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Weak localization of disordered quasiparticles in the mixed superconducting state
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Starting from a random-matrix model, we construct the low-energy effective-field theory for the noninter-
acting gas of quasiparticles of a disordered superconductor in the mixed state. The theory is a nonlinears
model, with the order-parameter field being a supermatrix whose form is determined solely on symmetry
grounds. The weak-localization correction to the field-axis thermal conductivity is computed for a dilute array
of s-wave vortices near the lower critical fieldHc1. We propose that weak-localization effects, cut off at low
temperatures by the Zeeman splitting, are responsible for the field dependence of the thermal conductivity seen
in recent high-Tc experiments by Aubinet al. @S0163-1829~99!08205-3#
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I. INTRODUCTION

The long-wavelength physics of phases of matter w
spontaneously broken symmetries is commonly describe
an effective-field theory for the relevant order parameter.
the problem of localization and transport in disordered m
tallic systems at low temperature, the appropriate ‘‘order
rameter’’ is known1 to be a supermatrix~or a matrix of di-
mension zero if the replica trick is used!, conventionally
denoted byQ. Three universality classes, differing by the
behavior under time reversal and spin rotations, are wid
known.2 They are labeled by an indexb51,2,4, and are
traditionally referred to as the classes with orthogonal, u
tary, and symplectic symmetry. We denote them byAI, A,
and AII for short.3 In each case, the field theory forQ be-
longs to the general family of nonlinears models. The field
Q contains the Goldstone modes of a hidden symmetry4 con-
necting retarded and advanced single-electron Green’s f
tions, which is broken by a nonzero density of states. At t
level one recovers the classical diffusion approximati
which neglects quantum interference corrections due to e
tron paths with loops. Anharmonic terms in the field theo
represent ‘‘interactions’’ between the diffusion modes, g
ing rise to so-called weak-localization corrections to diff
sion. For the classesAI and A in dimensiond<2, these
interactions become strong at large distance scales and
cause localization of all states, regardless of the strengt
the disorder.

In recent years it was found that theb51,2,4 classifica-
tion is not exhaustive: for systems with symmetries of
particle-hole (p-h) type, the invariance group of the orde
parameter fieldQ becomesenlarged in the vicinity of the
p-h–symmetric point. One instance of such symmetry
hancement are Dirac fermions in a random gauge field5,6
PRB 590163-1829/99/59~6!/4382~8!/$15.00
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another are disordered quasiparticles that exchange ch
~but no energy! with a superconducting condensate.3 Such
systems exhibit novel spectral statistics and transport p
erties. Seven symmetry-enhanced universality classes
been identified, and the corresponding order parameterQ
were constructed from their random-matrix limit in Ref.
The main message is thatQ lives on a symmetric space—i
precise technical language, on a Riemannian symme
superspace—in all cases. The nonlinears models defined
over such spaces are known8 to beattractive under the flow
of the renormalization group. Therefore the order paramete
of a given disordered single-particle system, and in m
cases its low-energy effective-field theory as well, can
inferred quite simply by investigating the ergodic~or random
matrix! limit.

The present report focuses on classC, which emerges for
noninteracting low-energy quasiparticles in a magnetic fi
and in contact with a spin-singlet superconductor. The de
ing condition3 is that the quasiparticle Hamiltonian be invar
ant under SU(2) rotations of the electron spin, whereas tim
reversal invariance has to be broken. Since a supercondu
screens magnetic fields, this universality class can only
realized in aninhomogeneoussuperconducting state — un
less time-reversal invariance is broken spontaneously. In
very recent literature the following realizations ha
appeared:9 ~i! a metallic quantum dot in the form of a chaot
billiard, subject to a magnetic flux and bordering on
superconductor;10,11 ~ii ! quasiparticles in the core of an iso
lated vortex in a disordereds-wave superconductor;12 and
~iii ! a ~quantum! disordered version of adx22y2 supercon-
ductor with orbital coupling to a magnetic field.13 The hall-
mark of classC is that, in contrast with the metallic classA,
the weak localization correction doesnot vanish,14 in spite of
the presence of a magnetic field. The persistence of w
4382 ©1999 The American Physical Society
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PRB 59 4383WEAK LOCALIZATION OF DISORDERED . . .
localization in a field is caused by nonstandard modes
quantum interference that appear when impurity and A
dreev scattering are simultaneously present. In a semicla
cal picture, the effect can be understood as being due3 to
quasiparticlepaths in which a loop is circled twice, with the
charge states during the first and second looping being
actly opposite to each other.

