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We study excitations of the predicted antiferromagnetically ordered vortex cores in the superconducting
phase of the newly proposed 8D model of strongly correlated electrons. Using experimental data from the
literature we show that the susceptibilities in the spin sector and the charge sector are nearly equal, and
likewise for the stiffnesses. In the case of strict equalitf®®ymmetry is possible, and we find that if present
the vortices give rise to an enhanced neutron scattering cross section near the so cedledance at 41 meV.

In the case of broken S6) symmetry two effects are predicted. Bound excitations can exist in the vortex cores

with “high” excitation energies slightly below 41 meV, and the massless Goldstone modes corresponding to
the antiferromagnetic ordering of the core can acquire a mass and show up as core excitation with “low”
excitation energies around 2 mef50163-18209)10605-7

I. INTRODUCTION of the S@5) model should in principle be quite simple to
verify experimentally. However, preliminary

Inspired by the discovery of a sharp antiferromagneticneasurementéwhere one looked for Bragg-scattering from
resonance, later denoted threresonance, in neutron scatter- these moments belonging to the vortex cores did not produce
ing experiments on the superconducting phase ofny signal. This is perhaps not so surprising, since each of
YBa,Cu;0; at (,7) in the reciprocal spa¢é a new idea the vortex cores will form a one-dimensional mag(abng
was introduced a year ago in the search for a theory of théhe c axis) and at finite temperatures such a system does not
high-T. superconductors. Within the framework of the form long range order, and no Bragg peak is to be expected.
limit of the Hubbard modél* it was shown theoretically al- In this paper we are going to pursue the idea that in each
ready three years agdhat the = resonance could be ex- copper-oxide plane small islands of antiferromagnetically or-
plained in terms of a new collective mode in the particledered spins exist associated with the vortices generated by an
particle channel of the model, and that this mode is inti-external magnetic field. The direction of the spins in these
mately connected with the symmetry of the superconductingslands will not be very strongly correlated from layer to
gap. Pursuing the symmetry aspects of the problem Zhankgyer and from island to island. In one island, however, there
proposed a theory combining antiferromagnetism and supeshould exist excitations of the spins, a kind of bound spin
conductivity by symmetry argumentshe operators respon- wave modes or size quantized magnons. Using samples in
sible for the7r resonance was identified with the six genera-the under-doped regime of the superconducting phase, where
tors of rotation between the antiferromagnetic state and ththe proximity of the antiferromagnetic phase stabilizes the
superconducting state. Furthermore, it was proposed that thantiferromagnetic vortex coré$,one should be able to pick
phase diagram of the cuprates can be understood as a conp these core excitations in inelastic neutron scattering mea-
petition at low temperatures betweedrwave superconduc- surements. The modes can be classified according to the ap-
tivity and antiferromagnetism of a system which at higherproximate symmetry: Two zero-energy or “low” energy
temperatures posses &P symmetry. The group SG) is  Goldstone modes whose existence is guarantied by the exact
sufficiently large to accommodate both the gauge grougspin rotation symmetry, and two resonances or weakly bound
U(1) [=SO0(2)] which is broken in the superconducting “high” energy modes related to ther resonance arising
state, and the spin rotation group @Dwhich is broken in  form the approximate S@B) symmetry allowing for rotations
the antiferromagnetic state. In the simplest version the tranbetween thed wave superconducting phase and the antifer-
sition between the two ordered states is controlled by oneomagnetic phase. Based on experimental data taken from
parameter—the chemical potential for holes in the otherwis¢he literature we discuss in Sec. Il the &Pmodel and its
half-filled quadratic lattice of spin 1/2 fermions. The idea hasparameters. The values of the susceptibilities and the stiff-
generated a lot of discussion among theorist8,and no  nesses in the charge sector and the spin sector are found to be
consensus on the matter has emerged. nearly equal, a remarkable fact supporting thg3@nodel.

We shall not enter this discussion here. Rather we willln Sec. Il we set up the calculation for excitations of the
take the approach of assuming the model to be a fair descriprortex core. In the isotropic case we show analytically that
tion of the highT. materials and derive experimental conse-the Goldstone modes of the vortex core indeed have zero
guences, which can be tested in the laboratory. Arovasnergy, and that the vortex indeed generates a resonance
et al!! have pointed out that in the vortex cores of fluxoidsreminiscent of ther resonance at the bottom of the con-
in the superconducting state the order parameter will escageéuum. In the anisotropic case the Goldstone modes remains
into the antiferromagnetic subspace, meaning that in thesmassless, but for certain anisotropies theesonance can be
cores we have local antiferromagnetic moments instead of sansformed into a bound state localized at the vortex. Treat-
simple featureless normal metal core. This unique predictioing the external fields more accurately introduces symmetry-
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breaking terms in the Hamiltonian and results in finite TABLE I. The average values of typical parameters of the
masses to the Goldstone modes. This will be discussed iHO5) model based on experimental data for YBCO and LSCO as

