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Asymptotic temperature dependence of the superfluid density in liquid*He
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In a modified ideal Bose gas model we derive an expression for the temperature dependence of the superfluid
fraction in liquid “He. This expression leads to a fit formula for the asymptotic temperature dependence that
reproduces the data significantly better than comparable forn{#8463-18269)00906-9

I. INTRODUCTION The reason is that the IBG value is obtained by an exact
evaluation of the partition sum. The exact evaluation of the
The behavior offHe and“*He liquid on one hand, and of partition sum implies a summation over arbitrarily small mo-
the ideal Fermi and Bose gas on the other hand, stronglyhenta (or, correspondingly, arbitrarily large distanges
suggests that there is an intimate relatietween thex  Therefore, the reasoning behind the renormalization proce-
transition in *He and the Bose-Einstein condensatiBEC)  dure (analytic Ginzburg-Landau ansatz fénite regions or
of the ideal Bose gadBG). Because of the neglect of the plocks, and subsequent transformation to larger and larger
interactions one will not expect that the IBG reproduces allyockg cannot be applied to the IBG free energy.
properties of liquid*He, in particular not those properties  \oreover, the critical exponept=1/2 of the IBG cannot
that are directly related to the interactiofie the specific g changed within the IBG frame without destroying the
heat or.the co_mpressibimyThere are, hovyever, some basic yachanism leading to the BEC. The exponght 1/2 is
properties of Iqu|d4He that may be explainéd by Fhe lB_G characteristic for the IBG with the BEC phase transition.
(like the irrotational superfluid floy We start by discussing We have now discussed two point§) We expect an

3\,3 I\,Sv(ﬁ:ep%?r?f )c/)ukie_tV\:jeigtr:”tgii;ISir(]s v{i:lenve g?ﬁzesagztegst;?ﬁti- intimate relation between the Bose-Einstein condensation

mate relation between the BEC and theransition. and the)\.transition.(ii) Th? IBG value=1/2 should be_
The critical behavior of the condensate fraction of thetaken seriouslybecause it is a result of an exact evaluation

IBG is of a partition sum, and becauge* 1/2 is not compatible

with the BEC mechanisjn From these two points we con-

Po 1 clude the following: The theoreticg8=1/2 in Eq.(1) and
?~|t|2’3, B=3, (1)  the experimentab~1/3 in Eq.(2) are in conflict with each
other.

wheret=(T—T,)/T, is the relative temperature; the IBG  Within the frame of the ideal Bose gas model we propose
transition temperature is equated with that of Xhigansition.  to resolve this conflict by the assumption timancondensed
The condensate fraction is commonly identified with the suparticles move coherently with the condensathis means
perfluid fraction; this identification explaifid a number of that we no longer identify the condensate with the superfluid
experimental findings of which the most important b  fraction; the condensate is only part of the superfluid phase.
that a superfluid current has no vortices. In contrast to EGA coherent motion can be described by multiplying the real
(1), the experimental superfluid fraction behaves like single-particle functions of noncondensed particles by the
complex phase factor of the condensate. The superfluid den-
Ps 20 sity ps is then made up by the condensate densijtplus the
;Nm VT3 2) density p¢on Of the coherently comoving, low momentum
noncondensed particles. This concept leads to an expression
The suggested intimate connection between the BEC and thghd eventually to a fit formula for the temperature depen-
A transition is in conflict with3+# v. The valuess=1/2 and  dence of the superfluid density.
v~1/3 imply pg<<p; just below the transition. We will stick to the essential characteristic of the |IBG
The standard solution of the conflict between Ed$and  particular the BEQ but introduce some modification$or
(2) appears to be the renormalization-group method. In thig#xample, Jastrow factgrshat are necessary for a realistic
approach one starts from a Ginzburg-Landau ansatz for thgpproach to liquid*He. This modified IBG is calleé@imost
free energy(or enthalpy that leads to the critical exponent ideal Bose gas moddAIBG). The AIBG has been intro-
1/2 for the order parameter. For the considered universalitduced some years ago as an attempt to explair{ribarly)
class the renormalization procedure yields then values nedwgarithmic singularity of the specific heatSome conse-
to 1/3 for the critical exponent of the order parameter. Thisquences of the decompositign=py+ pon have been dis-
may well serve as an explanation of the experimental valugussed in Refs. 5 and 6. The present paper is devoted to the
of v~1/3 in Eq.(2) but it does not resolve the conflict be- investigation of the temperature dependence of the superfluid
tween Eqgs(1) and(2): A renormalization is appropriate for density in this model. The necessary details of the underlying
the Landau valugg=1/2 but not for the IBG valugg=1/2.  model, the AIBG, will be given below.
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The form of the temperature dependence of the superfluidith the condensateThis is possible if noncondensed par-
fraction is derived in Sec. Il. This leads to a fit formula for ticles adopt the macroscopic phase of the condensate:
the temperature dependencemfthat is applied to experi-
mental data and compared to other fit formu(&ec. IlI).
Section IV discusses the temperature dependence of the cong = sF[expi®)]™ [ [erexpi®)]™ [ [en]™.
densate density. Section V presents scaling arguments on the 0<k<keon k>Keon
basis of an effective Ginzburg-Landau model; this includes a (6)
qualitative explanation of the coherent comotion of noncon-
densed particles and leads to restrictions for some of thgve assume the phase ordering for all states with momenta