To identify the order-parameter fieldQ and its low-energy
effective theory for classC, one may proceed in severa
ways. The direct method, due to Ref. 15 and worked ou
detail for isolated vortices of ans-wave superconductor in
Ref. 12, is to start from the BCS mean-field Hamiltonian
the quasiparticles, set up a supersymmetric generating f
tional for the Gorkov Green’s function, introduce a compo
ite field Q to decouple the 4-vertices produced by averag
over the disorder, integrate out the quasiparticle fields, so
two saddle-point equations forQ in sequence~the second of
which turns out to coincide with the Usadel equation16!, and
finally expand in gradients ofQ to obtain the low-energy
effective theory. The field theory so obtained is a nonlineas
model, withQ taking values in a Riemannian symmetric s
perspace of typeDIII uCI, in agreement with the random
matrix analysis of Ref. 7. Its coupling constant has the u
versal meaning of a conductivity for the conserv
probability ~or energy! current transported by the quasipar
cles. Because quasiparticles also carry spin, the coup
constant may be reinterpreted13 as a spin conductivity in the
present context.~The latter interpretation fails for system
with spin-orbit scattering or magnetic impurities, where sp
is not conserved.!

Given the proper identification of the order-parame
field Q, a few qualitative conclusions areimmediate. Accord-
ing to the renormalization theory of nonlinears models,8 the
sign of the one-loop renormalization-group beta function
two space dimensions is completely determined by the s
of the ~Ricci! curvature tensor relative to the metric tens
Since the curvature of the Riemannian symmetric supersp
of type DIII uCI is positive,17 the weakly coupled two-
dimensional theory renormalizes by logarithmic correctio
towards strong coupling~i.e., strong disorder!, which ulti-
mately leads to localization of all quasiparticle states aT
50. This localized phase was called a ‘‘spin insulator’’
Ref. 13. In dimensiond51 the same corrections are prese
but with a linear dependence on the cutoff length. Ind53
the theory supports a delocalization transition to a phas
extended states, the ‘‘spin metal.’’13 The addition of random
classical Heisenberg impurity spins~at subcritical concentra
tion, so as to maintain superconductivity! causes crossove
from classC to classD,3 with the nonlinears model chang-
ing to typeCIuDIII. 7 In the process, the sign of the symme
ric space curvature gets reversed, whence weak localiza
turns into weakantilocalization, making it possible for ex-
tended states to existalready in two dimensions.

Our goal here is to extend the treatment of Ref. 12 a
illustrate some of the above general facts at the ther
transport of the class-C quasiparticles of a disordereds- or
d-wave superconductor in the mixed state.18 We assume the
presence of~nondescript! nonmagnetic impurities, which dis
order the vortex array and cause elastic scattering of the
siparticles. To tackle this problem we will use a coars
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grained or random-matrix type of approach, placing the e
phasis onsymmetry considerations.

II. EFFECTIVE-FIELD THEORY
FROM AN N-ORBITAL MODEL

We begin our treatment by partitioning the superco
ductor into cells of equal size, with each cell containing o
vortex segment with a length of the order of the elastic me
free pathl . Within each cell we introduce~in the spirit of
the real-space renormalization group! a basis ofN quasipar-
ticle wave functions that comprise the relevant low-ene
configurations. The matrix of the Hamiltonian in such a ba
assumes a sparse block structure, with one block on the
agonal for each cell, and with off-diagonal blocks that cou
neighboring cells. Ifi labels the cells anda51, . . . ,N the
orbitals inside a cell, the ‘‘coarse-grained’’ Hamiltonian is
the form

H5(
^ i , j &

(
ab

„hia, jb~cia↑
† cjb↑1cia↓

† cjb↓!

1D ia, jb~cia↑
† cjb↓

† 2cia↓
† cjb↑

† !/21H.c.…,

where the sum overi , j is restricted toi 5 j and pairs of
neighboring cells. The spin-singlet nature (↑↓-↓↑) of the
coupling to the pairing field is dictated by conservation
spin. Fermi statistics then requires the complex matrixD to
be symmetric:D ia, jb5D jb,ia .19 If we temporarily suppress
the cell and orbital indices,H can be written in the schemati
form H5Tr(Hc̃c)1const, where

c̃5S c↑
†

c↓
D , c5~c↑ c↓

†!, H5S hT D†

D 2hD .

The symmetries of the Hamiltonian matrixH are summa-
rized by the equationH52CH TC21, with C being the sym-
plectic unitC5 is2^ 1. Note that when the Zeeman energ
HZ5mB( ia(cia↑

† cia↑2cia↓
† cia↓)/2 is taken into account, the

SU(2) spin rotation invariance ofH is broken down to a
U(1) symmetry.

