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Asymptotic temperature dependence of the superfluid density in liquid4He
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In a modified ideal Bose gas model we derive an expression for the temperature dependence of the superfluid
fraction in liquid 4He. This expression leads to a fit formula for the asymptotic temperature dependence that
reproduces the data significantly better than comparable formulas.@S0163-1829~99!00906-6#
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I. INTRODUCTION

The behavior of3He and4He liquid on one hand, and o
the ideal Fermi and Bose gas on the other hand, stron
suggests that there is an intimate relation1 between thel
transition in 4He and the Bose-Einstein condensation~BEC!
of the ideal Bose gas~IBG!. Because of the neglect of th
interactions one will not expect that the IBG reproduces
properties of liquid4He, in particular not those propertie
that are directly related to the interactions~like the specific
heat or the compressibility!. There are, however, some bas
properties of liquid4He that may be explained2,3 by the IBG
~like the irrotational superfluid flow!. We start by discussing
a discrepancy between the IBG and liquid4He that is —as
we will point out— disturbing in view of the suggested int
mate relation between the BEC and thel transition.

The critical behavior of the condensate fraction of t
IBG is

r0

r
;utu2b, b5

1

2
, ~1!

where t5(T2Tl)/Tl is the relative temperature; the IBG
transition temperature is equated with that of thel transition.
The condensate fraction is commonly identified with the
perfluid fraction; this identification explains2,3 a number of
experimental findings of which the most important one4 is
that a superfluid current has no vortices. In contrast to
~1!, the experimental superfluid fraction behaves like

rs

r
;utu2n, n'

1

3
. ~2!

The suggested intimate connection between the BEC and
l transition is in conflict withbÞn. The valuesb51/2 and
n'1/3 imply r0!rs just below the transition.

The standard solution of the conflict between Eqs.~1! and
~2! appears to be the renormalization-group method. In
approach one starts from a Ginzburg-Landau ansatz for
free energy~or enthalpy! that leads to the critical exponen
1/2 for the order parameter. For the considered universa
class the renormalization procedure yields then values
to 1/3 for the critical exponent of the order parameter. T
may well serve as an explanation of the experimental va
of n'1/3 in Eq. ~2! but it does not resolve the conflict be
tween Eqs.~1! and ~2!: A renormalization is appropriate fo
the Landau valueb51/2 but not for the IBG valueb51/2.
PRB 590163-1829/99/59~6!/4334~9!/$15.00
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The reason is that the IBG value is obtained by an ex
evaluation of the partition sum. The exact evaluation of
partition sum implies a summation over arbitrarily small m
menta ~or, correspondingly, arbitrarily large distances!.
Therefore, the reasoning behind the renormalization pro
dure ~analytic Ginzburg-Landau ansatz forfinite regions or
blocks, and subsequent transformation to larger and la
blocks! cannot be applied to the IBG free energy.

Moreover, the critical exponentb51/2 of the IBG cannot
be changed within the IBG frame without destroying t
mechanism leading to the BEC. The exponentb51/2 is
characteristic for the IBG with the BEC phase transition.

We have now discussed two points:~i! We expect an
intimate relation between the Bose-Einstein condensa
and thel transition. ~ii ! The IBG valueb51/2 should be
taken seriously~because it is a result of an exact evaluati
of a partition sum, and becausebÞ1/2 is not compatible
with the BEC mechanism!. From these two points we con
clude the following: The theoreticalb51/2 in Eq. ~1! and
the experimentaln'1/3 in Eq.~2! are in conflict with each
other.

Within the frame of the ideal Bose gas model we propo
to resolve this conflict by the assumption thatnoncondensed
particles move coherently with the condensate. This means
that we no longer identify the condensate with the superfl
fraction; the condensate is only part of the superfluid pha
A coherent motion can be described by multiplying the r
single-particle functions of noncondensed particles by
complex phase factor of the condensate. The superfluid d
sity rs is then made up by the condensate densityr0 plus the
density rcoh of the coherently comoving, low momentum
noncondensed particles. This concept leads to an expres
and eventually to a fit formula for the temperature dep
dence of the superfluid density.

We will stick to the essential characteristic of the IBG~in
particular the BEC! but introduce some modifications~for
example, Jastrow factors! that are necessary for a realist
approach to liquid4He. This modified IBG is calledalmost
ideal Bose gas model~AIBG!. The AIBG has been intro-
duced some years ago as an attempt to explain the~nearly!
logarithmic singularity of the specific heat.5 Some conse-
quences of the decompositionrs5r01rcoh have been dis-
cussed in Refs. 5 and 6. The present paper is devoted to
investigation of the temperature dependence of the super
density in this model. The necessary details of the underly
model, the AIBG, will be given below.
4334 ©1999 The American Physical Society
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The form of the temperature dependence of the superfl
fraction is derived in Sec. II. This leads to a fit formula f
the temperature dependence ofrs that is applied to experi-
mental data and compared to other fit formulas~Sec. III!.
Section IV discusses the temperature dependence of the
densate density. Section V presents scaling arguments o
basis of an effective Ginzburg-Landau model; this include
qualitative explanation of the coherent comotion of nonc
densed particles and leads to restrictions for some of
parameters of the fit formula.

