary, for co
ventional low-dimensional antiferromagnets, which sh
two-sublattice short-range correlations, there areD21 sus-
ceptibilities transverse to the local orientation of spins,x'

51/(2J0), and one longitudinal susceptibilityx i which van-
ishes in the zero-temperature limit. After the averaging o
all orientations of spins one obtains the exact resultx5(1
21/D)/(2J0) at T50, which differs significantly from that
for theD5` model. Taking into account the first-order 1/D
correction leads to a rather accurate result forx(T) in the
whole temperature range,27 which has a well-known flat
maximum atT&J. Returning to thekagome´ antiferromag-
net, one can state that the 1/D corrections to the susceptibi
ity are smaller than in the conventional case. The sm
maximum ofx̃ in the data of Ref. 12 is probably a 1/D effect
arising due to the increase of the longitudinal susceptibi
of spins with temperature at low temperatures, similarly
that in conventional low-dimensional antiferromagnets~see
Ref. 27 for details!.

V. REAL-SPACE CORRELATION FUNCTIONS

The long-wavelength, low-temperature behavior of thes
correlation functions of Eq.~4.4! is given, according to Eqs
~2.8!, ~2.14!, and~4.8!, by

s1>3, s2>
3k2

k21q2
, s3>

u

3
, ~5.1!

where the quantityk252u/3 in s2 defines the correlation
length

jc5
1

k
5S 3

2u D 1/2

. ~5.2!

The appearance of this length parameter implies that the
space spin CF’s defined, according to Eqs.~3.17! and ~2.4!,
by

si j
l l 85v0E dq

~2p!d
eiq–~r i

l
2r j

l 8!Uln~q!Ul 8n~q!sn~q!,

~5.3!

decay exponentially at large distances at nonzero temp
tures. In contrast to conventional lattices, divergence ofjc at
u→0 does not lead here to an extended short-range or
i.e., to strong correlation at distancesr &jc . The zero-
temperature CF’s arepurely geometricalquantities which are
dominated bys1 and have the form
n

e
-

r

ll

y
o

al-

ra-

er,

si j
l l 853v0E dq

~2p!d
eiq–~r i

l
2r j

l 8!Ul1~q!Ul 81~q!

53v0E dq

~2p!d
cos@q–~r i

l2r j
l 8!#

3
sin~ul–q!sin~ul 8–q!

sin2~u–q!1sin2~v–q!1sin2~w–q!
, ~5.4!

where, according to Eq.~2.11!,

u1[w, u2[v, u3[u. ~5.5!

At large distancesr i j [r i
l2r j

l 8 , the small values ofq are
important in Eq.~5.4!. Thus one can expand the sines to t
lowest order and use (u–q)21(v–q)21(w–q)25(3/2)q2.
After that integration can be done analytically and yields
asymptotic result

si j
l l 8>

2A3

p

~ul–ul 8!r i j
2 22~ul–r i j !~ul 8–r i j !

r i j
4

~5.6!

for r i j @1. That is, at zero temperature spin CF’s decreas
the scale of the lattice spacing and decay according t
power law 1/r 2 at large distances. The form of Eq.~5.6! is
that of the dipole-dipole interaction in a two-dimension
world. Here the elementary translation vectorsul associated
with each of three sublattices@see Eqs.~5.5!, ~2.2!, and~2.3!#
play the role of dipole moments.

At nonzero temperatures, an additional exponential de
of the correlation functions appears, which is governed
the correlation lengthjc of Eq. ~5.2!. For u!1, the third-
eigenvalue term,n53, in Eq.~5.3! can still be neglected, and
one can use the first and second columns of the lo
wavelength form of the diagonalizing matrixUln(q), Eq.
~2.15!. The resulting CFsll 8(q) of Eq. ~3.17!, which enters
Eq. ~5.3!, has the form

sll 8~q!>
k2~2113d l l 8!12~ul–q!~ul 8–q!

k21q2
. ~5.7!