Disorder in the microscopic Hamiltonian gives rise to ra
domness inH. Because the universal properties at lo
wavelengths are insensitive to the microscopic details,
have considerable freedom in choosing the random Ha
tonianH. The simplest choice is anN-orbital model with
locally gauge-invariant disorder of the type invented
Wegner20 for the purpose of describing the universal phys
of the Anderson localization transition forb51,2,4. The cru-
cial new feature in the present case is the relationH5
2CH TC21, which is invariant under symplectic transform
tions H°SHS21,STCS5C. We therefore adopt a mode
with local Sp(2N) gauge invariance: the elements of the m
trix H are taken to be Gaussian-distributed uncorrelated
dom variables with zero mean,^H&50, and second moment
specified by

^Tr AHi j Tr BHkl&5
wi j

2N
~d i j

lk Tr AB2d i j
kl Tr ACBTC21!,

whered i j
kl5d ikd j l , andwi j is a rapidly decreasing function

of the distance between the cellsi andj. Aside from respect-
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4384 PRB 59BUNDSCHUH, CASSANELLO, SERBAN, AND ZIRNBAUER
ing the symmetries and locality of the Hamiltonian, th
choice has the virtue of maximizing the information entrop
The main benefit from using such a maximum entropy mo
is that the introduction of the supermatrixQ, usually a tricky
step that requires some expertise, becomes straightforwa
we now proceed to show.

We replace the operatorsc̃,c by classical fields
c̃,c: c̃iaacjbb→(sc̃ iaa,scs, jbb and integrate bilinears in
c̃,c against expi Tr(H2E)c̃c in the usual way to generat
the Gorkov Green’s function at energyE. The introduction
of a bosonic partner (s5B) for each fermionic field (s
5 F) serves to cancel vacuum graphs by the mechanism
supersymmetry. There is one complication, however: the
trix c̃c does not share the symplectic symmetry of t
Hamiltonian. To remedy this mismatch, we introduce an
tra quantum number~‘‘pseudo charge’’! c561, so that the
quasiparticle fields expand to tensorsc̃ iaa,sc and csc,iaa .7

On imposing the conditions c̃5CcTg21 and c5

2gc̃TC21, whereg is a real orthogonal matrix that will be
specified shortly, we have the symmetryc̃c5

2C(c̃c)TC21 as desired.
Since the order parameterQ is a local field, its nature can

be uncovered by looking at the Hamiltonian truncated t
single cell. With this truncation temporarily in force, we in
troduceQ as follows:

E dH exp~2N TrH 2/2w01 i TrHc̃c!

5E dQ exp~2N STrQ2/2w01 i STrQcc̃!.

The equality is verified by using the cyclic invariance of t
~super!trace: Tr(c̃c)25STr(cc̃)2. The Hubbard-
Stratonovitch fieldQ is a 434 supermatrix which, by its
coupling tocc̃, inherits the symmetry

Q52gQTg21. ~1!

The constraints relatingc̃ andc to one another are compa
ible only if g2 equals the superparity matrix (11 on bosons,
21 on fermions!. To meet this condition we put

g5EBB^ s11EFF ^ is25S s1 0

0 is2
D .

Relation ~1! is the defining equation of an orthosymplec
Lie algebra and is invariant underQ°TQT21 with
g(T21)Tg215TPOSp(2u2). In the general case, wher
Green’s functions atn different energies are to be average
Q acquires matrix dimension 4n34n, and the symmetry
group gets enlarged to OSp(2nu2n)[G.

Returning now to the full lattice problem, introducingQi
for every cell i, and integrating over the quasiparticle fiel
c,c̃ we arrive at the following action functional:

S/N5(
i j

w21
i j STrQiQj /21(

i
STr ln~Qi2v ^ S3!,
.
l

as

of
a-

-

a

,

where (S3)sc,s8c85dss8(s3)cc8 andv is a diagonal matrix
containing the energies at which the quasiparticle Gree
functions are to be evaluated. Variation ofS yields the
saddle-point equation( jw

21
i j Qj5(vS32Qi)

21, whose
physical solution~dictated by causality of the Green’s func
tion! at v50 and homogeneous in space isQ05 ivS3 with
v225( jw

21
i j . Low-energy fluctuations result from settin

Qi5TiQ
0Ti

21 and takingTiPG to vary slowly with the po-
sition of the celli. By expanding in gradients, the low-energ
effective action for such configurations atv50 is easily
seen to be a nonlinears model,

S052
pn

8 E d3x STr„D'~¹'Q!21D i~¹ iQ!2
…, ~2!

where we have switched to continuous coordinatesx'

5(x,y) andxi5z. The parametern is the density of states
of the superconductor, andD i ,D' are the field-axis and
transverseeffectivediffusion constants of the quasipartic
gas. We are using units\51. At finite v, the field-theory
action is perturbed by a term