II. AIBG FORM OF THE SUPERFLUID FRACTION

A. Many-body wave function

Following Chester7 we multiply the IBG wave function
C IBG by Jastrow factorsF5) f i j ,

C5FC IBG5)
i , j

N

f i j ~r i j !C IBG~r1 , . . . ,rN ;nk!. ~3!

We consideri 51,2, . . . ,N atoms in a volumeV. The occu-
pation numbersnk are parameters of the wave function;
physical quantities they are eventually replaced by their
tistical expectation valueŝnk&. The Jastrow factors take int
account the most important effects of the realistic inter
tions; with a suitable choice for thef i j „for example,f i j (r )
5exp@2(a/r)b# with a and b determined by a variationa
principle8

… the wave function~3! leads to a realistic pair
correlation function.

The IBG wave functionC IBG in Eq. ~3! is the symme-
trized product of single-particle functions. We display th
structure admitting at the same time a phase fieldF of the
condensate:

C5SF@exp~ iF!#n0)
kÞ0

@wk#nk. ~4!

HereS denotes the symmetrization operator. Thewk are the
real single-particle functions of the noncondensed partic
The schematic notation@wk#nk stands for the produc
wk(r n11)•wk(r n12)• . . . •wk(r n1nk

); this notation applies

also to @exp(iF)#n0. All n0 condensed particles adopt th
same phase factor exp@iF(r )# forming the macroscopic
wave function

c~r !5An0

V
exp@ iF~r !#. ~5!

The phase fieldF describes the coherent motion of the co
densate particles.~Actually, one has to construct a suitab
coherent state.9 This point is, however, not essential for th
following discussion.! This motion is superfluid if the veloc
ity us5\¹F/m is sufficiently small.

Equations~4! and~5! are a well-known description2 for a
superfluid motion in the IBG. In this description the supe
fluid fraction rs /r equals the condensate fractionn0 /N
5r0 /r. The role of the Jastrow factors in this context w
be discussed in Sec. II B.

In order to dissolve the discrepancy between Eqs.~1! and
~2! we assume thatnoncondensed particles move coheren
id

on-
the
a
-
e

a-

-

s.

-

-

with the condensate. This is possible if noncondensed pa
ticles adopt the macroscopic phase of the condensate:

C5SF@exp~ iF!#n0 )
0,k<kcoh

@wk exp~ iF!#nk )
k.kcoh

@wk#nk.

~6!

We assume the phase ordering for all states with mome
below a certain coherence limitkcoh. For the low-lying states
with nk@1 such phase ordering is relatively easy becaus
requires only a small entropy decrease. At this stage,kcoh
should be considered as a model parameter. In Sec. V A
existence and the size of this coherence limit will be ma
plausible.

We evaluate particle current for the wave function~6!:

j s~r ,nk!5K CU(
n51

N

ĵn1c.c.UCL 5
r

N

\

mS n01 (
k,kcoh

8 nkD¹F.

~7!

The prime at the sum over the momentak,kcoh means that
the k50 contribution is excluded. In coordinate space, t
current operator readsjn52 i\¹n /(2m)1c.c. It acts on all
r i dependences. Because of the added conjugate com
term all contributions from the real functions~the f i j in F or
the wk) cancel. The only surviving terms are those wherejn
acts on the phaseF.

For a superfluid motion withus5\¹F/m and in the sta-
tistical average,j s of Eq. ~7! equalsrsus . We may then read
off the superfluid fraction,

rs

r
5

1

NS ^n0&1 (
k,kcoh

8 ^nk& D 5
r01rcoh

r
. ~8!

This expression will be evaluated in Sec. II C.
The ansatz~6! leading to Eq.~8! shows in which way

noncondensed particles may contribute to the superfluid d
sity.

B. Condensate density

We discuss in some detail what is meant by the termi
‘‘condensate density,’’ in particular with respect to the J
strow factors in Eqs.~4! or ~6!.

The exactcondensate densitymay be defined by

^Cuf̂1~r !f̂~r 8!uC& ——→
ur2r8u→`

r0
exact, ~9!

whereC is the exact many-body state and thef̂1 andf̂ are
single-particle creation and annihilation operators. For fin
temperatures one has to take the statistical expectation v
of r0

exact ~we do not introduce a different symbol!.
For an IBG wave functionC IBG the condensate density i

given byr0
model5n0 /V. In the statistical average thismodel

condensate densitybecomes



w

te

ro
,

er
in

w
h
r
ie

c
o
ic

o
e

u
t d
n

.

nti-

w-

In

.

en-

e-
the

s,

ic-
r a

d

s

4336 PRB 59TORSTEN FLIESSBACH
r0
model5

^n0&
V

. ~10!