Sec. IV. Concluding remarks are contained in Sec. V. described in the text. The Cu-O-Cu distance is denafethile the
average distance between the CuO planes is dermotedr brevity

a momentunp,=#/a has been introduced. The number of spins in

a given vortex core is estimated b¢?/a%. The anisotropy param-
In the SA5) model the relevant order parameter is a realetersd, and s, are defined in Sec. Il B.

vectorn in a five dimensional superspin space with a length

Il. THE SO (5) MODEL AND ITS PARAMETERS

which is fixed at low temperatures, a=38 A mé*/a’=56 c=6.1 A
&=16 A A =1350 A k=84
n={n;,n,,ng,n,,Ns}, |n|>=1. (1) J=0.130 eV  g=9 meV/A? 9=-53 weVIA?

ps=0.024 eV  x./pi=0.49 eV §>-1

This order parameter is related to the complex supercon- 2 .
pc=0.018 eV  x./p3=0.42 eV 8,>—0.014

ductor order parametery, and the antiferromagnetic order
parameterm, in each copper-oxide plane as follows:

@) ods like muon spin rotation, magnetic torque, magnetization,

and kinetic inductancésee Ref. 15 and references thejein
In Ref. 6 Zhang argued how in terms of the five dimensionakll result in a London length\ =1350 A. Thus the
superspin space one can construct an effective Lagrangigainzburg-Landau parameter is=\ /§=84.

y=fe'’=n;+ins, m=(n,,nz,ny).

L(n) describing the low energy physics of thd model. In The connection between the generalized coefficients and
the absence of external electromagnetic fields it takes théhe directly measurable parameters are given below. In the
form completely isotropic case where all generalized coefficients
are equal we havé
Xab 2 2 5
£(n)=a§)b ; na< dihp—— = {0 a5 B e} (aHb)} 9=9—x(2ulh)?, (4)
Pab 1 £=\pl(—9), )
—2 2 [n Vn,—n,Vn,J%+ 0 (n3+n3+n3), PIL—Y
h
3 M=5gVClppo. (6)

where the indices run from 1 through 5. . . .
The generalized susceptibilitieg, fall in three groups: To estimateps and xs of the spin sector, experimental
Xe=Xx1s connecting the charge sectén, ,ns! with itself measurements are combined with theoretical calculations of
[of i k]

Y= X23= X24= Xas CONNECtiNg the spin sectdn,,ns,n,} slen w:;ves wn(fjur: t?e E[y}/o d|men5|ci'ri§ﬁlﬁ§p_:_|rr: 1é2 quantum
with itself, and y,=x1(2.3.4/= X(2.3.4)s coNnecting the spin eisenberg model of antiferromagneti e bare cou-

sector with the charge sector. Similarly with the stiffnessesp“ng constand is related tops, xs and the spin wave veloc-

_ ity vg as'®
Pc=P15,Ps=P23= P24= P34, and Pr=P1(2,3,4) P(2,34)5 S
Below, based on experimental data, we find that p. and p=2,14 @)
Xs= Xc- Itis a remarkable fact that the dynamics in two such S ’
distinct sectors as the charge and the spin sector are governed Y=Z,p2/8] )
by coupling strengths of the same size, and it can be taken as s
one strong indication of the near ) symmetry of the ve=Zolx=2 23/ 9
cuprates. At present the values f andp,. are not known = ZoVplX=Zc\21/pa, ©
experimentally, and it is part of our work to establish a z,=0.72, 72,=051, Z,=118, (10