Sv5
ipn

2 E d3x STrvS3Q, S5S01Sv . ~3!

We have rescaled the field toQ5TS3T21. Since this ex-
pression forQ is invariant underT→Tk for k5S3kS3
PGL(nun)[K, the supermatrixQ lives on a coset spac
G/K. If we parametrizeQ by

Q5expS 0 X

X̃ 0D S3 ,

positivity of S0 or equivalently, stability of the functiona

integral, requiresX̃BB51XBB
† and X̃FF52XFF

† . In invari-
ant mathematical language, this meansQBB
PSO* (2n)/ U(n) ~Ref. 21! andQFFPSp(2n)/U(n), which
are symmetric spaces of typeDIII and CI — hence the name
DIII uCI for the present nonlinears model. The same effec
tive theory ~restricted to theFF sector due to the use o
fermionic replicas! was obtained in Ref. 13, based on a qu
siparticle Hamiltonian for a dirtydx22y2 superconductor with
orbital coupling to a magnetic field. This is no surprise,
that system belongs to symmetry classC and the order-
parameter field Q and its low-energy effective theory a
determined solely by symmetry. ~Incidentally, the classifica-
tion scheme of Ref. 3 assigns the quasiparticles of thedx22y2

superconductor in zero field to classCI. According to Ref. 7,
the corresponding symmetric superspace isDuC, also in
agreement with the findings of Ref. 13.!

In order to break parity and account for the Hall ang
one would need to add to the Lagrangian a topological d
sity proportional toekl STrQ]kQ] lQ, which is closely re-
lated to Pruisken’su term22 well known from the theory of
the integer quantum Hall effect. In two dimensions this te
integrates to a winding number and is nontrivial, since
fundamental group of U(n) is P1„U(n)…5Z and there exists
the topological identity P1„U(n)…5P2„ Sp(2n)/U(n)….
However, such a topological term does not affect the res
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PRB 59 4385WEAK LOCALIZATION OF DISORDERED . . .
for the longitudinal spin and thermal conductivities presen
below and will therefore be omitted.

The maximum entropy derivation presented here does
supply microscopic expressions for the couplingsnD i and
nD' . ~We can express them in terms of the random-ma
parameterswi j , but this is neither illuminating nor useful.!
These parameters can either be calculated from~quasi!clas-
sical transport theory23 or, better yet, taken from experimen
In the latter case we extract the~bare! coupling constants
from experiments conducted at temperatures high enoug
that the transport is classical, and thenuse the field theory (2
and (3) to predict the quantum corrections that emerge
lower temperatures.

III. WEAK LOCALIZATION IN CLASS C

The field theory~2! does not apply to charge transport,
the condensate carries charge and quasiparticle charge i
a constant of motion. The energy, however, and for clasC
also the spin of a quasiparticle, are conserved, which all
one to probe for quasiparticle transport and localization
measuring thethermalandspin transport. To obtain the rel
evant transport coefficients we start from the bilocal cond
tivity tensor

t l l ~x,x8;E!5(
aa8

v la
~x!Gaa8

R
~x,x8;E!v la8

~x8!Ga8a
A

~x8,x;E!,

which describes the nonlocal linear response of the spin
rent to a perturbation due to the Zeeman coupling with
applied field. The quantitiesGR andGA are the retarded an
advanced Gorkov Green’s functions andv la5@ i (s3)aa(]Q l

2]W l)22eAl #/2m is thel component of the velocity operato
We use the relationH52CH TC21 to expressGA at energy
E by GR at energy2E.12 Disorder averaging and the map
ping on the nonlinears model withn52 then turn the tenso
t l l into a correlation function of the conserved OSp(4u4)
Noether currentJ5(Q¹Q)B11,B22 of the field theory:

^t l l ~x,x8!&5~pnDl !
2^Jl~x!J̄l~x8!&. ~4!

The second superscript in the expression for the Noether
rent refers to the pseudocharge, while the third distinguis
between the two Green’s functions. The symmetry-break
perturbation due to the quasiparticle energyE is incorporated
into the formalism by settingv5diag(E1,2E2), where
E65E6 i0.

Next, let s l l 5(2p)21*^t l l (x,x8)&d3x8 be the local
‘‘spin’’ conductivity for quasiparticles with fixed spin up o
down. To compute this quantity from the correlator~4!, we
adopt a rational parametrization forQ,

Q5S 1 Z

Z̃ 1D S 1 0

0 21D S 1 Z

Z̃ 1D 21

.