The exact many-body state in Eq.~9! may be approxi-
mated by Eq.~3! or by C'F for the ground state. In this
case the relation between both condensate densities is
known: The model condensate fraction isdepleted10,11by the
Jastrow factorsF, for example, fromr0

model/r51 to r0
exact/r

'0.1 for T50.
The above calculation leading to Eq.~8! demonstrates the

following point: In contrast to the densityr0
model, the current

densityr0
modelus is not depleted. The reason is that in Eq.~7!

all derivatives of the real Jastrow factors cancel~because of
the added conjugate complex term!.

On the basis of this point we arrive at the following sta
ments about the role of the densitiesr0

model, r0
exact, andrs.

~a! Since the current densityr0
modelus is not depleted we

may identify r0
model ~and notr0

exact) with the squareucu2 of
the macroscopic wave function. Irrespective of the Jast
factors we may use Eq.~5! as it stands. For a superfluid flow
the phaseF(r ) of the macroscopic wave function~5! fixes
the velocity fieldus5\¹F/m. The basic relations for the
superfluidity ~like curlus50 and the Feynman-Onsag
quantization rule! are not affected by the Jastrow factors
the many-body wave function.

~b! The exact condensate density is a quantity of its o
right. It is the density of the zero momentum particles in t
liquid helium. Recently Wyatt12 reported about a rather clea
experimental evidence for this condensate. For a rev
about the attempts to determiner0

exact experimentally we re-
fer to Sokol.13

~c! The assumption that noncondensed particles move
herently with the condensate is introduced by the step fr
Eq. ~4! to Eq. ~6!. Again, this step does not alter the bas
relations following from Eq.~5! ~like us5\¹F/m, curlus
50 and the Feynman-Onsager quantization rule!.

~d! For T50 the valuer0
model/r51 yieldsrs /r51 @as we

will see, rcoh in Eq. ~8! contributes only in the vicinity of
Tl]. In contrast to this the connection betweenr0

exact/r
'0.1 with rs /r51 is less obvious. ForT'0 the value
r0

model/r'1 impliesrs /r'1. For describing 12rs /r quan-
titatively one must however include phonons. This is n
done in Eq.~4! or Eq. ~6! because our primary object is th
asymptotic temperature region.

We summarize this subsection: As far as the superfl
current is concerned the model condensate density is no
pleted. The model condensate density is the fundame
constituent of the superfluid density.

In the following the model condensate densityr0
model will

again be denoted byr0 and called condensate density.

C. Superfluid density

We evaluate the expression~8! for the superfluid density
Our model assumes expectation values^nk& that are of the
IBG form,

^nk&5
1

exp@~ek2m!/kBT#21
5

1

exp~x21t2!21
. ~11!
ell

-

w

n
e

w

o-
m

t

id
e-

tal

Here m is the chemical potential,ek5\2k2/2m are the
single-particle energies, andkB is Boltzmann’s constant. In
the last expression we introduced the dimensionless qua
ties t252m/kBT and

x5
luku

A4p
, with l5

2p\

A2pmkBT
. ~12!

The transition temperature of the IBG is given by the follo
ing condition for the thermal wave lengthl:

l~Tl!5@vz~3/2!#1/3, ~13!

wherez(3/2)52.6124 denotes Riemann’s zeta function.
applying our almost ideal Bose gas model~AIBG! to the real
system we identifyTl with the actual transition temperature
In the following we use the relative temperature

t5
T2Tl

Tl
. ~14!

We evaluate the condensate density:

r0

r
512( 8

^nk&
N

512~11t !3/2
g3/2~t!

z~3/2!
. ~15!

Riemann’s generalized zeta function is given bygp(t)
5(1

` exp(2nt2)/np, andz(p)5gp(0). Thechemical poten-
tial m or, equivalently,t may be expanded forutu!1:

t~ t !5A2m

kBT
5H at1bt21••• ~ t.0!

a8utu1b8t21••• ~ t,0!.
~16!

For t.0 Eq. ~15! with r0 /r50 yields (11t)3/2g3/2(t)
5z(3/2). This condition determines the temperature dep
dence oft(t) and in particular the coefficientsa,b, . . . , for
example,a53z(3/2)/(4p1/2).

For t,0 the IBG yieldst50. In the AIBG we admit
nonvanishing coefficientsa8,b8, . . . in Eq.~16!. This makes
the expansion~16! more symmetric; it corresponds to a ph
nomenological gap between the condensate level and
noncondensed particles. A coefficienta8Þ0 does not affect
the BEC as the most important feature of IBG. It avoid
however, the divergence of the static structure factor14 S(k)
for k→0 and greatly improves the unrealistic (}T3/2) behav-
ior of the specific heat. In view of the successful roton p
ture it is not too surprising that a gap is necessary fo
quantitative description of the superfluid density~or of the
specific heat!. As we will see, a realistic description of liqui
helium requiresa8'3; the next coefficientb8 will not be
needed.

From Eq.~15! and with Eq.~16! we obtain

r0

r
5 f utu1gt21••• ~ t,0!, ~17!

where

f 5
3

2
1

2Apa8

z~3/2!
. ~18!