parameters of the fit formula. below a certain coherence linkit,,. For the low-lying states
with n,>1 such phase ordering is relatively easy because it
Il. AIBG FORM OF THE SUPERFLUID FRACTION requires only a small entropy decrease. At this stagg,

should be considered as a model parameter. In Sec. V A the

existence and the size of this coherence limit will be made
Following Chester we multiply the IBG wave function plausible.

g by Jastrow factor§ =IIf;, We evaluate particle current for the wave functi@y:

N
> jatcc \P> .
A=1 N

We consideli =1,2, ... N atoms in a volumé/. The occu- (@)
pation numbers, are parameters of the wave function; in

physical quantities they are eventually replaced by their stathe prime at the sum over the momeita k.., means that
tistical expectation valugs,). The Jastrow factors take into the k=0 contribution is excluded. In coordinate space, the
account the most important effects of the realistic interaccurrent operator readg= —i#V,/(2m)+c.c. It acts on all
tions; with a suitable choice for thig; (for example,f;;(r) r; dependences. Because of the added conjugate complex
=exf—(a/r)’] with a and b determined by a variational term all contributions from the real functiotihe f;; in F or
principlé’) the wave function(3) leads to a realistic pair- the ¢y) cancel. The only surviving terms are those whigre
correlation function. acts on the phas®.

The IBG wave function¥ zg in Eq. (3) is the symme- For a superfluid motion witlu;=%V®/m and in the sta-
trized product of single-particle functions. We display thististical averagejs of Eq. (7) equalspsus. We may then read
structure admitting at the same time a phase fieldf the  off the superfluid fraction,
condensate:

A. Many-body wave function

jo
N
\PZF\PIBG:L[J_ fii(ripWiga(ra, - Insme). - (3 js(rfnk):<\lf

3>

N+ >, nk)wb.
kKoo

Ps 1 ' . Pot Pcon
w=sFexp(ie)]™]] [ed™. (4) e N(<”0>+k<2 <”k>) == ®

Kcon

Here S denotes the symmetrization operator. heare the  This expression will be evaluated in Sec. Il C.

real single-particle functions of the noncondensed particles. The ansatz6) leading to Eq.(8) shows in which way
The schematic notatiorf ¢, ]™ stands for the product noncondensed particles may contribute to the superfluid den-
k(1) @x(rys2)- - - @k(r,+n); this notation applies sity.
also to[exp(i®)]™. All n, condensed particles adopt the
az@eefﬁr?gissn factor epip(r)] forming the macroscopic B. Condensate density

We discuss in some detail what is meant by the terminus
No . “condensate density,” in particular with respect to the Ja-
Y=\ v/ exdi®(n)]. (5)  strow factors in Eqs(4) or (6).
The exactcondensate densitypay be defined by

The phase fieldb describes the coherent motion of the con-

densate particlefActually, one has to construct a suitable =/

coherent s_tat%.Th_|s point is, however, not essential for the (W™ (r)d(r")| W) poxact (9)

following discussion). This motion is superfluid if the veloc-

ity us=aV®d/m is sufficiently small. R .
Equations(4) and (5) are a well-known descriptidrfor a ~ whereW is the exact many-body state and #é and ¢ are

superfluid motion in the IBG. In this description the super-Single-particle creation and annihilation operators. For finite

fluid fraction ps/p equals the condensate fractian/N temperatures one has to take the statistical expectation value

—polp. The role of the Jastrow factors in this context will of p§*** (we do not introduce a different symbol

be discussed in Sec. Il B. For an IBG wave functionV g the condensate density is
In order to dissolve the discrepancy between Efjsand  given bypg“)de': ny/V. In the statistical average thimodel

(2) we assume thatoncondensed particles move coherentlycondensate densityecomes
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sl (N0 Here u is the chemical potentialg,=#%2k?/2m are the
TV (10) single-particle energies, arig is Boltzmann’s constant. In
the last expression we introduced the dimensionless quanti-

. 2: _
The exact many-body state in E(Q) may be approxi- ties #/keT and

mated by Eq(3) or by ¥~F for the ground state. In this
: L N K| _ 27h
case the relation between both condensate densities is well X=——, With A= ——. (12)
known: The model condensate fractiordispleted®* by the Vam V2mmkgT
model __ exac