Inserting this parametrization into the field-theory action~2!,
and doing the functional integral in Gaussian approximat
~tree level!, we obtains l l 5s l l

0 with

s l l
0 5nDl ,
d

ot

x

so

t

not

s
y

-

r-
n

r-
es
g

n

which is the result expected from quasiclassical transp
theory. The weak-localization correction to^t l l (x,x8)& arises
from one-loop graphs of the kind shown in Fig. 1; see R
12. The basic element of this graph is a 4-vertex represen
the fourth-order term in the Taylor expansion ofS with re-

spect toZ,Z̃. A double line oriented by an arrow stands f

the bare propagator̂ZZ̃&0 . All one-loop graphs are com
posed of three propagators and one 4-vertex. Although th
graphs appear as a calculational device for organizing
field-theoretic perturbation expansion, they do have a dir
physical meaning, as follows. Each of the two single lines
Fig. 1 stands for a Feynman path contributing to the Gork
Green’s function GR(x,x8;6E). Double lines represen
sums of impurity ladders with an arbitrary number of A
dreev scattering events inserted. It is seen from Fig. 1
one of the two Green’s function lines proceeds directly fro
the pointx8 to the pointx, whereas the other one makes
excursion in the form of a double loop. The propagator
sociated with the double loop is called theD-type cooperon.3

What is essential here is that the charge of the quasipar
during the second looping is exactly opposite to the cha
during the first looping. This feature makes theD-type coop-
eron stable with respect to disorder averaging irrespectiv
the orbital coupling to a magnetic field by canceling t
Aharonov-Bohm phaserA•dl accumulated in the loop. Fig
ure 1 also indicates the fact10 that the present variant of th
weak-localization phenomenon already affects a sin
Green’s function and thus the density of states.

By evaluating the one-loop graphs in a similar manner
in Ref. 12, we obtain

ds l l 52
Dl

p
ReE d3k

~2p!3 ~D iki
21D'k'

2 12iE !21. ~5!

The full spin conductivity iss l l 5s l l
0 1ds l l 1•••. Note that

the correction is formally similar24 to that for classAI, ex-
cept that it explicitly depends on energy. In fact, itdisap-
pears with increasing excitation energy, or temperature, in
agreement with the fact12 that moving up in energy cause
crossover from classC to classA, where weak localization is
absent. In dimensiond<2 the integral over wave numbers
cut off in the infrared by the inverse of the dephasing len
Lw due to inelastic~or quasielastic25! scattering, while for
dimensiond>2 it is UV regularized by the inverse elast
mean free path.

Next recall that the quasiparticle spin is assumed to
conserved, which allows one to consider the sectors w
spin up (s511/2) and spin down (s521/2) separately.

FIG. 1. One-loop diagram contributing to the correlat
^t l l (x,x8)&. The electric charge of the quasiparticle during the s
ond looping (2a) is opposite to the charge during the first loopin
(a).
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Turning on the Zeeman coupling is equivalent to shifting
excitation energyE→E2smB. As a result, the energy de
pendence of the weak-localization correction translates in
field dependence. Note that this effect differs from weak lo
calization in disordered metals,24 where the orbital coupling
to a magnetic field causes classAI to cross over to classA. In
that case, the field scale is set byBO5(eDtw)21 with tw

being the dephasing time. In the present case the rele
field scale isBZ5(mtw)21.

To compute the thermal conductivityk at temperatureT,
we use the relation

k l l 5 (
s561/2

E
0

`

s l l ~E2smB!
] f T

]T
~E!E dE,

where f T(E)5(11eE/T)21 is the Fermi-Dirac distribution,
and our unit of temperature is such thatkB51. If the energy
dependence ofs0 can be neglected in the range 0,E&T,
and if T&Max(mB,Gw), i.e., ds is cut off by the Zeeman
energy or the dephasing rateGw5tw

21 , rather than by the
temperature, we may pull outs l l (E) from under the integra
sign, thus obtaining an analog of the Wiedemann-Franz l

k l l ~B!

T
5

p2

3
s l l ~mB!. ~6!

Here we have combined the spin-up and spin-down con
butions by assuming the quasiclassical terms l l

0 to be unaf-
fected by the Zeeman splitting.