We evaluate now the density of the comoving particle
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rcoh

r
5 (

k,kcoh

8
^nk&
N

5
4~11t !3/2

Apz~3/2!
E

0

xcoh x2dx

exp~x21t2!21
.

~19!

Using y/@exp(y)21#512y/21y2/127••• we obtain

rcoh

r
5

4~11t !3/2

Apz~3/2!
S xcoh2t arctan

xcoh

t
2

xcoh
3

6

1
xcoh

5

60
1

xcoh
3 t2

36
6••• D . ~20!

The convergence of this expression is excellent; for the
tual parameter values and forutu<0.1 the terms not shown
are of the order 1028.

We have not yet specified the coherence limitkcoh. For
utu!1 we will find rs;rcoh;kcoh for the superfluid density
and rskcoh

2 ;kcoh
3 for the kinetic energy of the fluctuations

Requiring that this kinetic energy scales with the free ene
F;2^n0&

2;2t2 yields

kcoh;utu2/3. ~21!

This scaling argument will be presented in more detail
Sec. V.

Inserting Eq.~21! in Eq. ~20! and using Eq.~17!, the
superfluid fraction contains the powersutu2/3, utu, utu4/3, and
so on:

rs

r
5

r01rcoh

r
5a1utu2/31a2utu1a3utu4/31•••. ~22!

D. AIBG assumptions

We summarize in which points the AIBG, the almo
ideal Bose gas model, deviates from the IBG.

~1! The IBG wave functionC IBG is multiplied by Jastrow
factors,C5FC IBG . This is a well-known approach.7

~2! By the symmetric expansion~16! we admit a gap be-
tween the condensed and the noncondensed particles.
modification preserves the most basic features of the IBG
particular the BEC mechanism and the critical exponenb
51/2.

~3! The noncondensed single-particle states below the
herence limitkcoh adopt the macroscopic phase of the co
densate. The leading exponent for the coherence limitkcoh is
determined from a scaling argument.

III. FIT TO EXPERIMENTAL DATA

We compare the temperature dependence of our m
expression for the superfluid density with experimental da
The model expression contains unknown parameters; it
vides a fit formula for the data. It will turn out that this fi
formula is significantly better than comparable fit formula

A. Asymptotic temperature range

1. 1973 data by Greywall and Ahlers

A restriction to the first three terms in expansion~22!
yields a three-parametermodel fit~MF!
c-

y

his
in

o-
-

el
a.
o-

rs

r
5a1utu2/31a2utu1a3utu4/3 ~MF!. ~23!

Figure 1 shows that the MF yields an excellent reproduct
of the data by Greywall and Ahlers15 for saturated vapor
pressure. We used all data points with temperaturesutu
<0.03. For a minor improvement of the fit we shifted th
temperature values by20.531027; this is well below the
experimental uncertainty ofdt5231027. The parameters o
the fit shown in Fig. 1 are

a152.3233, a251.0258, a3522.0065. ~24!

As an alternative we consider thestandard fit~SF!

rs

r
5kutuj~11DutuD! ~SF!, ~25!

which is used by Greywall and Ahlers,15 and that is moti-
vated by the renormalization-group theory. The fourth p
rameterD is often15,16 set equal to 1/2 because the fit is n
very sensitive to it. We will use the SF withD50.5 as a
three-parameter ansatz.

The fit parameters are found by minimizing the sumx2 of
the quadratic deviations,

x25(
i 51

Nd

WF S rs

r D
fit

2S rs

r D
exp

G2

5(
i 51

Nd 1

s rel
2 F ~rs/r!fit

~rs/r!exp
21G2

.

~26!

HereNd is the number of data points ands rel is the relative
standard deviation. The standard deviations for (rs /r)fit
2(rs /r)exp is given byW51/s2. The dominant experimen
tal error is that in the temperature. This leads to the weig15

W5utu2/3/dutu2, where dutu5max(231027,1023utu) is the
temperature uncertainty. The corresponding 2s rel line is
shown in Fig. 1.

In the given form both MF and SF~with D50.5) are
three-parameter fits. We compare both fits by calculat
their x2-ratio:

FIG. 1. The asymptotic model fit~MF!, (rs /r)MF5a1utu2/3

1a2utu1a3utu4/3, reproduces perfectly the experimental superflu
fraction (rs /r)exp. The solid points mark the relative deviation
between the fit formula and the experimental values of Ref. 15.
a guiding line we draw straight lines between neighboring poin
The broken line corresponds to two standard deviations.
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xSF
2

xMF
2

'8.8 ~data for utu<0.03!. ~27!

As seen from Fig. 1 the MF reproduces the experimental d
(x2/Nd'1.10). The large ratio~27! means that the SF doe
not reproduce the data in the considered temperature ra

We remark that the SF fits the data in the considera
smaller rangeutu<0.004. This smaller range is used in Re
15, presumably because it was realized that the SF does
fit the data in the larger range. For a three-parameter fit
range utu<0.004 appears to be rather small; we note t
already a one-parameter fit (a1utu2/3) reproduces the dat
within 2% in the relatively large rangeutu<0.08.