method to measure them. If the corresponding coupling
strengths are the same in all sectors we denote it the isotropighere for brevity a momentunp,=7%/a has been intro-
case, otherwise the anisotropic case. duced, and where th&’s are renormalization constants,
In the following we estimate on a 25% accuracy level thewhich for classical spin waves all equals 1, but differs from
typical zero temperature values of the parameters of thé when quantum fluctuations and spin wave interactions are
SQ(5) model obtained for various cuprates of the formtaken into account. Neutron scattering experiments on
YBa,Cu;04. , (YBCO) and La_,Sr,CuQ, (LSCO) with a  LSCO' have led to a determination of; and from that to
range of doping levelg. All numerical values are listed in J=132 meV in agreement with other experiments. Frdm
Table I. First we note that for both materials the Cu-O-Cuone calculateps=24 meV. Independentlyps have been
distancé®is a=3.8 A . However, YBCO contains two CuO determined by neutron scattering measurefieftthe anti-
planes over a distance of 11.4 Athe sum of the alternating ferromagnetic correlation |en9ﬂ§Apm(T)°<eXp(27TPs/kBT)
interlayer distances 3.2 A and 8.2,Avhile LSCO contains also leading tgs=24 meV. From Eq(8) one findsy,/p3
one CuO plane every 6.6A. Hence, when needed for normal=0.49 eV 1. A more recent neutron scattering experiment
ization purposes we emplay=6.1 A as the typical inter- on YBCO? yielded the consistent resuft, =0.4+0.1 and
layer distance. J=125 meV.
From the upper critical fieldd., the typical correlation In the charge sector the stiffness is found from Ej.to
length is found to b&=16 A,**while many different meth- bep.=(c/uo)(%/2ex,)?. The measured London length, ,
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readily givesp.~18 meV. The susceptibility., however, Wherec is the lattice constant perpendicular to the copper-
is not directly measurable. Rather we shall use the relatiogxide planes and, the speed of light. For later convenience
xc=pclv?, whereu, is the sound velocity of the electron We have incorporated the constraint Ed) through the
liquid. In ordinary superconductors the Goldstone sound-agrange multiplierh. Using dimensionless polar coordi-
mode is rendered massive by the Anderson-Higgs mechdates 6, ¢), with s=r/¢, centered at the origin of the vortex
nism and turned into a plasmon matdehut as a theoretical core, we seek solutions of the form
concept it can be calculated, and the corresponding sound

s ; . . i a(s)
velocity is found to be of the order of the Fermi velocity, . s d)=f(s)e '® m=m(s)e A=—— "¢
Detailed studie$'?® have shown that the dispersion relation W f)=1(s) (s)¢ 2e¢ s 7
for quasi particles moving around on the lattice of thé (12

model at low doping near half filling is governed notblyut  \where e, is an arbitrary unit vector inr(y,n3,n,)-space
is renormalized™ ~J. Using the dispersion relatio8.15  (equivalent to real spagéaken to be (0,1,0) in the follow-
of Ref. 13, g=consttJcoska)coska)+3Jcos(Xa) ing, while e, is the azimuthal unit vector. The Euler-
+cos(Xa)], yields ve~ve~1.58/p,. From this we find | agrange equation fox yields the constraint
Xc/p3~0.42 eVl

To estimate the value of the phenomenological symmetry f(s)2+m(s)?=1, 13
breaking constarg in Eq. (3)2we consider complete antifer-
romagnetic ordering, i.e|m|“=1. In this case the ordering : ; :
energy density in the S6) model is simply —1g|m|?= IFnaEgggnge equation fan is used to express(s) in terms of
—%g. On the other hand this energy density can also be
expressed within the-J model as—J/(2a%), and therefore 1_, (-g#&
g=J/a’=9 meV:A 2. The effective coupling constagtof v om= o

Eq. (4) is much smaller. Anticipating the discussion in Sec. . o
[l A of the 7 resonance frequency ,~41 meV we find Equationg(13) and(14) are then used to eliminate(s) and
\(s) in the Euler-Lagrange equation fbfs), and as in Ref.

11 we end up with

such that oncd(s) is determined so isn(s). The Euler-

(14

the following estimateg= — x ,w>=—53ueV/AZ.

Ill. VORTICES AND CORE EXCITATIONS
IN THE SO (5) MODEL V2f+

2
(asf)2+f(1—f2)[1—<aT> }:o. (15)

2
In Ref. 11 the vortex solutions to the isotropic &P 1
model have been studied in great detail. To study the anisoFhe Euler-Lagrange equation fes(s) becomes
tropic case we are going to use a different method. To estab-
lish our method and notation, we will start out in Sec. Il A Po— la a:(a_l)
by deriving some of the known results for the isotropic case, S s *® K2
before in Sec. lll B we continue with the anisotropic case.

f2. (16)

Equationg15) and(16) are solved by the numerical shooting

l .
A. Vortices and resonances in the isotropic case method" and yieldsf(s) anda(s).