IV. ISOLATED VORTICES

We now specialize to an extreme type-IIs-wave super-
conductor in a weak magnetic field~but well into the mixed
state so that the field is approximately homogeneous!, where
quasiparticles are bound to a dilute array of vortex cores
the amplitude to hop from one vortex to another is negligi
small. In this case the problem reduces to a set of decou
one-dimensional theories, one for each vortex, and we
mally set D'50. The parameters of the one-dimension
nonlinears model were calculated by solving the Usad
equation for a single vortex in Ref. 12, where we foundD i
5C2vFl /3C1 , andn* d2x'52nNpj2C1 if the integral ex-
tends over the area occupied by one vortex. The paramej
is the dirty coherence length,nN is the density of states of th
normal metal, andC153.16 andC251.20 are numerica
constants dependent on the vortex profile. Using the fact
the total number of vortices equals the transverse area o
sample divided by half the square of the magnetic len
l B5A2p/eB, we obtains i

054pC2nN(j/ l B)2vFl /3 for the
quasiclassical limit of the spin conductivity. The wea
localization correction is given by

ds i52
2D i

p l B
2 ReE dk

2p
@D ik

21Gw12i ~E2smB!#21,

where inelastic events were incorporated by shifting the
nominator byGw . This result applies when the dephasi

lengthLw5AD i /Gw is shorter than the vortex lengthL i . In
the opposite, mesoscopic regime (L i!Lw) the weak local-
ization effect was worked out in Ref. 12.
e
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:

i-

d
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r-
l
l

r
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h
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The low-temperature behavior of the thermal conductiv
depends on howGw varies withT. If we assume a power law
Gw;Tp with exponentp,1,25 thens i becomes constant in
the energy range whered fT(E)/dT is essentially different
from zero, and we get the Wiedemann-Franz law~6! with

s i~mB!5s i
02~p l B

2 !21ReAD i /~Gw1 imB!.

In the high-field regimemB*Gw the weak-localization cor-
rection to the thermal conductivity is cut off by the Zeem
splitting, giving a characteristic dependencedk i /T;
21/AB. On the other hand, ifp.1 then the relevant low-T
regime isT@Gw , and the weak-localization effect is cut o
by T for low fields. In that case, one finds

k i /T5
p2

3
s02

3

4
Ap

2
~A221!z~3/2!LT /p l B

2 ,

i.e., the quantum correction is determined by the therm
lengthLT5AD i /T.

The above considerations apply to a vortex array in
dilute limit nearHc1. As the field is increased, the quasipa
ticle hopping rate between vortices in ans-wave supercon-
ductor grows strongly. When the field is tuned close toHc2,
where the system of vortex cores becomes dense, the d
sion constantD' gets large and the anisotropic field theo
~2! three dimensional. Since the quasiparticle states of
weakly disordered three-dimensional system are extende
delocalization transition must take place with increas
field. Note that this transition is not in a new universali
class, as the breaking of spin-rotation invariance by the Z
man coupling reduces classC to classA.13 Nevertheless, the
occurrence of such a delocalization transition may be of
perimental interest, for it can be observedby varying the
magnetic field~instead of the disorder strength or the chem
cal potential!.

V. WEAK LOCALIZATION IN THE CUPRATES

We now adapt our results to the very interesting case
quasi two-dimensionald-wave superconductors such as t
cuprates. As was stated before, the low-energy quasipart
of a dirty d-wave superconductor in zero magnetic field b
long to symmetry classCI. Weak-localization effects in tha
class arise from two distinct modes of quantum interferenc3

the cooperon of typeA, and the cooperon of typeD. The
former is the natural analog of the cooperon mode w
known from the theory of disordered metals.24 When time-
reversal symmetry is broken by a magnetic field penetra
the superconductor, theA-type cooperon becomes massi
and disappears over a scale given byBO5(eDtw)21. This
crossover takes classCI into classC, while leaving weak
localization due to theD-type cooperon intact. As we hav
seen, the latter mode is cut off only by the Zeeman ene
which becomes effective over the characteristic field sc
BZ5(mtw)21. Usingm52mB5e/m andD;kFl /m we see
that the two scales are separated by a large factor:BZ /BO
;kFl , i.e., the elimination of theA-type cooperon by the
orbital coupling to the magnetic field takes place at mu
smaller fields than does the removal of theD-type cooperon
by the Zeeman energy. This justifies our explicitly retaini
the Zeeman coupling, while burying the orbital coupling v
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the introduction of a maximum entropy model. In the follow
ing, we take the magnetic field to be applied along thec axis,
and assume the system to be well into the mixed state so
the field is approximately homogeneous.

The cuprates are highly anisotropic materials, consis
of weakly coupled Cu O2 planes, for whichD i[Dc!Dab
[D' . At weak interlayer coupling, the continuum approx
mation leading to Eq.~2! is not justified in thec direction,
and we need to restore the discrete layer structure. Th
done by making the replacementD iki

2→2tc(12coskia),
wherea is the distance between layers andtc is the interlayer
hopping rate. Then, by performing the integral in Eq.~5!
over the domainLw

21,uk'u,l 21 and2p/a,ki,p/a, we
obtain

ds'52~2p2a!21 Re ln@Fs~G!/Fs~Gw!#,
~7!