\]Nagtrlozc\:);‘?rcio(r)ﬁ for example, frompg**/p=110p5"Yp 1 transition temperature of the IBG is given by the follow-
o s . : i ition for the th I I

The above calculation leading to E&) demonstrates the ing condition for the thermal wave lengit
following point: In contrast to the densip}°®®, the current NT)=[02(3/2)]H (19

mode|

densitypg bs is not depletedThe reason is that in Eq7) _ _
all derivatives of the real Jastrow factors cangmcause of Where {(3/2)=2.6124 denotes Riemann’s zeta function. In

the added conjugate complex térm applying our almost ideal Bose gas mo@&IBG) to the real
On the basis of this point we arrive at the following state-System we identifyT, with the actual transition temperature.
ments about the role of the densitipz@o“e', p& andps. In the following we use the relative temperature
(a) Since the current density]°®l; is not depleted we
; ; model exac ; 2 T-T,
may identify p{°®®' (and notp§*®®) with the squarg|? of t= _ (14)
the macroscopic wave function. Irrespective of the Jastrow T

factors we may use E@5) as it stands. For a superfluid flow,

the phaseP(r) of the macroscopic wave functiof) fixes

the velocity fieldug=AV®/m. The basic relations for the Po ,03/A7)

superfluidity (like curlus=0 and the Feynman-Onsager ; 3R

guantization rulg are not affected by the Jastrow factors in

the many-body wave function. Riemann’s generalized zeta function is given by(7)
(b) The exact condensate density is a quantity of its own= =7 exp(—n#)/nP, and {(p)=g,(0). Thechemical poten-

rlght It is the denSity of the zero momentum partiCleS in thet|a| M O, equivajenﬂyﬂ- may be expanded fd[|<1
liquid helium. Recently Wyatf reported about a rather clear

experimental evidence for this condensate. For a review —n
about the attempts to determip§®®“experimentally we re- () =/ T
fer to Sokol*® .
(c) The assumption that noncondensed particles move cdror t>0 Eq. (15) with py/p=0 yields (1+1t)%%gy(7)
herently with the condensate is introduced by the step from=/(3/2). This condition determines the temperature depen-

We evaluate the condensate density:

=1->' %zl—(lﬂ)e” (15

at+bt>+... (t>0)

a'lt|+b't?+ ... (t<0). (16

Eq. (4) to Eq. (6). Again, this step does not alter the basic dence ofr(t) and in particular the coefficiengsb, ... , for

relations following from Eq(5) (like us=AV®/m, curlus  examplea=3{(3/2)/(4m?).

=0 and the Feynman-Onsager quantization)rule For t<0 the IBG yields7=0. In the AIBG we admit
(d) ForT=0 the valuep{]°®/p=1 yieldsps/p=1[aswe nonvanishing coefficients’,b’, ... in Eq.(16). This makes

will see, pcon in EQ. (8) contributes only in the vicinity of the expansioril6) more symmetric; it corresponds to a phe-
T,]. In contrast to this the connection betwegf®fp  nomenological gap between the condensate level and the
~0.1 with ps/p=1 is less obvious. FoT~0 the value noncondensed particles. A coefficiealt#0 does not affect
p[)“o"e'/p~1 impliesps/p~1. For describing * p./p quan- the BEC as the most important feature of IBG. It avoids,
titatively one must however include phonons. This is nothowever, the divergence of the static structure fatts(k)
done in Eq.(4) or Eq. (6) because our primary object is the for k—0 and greatly improves the unrealistie T3%) behav-
asymptotic temperature region. ior of the specific heat. In view of the successful roton pic-
We summarize this subsection: As far as the superfluidure it is not too surprising that a gap is necessary for a
current is concerned the model condensate density is not dguantitative description of the superfluid densigy of the
pleted. The model condensate density is the fundament&pPecific heat As we will see, a realistic description of liquid

constituent of the superfluid density. helium requiresa’~3; the next coefficienb’ will not be
In the following the model condensate dengiff®® will ~ needed. . .
again be denoted by, and called condensate density. From Eq.(15) and with Eq.(16) we obtain
C. Superfluid density %: flt|+gt?+---  (t<0), a7

We evaluate the expressiéd) for the superfluid density.
Our model assumes expectation valgag) that are of the Where
IBG form,

3 2Jma’

1
= . (11
exd (ex—m)/keT]—=1 expx?+ 7)1 We evaluate now the density of the comoving particles

(N =
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Pooh <nk>_4(1+t)3’2fxcoh x2dx
P kken N w2312 )0 expx@+2)—-1"
(19
Using y/[exply)—1]=1-y/2+y?/12F - - - we obtain
Poon _ —4(1“)3/2( X rarctan—wh—@1
P m@E) 6
5 3 2
Xcoh  Xcoh”
+E+ 36 i) (20

The convergence of this expression is excellent; for the ac-

tual parameter values and fit{<0.1 the terms not shown
are of the order 10°.