We considered also the data at higher pressures by G
wall and Ahlers.15 Here we found ratiosxSF

2 /xMF
2 between 1

and 2, and values ofxMF
2 /Nd in the range between 3.6 an

15. This means that the MF is only slightly better than the
without yielding satisfactory fits. This is~at least partly!
caused by jumps in the experimental data points. For
ample, compared to a smooth fit curve~SF or MF or any
reasonable fit formula! there is a jump of more than ten sta
dard deviations between the data points (utu,rs /r)
5(0.001 439 1,0.028144) and (0.001 263 1,0.025624)
for P57.27 bars.

2. 1993 data by Goldner, Mulders, and Ahlers

Newer measurements of the superfluid density are
ported by Goldneret al.16 and by Mareket al.17 We consider
the data by Goldneret al.because these authors published
explicit data list.

The data16 extend to aboututu50.01; all these data ar
used for the fits. Figure 2 shows how the three-parameter

FIG. 2. The asymptotic model fit~MF!, Eq. ~23!, is applied to
the 1993 data of Ref. 16. The deviations between the fit and the
are given in units of the experimental error; the broken line co
sponds to two standard deviations. For some temperatures ther
several experimentalrs values~each leading to a full point!; in this
case the guiding line goes through the average value of the de
tion. Sometimes the experimental temperature values are clos
gether~but different!; this results in apparently vertical pieces of th
guiding line. From the figure it is obvious that~i! the statistical
errors are considerably larger than the assumeds, and~ii ! the data
contain several large jumps between neighboring points.
ta

e.
ly

not
e
t

y-

F

x-

e-

n

F

reproduces these data. We discuss this result in a numb
points:

~1! Obviously the scatter of the data is generally larg
than the estimated error~listed asdrs /r in Ref. 16, and
calleds in Fig. 2!. There are several jumps of the size of t
standard deviations; the most dominant jump~between the
values forutu50.000 319 10 andutu50.000 397 93) is abou
30 times larger than the estimated error. This statemen
basically independent of the fit formula used~see also Fig.
3!. It is extremely unlikely that the actual superfluid fractio
contains such jumps. The different sizes of the jumps res
the possibility to discriminate between various fit formula
This is also the reason why we considered first the ol
1973 data by Greywall and Ahlers.

~2! The three-parameter SF yields a significantly largerx2

value:

xSF
2

xMF
2

'2.7. ~28!

~3! Goldneret al.16 used the followingextended standard
fit ~ESF!:

rs

r
5k0utuj~11DutuD!~11k1utu! ~ESF! ~29!

with D51/2. Using the same parameters as in Ref. 16
obtainedxESF

2 /xMF
2 '1.4. This might appear as a small diffe

ence between MF and ESF. A comparison between Fig
~MF! and Fig. 3~ESF! shows, however, that the MF does
better job although it has one parameter less. Goldneret al.16

noted that there is a serious discrepancy between the
and the data, in particular in the rangeutu'1025 to 1026

~their Fig. 17!. The comparison between Figs. 2 and 3 sho
that this discrepancy is significantly smaller for our mod
fit. This improvement is not so evident in thex2 ratio be-
cause thex2 values are on a high level for any fit formul
~due to the jumps!.

ta
-
are

ia-
to-

FIG. 3. The extended standard fit~ESF!, Eq. ~29!, is applied to
the 1993 data of Ref. 16. The presentation is the same as in Fi
The systematic deviations between the fit and the data are sig
cantly larger for this four-parameter ESF than for the thre
parameter MF~Fig. 2!.
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~4! Looking at the scatter of the data one might tentativ
assume a standard deviation that is five times larger than
one assumed. Drawing then a new 2s line the discrepancies
in the rangeutu51025 to 1026 in Fig. 2 may be judged as no
very significant. They may, however, hint at an unexplain
structure in the temperature dependence of the super
fraction.

B. Extension to lower temperatures

We apply the model expression for the superfluid fract
in the temperature range 1.2 K,T,Tl , where utu is no
longer much smaller than 1. For this purpose we use t
model expressions~15! and ~19! for r0 and rcoh, respec-
tively, and expandt andxcoh ~rather thanrs itself! into the
relevant powers ofutu.

The expansiont5a8utu1b8t21••• may be broken off
after the first term becausetÞ0 corresponds to a gap an
leads to an exponential decrease@}exp(2t2)# of the noncon-
densed contribution in Eqs.~15! and ~19!. Therefore, the
noncondensed contributions become rather small before
next terms in the expansion fort contribute significantly.

As far as the coherence limitkcoh is concerned we have n
information about the continuation of Eq.~21! into an expan-
sion. In view of the success of Eq.~23! we will certainly not
admit exponents that would violate the form~22!. In accor-
dance with Eq.~22! we may admit the formxcoh5x1utu2/3

1x2utu1x3utu4/31••• . This expansion may be broken of
too, becausercoh of Eq. ~19! is damped exponentially
@}exp(2t2)# for increasingutu. Including the terms with the
parametersx1 , x2 , andx3 preserves the variability for the
parametersa1 , a2 , anda3 in Eq. ~22!.