Whereas thek2 term in the numerator yields only small con
tributions}u in the real-space CF’s, that in the denomina
results in the additional exponentially decaying factor

kr i j K1~kr i j !>H 1, kn!1

Apkr i j /2e2kr i j , kn@1,
~5.8!

in Eq. ~5.6!.
To study real-space correlation functions at distances

the order of the lattice spacing and to list the particular ca
of the general formula~5.6!, it is convenient to enumerat
CF’s by the numbersnu and nv defined by Eq.~2.1!, as is

shown in Fig. 1. Thussnu ,nv

l l 8 is the correlation function of the

l sublattice spin of the ‘‘central’’ triangle (0,0) with thel 8
sublattice spin of the triangle translated by (nu ,nv). ~Note

thatsnu ,nv

l 8 l Þsnu ,nv

l l 8 , in general.! There is a number of severa
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useful relations between correlation functions. First, the s
of the CF’ssn,0

l l over l at T50 is zero by virtue of Eqs.~5.4!
and ~2.12!:

sn,0
11 1sn,0

22 1sn,0
33 50, T50. ~5.9!

Taking into account the symmetry of the lattice, one can
this relation into the form of the ‘‘star rule’’

sn,0
l l 1s0,n

ll 1sn,n
ll 50, l 51,2,3 ~5.10!

for the sum of the correlation functions along the directio
u, v, andw @see Eqs.~2.2! and~2.3!#. The star rule does no
hold at nonzero temperatures, which can be easily seen
the HTSE for the spin CF’s starting from 1/T2n for sn,0

11 and
sn,0

22 and from 1/T2n11 for sn,0
33 . More detailed analysis show

that in the low-temperature region the sum in Eqs.~5.9! and
~5.10! is smaller than sn,0

33 by a factor of order
(kn)2ln@1/(kn)# at the distanceskn!1. Thus the star rule
can be used with a good accuracy in the whole rangeu!1.
An additional relation can be found from the condition th
at zero temperature the sum of spins in each of the trian
is zero. Thus one obtains, e.g., the ‘‘triangle rule’’

snu ,nv

l1 1snu ,nv

l2 1snu ,nv

l3 50, T50 ~5.11!

for all l, nu , andnu , as well as similar relations.
The most nontrivial of the relations between spin CF’s

the ‘‘hexagon rule’’

shex[ (
r8Phex

~21!zsrr 85s1d rPhex ~5.12!

for the correlators between a siter and all the sitesr 8 be-
longing to hexagons, which are taken with alternating sig
If the siter itself belongs to the hexagon, the right-hand s
of Eq. ~5.12! is nonzero and the autocorrelation functionsrr
in the sum is taken with the positive sign. As follows fro
Eq. ~4.4! and the temperature dependence of the gap par
eterG, the quantityshex changes in this case from 1 at hig
temperatures to 3 at low temperatures. This very deep r
tion has been derived in Ref. 4 from the condition that
largest eigenvalue of the correlation matrixs1 is indepen-
dent ofq. For models with finiteD this condition and hence
the hexagon rule~5.12! is violated only at order 1/T8 of the
HTSE.4 For our D5` model, s1 given by Eq.~3.18! re-
mains dispersionless at all temperatures, and the hexa
rule is always satisfied.

At long distances, the zero-temperature sublatti
diagonal CF’s in the horizontal direction, which follow from
Eq. ~5.6!, have the form

sn,0
11 5sn,0

22 >
A3

pr 2
, sn,0

33 >2
2A3

pr 2
~5.13!

with r 52n. One can see that relation~5.9! is satisfied. For
the spin correlators between the first and second sublat
along the horizontal line one obtains

H sn,0
12

sn,0
21 J >2

2A3

pr 2
, r 5H 2n11

2n21J . ~5.14!
m

t

s
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Comparing Eqs.~5.13! and~5.14!, one concludes that corre
lations in theD5` model have nothing in common with th
A33A3 structure which is selected by thermal fluctuatio
in the Heisenberg model.2,11,12Apart from the fast decay, the
sign of the correlation function changes with each step al
the line connecting the sites, while the coefficient alterna
by the factor 2. Such a behavior of the sign and coeffici
cannot be described by any ordering wave vector. Corr
tors involving the third sublattice have the form

sn,0
13 >sn,0

31 >sn,0
23 >sn,0

32 >
A3

pr 2
. ~5.15!