We have not yet specified the coherence likyg;,. For
[t|<1 we will find ps~ pcon~ Keon fOr the superfluid density
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\ (Ps/ P)MF _
(5] P)exp .

4l / i

| 1 1
10 103 1072 ¢
FIG. 1. The asymptotic model fitMF), (ps/p)ue=ay|t|??
+a,|t| +as/t|*3 reproduces perfectly the experimental superfluid

fraction (ps/p)exp- The solid points mark the relative deviations

and pskz o K3 . for the kinetic energy of the fluctuations between the fit formula and the experimental values of Ref. 15. As
COl CO "

Requiring that this kinetic energy scales with the free energ

F~—{ng)2~ —12 yields

I(coh'\' |t|2/3- (21)

This scaling argument will be presented in more detail in

Sec. V.
Inserting Eqg.(21) in Eqg. (20) and using Eq.(17), the

superfluid fraction contains the powét§’®, |t|, |t|*3 and
So on:
pS_p0+pCOh_ 2/3 43
;———a1|t| +a2|t|+a3|t| + e (22)

D. AIBG assumptions

We summarize in which points the AIBG, the almost

ideal Bose gas model, deviates from the IBG.

(1) The IBG wave functionV zg is multiplied by Jastrow
factors, ¥ =FW¥ 5. This is a well-known approach.

(2) By the symmetric expansiofi6) we admit a gap be-

2 guiding line we draw straight lines between neighboring points.

he broken line corresponds to two standard deviations.

%:al|t|2/3+ alt|+aglt|*®  (MF).

(23)
Figure 1 shows that the MF yields an excellent reproduction
of the data by Greywall and Ahléfsfor saturated vapor
pressure. We used all data points with temperatytes
=0.03. For a minor improvement of the fit we shifted the
temperature values by 0.5x10™’; this is well below the
experimental uncertainty aft=2x 10" . The parameters of
the fit shown in Fig. 1 are

a;=2.3233, a,=1.0258, az=-—2.0065. (249
As an alternative we consider tistandard fit(SP
pS_ £ A
;—kltl (1+D[t|*) (sh, (25)

tween the condensed and the noncondensed particles. Thilich is used by Greywall and AhletS,and that is moti-
modification preserves the most basic features of the IBG, ivated by the renormalization-group theory. The fourth pa-
particular the BEC mechanism and the critical expongnt rameterA is often>*°set equal to 1/2 because the fit is not

=1/2.

very sensitive to it. We will use the SF with=0.5 as a

(3) The noncondensed single-particle states below the cdhree-parameter ansatz.

herence limitk.,, adopt the macroscopic phase of the con-

densate. The leading exponent for the coherence kigpitis
determined from a scaling argument.

lll. FIT TO EXPERIMENTAL DATA

We compare the temperature dependence of our model

The fit parameters are found by minimizing the syfrof
the quadratic deviations,
2
A

(& _(P_s) rzgi (ps! P
P/ fi P/ exp =1 Urzel
(26)

(PS/P)exp

expression for the s.uperfluid.density with experimental .dataHere Ny is the number of data points amd,, is the relative
The model expression contains unknown parameters; it prostandard deviation. The standard deviatienfor (ps/p)s
vides a fit formula for the data. It will turn out that this fit —(ps/p)expis given byw= 1/0?. The dominant experimen-
formula is significantly better than comparable fit formulas. ta error is that in the temperature. This leads to the wéight

A. Asymptotic temperature range
1. 1973 data by Greywall and Ahlers

A restriction to the first three terms in expansi@R)
yields a three-parametenodel fit(MF)

W= t|?"¥ 8]t|?, where §|t|=max(2x10 7,10 3|t|) is the
temperature uncertainty. The corresponding,2 line is
shown in Fig. 1.

In the given form both MF and SFwith A=0.5) are
three-parameter fits. We compare both fits by calculating
their y?-ratio:
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(ps/ P)Mr — (PB/P)WP 0 (ps/ P)rSF — (PS/P)eorp

| 1 | d 1 | | 1 | 1 |
10-° 1075 1074 108 g 10® 10-° 10- 1074 107 | 1072

FIG. 2. The asymptotic model fiMF), Eq. (23), is applied to FIG. 3. The extended standard {SP, Eq. (29), is applied to
the 1993 data of Ref. 16. The deviations between the fit and the dathe 1993 data of Ref. 16. The presentation is the same as in Fig. 2.
are given in units of the experimental error; the broken line corre-The systematic deviations between the fit and the data are signifi-
sponds to two standard deviations. For some temperatures there arently larger for this four-parameter ESF than for the three-
several experimentalg values(each leading to a full pointin this parameter MRFig. 2).
case the guiding line goes through the average value of the devia-
tion. Sometimes the experimental temperature values are close tgeproduces these data. We discuss this result in a number of
gether(but differeny; this results in apparently vertical pieces of the points:
guiding line. From the figure it is obvious théf the statistical
errors are considerably larger than the assumednd(ii) the data
contain several large jumps between neighboring points.