Due to the exponential damping of the noncondensed c
tributions a cut in the expansions fort andxcoh leads much
further than a cut in the expansion forrs /r itself. In this way
we arrive at the followingunified model fit~UMF! formula:

rs

r
512~11t !3/2

g3/2~t!

z~3/2!

1
4~11t !3/2

Apz~3/2!
E

0

xcoh x2dx

exp~x21t2!21
~UMF! ~30!

with

t5a8utu, xcoh5max~0, x1utu2/31x2utu1x3utu4/3!.
~31!

As we will see, this formula provides a unified description
the asymptotic region as well as of the less asymptotic~the
‘‘roton’’ ! region.

The parametersx1 , x2 , andx3 are related to thea1 , a2 ,
and a3 in Eq. ~22! and essentially fixed by the asymptot
region. We have restrictedxcoh explicitly to non-negative
values because the expressionx1utu2/31x2utu1x3utu4/3 might
become negative for largerutu values@where, however, the
densityrcoh tends to zero anyway because the exponen
decrease}exp(2t2); see also Fig. 5#.

For a fit in the range 1.2 K,T,Tl we combined the data
by Greywall and Ahlers15 for utu,0.04 and that by Clow and
Reppy18 ~run IV! for utu.0.04. At utu50.04 both data sets
are compatible with each other. The systematic errors and
y
he

d
id

n

he

n-

f
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he

deviation due to slightly different pressures~roughly 1% be-
tween saturated vapor or normal pressure! just happen to
cancel each other. Clow and Reppy18 remark that their ‘‘val-
ues ofrs /r have a scatter of about 1/2%;’’ we interprete
this ass rel50.005 for our fit@i.e., for the minimization of
Eq. ~26!#.

A fit of the combined data15,18 leads to a result that is
quite similar to Fig. 1 forutu,0.04 and which is shown in
Fig. 4 for utu.0.04. The fit parameters are

a853.0380, x152.6998, x2520.8063,

x3523.9631 ~UMF!. ~32!

Alternatively we may use the parameterf, Eq. ~18!, and cal-
culate the parametersa1 , a2 , and a3 following from the
asymptotic expansion of Eq.~30!:

f 55.6225, a152.3323, a250.8035, a3520.4704.
~33!

If an expansion is broken off as in Eq.~23! the last term tries
effectively to simulate the missing terms. Since the UM
supplies higher-order terms it is not surprising that the l
coefficients in Eqs.~24! and ~33! are quite different.

Alternatively we used the data by Tam and Ahlers19 that
extend, however, only down to 1.5 K. This yields simil
parameter values.

The standard fit for temperatures above 1K but exclud
the asymptotic region is the two-parameterroton fit ~RF!,

rs

r
5

A

AT
expS 2

D

kBTD ~RF!. ~34!

Using the data of Ref. 18~run IV! we obtain

xRF
2

xUMF
2

'4 for 1.2 K,T,2.07 K. ~35!

This ratio is reduced to 2 if we restrict the temperature
T,2K. These ratios imply that the unified model express
is quite good for intermediate temperatures, too.

FIG. 4. The unified model fit~UMF!, Eq. ~30!, is used to repro-
duce the experimental superfluid fraction (rs /r)exp in the tempera-
ture range fromTl to 1.2 K. For utu<0.04 we use the Greywall-
Ahlers data~Ref. 15!, for utu.0.04 that of Clow and Reppy~Ref.
18!. The figure depicts the deviations for the rangeutu.0.04; for
utu,0.04 the deviations are quite similar to that shown in Fig.
The broken line corresponds to two standard deviations.
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The RF is based on Landau’s quasiparticle model t
cannot be extended toTl without loosing its physical basis
The standard description for the range 1.2 K,T,Tl would
be a combination of the SF~25! and the RF~34!. In contrast
to this, our model provides a unified fit~30! in this range.
Although containing one parameter less~than the combina-
tion of SF and RF! this unified fit is superior to the standar
description.

As already mentioned, the expansion~16! implies a gap
between the condensed and noncondensed particles. Thi
appears to be essential for the reproduction of the data in
intermediate rangeT*1K. This gap should in some way b
related to the roton gapD. This relation cannot be expecte
to be simple and obvious because one gap belongs
model~Landau! for T!Tl and the other to a model~AIBG!
for T;Tl . We note that our gap vanishes forT→Tl , and
that the roton concept becomes less sharp for increasing
perature~for T51K the widths of roton states are alread
comparable to their energies!.

For T!Tl Landau’s quasiparticle model is, of course, t
right model. The model fit~30! yields still reasonable value
for rs /r but it must fail in the quantitative reproduction o
12rs /r because the phonons are not described by the w
function ~6!.

IV. CONDENSATE DENSITY

The unified model fit, Eq.~30! with Eq. ~32!, defines the
decomposition of the superfluid density into the condens
density and the coherently comoving density. The tempe
ture dependence of this decomposition is displayed in Fig
In this section we discuss in particular the temperature
pendence of the condensate density.