One can see that the above expressions satisfy the tria
rule, Eq. ~5.11!. In addition, the CF’s along the three line
going through the apexes of the David stars in Fig. 1 rea

sn,2n
11 5s2n,n

22 5sn,2n
33 >

2A3

pr 2
. ~5.16!

To calculate the short-range correlation functions, o
should use in Eqs.~5.3! or ~5.4! the full form of the diago-
nalizing matrixUln(q) @see Eq.~2.10!# instead of its long-
wavelength form~2.15! and integrate over the whole Bril
louin zone. This seems to be impossible to do analytica
but at T50 one can express numerous CF’s through so
‘‘fundamental’’ one with the help of the relations discuss
above. So, in addition to the trivial resultss0,0

l l 51, s0,0
12

5s1,0
21521/2, etc., one obtains numerically

s1,0
115s1,0

225a50.1540. ~5.17!

After that using the star and triangle rules leads to the res

s1,0
33522a520.308, s1,1

1352a11/250.346,

s1,1
125s1,0

1353a21/2520.038, s1,0
12524a11/250.116,

s1,21
11 526a1150.076, s1,21

12 53a21/2520.038.
~5.18!

Now from the hexagon rule for the hexagon marked by
star in Fig. 1,

shex5s1,0
112s1,1

131s1,1
122s2,1

111s2,1
132s1,0

1250, ~5.19!

and from other relations one obtains the CF’s on the rem
side of this hexagon:

s2,1
1153a21/2520.038, s2,1

13526a1150.076.
~5.20!

After that the star and triangle rules yield

s2,0
11510a23/250.040, s2,0

125236a111/2520.044,

s2,0
13526a2450.004, s2,21

11 5229a19/250.034.
~5.21!

This routine cannot be continued without numerically calc
lating the next fundamental CFs3,0

1150.0164. This would
make little sense, however, because at such distances c
lation functions are already well described by the
asymptotic forms given above~see Fig. 8!.
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The results obtained above for the real-space CF’s ca
compared with those for the quantum Heisenberg antife
magnet withS51/2.16 The latter for the CF’s of the sam
type, multiplied by a factor of four to normalize the autoco
relation function by one, are also shown in Fig. 8. In contr
to the classical Heisenberg antiferromagnet on thekagome´
lattice selecting theA33A3 structure, the ground state of th
quantum model is disordered,5,16 which brings it, in a sense
closer to ourD5` model. In the quantum model CF’s deca
faster: Even for the nearest neighbors one hass0,0

125
20.2922 instead of20.5 because of the zero-point motio
For the establishing of the large-distance behavior of
CF’s in the quantum antiferromagnet, the numerical dia
nalization of clusters of much larger sizes~36 sites in Ref. 16
or 27 sites in Ref. 17! is needed, which is a tremendou
computational problem.

The main implication of this section is that the spin co
relation functions for the large-D model on thekagome´ lat-
tice decay at the distances of the order of the lattice spa
even atT→0, in spite of the divergence of the correlatio
lengthjc . ThusT50 is not a critical pointof this model, in
contrast to the conventional low-dimensional ferro- and
tiferromagnets. Correlations developing in the lo
temperature range, which, however, become only strong
tween several neighboring spins, characterize the state o
model as aspin liquid.