(1) Obviously the scatter of the data is generally larger
than the estimated errdtisted asédps/p in Ref. 16, and
calledo in Fig. 2). There are several jumps of the size of ten
standard deviations; the most dominant julietween the

X2 values for|t|=0.000319 10 andit|=0.000 397 93) is about
——~8.8 (datafor[t|<0.03. (27) 30 times larger than the estimated error. This statement is
XMF basically independent of the fit formula uséske also Fig.

3). It is extremely unlikely that the actual superfluid fraction
As seen from Fig. 1 the MF reproduces the experimental dateontains such jumps. The different sizes of the jumps restrict
(x?/Ng=1.10). The large rati¢27) means that the SF does the possibility to discriminate between various fit formulas.
not reproduce the data in the considered temperature rangé&his is also the reason why we considered first the older

We remark that the SF fits the data in the considerablyi973 data by Greywall and Ahlers.

smaller rangdt|<0.004. This smaller range is used in Ref.  (2) The three-parameter SF yields a significantly larger
15, presumably because it was realized that the SF does nelue:
fit the data in the larger range. For a three-parameter fit the

range |t|<0.004 appears to be rather small; we note that 2
already a one-parameter fift|?®) reproduces the data H~2_7, (28
within 2% in the relatively large range|<0.08. Xwr
We considered also the data at higher pressures by Grey-
wall and Ahlerst® Here we found ratiog3d xar between 1 (3) Goldneret al*® used the followingextended standard

and 2, and values q(f,lF/Nd in the range between 3.6 and fit (ESBH:

15. This means that the MF is only slightly better than the SF

without yielding satisfactory fits. This i¢at least partly p

caused by jumps in the experimental data points. For ex- 2= ko|t|S(1+DJtA) (1 +K,t])  (ESP (29
ample, compared to a smooth fit cur¢®F or MF or any P

reasonable fit formudahere is a jump of more than ten stan- . . .
dard deviations between trJ1e F:jata pointst|, p./p) with A=1/2. Using the same parameters as in Ref. 16 we

—(0.0014391,0.028144) and (0.00126310.025624)  OPtainedxEsd xye~1.4. This might appear as a small differ-
for P=7.27 bars. ence between MF and ESF. A comparison between Fig. 2
(MF) and Fig. 3(ESBH shows, however, that the MF does a
better job although it has one parameter less. Goldhat!®
2. 1993 data by Goldner, Mulders, and Ahlers noted that there is a serious discrepancy between the ESF

Newer measurements of the superfluid density are reand the data, in particular in the rangé~10 ° to 10 ®
ported by Goldneet al® and by Marelket all” We consider  (their Fig. 13. The comparison between Figs. 2 and 3 shows
the data by Goldnegt al. because these authors published arthat this discrepancy is significantly smaller for our model
explicit data list. fit. This improvement is not so evident in the ratio be-

The datd® extend to aboutt|=0.01; all these data are cause they? values are on a high level for any fit formula
used for the fits. Figure 2 shows how the three-parameter Mkdue to the jumps
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(4) Looking at the scatter of the data one might tentatively ! ! ! !
assume a standard deviation that is five times larger than thio= (ps/)our _ 1
one assumed. Drawing then a new fine the discrepancies oo/ Pexy
in the rangdt|=10"°to 10 ® in Fig. 2 may be judged as not
very significant. They may, however, hint at an unexplained
structure in the temperature dependence of the superfluic
fraction.

1

0

B. Extension to lower temperatures )

We apply the model expression for the superfluid fraction
in the temperature range 1.2<KT<T,, where|t| is no 0 ' ' ' '
longer much smaller than 1. For this purpose we use the

model expression$l5) and (19) for py and pn, respec-
tively, and expandr and Xy, (rather thanp, itself) into the
relevant powers oft|.

The expansionr=a’|t|+b’t?+--- may be broken off
after the first term because#0 corresponds to a gap and
leads to an exponential decre@seexp(—7%)] of the noncon-

FIG. 4. The unified model fitUMF), Eq. (30), is used to repro-
duce the experimental superfluid fraction (p) ¢y, in the tempera-
ture range fromT, to 1.2 K. For|t|<0.04 we use the Greywall-
Ahlers data(Ref. 19, for |t|>0.04 that of Clow and Repp§Ref.
18). The figure depicts the deviations for the range>0.04; for
[t|<0.04 the deviations are quite similar to that shown in Fig. 1.

densed contribution in Eqg15) and (19). Therefore, the The broken line corresponds to two standard deviations.

noncondensed contributions become rather small before the ] )
next terms in the expansion fercontribute significantly. deviation due to slightly different pressuresughly 1% be-