The contribution ofrcoh is decisive nearTl but negligible
for lower temperatures. The comoving densityrcoh carries
some entropy because it does not correspond to a si
quantum state. This entropy content is quite small becau
is due to the lowest single-particle states with^nk&@1. It is
below the present experimental limits but should be det
able; for these points we refer to Refs. 5 and 6.

As shown in Sec. III B, the expressiont5a8utu works

FIG. 5. Decomposition of the superfluid densityrs into the
~model! condensate densityr0 and the coherently comoving densi
rcoh as a function of the temperatureT. For T→Tl the comoving
density rcoh}utu2/3 is the dominant contribution to the superflu
density. The full line represents the model expression forrs . In the
given scale, this curve coincides with the experimental superfl
density for all temperature values.
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quite well for fitting the data down to about 1.2 K. Insertin
t5a8utu in Eq. ~15! yields

r0

r
512~11t !3/2

g3/2~a8utu!
z~3/2!

. ~36!

Using a8 of Eq. ~32!, this temperature dependence is sho
by the dashed line in Fig. 5.

The asymptotic expansion of Eq.~36! readsr0 /r; f utu,
Eq. ~17!, where

f 5
3

2
1

2Apa8

z~3/2!
'5.6. ~37!

The numerical value is taken from Eq.~33!. We found that

r0

r
'12S T

Tl
D f

~38!

may be used as an approximation for Eq.~36!. The maxi-
mum relative difference between Eqs.~38! and~36! is about
2%. ForT→Tl both expressions, Eqs.~38! and ~36!, yield
r0 /r; f utu.

The right-hand side of Eq.~38! is an old fit formula for
the superfluid fractionrs /r ~for example, Fig. 27 of Ref. 2!.
In the framework of our model, this historic fit formula ma
be interpreted as the approximationrs'r0 . The obvious
shortcomings of Eq.~38! as an approximation forrs /r are
the following. ~i! The neglectrcoh leads to a qualitatively
wrong asymptotic behavior~difference between the full and
the dashed line in Fig. 5!. ~ii ! The step from Eq.~36! to Eq.
~38! as well as the use oft5a8utu make the expression a
approximate one already forr0 /r. ~iii ! For small tempera-
tures 12rs /r5(T/Tl) f is quantitatively wrong~because the
phonons have not been taken into account!.

We consider once more the exact condensate frac
r0

exact/r introduced in Sec. II B. We denote its value atT
50 by nc . Assuming that the depletion of the condensa
~from 1 to nc'0.1) is temperature independent we obtain

r0
exact

r
'nc

r0

r
'ncS 12

Tf

Tl
f D ~39!

as an approximate expression for the temperature de
dence of the exact condensate fraction. The experime
temperature dependence is given in Fig. 2 of Snowet al.20

Within the relatively large experimental uncertainties the e
pression~39! agrees with the data.

V. EFFECTIVE GINZBURG-LANDAU MODEL

In our approach, the macroscopic wave function~5!,

c~r !5An0

V
exp@ iF~r !#5Ar0 exp@ iF~r !#, ~40!

plays the role of the order parameter. We investigate the
energy as a function of this order parameter.

A. Coherence limit

We start by presenting a qualitative argument for the
istence and the meaning of the coherence limitkcoh.

id
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The macroscopic wave functionc may contain equilib-
rium and nonequilibrium excitations. A superfluid motio
with us5(\/m)¹F is a nonequilibrium excitation. At finite
temperatures, there are thermal fluctuations of the order
rameter, i.e., equilibrium excitations. We consider the av
age momentum of these fluctuations,

kfluct5u¹Fu. ~41!

The bar denotes the statistical average. The momentumkfluct
will be a function of the temperature. It is related to t
correlation lengthj'1/kfluct .

The single-particle states are described by real functi
wk in Eq. ~4!. We consider the possibility of phase fluctu
tions for a low-lying state withnk@1, too. After the replace-
mentwk→wk exp(iFk) in Eq. ~4! these fluctuations may b
described by the fieldsFk(r ).

Let us first assume that the additional phases vanish,Fk
50. In this case, the average kinetic energy\2kfluct

2 /2m of a
condensed particle would exceed that of a nonconden
particle with k,kfluct . The energy sequence of the singl
particle states is, however, a prerequisite of the BEC;
condensate must be formed by the particles with the low
energy. In order to preserve the energy sequence of the
lying states we require the phase ordering

Fk~r !5F~r ! for k<kfluct . ~42!

This argument does not apply to the states with higher m
menta. By this qualitative argument we obtain the ma
body wave function~6! with

kcoh5kfluct . ~43!

B. Free energy

The statistical expectation valuer0;utu can be obtained
by minimizing the common Landau energyFL /V5Rtucu2
1Uucu4 ~with regular coefficientsR andU). The fluctuation
termFfluct /V5(\2/2m)u¹cu2 equals the kinetic energy den
sity r0u2/2 of the condensate only; hereu5(\/m)¹F. The
phase coherence assumed in Eq.~6! implies thatr0u2 must
be replaced byrsu

2. This leads to the followingeffective
Ginzburg-Landau ansatz

FGL

V
5

Ffluct1FL

V
5

\2

2m

rs

r0
u¹cu21Rtucu21Uucu4.