VI. NEUTRON-SCATTERING CROSS SECTION

The static magnetic neutron-scattering cross section
proportional to the static Fourier-transformed spin CF:

ds

dV
}(

rr 8
^Sr

'Sr8
' &eiq~r2r8!, ~6.1!

whereSr
' is the component of the spin perpendicular to t

scattering wave vectorq. In our model all spin component
are equivalent andr5r i

l is defined in Sec. II. Since the ove

FIG. 8. Real-space correlation functionssn,0
11 and usn,0

12 u at T50
calculated from Eq.~5.4!. The distance unit is the interatomic spa
ing. The asymptotes given by Eqs.~5.13! and ~5.14! are shown by
the dashed lines. Crosses are the results of Ref. 16 for the qua
system withS51/2 multiplied by 4.
be
-

t

e
-

ng

-

e-
ur

is

all coefficient in Eq.~6.1! contains a magnetic form facto
and is poorly known, one can use the most convenient fo
of this coefficient and define

ds

dV
5

1

3(l l 8
sll 8~q!5

1

3(n
Wn

2~q!sn~q!. ~6.2!

This expression differs from the wave-vector-dependent s
ceptibility of Eqs.~3.27! and ~3.28! only by the absence o
DT in the denominator, while the normal-mode CF’ssn are
given by Eq.~4.4!. The scattering wave vectorq is not con-
fined to the Brillouin zone~BZ!, in contrast toq appearing in
the calculation of the thermodynamic quantities and re
space CF’s. For usual bipartite lattices, the scattering c
section withq outside the BZ is the same as withq85q
2k inside the BZ, wherek is an appropriate reciprocal
lattice vector. That is, in this caseds/dV is repeating over
the set of extended Brillouin zones. For periodic lattices w
more complicated structures, the neutron cross section is
a periodic function ofq, but the period can be larger tha
one BZ.

For the kagome´ lattice in the limit T→0, Eq. ~6.2! is
dominated by the term withs15uG/(12G). Using G>1
2u/3 one obtainsds/dV5W1

2(q) that is temperature inde
pendent. As follows from the contour plot in Fig. 9, th
‘‘unit cell’’ for the neutron cross section contains four Bri
louin zones: one with a very low scattering intensity, such
the first BZ in the middle, and three BZ’s with a highl
inhomogeneous scattering pattern oriented at three diffe
angles. The neutron cross section is symmetric with resp
to rotations by 60 ° degrees. It reaches its maximal value
q5(68p/3,0), etc., and vanishes along the directionsqx

50,6A3qy , includingq50. The scattering pattern in Fig.
strongly resembles that in the appropriate plane for the c
sical Heisenberg model on the pyrochlore lattice, which w
obtained by MC simulations in Ref. 44. In contrast, the p
turbative calculation for the quantum AFM model withS
51/2 on the pyrochlore lattice45 shows much less reveale
triangular shape of the maxima of the neutron cross sect

um

FIG. 9. Neutron-scattering cross section from the largeD
kagome´ antiferromagnet atT50 ~cf. Fig. 2!.
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Let us now analyze the neutron cross section in m
detail. At T50 using Eqs.~2.11! and ~3.28! one obtains

ds

dV
5

4 sin2~qx/2!@cos~qx/2!2cos~A3qy/2!#2

sin2~qx!1(
6

sin2~qx/26A3qy/2!

, ~6.3!

where (6 sums terms with both signs. Particular cases
this formula are the following. Forqy50 one has

ds

dV
5

4 sin4~qx/4!

112 cos2~qx/2!
. ~6.4!

This is equal to 1/3 at the corner of the first BZ,qx52p/3, to
2 at qx5p ~the highest slope!, to 3 atqx54p/3 ~the maxi-
mum!, and to 8/3 atqx52p. Near the lineqx50, Eq. ~6.3!
simplifies to

ds

dV
>

qx
2

2
tan2

A3qy

4
, qy ,Uqy2

2p

A3
U@qx . ~6.5!

For small wave vectors one obtains

ds

dV
>

1

96

qx
2~qx

223qy
2!2

qx
21qy

2
, qx ,qy!1. ~6.6!