As far as the coherence limit,, is concerned we have no Ween saturated vapor or normal presgytest hap'ptin to
information about the continuation of E@Q1) into an expan- cancel each other. Clow and Reppremark that their “val-
sion. In view of the success of E(3) we will certainly not ~ UeS 0fps/p have a scatter of about 1/2%;” we interpreted
admit exponents that would violate the for@®). In accor- this aso,=0.005 for our fit[i.e., for the minimization of
dance with Eq.(22 we may admit the formkeg=x,|t|23  Ed- (26)]. _ 18 _
+x2|t|+x3|t|4’3+ ..., This expansion may be broken off, A flt_ of the co.mblned datg*® leads to a rgsult that is
t00, becausep.y, of Eq. (19) is damped exponentially ~duite similar to Fig. 1 for_1t|<0.04 and which is shown in
[«exp(—7)] for increasingt|. Including the terms with the Fig- 4 for |t|>0.04. The fit parameters are
parameters;, X,, andxs; preserves the variability for the
parameters;, a,, andas in Eq. (22).

Due to the exponential damping of the noncondensed con-
tributions a cut in the expansions ferand X, leads much
further than a cut in the expansion fay/p itself. In this way
we arrive at the followingunified model fifUMF) formula:

a’'=3.0380, x,=2.6998, x,=-—0.8063,

X3=—3.9631 (UMF). (32

Alternatively we may use the paramefeEqg. (18), and cal-

culate the parameters,, a,, anda; following from the

asymptotic expansion of E430):

93/ 7)
{312

P
f=1—(1+t)3’ f=5.6225, a,=2.3323, a,=0.8035, as=—0.4704.

(33

If an expansion is broken off as in E@3) the last term tries
effectively to simulate the missing terms. Since the UMF
supplies higher-order terms it is not surprising that the last
coefficients in Eqs(24) and(33) are quite different.

Alternatively we used the data by Tam and Ahférhat
extend, however, only down to 1.5 K. This yields similar
parameter values.

The standard fit for temperatures above 1K but excluding
the asymptotic region is the two-parameteton fit (RF),

Xcoh X2d X

fo expx®+72)—1

Xeon=mMax 0, Xq|t|3+x,|t] +x5|t|*3).
(31

. 4(1+1)%2
V7L (312)

(UMF) (30)

with
r=a'lt],
As we will see, this formula provides a unified description of

the asymptotic region as well as of the less asymptihie
“roton” ) region.

The parameters,, X,, andxs are related to tha;, a,, ps A A
andag in Eqg. (22) and essentially fixed by the asymptotic P \/—?ex  KeT (RF). (34)
region. We have restrictesl.,, explicitly to non-negative
values because the expressigit|2>+x,|t| +xz|t|* might ~ Using the data of Ref. 1&un IV) we obtain
become negative for largét| values[where, however, the ,
density pon tends to zero anyway because the exponential XRF
decreasecexp(—7); see also Fig. b e ~4 for L2K<T<2.07K. (39

For a fit in the range 1.2 KT<T, we combined the data
by Greywall and Ahler® for |t|<0.04 and that by Clow and This ratio is reduced to 2 if we restrict the temperature by
Reppy?® (run 1V) for |t|>0.04. At|t|=0.04 both data sets T<2K. These ratios imply that the unified model expression
are compatible with each other. The systematic errors and the quite good for intermediate temperatures, too.
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quite well for fitting the data down to about 1.2 K. Inserting
o r=a’|t| in Eq. (15) yields
Po_ . 409322 [t])
Ps = Po + Peon P 1=(1+1) {32 - (39
-—=n
............ p:oh Usinga’ of Eq. (32), this temperature dependence is shown
by the dashed line in Fig. 5.
The asymptotic expansion of E(B6) readspy/p~ f|t|,
Eq. (17), where
0 — e a t 3 2\/;61’
0 1 2 T, TK] R b
A 2+ (312 5.6. (37

FIG. 5. Decomposition of the superfluid densjty into the . .
(mode) condensate densify, and the coherently comoving density | "€ numerical value is taken from E(3). We found that

Peon @S @ function of the temperatufie For T— T, the comoving T\f
density pcor<|t|?® is the dominant contribution to the superfluid @%1_(_) (39)
density. The full line represents the model expressiompforin the p Ty

ggf;tjﬁglreg.mfmc;e?;ff;T,‘;'ﬁj eesS.wnh the experimental Suloerflu'dmay be used as an approximation for E§6). The maxi-

mum relative difference between E¢88) and(36) is about

The RF is based on Landau’'s quasiparticle model tha?%' ForT—T, both expressions, Eq$38) and (36), yield

: o : . Ip~flt].
cannot be extended B, without loosing its physical basis. P0’P ™l . . .
The standard description for the range 1.2 K< T, would The r|ght'—hand §|de of Eq38) is an °|C.{ fit formula for
be a combination of the S@5) and the RH34). In contrast the superfluid fractioms/p (for exa_mpl_e, Fig. 27 of Ref.)2
to this, our model provides a unified i80) in this range. In the framework of our model, this historic fit formula may