. . Introducing the “effective potentialVy(s) as the right-
In the symmetric version of the §8) model the general- 1,544 side of equation Eq14)

ized susceptibilities and stiffnesses are isotropic in superspin

space, and the only symmetry breaking terms are quadratic (A—g)&% 1 FV2f (dF)2
terms governed by the chemical potengiahnd the phenom- Vo(s)=————=—V?m= N 77"
enological constang chosen such that superconductivity is p m (1-19 (1-19
favored. The external electromagnetic fields will now be in- (17)

cluded through the vector potential However, in this sec- we can use the solution @{s) to determineéV/(s), which in

tion we only keep the interaction with thiepart of the order  turn results in the Euler-Lagrange equationrfoof the form
parameter this being the dominating part of the external )
fields. In Sec. IV A we will include the Zeeman interaction [—V+Vy(s)]m=0. (18)

betweenA and them part of the order parameter and dem- N4y rally, by construction, E418), is automatically fulfilled

?hnstrate ex_phcltt_ly t?ﬁt tths onIy_ Ieadtshto rrr:lnotrhch;’:mges. Inusing m(s)=1—f(s)?, but for the forthcoming studies of
Is approximation the Lagrangiafys, then has the form core excitations it is useful to think of the static core as

i2e 2 corresponding to the zero energy solution of the
V+ TA Schralinger-like equation Eq.(18) where Vy(s) clearly
plays the role of an effective potential. For the same reasons
we rewrite Eq(15) for f(s) by the use of Eq(17) for Vy(s):

P

1 , 1 , 1
Liss=5 x| 0"+ 5 x|om|*~ 5 p

1 1 [2up)\? 1
_ 2_ _ 2. = 2
5 plVm| 2)(( h) |1*+ 5gm

oAl g

-V2+ i+V (s)+ =
2

1 c (1
+=N1—|¢]?—m?) + —| =|9,A|?— |V XA|?
SN2yl Bug) 2| WAL VXA

Thus having established the notation and found the static
(11)  vortex solutions we now turn to the problem of finding ex-
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citations in the vortex core. We denote the static vortex soresonance, and theoretically by the symmetry breaking term
lution by ny. Due to the S@B) symmetry in the spin sector 2gm? of Eq. (3). We thus expect that by rotating, a smalll

we are free to choose the directionrofat will. In anticipa- angle §6 in the (ny,ns) plane a deviation 6ng,

tion of the treatment in Sec. IV A where an external mag-={0,0,056f(s)cos($),0} is produced which is an eigen-
netic field in thez direction forceam to lie in thexy plane  excitation with £>0. If the trial solution dmgy(s)

we choosenxe,, i.e., only the second of the three com-  «f(s)cos() is inserted into Eq(23) (note thatl=1), we
ponents ofn, is nonzero: obtain

no={f(s)cog ¢),0m(s),0,—f(s)sin(¢)}. (20

We seek excitation®n which are of lowest order in the
deviationséy and dm. These turns out to be perpendicular
to ng, i.e., Shxe, or Shxe, or linear combinations thereof,

f=ef. (24

-V2+ i+V (s)
2 °

It is seen from Eq(19) that this equation is indeed satisfied

and hence of the form by f(s) if e=1 and if the additional potentiak(2— «)/s?
can be neglected. It turns out that the large value of the
én,={0,1,0,0,3 5m, Ginzburg-Landau parametek=84, indeed does make the
additional potential negligible. Numerical calculations show
én,={0,0,0,1,3 5m, (21 a(2— a)/s?<0.001 (for any value ofs) which is much
_ _ smaller tharVy(s)=1 ande=1. The approximate nature of
om=ém,(s)e' Pe1et, the solution is not surprising, since the external magnetic

field does in fact break the S8 symmetry by coupling only

to the (n;,ns) components of the order parameter. However,
the larger a value ok the weaker this symmetry breaking
appears, and in the limit of infinite the approximate solu-
tion becomes exact. Since the ground state energy is set to be
zero as the zero energy mode, the excitation energy of the
oMy, resonance is given by =1, or going back to fre-

quency:w,=\—g/x, which is in accordance with that of
the 7 resonance given in Ref. 6.
1 1 1 In conclusion we note that botbmg, and §mgy; contains
E(z)(5”)=Ex|(9t5n|2—§p|V5n|2+§[g—MS)]|5n|2. no radial nodes, hence the notatior 0. Any other excita-
22) tion or resonance would contain more nodes and thus have
higher energies. Sincémg,; corresponds to a resonance at
Assuming solutionssn of the form given in Eq.(21) the the bottom edge of the continuum we can infer that for the
Euler-Lagrange equation faim,(s) then takes the form of isotropic case no bound collective excitations exist in the