The most interesting form of the neutron cross section
realized in the vicinity of the centers of the Brillouin zon
surrounding the first BZ in Fig. 9. In particular, nearq
5(0,2p/A3) Eq. ~6.3! takes the form

ds

dV
>

8

3

qx
2

qx
21~dqy!2

, qx ,dqy!1, ~6.7!

where dqy[qy22p/A3. This function is nonanalytic a
qx ,dqy50, and its limiting value in this point depends o
the way of approaching it.~Such a function is difficult to
plot: What looks like narrow paths in Fig. 9 are in fact in
nitely thin walls.!

At TÞ0 one should take into account the terms withn
52,3 in Eq.~6.2!. This is especially important in the regio
where the zero-temperature neutron cross section turn
zero or is singular. In particular, nearq50 the quantityW1

2

is small due to cancellation of the leading terms and is gi
by the right-hand side~rhs! of Eq. ~6.6!. Similar cancellation
takes place inW2

2 , and the result is given by the same fo
mula with interchangedqx and qy . The leading term thus
becomes the noncancelled one associated with the ‘‘optic
eigenvalue,W3

253. This leads to the uniform susceptibilit
given by Eqs.~3.29! and~4.7!, that tends to a constant in th
low-temperature limit. On the contrary,xq with qÞ0 be-
haves as 1/T at low temperatures.

In the vicinity of the singularity pointq5(0,2p/A3), i.e.,
near the center of the Brillouin zone just above the first~cen-
tral! BZ in Fig. 9, cancellation of the leading terms does n
take place. Here the matrixÛq differs from that of Eq.~2.15!
by the redefinitionny[dqy /@qx

21(dqy)
2#1/2 and by the

change of sign of the third row. HereW2
2 is given by the rhs

of Eq. ~6.7! with interchangedqx anddqy . Now with the use
of Eq. ~5.1! one obtains the final result
e

f

is

to

n

l’’

t

ds

dV
>

8

3

k21qx
2

k21qx
21~dqy!2

, k,qx ,dqy!1. ~6.8!

It can be seen that this expression is nonanalytic only in
limit T→0, where the correlation lengthjc defined by Eq.
~5.2! becomes infinite.

The powder average of the neutron cross sect
^ds/dV&, i.e., the average of Eq.~6.2! over the directions of
q, is shown in Fig. 10. Positions of its singularities atT
50 can be found from the scattering pattern in Fig. 9. T
first of them are located atq52p/A3'3.63 ~sharp maxi-
mum!, 2p'6.28 ~sharp minimum!, A(3p)21(p/A3)2

52pA7/3'9.6 ~small cuspy shoulder!, 332p/A3'10.88
~sharp maximum!, A(4p)21(2p/A3)252pA13/3'13.08
~sharp minimum!, A(5p)21(p/A3)252pA19/3'15.81
~sharp maximum!, 532p/A3'18.14 ~sharp maximum!,
6p'18.85 ~cuspy shoulder!, etc. With increasing ofq the
behavior of̂ ds/dV& becomes more and more irregular, a
it very slowly approaches the value 1. The latter can be
derstood since for large values ofq the average over the
directions ofq should be equal to that overq itself. The latter
is, according to Eq.~6.1!, nothing else but the autocorrelatio
function, and the result is unity for the normalization
ds/dV adopted in Eq.~6.2!.

At nonzero temperatures, the sharp features of^ds/dV&
smoothen. Their low-temperature forms can be found w
the help of Eq.~6.8! and are given by

K ds

dV L >2.71210.868dq2
4A3

p

~dq!2

Ak21~dq!2
~6.9!

near the first maximum,dq[q22p/A3, and

K ds

dV L >0.018320.238dq1
4

p
Ak21~dq!2 ~6.10!

near the first minimum,dq[q22p. In the high-temperature
limit, Eq. ~6.1! is dominated by the autocorrelation functio
and the neutron cross section defined by Eq.~6.2! is equal to
1 for all q ~an absolutely diffuse scattering!.