~44!

Assuming that the leading exponent ofxcoh is not greater
than 1, Eq.~20! yields

rcoh;xcoh. ~45!

The equilibrium fluctuation term becomes then

Ffluct}rskfluct
2 5~r01rcoh!kcoh

2 ;r0xcoh
2 1xcoh

3 . ~46!

The asymptotic form of the Landau part of the free ene
behaves like

FL}Rtr01Ur0
2;t2. ~47!

We require now scaling invariance. This means thatFfluct
must have the same leadingutu dependence asFL , i.e.,
a-
r-

s

ed

e
st
w-

-
-

y

r0xcoh
2 1xcoh

3 ;t2. From r0xcoh
2 ;t2 we would obtain xcoh

;utu1/2 and xcoh
3 ;utu3/2 in contradiction to the scaling as

sumption. Therefore, scaling requiresxcoh
3 ;utu2 or

kcoh;utu2/3. ~48!

This implies rs;rcoh;utu2/3 for the superfluid density and
j'1/kfluct;utu22/3 for the correlation length.

The mass coefficientrs /r0;utu21/3 in Eq. ~44! is singu-
lar. Ginzburg and Sobyanin21 have introduced a comparab
effective Ginzburg-Landau model with nonanalytic coef
cients, too. In Ref. 21 the nonanalytic coefficients~like utu4/3

for the ucu2 term! are phenomenologically introduced in o
der to reproduce the right critical exponents.

The divergent mass coefficientrs /r0;utu21/3 damps the
critical fluctuations such that Eq.~44! becomes scaling in-
variant. In this sense, the model~44! has similar properties to
the common Ginzburg-Landau ansatz ind54 dimensions.
This means that Eq.~44! might be used down toutu50 and
that the critical exponent ofrs might be indeed exactly 2/3
This possibility is supported by the excellent fit obtained
Eq. ~23!.

C. Further scaling restrictions

The equilibrium Landau free energy contains integ
powers oft only:

FL;•••t21•••t31•••t41•••. ~49!

The asymptotic form of the superfluid density~22! is com-
patible with the expansionxcoh}x1utu2/31x2utu1x3utu4/3

1•••. In the fluctuation term this expansion will, howeve
in general lead to noninteger exponents:

Ffluct}rskcoh
2 5~r01rcoh!kcoh

2 ;•••t21•••utu7/31•••utu8/3

1•••t31••• . ~50!

Scaling for~44! implies also that the amplitudes of the no
analytic terms vanish. This condition yields relations b
tween the expansion parametersa8,b8, . . . and
x1 ,x2 ,x3 , . . . that may also be expressed by the coefficie
ai in Eq. ~22!. The condition of a vanishing amplitude of th
utu7/3 term can be evaluated straightforwardly and yields

x252
Apz~3/2!

8
'20.58 or a251. ~51!

These theoretical values compare well with the fitted val
given in Eq.~24! or Eq. ~33!.

The condition of a vanishing amplitude of theutu8/3 term
yields

x35
p@z~3/2!#2

64x1
2

a82

3x1
~52!

and a corresponding expression fora3 . These relations are
not fulfilled by the parameter values found in the fits. T
reason is probably the following: The expansions~22! and
~31! are cut after theutu4/3 term. In a fit it is then in particular
the last term that tries to simulate the neglected terms.
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VI. CONCLUDING REMARKS

We have modified the IBG in such a way that it might
applied to liquid helium. We summarize the novel views a
main results of our approach.

~1! The IBG valueb51/2 for the critical exponent of th
condensate should be taken seriously. It is not subjec
renormalization because it results from a calculation tha
ready includes a summation over arbitrarily large leng
and it is essential for the BEC mechanism.

~2! The model condensate contributes fully to the sup
fluid density; it is not depleted by the Jastrow factors.

~3! In order to reproduce the critical exponentn'1/3 of
the superfluid density we have assumed that nonconde
particles below a certain momentumkcoh move coherently
with the condensate. The coherence limitkcoh has been mad
plausible in Sec. V A.
-

d

to
l-
,

r-

ed

The contribution of noncondensed particles to the sup
fluid density offers a solution of the so-called macroscop
problem22 of liquid helium. This problem reads as follows: I
the superfluid density corresponds to single quantum st
(rs}ucu2) then the approach to an equilibrium state@with
rs5rs(T)] cannot be understood.

~4! We have derived a fit formula for the temperatur
dependence of the superfluid density. This fit formula repr
duces the data significantly better than comparable expr
sions. This feature as well as qualitative scaling argume
suggest that the critical exponentn of the superfluid density
might be exactly equal to 2/3.

~5! The temperature dependence of the decomposition
superfluid density into the model condensate density and
coherently comoving density is given. A simple formula fo
the temperature dependence of the depleted condensate
sity is presented.
.
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