Throughout this work we are dealing with cylindrical sym-
metric vortices, so the excitations are characterized by th
angular momenturhand the radial indexr. Of course,én is
not a complex vector, so the notation ekpj is merely a
short hand notation for either cdgj or sin(¢). The La-
grangian is now written to second order #n as L=
L£O(ny)+ £@(sn). The explicit form of the second order

iso\!
term Is

the following eigenvalue equation: antiferromagnetic vortex core.
|2 . . . . .
_vy2s - +Vy(S) | 6my = omy,, (23) B. Vortices and excitations in the anisotropic case
S We now turn to the anisotropic case. As discussed in Sec.
Il ps~p. and ys~ x.. In the following we therefore study
B X &2 2 X the consequences of anisotropies arising frop¥ ps=p.
T Y g and x % Xs= Xc'
Using the approximate S6) symmetry we can immediately P=Ps=Pcy X=Xs=Xc
find two analytical solutiongmg, and Smy, to Eq.(23). Due
to the exact spin rotation symmetry it does not cost any p==ptAp, xz=x+Ax, (25
energy to rotate the order parametgrof Eq. (20) in spin
space. Rotatingl, a small anglesé in the (ng,n,) plane 6,=Aplp, &,=Axlx.

produces the deviatiodngy={0,0,056m(s),0}. If the trial
solution dmgg(s)ecm(s) is used(note thatl=0), we see
from Eq. (18) that as expected E@23) is satisfied withe
=0. Thus in the the effective potential description the

ground state vortex configuration corresponds to a zero erEusceptibilityXﬂ is related to ther resonance and to the
ergy and zero angular momentum mode.

The second solution is found by rotating between thecOUPIiNg strengthg andg. Defining y=(g—go)/g, where
charge sector and the spin sector. In a perfect55&ym- the_ subscript 0 refgr to the isotropic case, we can estimate
metric model such a rotation does not cost any energy. HowtSing the values listed in Table | and fing=1.014. The
ever, one central idea in the $8) model of highT, super-  relation betweerg andg, can be written as
conductors is that the S8 symmetry is only approximate. 5
It costs a finite energy to rotate between the spin and charge ~ 2p\° ~ 1-(1+6,)y 26
sectors. Experimentally this is reflected by the 41 meV ~% 1-vy ) (26)

These anisotropies are not known experimentally, and it is
part of our work to establish a method to measure it. We
begin by finding constraints on them. The stiffness has to be
a positive numbei,e., p,=p(1+6,)>0 or5,>—1. Thew
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FIG. 1. A display of the vortex cores for vari-
4 5 °'°0 1 2 3 4 5 ous values of the anisotropy parameters. Graphs
s s of the modulud (s) of the superconducting order
20F ' ' ' ' 1 20l ' S — i parameter as well as of the effective potential
V(s). The parameters are=84 andy=1.014.
________________________________ When é, is varied,5,=0 and vice versa.
s s
, 8p=085 oo 8,=-0.005
40 tf 8,= 0.0 1 a0} ! 8, = 0.000
8, =05 - 8,= 0005 ———
-6.0 : : : : -6.0 :
0 1 2 3 4 5 0 1 2 3 4 5
s s
To ensure the superconducting phase it is mandatory to have [-V2+V(s)Im=0. (30)

g<0 and hence from the enumerator in Hg6) that 1
—(1+46,)y<0 or —0.014< 5, . This constraint is listed in
Table I.

The Lagrangianl,,= Lo+ AL in the anisotropic case
differs from the Lagrangiaif;s, in the isotropic case by £
containing terms proportional to the anisotropé&sand J,, .
The Euler-Lagrange equations fipm, and« corresponding
to £, become

V(s) can be expressed in termsfdfy usingm?=1—f2, and

thus it can be found by solving EqR7) and(29). Due to the
anisotropy the effective potential and hence the excitation
spectrum changes. The effective potential for some anisot-
ropy parameters are shown in Fig. 1. We study the transverse
excitations given by Eq(21) and find the following eigen-
value equation to be fulfilled bym,,(s):

2 2

2 _ 2 [ X
V2f+w+ 1— a_l f(l_f2) _V2+_2+V(S) 5mn|: w25mn|:85mn|.
(31
2 2 -1\2 : : , .
= Ox _g — % a_) ]f3(1—f2), As in the isotropic case a zero energy solution corre-
1+, g/ 1+4,\ s sponding to the static vortex solution is trivially given. What