FIG. 10. Powder average of the neutron-scattering cross sec
from thekagome´ antiferromagnet atT50. Inset: MC simulations of
Ref. 12 for the Heisenberg model.
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The MC simulation data of Ref. 12 for the Heisenbe
model atT50.002J are shown in the inset to Fig. 10. A
such low temperatures the system shows a tendency tow
selection of theA33A3 phase, and the correspondin
Bragg-reflection peaks grow. The latter, according Eq.~2.3!,
are situated at the corners of all Brillouin zones in the
tended BZ scheme shown in Fig. 9, and their positions
shown by additional tics in Fig. 10. These peaks that
superimposed on the underlyingD5` structure can be
traced out in the inset. Note that there are Bragg-reflec
peaks in the vicinity of theD5` peaks, and they seem to b
mixed together in the simulations of Ref. 12. In contrast,
first two minima in Fig. 10 can be found in the inset at nea
the same positions, although in a strongly rounded form.

VII. DISCUSSION

In the main part of this article, we have presented in de
the exact solution for theD5` component classical antifer
romagnet on thekagome´ lattice. The solution does not sho
ordering at any temperature due to the strong degenerac
the ground state, and the thermodynamic functions beh
smoothly. In contrast to conventional two-dimensional ma
nets, there is no extended short-range order at low temp
tures, andT50 is not a critical point of the system. Althoug
the correlation length diverges asjc}T21/2, the power-law
decay^s0sr&}1/r 2 of the spin correlation functions leads
the loss of correlations at the scale of the interatomic d
tance. The magnetic neutron-scattering cross section
comes nonanalytic atT→0 but does not diverge at any ‘‘or
dering’’ wave vector.

Although the model with an infinite number of spin com
ponents may appear very unphysical at the first glance,
in fact the second that should be applied, after the mean-
approximation, to any classical spin system. It properly
scribes the effect of would be Goldstone modes and thu
has important advantages against the MFA. Properly sc
physical quantities show a smooth dependence onD, and in
typical cases the large-D model proves to be a reasonab
approximation to the realistic one withD53. So, the results
for the heat capacity and the uniform susceptibility obtain
n

s

e

rds

-
re
e

n

e

il

of
ve
-
ra-

-
e-

is
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-
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d

above are in a fairly good agreement with the MC simulati
results for the Heisenberg model in the whole temperat
range. This implies that the 1/D corrections to the thermo-
dynamic functions of thekagome´ AFM, which could be
studied within the same theoretical framework,27,28 are sup-
pressed by some mechanism.

The D5` model and the 1/D expansion seem to be in
efficient in the cases when, due to topological effects, t
behavior of the system abruptly changes at small values
D. A well-known example is the Berezinskii-Kosterlitz
Thouless transition which takes place in two dimensions
D52. For thekagome´ lattice, thermal fluctuations favor the
A33A3 phase at low temperatures for the Heisenbe
model, but there is no such an effect forD.3.11,13 On the
other hand, the tendency to the selection of theA33A3
phase at low temperatures is already seen in the hi
temperature series expansion of Ref. 4 for any finite value
D. Exactly how this mechanism becomes inefficient at lo
temperatures forD.3, could be studied with the help of the
1/D expansion. The latter describes lifting of the degenera
of the largest eigenvalue of the correlation matrix in the fir
order in 1/D and is applicable in the whole range of temper
tures.

As follows from the consideration above, the Heisenbe
antiferromagnet on thekagome´ lattice is still not the best
model to substitute it with theD5` model. For the Heisen-
berg AFM on the pyrochlore lattice, the large-D approxima-
tion can be expected to work even better since this mode
in a sense, more disordered, and topological effects lead
here to the selection of the coplanar phase arise only forD
52.13 The formalism for the pyrochlore lattice in zero fiel
is essentially the same as for thekagome´ lattice, and the
corresponding results will be presented elsewhere.
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