Fs~«!5A«14tc12i ~E2smB!1A«12i ~E2smB!,

where G5D' /l 2 and Gw5D' /Lw
2 are the elastic and in

elastic scattering rates.
To evaluate the consequences of this general formula,

needs to distinguish cases. For brevity, we concentrate on
limit defined by the condition that elastic scattering sets
largest energy scale:G@max(4tc ,2E,mB). Consider first
the case 4tc&max(2E,mB), which physically means tha
the coherence of the quantum interference modes is
stroyed before quasiparticles have a chance to hop betw
layers. The layers then effectively decouple, yielding a tw
dimensional system, and the formula fords' becomes

ds'52~4p2a!21 Re ln@G/~Gw12iE22ismB!#.

The appearance of a logarithm is characteristic of weak
calization in two dimensions. For the in-plane thermal co
ductivity we get

dk'~B!/T52~12a!21 Re ln@G/~Gw1 imB!#,

provided that the conditions of validity of the Wiedeman
Franz law~6! are satisfied. Note that in contrast with thre
dimensional metals, where weak localization is a rat
minute effect, the correction here can easily exceed 1
under experimental conditions. This is because the rela
sizedk/k is roughly given by the inverse of the dimensio
less intralayer coupling constant 2pn2dD' , whose value in
zero field has been estimated26,13 to be not much in excess o
unity.

In the opposite limit, where 4tc is much larger thanmB
andGw , but still smaller thanG, the field dependence of th
weak localization correction to the thermal conductivity b
comes three-dimensional:

dk'~B!

T
52

1

6a
@ lnAG/tc2ReA~Gw1 imB!/4tc#,

where again the law~6! was assumed. Note that the abo
expressions fordk'(B) increasewith B.

To summarize, weak localization in classC, cut off by the
Zeeman splitting, causes the thermal conductivity to incre
with the magnetic field at sufficiently low temperatures.
make this more quantitative, we need to specify the fie
temperature range where the effect becomes observable
at
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answer is provided by the value of the spin magnetic m
ment of the electron~with a g factor of 2!, which is 1.35 K/T
in suitable units. As a result, if the field strength is of t
order of 1 T, the weak-localization-induced field dependen
sets in at temperatures below one 1 K~unless for some un-
expected reason the dephasing rateGw is anomalously large!.

We now wish to elucidate whether such an effect mig
already be visible in recent experiments. The discussio
somewhat complicated by an ongoing debate concerning
leading, quasiclassical termk0. Let us summarize the curren
situation as we see it.

Krishanaet al.27 measured the magnetic field dependen
of the thermal conductivity in a Bi2Sr2CaCu2O8 system for
temperaturesT>6 K. After an initial decrease at wea
fields, they observed a sharp kink atB* ;AT, followed by a
wide plateau forB.B* . The nonanalyticity atB* has been
interpreted28 as a phase transition to a new ground state w
a secondaryidxy order parameter. We will not be particularl
concerned with that issue here.@The addition of anidxy com-
ponent to the order parameter is fully compatible with t
symmetries of classC and, if disorder is present, the fiel
theory ~2! for the quasiparticle excitations remains qualit
tively unchanged.# From the observation of field indepen
dence over a sizable range of temperatures, one dedu27

that both the electronic and the phonon contribution to
thermal conductivity must be individually constant. The co
stancy of the electronic part was initially attributed to t
dx22y21 idxy state being fully gapped, i.e., to the comple
absence of low-energy quasiparticle excitations. This exp
nation has been challenged by experimental data of Au
et al. While confirming the results of Ref. 27 forT.5 K,
these data reveal the emergence of a positive thermal m
netoconductance at lower temperaturesT&1 K. ~The data
also show pronounced hysteresis effects whose interpreta
remains controversial.! Taking the constancy of the phono
contribution for granted, the observation of such depende
strongly indicates a residual density of quasiparticle state
zero energy. The existence of such states is no surprise
deed, in the mixed state of a superconductor withdx22y2

wave symmetry a residual density of states is expected e
in the absence of disorder, because some fraction of the
energy quasiparticles~close in momentum to thed-wave
nodes! are Doppler shifted to zero energy by the supercurr
circulating around the vortices~the Volovik effect30!, which
leads ton(E50,B)5nNAB/Bc2. ~For a recent discussion o
the same effect for a ground state withdx22y21 idxy symme-
try, see Ref. 31.! The residual density of states created
this mechanism is approximatelyconstant in energybelow
the average Doppler shift scaleEB , roughly estimated by
EB/Tc.AB/Bc2. Disorder can only broaden the range of e
ergy independence ofn. Hence, assumingBc2;100 T and a
superconducting transition temperatureTc;100 K, the en-
ergy scaleEB is of order 10 K for fields of a magnitude o
about 1 T.