(27) is new in the anisotropic case is that now bound excitations
do exist withe <V(«). Some of them are shown in Fig. 2.
VZm (A—g)&? In Fig. 3 we plot as a function of the anisotropy parameter

o
- o + l+”5p[(Vm)2+ mv2m], (28) &, the energy of the lowest excited stafiy; above the ever

present zero energy modeng,. It is seen howsmg; evolves
from the scattering resonance, theresonance, discused in
Sec. Il A with e=V(x) at the isotropic points,=0 to a
strongly bound state witk=0 at §,= —1, the largest nega-
tive value allowed. At this point the excited state thus coin-
It is seen how the anisotropy leads to more nonlinear termside energetically with the zero energy state indicating the
in the differential equations. Using the same numerical methphase transition from superconductivity to
ods as in Sec. Ill A we study the static vortex cores forantiferromagnetism—the gap of the excitations has col-
various values ob, and 6, . Some results are shown in Fig. lapsed.
1. Our calculations thus lead to the following prediction. For
In the isotropic case the static vortex core led to an effeca given anisotropys,<<O neutron scattering will in zero
tive potential description withv/,(s) defined as the right- magnetic field show ther resonance withe =V,,() or
hand side of Eq(14). Similarly, for the anisotropic case we frequencyo=w, . As the magnetic field is turned on more
now define an effective potenti®l(s) as the right-hand side and more vortices are created. Each of them suppaftaa
of Eq. (28) which then satisfies the equation excitation with an energyey;<V() or frequency wg;

a—1

K2

S
fz[l— P2 (29

1+3,

, 1
&Sa=gﬂsa+
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20 - . ' - : - 7 resonance in a bulk superconductor without the presense
.l | of vortices. In the dimensionless units of the problem, see
‘ Eq. (23), the frequencyw . of the 7 resonance is given by
10 fo {1k
A ' - Ay 2uw)? (1—y)+é
05 f X—,.wiz 1+ ZTX ( IU;) =( t Xy. (32
O -9 g h (1-y)—6y
0.0
Inserting the values, = —0.005, 0, and 0.005 we find 2.14,
-05 1.00, and 0.47, respectively, &¢>) in Fig. 1.
1o IV. GOLDSTONE MODES
'1'50 2 "1, 0 2 A 6 8 10 In Sec. Il we studied the zero energy modes and the

s s excitations of the antiferromagnetic order parameatén the

FIG. 2. The radial parbm,,, of bound antiferromagnetic excita- Sﬁgeﬁrﬁoqguétm%z\{)o r\:vee):'eC(f)cr)iﬁ(-j”:g Egr%eer:eer{gyat? a;Iess

tions in the vortex core in an anisotropic case. To show the effect z d. . . 9 gap
oldstone modes. This degeneracy is a result of two ap-

more clearly we have chosen the rather extreme parameter val roximations. one being the nedlect of the Zeeman interac
6,=—0.5, while having«=84, §,=0, andy=1.014. To the leftis p ! g g

shown the zero energy stafeny, corresponding to the static vortex 110N betweerm and the external magnetic fiek| the other
core. To the right are shown the first two excitatidins, andom,,  P€ing the neglect of interlayer interaction between the spins.
above the zero energy mode. The full line in both panels is thdn this section we show how the degeneracies are lifted and
effective potentiaV(s). The ordinate axis accounts fui(s) inthe ~ Massive Goldstone modes appear when the approximations
energy units of Eq(31). The excitationssm,,, are given in arbitrary ~ are abandoned.

units. The eigenenergies are represented by the dashed horizontal

lines with &g=0.00, £9;=0.81, ande;,=0.97. A. Coupling of core excitations to the external magnetic field

<w,.. Consequently an excitation resonance should show up The primary effect of the external magnetic fiekl

at the low-energy side of the resonance, and the amplitude — B On the system is the creation of superconducting vor-
of this resonance scales with the magnetic field. tices through the interaction with the superconducting order

Similar results does not hold faf. #0. The reason for Parametegs. To a good approximation the antiferromagnetic
this can be traced back to the behavioMo§hown in Fig. 1.  €ore described byn can be treated disregarding the Zeeman
When s, is made positive the potential widens as in the cas&0upling betweerB andm. We now take this coupling into
of negatives,, however, at the same time the asymptotica¢count. Using standard field theoretic metf8dke spin
value drops. As a result no excitations are bound in the pooperatorS; acting on sitg can be expressed by a classical
tential. In the case of negativé, the potential narrows field h;,
down, but although the asymptotic value rises, it does not )
rise enough to bind any excitations. Si—se?Rih;, (33

It should be added that this change in the asymptotic

value ofV due tody is in accordance with the result for the Wheres=1/2 andQ=m(a"*,a”*,c™*) is the antiferromag-
netic ordering vector. We then have @-R;]=(—1)',