Although containing one parameter lg$san the combina- bﬁ interp_reted ?SI,E th;S approximati@rgép(): Tk;e o/bvious
tion of SF and RIthis unified fit is superior to the standard S ortcommgs 0 a(38) as an approximation Ops/p are
description. the following. (i) The neglectp.., leads to a qualitatively

As already mentioned, the expansiti) implies a gap wrong asymptotic behaviddifference between the full and

between the condensed and noncondensed particles. This g@‘? dashed line in Fig.)5(ii) The step from Eq(36) to Eqg.
appears to be essential for the reproduction of the data in th 8 as well as the use of=a’|t| n_1__ake the expression an
intermediate rang@=1K. This gap should in some way be 2PProximate one alrefiqy faro/p. (iii) For small tempera-
related to the roton gap. This relation cannot be expected U"es - ps/p=(TIT))" is quantitatively wrongbecause the
to be simple and obvious because one gap belongs to R'0nons have not been taken into account _
model(Landay for T<T, and the other to a modéhIBG) eX\;\C/e consider once more the exact condensate fraction
for T~T, . We note that our gap vanishes forT, , and  Po Ip mtroduced_m Sec. I B. We (_jenote its value &t
that the roton concept becomes less sharp for increasing teriz0 PY Nc. Assuming that the depletion of the condensate
perature(for T=1K the widths of roton states are already (from 1 tonc~0.1) is temperature independent we obtain
comparable to their energies exact

For T<T, Landau’s quasiparticle model is, of course, the Po ~n @%n
right model. The model fi(30) yields still reasonable values p °p ¢
for ps/p but it must fail in the quantitative reproduction of

1—p./p because the phonons are not described by the wa@S an approximate expression for the temperature depen-
function (6). dence of the exact condensate fraction. The experimental

temperature dependence is given in Fig. 2 of Srenal?°
Within the relatively large experimental uncertainties the ex-
pression(39) agrees with the data.

Tf

1 (39

o

IV. CONDENSATE DENSITY

The unified model fit, Eq(30) with Eq. (32), defines the
decomposition of the superfluid density into the condensate V. EFFECTIVE GINZBURG-LANDAU MODEL
density and the coherently comoving density. The tempera- .
ture dependence of this decomposition is displayed in Fig. 5. N our approach, the macroscopic wave functign
In this section we discuss in particular the temperature de-
pendence of the condensate density. P(r)= \/Eexp[icb(r)]z Jpoexdid(r)] (40)
The contribution ofo.,, is decisive neall, but negligible \ ’
for lower temperatures. The comoving density,, carries
some entropy because it does not correspond to a sing
guantum state. This entropy content is quite small because it
is due to the lowest single-particle states w(th)>1. It is
below the present experimental limits but should be detect-
able; for these points we refer to Refs. 5 and 6. We start by presenting a qualitative argument for the ex-
As shown in Sec. Il B, the expressiorn=a’|t| works istence and the meaning of the coherence lkyit,.

lays the role of the order parameter. We investigate the free
ergy as a function of this order parameter.

A. Coherence limit
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The macroscopic wave functio# may contain equilib- pOX(2:0h+Xgoh~t2' From pOXgohNtz we would obtain X,
rium and nonequilibrium excitations. A superfluid motion —|{|12 and x3 ,~|t|¥2 in contradiction to the scaling as-
with ug=(2/m)V® is a nonequilibrium excitation. At finite sumption. Therefore, scaling requim§h~|t|2 or
temperatures, there are thermal fluctuations of the order pa-
rameter, i.e., equilibrium excitations. We consider the aver-

. 2/3
age momentum of these fluctuations, Keor ], (48)
This implies ps~ peor~|t|? for the superfluid density and

Kiuer= [V PI. (4D £~ 1Kkque~|t| =22 for the correlation length.
The bar denotes the statistical average. The momekjym The mass coefficients/po~|t| =3 in Eq. (44) is singu-
will be a function of the temperature. It is related to thelar. Ginzburg and Sobyarfihhave introduced a comparable
correlation lengthé~ 1/Kksct - effective Ginzburg-Landau model with nonanalytic coeffi-

The single-particle states are described by real functionsients, too. In Ref. 21 the nonanalytic coefficiefitse |t|*

@k in Eq. (4). We consider the possibility of phase fluctua- for the || term) are phenomenologically introduced in or-

tions for a low-lying state witm,> 1, too. After the replace- der to reproduce the right critical exponents.

ment ¢, — ¢ exp(iP,) in Eq. (4) these fluctuations may be ~ The divergent mass coefficiept/po~|t| ~** damps the

described by the field®(r). critical fluctuations such that Eq44) becomes scaling in-
Let us first assume that the additional phases vadigh, Vvariant. In this sense, the modd#H) has similar properties to