Now recall the experimental observations reported in R
29: an electronic thermal conductivity that is independent
the magnetic field forT*5 K ~andH.H* ), and begins to
increase withB below T.1 K. ~According to a footnote in
Ref. 29, the same effect has been seen in YBa2Cu3O72x.)
The first point to address is the field independence at
higher temperatures. Franz32 has recently proposed a mod
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for the quasiclassical thermal conductivityk0, in which the
increase ofn with the field is exactly canceled by a concom
tant decrease of the quasiparticle mean free pathl . The
model assumes scattering from the superflow due to
domly positioned vortices. In contrast, another rec
theory33 argues in favor of the dominant scattering mech
nism being impurities close to the unitarity limit. We will no
pursue here the discussion as to which is the correct mod
use. With the microscopic theory of the plateau effect be
a subject of debate, our philosophy is to accept it as anex-
perimental factthat the field variation ofn and l is such as
to cancel ink0;n(B)l (B). The question to address, then,
why a field dependence sets in when the temperature is
ered. We argue that this is at least in part due to weak loc
ization. As we have seen, weak localization in the mix
state of dirtyd-wave superconductors is a phenomenon
safe theoretical ground, is sizable in magnitude, and is
pected to occur at the right temperature and field scale
match the experiment.29 To preclude any confusion, w
stress that the effect under consideration is distinct fr
weak localization in combination with Aslamasov-Lark
fluctuations, which have been invoked in Ref. 34 to expl
the negative thermal magnetoconductance observed in a
La22xSrxCuO4 system at much higher temperatures.

Theories proposed by previous authors attribute the t
perature variation ofdk(B,T)/dB to the leading~quasiclas-
sical! term,k0;nl . Given the low-energy constancy of th
density of states, such a variation would have to arise fr
an energy~or temperature! dependence of the elastic mea
free path. Possible explanations are~i! low-energy transpar-
ency of d-wave vortices to quasiparticles,32 and ~ii ! energy
dependence of the elastic scattering rate due to impur
near the unitarity limit.33 The challenge to these scenarios
to explain why for fieldsB;1 T the effect sets in at tem
peratures around 1 K. In the weak-localization scenario
have described, this comes about very naturally ifGw is de-
termined by thermal broadening, sincem51.35 K/T.

A clear difference is that weak-localization effectscon-
tinue to be enhancedwith decreasing temperature—they u
timately drive the system to an insulator by localization of
quasiparticle states — whereas the energy dependence o
elastic mean free path saturates. To discriminate, it is th
fore desirable to push the experimental measurements to
lowest temperatures possible. In order to achieve a quan
tive description based on formula~7!, it will be necessary to
take the field dependence ofl into account. Our suggestio
is to extract the density of statesn(B) from measurements o
th
n-
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the specific heat, and then deducel (B) from the quasiclas-
sical formulak(B);n(B)l (B), valid at high temperatures
(T*5 K!. As far as the temperature dependence of
dephasing rateGw is concerned, a phenomenological mod
needs to be used. To our knowledge, a theory for this qu
tity in the mixed state of dirtyd-wave superconductors doe
not exist. In the long run, weak localization may turn out
be the appropriate tool tomeasureGw , as is established prac
tice in disordered metals.24,25

VI. CONCLUSION

Noninteracting electrons subject to disorder and a m
netic field are well known to belong to the standard univ
sality classA ~unitary symmetry,b52). When spin-singlet
pairing correlations are added, the universality class of
low-energy quasiparticles changes to typeC. It has been
shown that the transport properties of these quasiparticles
unconventional. In particular, there exist modes of destr
tive quantum interference that survive the orbital coupling
a magnetic field. They are cut off at higher fields by t
Zeeman coupling, thereby giving rise to a field-depend
quantum ~or weak-localization! correction to the low-
temperature thermal conductivity, with the characteris
scale given bym51.35 K/T. A good place to look for such
corrections experimentally are disordered low-dimensio
superconductors, such as the cuprates, in the mixed sta

On general symmetry grounds, the low-energy effecti
field theory for quasiparticles in classC is predicted to be a
nonlinears model of typeDIII uCI. The Lagrangian of this
field theory has a universal form, independent of the symm
try of the order parameter (s,d, etc.!, as long as the super
conductor conserves the quasiparticle spin and is penetr
by magnetic flux. The role of the superconducting grou
state is merely to determine the values of the field-the
coupling constants, their anisotropy, and their dependenc
energy and magnetic field. Quantitative predictions for
weak-localization corrections to transport can be made o
the values of the couplings and their dependences have
obtained, either from quasiclassical transport theory or fr
experiment. We advocate the use of such predictions in
derstanding the low-temperature experiments of Aubinet al.
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