' T T ' i.e., 1 on sublatticeA and —1 on sublatticeB. Since the

1 ,-1

1.0 O . : ;
/Q,—«-—@ e system is close to be completely antiferromagnetically or-
& deredh; is written as
08 | e : .
/Q/ hJ:mJ+(_1)JIJ , (34)
06 (5/ . wherel; denotes a small ferromagnetic component on top of

the antiferromagnetic background;. Both I; and m; are
slowly varying fields in space. The rapid antiferromagnetic
04 ] variation from site to site is explicitly taken into account by
prefactors 1)!. The smallest deviation possible is ob-
tained by havingl; perpendicular tom;, and sinceh; is

€ (8p)

02| / 1 . . . :
normalized to unity, we obtain to lowest orderljnthat
00 & . : ' . hil?=1, 1;m=0, |my?=1. (39
1.0 -0.8 0.6 -0.4 -0.2 0.0
5 The HamiltonianH g corresponding to the coupling between

FIG. 3. The energy of the lowest bound excitation as a func- the spins and is

tion of the anisotropys,, for k=84, 5, =0, andy=1.014. The dot- 1
. . . _ - 27 — ~ ~ .
tse(d_IT)e:lgla fite(8,)=1.0-0.75>—0.35} . Note thate(0)=1 and HBZEJ_: g% usS-B— Eg* gB- EJ: (=1)'h;. (36
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Only the ferromagnetic component yields a nonzero contritendering the other massive. The rather small value of the
bution to the sum, and after taking the continuum limit wegap, 5.9 ueV~68 mK, would be very difficult to observe

end with a Lagrangian densit§g given by in a neutron scattering experiment. It is two orders of mag-
nitude smaller than the resonance, and hence it is seen to
1 g* ug be a good approximation to disregard the interaction between
Lg=— 2 a2 B-I(r). 37 the external magnetic field and the antiferromagnetic order
parameter.
The appearance of a nonzero ferromagnetic component
I(r) leads to a loss of antiferromagnetic ordering energy. B. Interlayer coupling
This haﬂs to be included in the description through the Hamil- 14 this point we have only treated one single CuO plane.
tonianH 5y describing the spin-spin interaction: Naturally, to stabilize the order parameter, interaction be-

tween the layers has tacitly been assumed. In this section we
are explicitly going to include that part of the interlayer cou-
pling which arises from the antiferromagnetic coupling be-
tween the CuO planes. We model this coupling by a Hamil-
tonian H', where spins at sit¢ in the CuO plane{ are
interacting with the closest spins in the neighboring planes
[+ 1 as follows:

R A 1
(4.7 (.i"

Performing the sum and taking the continuum limit results in

the Lagrangian densit€ gy ,

13 ,
Lapm=5 I1=107]: (39)

-, 1 , ~ ~ -

H'=53'2 S.0[S -1+ S el (45)
The constraintl;-m;=0 is incorporated through a '

Lagrange multipliern’ and we end with the following La- The interlayer coupling)’ is much smaller than the intra-

grangian density’’ of the magnetic effects layer couplingd, namelyJ’=4x1075J.%° In this specific
model there is no coupling between sites having different
1 ) 19*ug 1J in-plane indexj, and we are led to consider 1D spin chains
£’=—§;I(r) | Am-3 22 B '|(f)+§;- perpendicular to the planes. As before, see E88) and
(40) (343,I the spins are represented by the classical fiblds,
andl:

An effective LagrangianC,,g(m) for the interaction be- -
tween m and B is found from the partition functiorZ S.c—s(=Dfhj;, hj=mj + (=1 ,. (46)
= [Dm[ DI D\ exdiS(m,|,\")/:]= [DmexdiS;(m)/# ]
from which the final result can be extracted after integratin
outl and\’:

Henceforth, we drop the site indgxand focus on just one of
%he spin chains. The Hamiltoniad’ is now expressed in
terms of the classical fields, and in the continuum limit we
obtain the form

1 2 1 2 1J
KmB(m)=—§I‘(B~m) +§FB +§?, (41)

- J’
o | A= [ S -t -h 4P @
wherel’ = (g* ug)“/(4Ja%). Adding L, to the Lagrangian 8a ¢
of the anisotropic casg,,; leads to the following eigenvalue

equation for an excitatiodn,— dme,, with B=x or Defining Am,=m,—m,_; we obtain the following form of

the Lagrange density;;. for the interlayer coupling:

Exo , T
w2 _>m 2__ R2a. J’
[-V*+V(s)]ém o ® XWB €, €5\ om. (42 ﬁnc:—gg [2—Am§]. (48)
As was the case for E§23) two eigensolutions proportional
to m can now be found . One mode h@s=x (i.e., e,-€; As in Sec. IV A, excitationsdm in the order parameter
=0) and remain a zero energy mode: m=me, are sought in the perpendicular directiaysande, .
The motion in these two directions is independent of each
fiwy=0. (43 another, and we write the excitationsn,,=x or z, as
The other mode hag=z (i.e., e,-e;=1), resulting in a _
nonzero energy, which can be gstimated by settihig omp(4)=05(5)es, (49)
=<I)0/7-r)\f and using the parameters of Table I: where the amplitude&g({) is m times the(smal) angle by
which the order parameten in plane( is tilted away from
r \/Eﬁz its equilibrium position. The eigenmodes are found by the
how,=h X—B:m*)\2:5-9 mev. (44 Fourier transformation
™ L

We can thus conclude that the presense of the external mag- 05(0:2 0, Beikgc k=n 2m n=123
k ) 1 L 1 L |

netic field in fact does break the degeneracy of the two gap- Ncc'’
less Goldstone modes, leaving only one mode gapless while (50
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whereN. is the number of CuO planes in the sample. Be- V. CONCLUSIONS
cause of the Fourier transform it is more natural to work with
Lagrange functions, = [ £d?r, rather than Lagrange densi-  The excitations in the antiferromagnetic cores of super-

ties. However, in the end by dividing with N.£2, the num-  conducting vortices in the S6) model have been studied.
ber of planes times the effective area of a vortex, theBy examining the existing literature on experimental results
Lagrange function is rendered into a Lagrange density. Theonnecting to the values of the parameters of the model, we

resulting Lagrangian densit§ {(m,) thus becomes have found that the stiffnesses in the charge and spin sectors
3 are nearly identicalp.~ps, and likewise for the suscepti-
X bilities, x.~ xs. This remarkable fact serves as good support
LP(6mg) =D, 1 =], gl>— —[1—cogke)]| by p|? : X Xs : > 900 Supp
ic (OMp) % 2| il 4a2[ ke)][bic 4 of the idea of the existence of a @) symmetry in the high-
1 T, cuprates.
_- 900 2— w2 | 0 o2, 51 Under the assumption t.hat the antiferromagnet?c core is
ZX% (19101517~ wic 6l Ol ] 61 the ground state configuration for the superconducting vortex

we have predicted within the $8) model that bound local-
ized excitations exist when asymmetries arise betweenrthe
sector of the parameters and the spin and charge sectors. If
fiw g=2+3'I[1—cogke)]. (52) they exist, these excitations could be observed in neutron
' scattering experiments as side peaks to the already observed
The interlayer coupling thus splits theNg-fold degenerate ;. excitation, side peaks with an amplitude proportional to
Goldstone modes in a stack bf; vortices. The twok=0  the number of vortices and thereby proportional to the ap-
modes,wqz=0, remain zero energy modes. However, sincep“ed external magnetic field.
Wk, (x,2) = P2m—k,(x,2)» the rest of the modek>0, split up in Finally, we have predicted the splitting of the degenerate
a quasi continuous band consistingf/2—1 fourfold de-  zero energy mode as a function of applied magnetic field and
generate massive Goldstone modes. The most massiyge interlayer coupling. The effect of the magnetic field is
modes are found fok= 7r/c with an energy minute, only a fewueV, and thus not possible to detect with
; present day neutron scattering technology. The effect of the
hwacp=V81'J=2.2 meV=26 K. (53 inter-layer coupling, on the other hand, is of the order of 2
We conclude that also the interlayer coupling produces 0n|)meV and hence detectable in inelastic neutron scattering ex-
minor effects in the excitation spectrum as Compared to th@eriments. The test of the existence of these core excitations
m excitation, however, the estimated splitting of 2.2 meV iswould constitute a crucial test of the 88) model. The ex-
resolvable with the existing neutron scattering spectrometerpected signal should only be present in the superconducting
For bilayer compounds such as YBCO we note that there arghase, and it should be proportional with the number of vor-
two interlayer coupling constants. On¥, for the coupling tices, i.e., with the applied magnetic field.
within the bilayer, and anothed;’, for the coupling between
different bilayers. Sincd’ dominates in this case a simple
two-layer version of thé-layer model suffices and the split- ACKNOWLEDGMENTS
ting is found to be identical to the optical magnon gap known
experimentally to be 74 me%. For completeness we finally ~ We thank Niels Hessel Andersen and Poul Erik Lindelof
note that the combined effect of the external magnetic fieldor useful discussions concerning the experimental possibili-
and the interlayer coupling on the Goldstone modes is givefies. H.B. was supported by the Danish Natural Science Re-
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where, after usingy=%2/8Ja?, the eigenfrequencies, g
are seen to be
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