=0. In this case, the average kinetic enefdki ./2m of a  the common Ginzburg-Landau ansatzds-4 dimensions.

condensed particle would exceed that of a noncondensethis means that Eq44) might be used down t{t|=0 and

particle with k<kq,. The energy sequence of the single-that the critical exponent gis might be indeed exactly 2/3.

particle states is, however, a prerequisite of the BEC; thd his possibility is supported by the excellent fit obtained for

condensate must be formed by the particles with the lowedtd. (23).

energy. In order to preserve the energy sequence of the low-

lying states we require the phase ordering C. Further scaling restrictions

D (r)=d(r) for k=Kgy. (42) The equilibrium Landau free energy contains integer
powers oft only:
This argument does not apply to the states with higher mo-
menta. By this qualitative argument we obtain the many- Fi~- 2434t (49

body wave functior(6) with The asymptotic form of the superfluid densiB2) is com-

(43  patible with the expansionXgenxy|t|?*+x,[t| +x[t|**
+ - --. In the fluctuation term this expansion will, however,
in general lead to noninteger exponents:

Kcon= Kiuct -

B. Free energy

The statistical expectation valyg~|t| can be obtained
by minimizing the common Landau enerdy /V=Rt|#|?
+U|y|* (with regular coefficient® andU). The fluctuation 43 (50)
term Fq o/ V= (%%/2m)|V 4|2 equals the kinetic energy den-

sity pou?/2 of the condensate only; hete=(#/m)V®. The  scaling for(44) implies also that the amplitudes of the non-
phase coherence assumed in E).implies thatpou® must  analytic terms vanish. This condition yields relations be-

2 2
Ffluctocpskcoh:(PO+Pcoh)kcoh~' R REE |t|7/3+ T '|t|8/3

be replaced b)psuz. This leads to the foIIowingaffective tween the expansion parametera’,b’, L. and
Ginzburg-Landau ansatz X1,X2,X3, . .. that may also be expressed by the coefficients

E ELE #2 a; in Eqg. (22). The condition of a vanishing amplitude of the

FoL_ Ffuat™FL_ M Ps 2 2 4 |t|”® term can be evaluated straightforwardly and yields

[Vyl*+RYy]“+U[y|".
v Y] 2m po
(44) V(312
. . . xz——L)w—O.SB or a,=1. (51

Assuming that the leading exponent xf,, is not greater 8

than 1, £q.(20) yields These theoretical values compare well with the fitted values

o 45 given in Eq.(24) or Eq.(33).
Peoh™ Feoh 43 The condition of a vanishing amplitude of thg®* term
The equilibrium fluctuation term becomes then yields
Ffiuct™ Pskleuct: (Pot pcon) kc2;oh~ POXgoh"_ Xgoh- (46) _ 7 {( 3/2)]2 a'? (52)
The asymptotic form of the Landau part of the free energy S 64 3x1

behaves like : : .
and a corresponding expression fy. These relations are

FLOCRtpO+Up(2)~t2. (47) not fulfil_led by the parameter_values found in.the fits. The
reason is probably the following: The expansid@g) and
We require now scaling invariance. This means thal;  (31) are cut after thét|*3 term. In a fit it is then in particular
must have the same leadirjtf dependence a&,, i.e., the last term that tries to simulate the neglected terms.
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VI. CONCLUDING REMARKS

We have modified the IBG in such a way that it might be
applied to liquid helium. We summarize the novel views and;

main results of our approach.

TORSTEN FLIESSBACH

PRB 59

The contribution of noncondensed particles to the super-
fluid density offers a solution of the so-called macroscopic
problent? of liquid helium. This problem reads as follows: If
he superfluid density corresponds to single quantum state
(ps=|]?) then the approach to an equilibrium stéveith

(1) The IBG valuep=1/2 for the critical exponent of the , — , (T)] cannot be understood.
condensate should be taken seriously. It is not subject 0" (4) We have derived a fit formula for the temperature

renormalization because it results from a calculation that algependence of the superfluid density. This fit formula repro-
ready includes a summation over arbitrarily large lengthsduces the data significantly better than comparable expres-

and it is essential for the BEC mechanism.

sions. This feature as well as qualitative scaling arguments

(2) The model condensate contributes fully to the supersuggest that the critical exponentof the superfluid density

fluid density; it is not depleted by the Jastrow factors.
(3) In order to reproduce the critical exponemnt1/3 of

might be exactly equal to 2/3.
(5) The temperature dependence of the decomposition of

the superfluid density we have assumed that noncondensagdperfluid density into the model condensate density and the

particles below a certain momentuky,, move coherently
with the condensate. The coherence likyj;, has been made
plausible in Sec. V A.

coherently comoving density is given. A simple formula for
the temperature dependence of the depleted condensate den-
sity is presented.
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